
D e a d l i n e s , T r a v e l T i m e , a n d

R o b o t P r o b l e m S o l v i n g
David Miller, R. James Firby, and Thomas Dean

Yale University
Department of Computer Science

P.O. Box 2158 Yale Station
New Haven, Connecticut 06520

1 A b s t r a c t

This paper describes some extensions to the reductionist plan
ning paradigm typified by Sacerdoti's NOAH program. Certain
inadequacies of the partial ordering scheme used in NOAH are
pointed out and a new architecture is detailed which circumvents
these problems. An example from the semi-automated factory
domain is used to illustrate features of the new planner. Tech
niques for eliminating unnecessary travel time by the robot and
avoiding backtracking due to deadline failures are discussed and
their incorporation in the planner is described.

2 I n t r o d u c t i o n
Most planners since NOAH [8] have represented a plan for a
set of tasks as a partial (ie., non-linear) ordering of the steps
required for carrying out those tasks. NOAH and its successors
(eg., NONLIN [9] and DEVISER [10]) employ a partially ordered
network of tasks to avoid early and unnecessary commitment to
task orderings. The motivation for this is to eliminate backtrack
ing. However, maintaining a consistent partial order is difficult
in domains where the fact that tasks actually take time plays an
important role: domains in which deadlines or robot travel time
are serious considerations.

That a partial order leads unavoidably to a deadline failure
usually cannot be discovered until an attempt is made to linearize
the ordering. However, failure to notice a deadline violation early
will require backtracking later.

In addition, planning with a partial order is not well suited to
efficiently managing factors like travel or machine running time.
It's not difficult to represent that moving from one workstation
to another takes time proportional to the distance separating the
two workstations. However, generating a plan that eliminates
unnecessary travel between workstations requires exploring some
of the linearized task orderings. It is not until tasks are com
pletely ordered that the source and destination workstations of
each movement can be known and the travel time computed with
any accuracy.

In this paper we describe an approach to planning that com
bines the use of a partial order with a method for exploring the
possible repercussions of that partial order. This approach has
been implemented in the FORBIN planner (First Order RoBot
INtender). FORBIN is a planner capable of solving a signifi
cantly wider class of problems than any of its predecessors.

2.1 The Factory Domain
One problem domain that has been used for exploring our ap
proach to planning is what we refer to as the semi-automated
factory. In this domain a mobile robot operator wanders about
the factory floor (see Figure 1) performing basic maintenance and
supply operations to the factory machinery. The purpose of the

3 A n O v e r v i e w o f t h e F O R B I N P r o j e c t
The most important issue FORBIN is designed to explore is the
use of spatial and temporal reasoning in planning. To do this
the system supplements the usual hierarchical planner with two
new modules: The Time Map Manager and the Time Optimizing
Scheduler.

3.1 The Time Map Manager [T M M]
The TMM [3] is a set of routines for reasoning about the occur
rence of tasks and the spans of time over which facts can be said
to hold. The data structure that the TMM uses to store and ma
nipulate the temporal relationships between these facts is called
a time map.

Plans generally have assumptions or facts which must be
true in order that the plan be applicable in a given situation.
The TMM is queried during plan selection to locate intervals
over which these facts are true. It returns a number of interval-
constraint set pairs each of which specifies a set of constraints on
the partial order that must be imposed to keep the assumptions
valid over its interval. The TMM monitors the continued validity
of plans by setting up nonmonotonic data dependency justifica
tions composed of assertions called protections. If a protection
fails then the TMM notifies the planner of any plans threatened

D. Miller et al. 1053

by the failed protection. The failure is annotated in such a way as
to facilitate corrective action. The TMM also anticipates possi
ble protection failures and suggests ordering constraints to avoid
undesirable interactions. The FORBIN planner uses this same
machinery to handle simple resource management chores (eg.,
reserve the lathe for a 30 minute stretch beginning after 8:00
but ending before noon). The TMM subsumes and extends the
functionality of the TOME (Table Of Multiple Effects) mechanism
used in NOAH.

3.2 The Time Optimizing Scheduler [TOS]
The nature of tasks in the FORBIN domain necessitate that
the robot spend considerable amounts of time in transit between
workstations. The FORBIN system uses the TOS to make plan
selection decisions that reduce this travel time and make the
overall plan as short as possible.

In the semi-automated factory, where travel distances are siz
able with respect to production times, travel time considerations
are1 very important in deciding which of the possible ta.sk expan
sions will eventually yield the most efficient final plan. The TOS
chooses the plan that fits best in the overall scheme of things
by producing the most efficient schedule of execution using each
possible expansion, and choosing the best. The chosen expansion
is used in further planning and the schedule is used to guide the
order of expansion of further subtasks. When planning is com
plete the schedule provides the order in which the robot should
execute the final set of primitive actions.

