Ae — AN EFFICENT NeR ADMISSBLE HBURISTIC S2AR0H A GORTHM

Malik Ghallab ad Dennis G. Allard

Laboratoire dAutomatique et dAnalyse des Sysemes
du CN.RS.
7, avenue du Colonel Rode - 31400 TOULOUEE France

ABSTRACT

The algorithm A* (Nilsson, 1979) presents two
significant drawbacks. First, in seeking strict
optimal solution paths it necessarily has high
order of complexity. Second, the algorithm does
not explicitly descriminate between the cost of a
solution path ad the cost of finding the solution
path. To confront these problems we propose the
algorithm AE, a generalization of A*. Instead of
seeking an optimal solution, it seeks one which is
within a factor (1+e) of optimum (e > 0). The
basic idea is to avoid doing any search at all on
most near optimal partial solutions by sticking to
a small number of most fruitful paths. Various
strategies for searching for near optimal partial
solutions are discussed. Experimental results are
presented indicating that A e has average complexity
of lower order than A* and compares favorably to
the related algorithm Af* (Pearl ad Kim, 1982).

I NIRCOUCTON — ADMISSBLE SAR(H IS EXFENSMVE

This paper emphasizes the main ideas behind Ae
and serves to introduce rew empirical results
concerning its behavior. A more extensive
presentation of Ae and its properties appears in
(Ghallab, 1982) and in (Ghallab and Allard, 1982).
We assume familiarity with A* and notation of
(Nilsson, 1979). We denote the set of successors
of node n by X(n). The cost of arc <nx> is
k(n,x)>0. We denote a path between n and m by
<n..m>. For start node s, the true costs of
minimal cost paths <s...n>, <n...t>, and
<s...n...t>, over all goal nodes t, are denoted by
g*(n), h*(n), and f*(n) respectively. The
estimators for these functions are g, h, ad f
respectively. COFEN is assumed ordered by
increasing f (and decreasing g in the case of
ties). At all times, n' denotes the first (least
f) element of CFEN

The complexity of A* has been studied in some
detail. For perfect h = h*, A* is linear. But in
general it has worst case complexity which is expo-
nential as a function of the number of nodes in the
found solution path (Pohl, 1970,77). For a large
class of problems A* remains exponential in the
average case unless h is very precise and remains
unrealistically close to h* (Pearl, 1983).

and i BRGHSHed

BB reR e by U ey o o,

Two drawbacks to A* explain its high complexity.
First, A* tends to do much backtracking due to the
invariable choice of n' as the node to be expanded
next. A* tends to expand many nodes not in the
final solution path since h (being a heuristic)
fluctuates in quality and hence various near
optimal paths take random turns appearing to be
optimal. Such paths effectively "race" with one
another to reach their goals. So we can trace the
cause of backtracking to A*'s desire to fine tune
an optimal cost solution.

The second drawback is that A* makes no explicit
attempt to minimize search cost, i.e. the number of
nodes . Given two equally promising paths
with respect to path cost, it would seem wise to
develop that path which is the fewest arcs from
completion. But for A*, it does not matter too
much which promising path is developed next since
eventually all promising paths must be. Thus A*
does not have much need for an explicit heuristic
to reduce search cost. Simply put, admissible
search is inherently expensive.

Our basic premise is that a bounded loss of
optimality can always be favorably traded for a
gain in computational efficiency. The very notion
of "cost" ad "optimal cost" are imprecise in most
applications involving modelling of the real world.
Moreover, in heuristic search one often requires
only a near optimal or even just decent solution.
For example, in robotics, there is a tradeoff
between the cost of generating a plan and the
optimality of the plan when the plan is to be
executed only once.

1 A6 AD NER CPTIVAL PATH S2R0H STRATIGES

Ae drops the strict optimality criteria and
seeks instead a solution within a factor (I1+f) of
optimum for a user specified €>,0, This at least
makes possible avoiding A*'s defect of having to
investigate all optimal looking paths. The problem
v becomes — which of the marny near optimal paths
merit attention?

A€ attempts to answer this question by
generalizing A* in two primary ways. First, A€
performs a depth oriented search, preferring to
stay on a single path as long as a successor to the
frontier node (the last one expanded) of that path
is "acceptable”. An open node n is acceptable iff

u GVASUNded by (I +€max f (n')} over all n'
€Have appeared as the first element (least f)

790 M. Ghallab and D. Allard

in OPEN. To choose an acceptable successor to
expand next or, in the case that no such
successor exists, to choose which node in OPEN to
backtrack to, A€ can make wuse of a second
heuristic hc. hc(n) provides an explicit guess as
to the computational cost involved in reaching a
goal node by estimating the minimum number of arcs
between n and a goal node.

The second difference between A€ and A* is that
A€ possesses an inner loop invoked when the
frontier node has no acceptable successor. The
inner loop attempts to render some successors
acceptable by expanding a certain number of times
the first node of OPEN, n'. Doing so often (if h
is monotone, always) increases f(n') and thus may
turn unacceptable nodes into acceptable ones. We
refer to this idea as the perserverant strategy of
A€. A more precise specification of A€ is as
follows.

Alporithm Ae:

l. OPEN:= {s} CLOSED:= nil SOLVED:= nil
gledi= 0 £(s):= his) ¢threshold:= (t+e)fisg)
Expand (s}

AX:= | x ¢ X{s) : Acceptable(x) |

2. do until {(3 t « SOLVED}Acceptable(t)
or OPEN = nil}

2.t if AX # nil then
n:= SelectAX
else
n:= SelectDPEN fi
2.2 Expandin}
2.1 do until ({3 x - X(n))Acceptable(x)
or OPEN = nil or not Perservere)
Expandin')
od
2.4 AX:= { x =~ X(n) : Acceptable(x)}
od

3. if OPEN = nil then failure
elae
get t to node of least f(t} in SOLVED
output path <s...t>»
output € = {{14+€) + ethreshold}flc) - 1
fi

where,

Acceptable{n) iff ne OPEN amd f(n} ¢ ethreshold

Expand(n}:

OPEN:= OPEN - {n |
do (Y x - X(n))
if x ¢ OPEN union CLOSED or gin)+k(n,x)<g{x) then

OPEN:= OPEN union{ x

gix)i= gln) + kin,x)

Elx)r= g{x) + hix)

set a back pointer te keep track of path to x

if x is a goal node then

SOLVED:* SOLVED union {x }
£i

CLOSED:= CLOSED wnion {n}

Fi
od
ethreshold:= max[rthreahold.(1+!)ffn')]

Notice output € which gives the actual relative
cost of the found solution with respect to
max {f(n')")}. It is always true that €<#€ since the
output solution (if any) satisfies Acceptable.

SelectAX selects which acceptable successor of n
is to become the new n. A general approach is to
minimize a weighted sum Af(x) + Bhc(x). Since the
main purpose here is to stay on a path previously
seen to be near optimal, we believe that A should
be larger than B. The extreme approach of taking
A =1 and B - 0 leads to a depth oriented best
first search and has the advantage of simplifying
the main loop -- statement 2.1 can be replaced by

if Acceptable(xmin) then
n: = xmin

else
n:= SelectOPEN fi

where xmin is the open successor of n having least
f. And statement 24 can be removed entirely.

SelectOPEN has the more difficult task of
deciding which acceptable n in OPEN to backtrack
to. Again we can minimize some weighted function
Cf(n) + Dhc(n) over all n in OPEN. Minimizing fn)
gives us precisely n'. This would lead after
expansion to raising fthreshold as much as possible
hence increasing the likelihood that the developed
path will remain acceptable. Minimizing hc(n)
moves us closer to a solution but increases the
risk that the inner loop may have to abandon the
selected path soon thus provoking backtracking.
Nevertheless, we argue that SelectOPEN should place
importance on hc since the inner loop will be
capable of raising €threshold. In general,
experimentation should help determine weights for f
and hc in any specific application.

The perserverant strategy of A6 is embodied in
the predicate Perservere, the heuristic element of
the inner loop. Perservere should return true as
long as it seems wise to try to render at least one
of the successors of n acceptable, i.e. to perser-
vere on the current path. We list below factors
which would indicate that doing so is worthwhile.

- n has a successor which is "almost" acceptable.
- n has a successor close to a goal (hc small).

- The second or third best f(n) over n in OPEN is
significantly greater than f(n').

- The inner loop has iterated few times.

- A node already in SOLVED is almost acceptable (n'
should be expanded to try rendering a found goal
acceptable).

- (I+f)f(n') = fthreshold. If h is monotone this
will always be true so this condition would not be
useful in that case.

Notice that A* halts when it runs into a goal node
as first element of OPEN whereas A€ continually
surveys all generated goal nodes and explicitly
attempts to render one or more of them acceptable.

For pearch in a &-graph (one in which no infi-
nite path has finite c¢ost) where a path from s to &
goal node existe, the Following properties of A,
hold. See (Ghallab, 1982) and (Ghallab and Allard,
1982) for proofs and discussion.

I. A, haltes after finding a goa) node t sarisfying
Acceptableft}.

2. 1f for some fixed constant e,
0 < hin) ¢ (1+e}h*{n) for =&ll nodes n, then the
found goal node t satisfies F(t) < (1+e){1+e')h*(s},

Taking e = 0 in the above result and noticing that
t'2r gives:

3. If h is admissible then A, is rf-admissible.

4, 1If h is monotone then fln') increases
monotonically and , for all expanded n,
g*{n)z gln) <01+ 1)g*(n) + ¢ hin).