The TOS offers an inexpensive method of exploring the sched
ules that can be formed from the partial order of a set of tasks.
The search space for scheduling a set of tasks is factorial in the
number of tasks, but [7] and [11] contain heuristics for trimming it
significantly. These heuristics mainly use temporal constraints to
eliminate impossible schedules before they have been fully elabo
rated. Ordering constraints and deadlines often eliminate all but
a few possible schedules.

A further computational saving is derived by rating the qual
ity of the schedules being constructed, and pursuing only the
most promising ones. For the FORBIN factory domain the over
all execution time is the chief determiner of a schedule's quality
and is the discriminating feature among legal, consistent sched
ules.

No rating system is perfect and it is possible that the sched
ule first picked by the TOS may not be the optimal one. Since'
the TOS uses a heuristic search to produce schedules, a longer
search time will increase the probability of the program finding
the optimal schedule. The TOS can be set to search at any level
of detail and can therefore find the best schedule that balances
planning time against execution time.

Along with the TMM and TOS, the FORBIN system has two
other major modules: the Task Expander [TE], and the Task
Queue Manager [TQM]. The TE is responsible for finding all
possible plans that can be used to expand a task, and the TQM
maintains two queues: the unexpanded tasks in the order they
should be expanded and the primitive actions in the order they
should be executed. The communication paths between these
modules are shown in Figure 2. In addition to the basic mod
ules, interfaces are provided for a User which gives the system
new tasks to perform, and a Robot which performs the primitive
actions directed by the planner.

While there are non-primitive tasks in the TQM, FORBIN:

1. Pops the first task in the TQM and passes it to the TE.

2. The TE finds all the plan descriptions in the plan library
which match the task. For each plan it finds, it asks the
TMM for a time or times when the plan could be used.

3. The TMM elerives all of the constraints necessary to make
each plan suggested by the TE feasible.

4. The TOS takes all the plan-constraint sets and finds the
one that produces the best schedule when combined with
the contents of the rest of the time map.

5. The TQM gets the schedule and the TE is passed the se
lected plan.

6. The TQM takes the schedule, extracts the new subtasks
from it and adds them to its queues. The ordering in the
schedule is used to help order the items in the queues.

7. The cycle then repeats until the TQM has no more unex
panded tasks.

3.4 The Plan Formalism
To facilitate this flow of control, the plan formalism used by
the FORBIN system specifies not only the action and ordering
information found in other formalisms, but also the temporal
and spatial features required by the TMM and TOS. Each plan
specification includes:

• Conditions that must hold true before and during plan ex
ecution.

• How to expand the plan into lower level actions.

• Effects of some actions and the protections on those effects.

• Aproximately how long the plan will take to execute.

• Where the robot must be to carry out the plan.

• The utility of the plan compared to others for that task.

Plans come in two parts: the property descriptor and the plan
descriptor. For any given task, such as (make ?thing), there
will be only a single property descriptor no matter how many
plans there are. The property descriptor gives the approximate
duration and position of a task before a plan is chosen for it: a
combination of the durations and positions of all the plans known
for the task. These estimates are required so that the TMM and
TOS can deal effectively with tasks that are not yet expanded.

The plan descriptor is used when it is time to expand a task.
The plan descriptor contains a list of the plan's subtasks and the
mandatory ordering and time constraints that exist on those sub-
tasks. The plan descriptor may also contain assumptions which
must be predicted to hold true over the intervals specified in or-

1054 D. Miller et al.

dor for that particular plan descriptor to be able to be chosen as
the actual plan for the task. The plan formalism is discussed in
more detail in [4].

4 F O R B I N a n d W h a t H a s G o n e B e f o r e

The FORBIN planning system shares many of the characteristics
of earlier planners like NOAH and NONL1N since it is a hierarchi
cal planner that attempts to leave subtasks only partially ordered
as long as possible. However, the TOS and TMM give FORBIN
important new capabilities:

1. to deal with tasks that require specific amounts of time and
must be performed at specific locations.

2. to represent deadlines so that plan steps can be synchro
nized with events outside the planner's control.

3. to produce near-optimal schedules that eliminate unneces
sary robot travel and idle time.

The necessity of representing time in planning has been rec
ognized by many researchers: [6], [1], [2]. The FORBIN system
uses the time map to reason about the temporal intervals associ
ated with tasks. All real tasks take time and hence it is critical
that a planner be able to represent and deal with information
concerning the duration and separation of tasks. The FORBIN
treatment of time allows the system to deal with deadlines on
tasks, to recognize explicit overlap of tasks where that is possi
ble or necessary, and to compare the predicted execution time of
different, planning choices.