Let us briefly mention how A, differs from A,*
(Pearl and Kim, 1982), A,* is like A* except that
A¢* expands the node with least h. among all n in
GPEN satisfying fln) <« (1+¢)f{n')., This last
ctondition is more restrictive than our Acceptable
predicate. But most impertantly. Ac¢* uses neither
depth oriented search nor a perscrverant strategy
(no inner loop) and hence may perform unnecessary
backtracking. Also, if a good h, is not available,
A, is only partially handicapped f(see SelectOPEN)
and can still perform depth oriented search,
whereas A,*% simply reduces to A%,

[l BEXPERMENTAL RESULTS AND CONCLUSION

We have tested the hehavior of A€ on TSP (the
travelling salesman problem) under the same test
conditions (N = 9 cities randomly distributed
uniformly in the unit square) and using the same
heuristics h and hc as (Pearl and Kim, 1982).
Tests were made on sixty different distributions of
cities. For each test A, was run with € set
successively to 0, 0.0l1, 0.05, 0.10, 0.15, 0.25,
and 00 (€ = 0 yields the optimum solution; € = oo
yields a solution in the minimum number of steps --
exactly N2 nodes are expanded).

Table | indicates the computational effort
exerted by A,. Three complexity indicators were
employed: E, the number of nodes expanded, G the
number of nodes generated, and B ,the number of
times A, had to backtrack (switch paths). Table 2
gives the actual cost of the solutions obtained and
f', the guarantee returned by A€ of the degree of
optimality of the solutions. All figures
(€ excepted) are given relative to their values for
f = 0 (corresponding to what A* would do). The
numbers in parentheses give the standard deviation
(for the corresponding mesures.

Notice that for all indicators (Table 1), compu-
tational cost decreases rapidly withincreasing €
(from exponential complexity for t = 0 down to
linear complexity for (=00). The obtained
results compare favorably with those of (Pearl and
Kim, 1982, Fig. 4) shown as E1 in Table | below.

M. Ghallab and D. Allard 791

As Table 2 shows, the actual solution costs
remain quite near optimal. It is interesting that
with (= 00, the found solution is guaranteed to be
within 27 % of optimal.

lo0xe| O I 5 10 15 25 @
E ’|no 92 77 54 42 23 15
for) (g.8}y (22) (24 €25) {(18) 13)
_ . . -
G e 92 79 58 46 . 28 21
() | Y1y (20) (23) 7 (27 . (20) {t9)
B loe 83 4B 20 1 13 . 2.8 0
fo}y Sty fr1y o q1sy , €13) 0 (5.1)

' N) !
E* 190 - 97 &5 70 &5 65 65

Table |

100xe

o t 5 s 25 o

Cost 100 (1001 100.4 101,}
fey I {.6) t.ay (1.7}

“101.9 103.0 107.,0
(2.5) {8,101} (5,7)

. e b S
100xet 0 | 36 2.7 0 7.5 | 1) 18 - 27
() (.39} (1.3} €2.7) l(3.5) £5.9) [0

: L

Table 2

To obtain completeness with respect to Pearl's
results we also tested A, on "difficult problems"
in which intercity distances are confined to the
interval (0.75,1.25). In 25 test cases, as soon as
(exceeded .05, no backtracking was ever performed.
Our results for number of nodes developed are
similar to those of Pearl (c.f. his Fig. 6); E = 81
and 28 for < =.01 and .05 respectively.

These results compare A€ favorably to A* and to
A€ *. We are currently conducting further tests on
TSP and other search problems in order to
experiment with the search strategies discussed in
section I1.

REFERENCES

Ghallab M. Optimisation de processus decisionnels
pour la robotique. These d'Etat. Universite
Paul Sabatier de Toulouse. October 1982.

Ghallab M., Allard D. Near admissible heuristic
search algorithms. Second World Conference on
Mathematics at the Service of Man, Las Palmas
(Canary lIslands), Spain, June 1982.

Nilsson N.J. Principles of Artificial
Intelligence. Tioga Publishing Co., 1979.

Pearl J. Knowledge versus search: a quantitative
analysis using A*. Artificial Intelligence
20(1), January 1983.

Pearl J., Kim J. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, July 1982

Pohl I. First results on the effect of error in
heuristic search. In Machine Intelligence 5,
Metzer and Michie eds., Edinburgh U. Press, 1970.

Pohl I, Practical and theoritical considerations
in heuristic search algorithms. In Machine
Intelligence 8, Elcock and Michie eds., 1977.