Some previous systems that have made extensive use of time
are ISIS, [5), and DEVISER, [10]. ISIS uses a heuristic scheduling
module to solve job-shop scheduling problems. However job-shop
scheduling is too restrictive to handle many common aspects of
typical problem solving domains. Thus ISIS docs not incorporate
travel time between workstations into its scheduling representa
tion. DEVISER, though it produces a schedule, does not contain
a scheduler. Instead it relies on the general hierarchical planning
mechanism combined with backtracking to eventually produce a
schedule. By not having a scheduler guide the plan expansion and
ordering the results of DEVISER's work can be very inefficient
and may have involved very large amounts of backtracking.

Earlier planners often made no effort to produce a linear
schedule of primitive actions from the partial order of the final
plan expansion. In the FORBIN factory domain, such a linear
schedule is required because the robot can do only one thing at
a time. The TOS is used to help keep the best linear schedule
implied by the partial order at each planning step as near to op
timal (ie., short) as possible. To allow this, travel between tasks
is not represented in the plan formalism, instead the location of
the task is. Thus, as the TOS is examining possible linear sched
ules, it calculates the travel time between the ordered tasks as
it fits them together. In this way, unneeded travel tasks are not
generated and the TOS is free to order travel any way it chooses
as long as it does not violate any other constraints on the tasks.
The TOS can also overlap the execution of several tasks pro
vided that the overlap is consistent with the constraints in the
time map and it does not demand that the robot be more than
one place at a. time. These abilities of the TOS give FORBIN
the opportunity to produce plans that make better use of time
than previous planners.

5 S u m m a r y

Solutions to planning problems that involve realworld actions
must take time and travel into account. The FORBIN planning
system does this by using two special purpose modules. The
TMM constructs and maintains a temporal database in which
to reason about tasks and their consequences over time. It then
uses this time map to anticipate and suggest methods of avoiding
undesirable interactions. The TOS manipulates the partial order
of subtasks to find the arrangement that takes best advantage of
executing tasks in parallel and eliminates unnecessary travel in
order to minimize overall plan execution costs.

A plan formalism has been given that allows all the neces
sary constraints needed to interface with these modules, to be
expressed clearly and cleanly.

The overall system can plan solutions for tasks that have a
wide variety of temporal and spatial constraints. The solutions
produced by the system are not only consistent with the con
straints placed on the problem, but arc also near optimal with
regards to their cost in time.

A c k n o w l e d g m e n t s

The authors wish to thank Steven Hanks, James Spohrer, and
Drew McDerniott for their comments and suggestions on this
research. This work was supported in part by the Advanced Re
search Projects Agency of the Department of Defence and moni
tored under the Office of Naval Research under contract N000I4-
83-K-0281.

B i b l i o g r a p h y

[l] Allen, James, Maintaining knowledge about temporal intervals,
Comm. ACM, 26/11 (1983), pp. 832-843.

[2] Cheeseman, Peter, A Representation of Time for Automatic Plan
ning, Proc. IEEE Int. Conf. on Robotics, 198-1.

[3] Dean, T., Temporal Reasoning Involving Counterfactuals and Dis
junctions, Proc. of the. Ninth Int. Joint Conf. on Artificial Intel
ligence, IJCAl, AAAI, Los Angeles, CA, August 1985.

[4] Firby, R.J., Dean, T., Miller, D., Efficient Robot Planning with
Deadlines and Travel Time, I'roc. of the 6th Int. Symp. on
Robotics and Automation, IASTED, Santa Barbara, CA, May
1985.

[5] Fox, Mark S., Constraint-Directed Search: A Case Study of Job-
Shop Scheduling, Technical Report CMU-R1-TR-83-22, CMU Ro
botics Institute, December 1983.

[6] McDerniott, Drew V., A temporal logic for reasoning about pro
cesses and plans, Cognitive Science, 6 (1982), pp. 101-155.

[7] Miller, David, Scheduling Heuristics for Problem Solvers, Techni
cal Report 264, Yale University Dept. of Comp. Sci., 1983.

[8] Sacerdoti, Earl, A Structure, for Plans and Behavior, American
Elsevier Publishing Company, Inc., 1977.

[9] Tate, Austin, Generating Project Networks, Proc. IJCAI 5, IJ-
CAI, 1977, pp. 888-893.

[10] Vere, Steven, Planning in Time: Windows and Durations for Ac
tivities and Goals, IEEE Trans. on Pattern Analysis and Machine
Intelligence, PAMI-5/3 (1983), pp. 240-267.

[11) Vere, Steven, Temporal Scope of Assertions and Window Cutoff,
1984. JPL, AI Research Group Memo.

