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ABSTRACT Two drawbacks to A* explain its high complexity. 
First, A* tends to do much backtracking due to the 
invariable choice of n' as the node to be expanded 
next. A* tends to expand many nodes not in the 
final solution path since h (being a heuristic) 
fluctuates in quality and hence various near 
optimal paths take random turns appearing to be 
optimal. Such paths effectively "race" with one 
another to reach their goals. So we can trace the 
cause of backtracking to A*'s desire to fine tune 
an optimal cost solution. 

The algorithm A* (Nilsson, 1979) presents two 
significant drawbacks. First, in seeking strict 
optimal solution paths it necessarily has high 
order of complexity. Second, the algorithm does 
not explicitly descriminate between the cost of a 
solution path and the cost of finding the solution 
path. To confront these problems we propose the 
algorithm AE, a generalization of A*. Instead of 
seeking an optimal solution, it seeks one which is 
within a factor (1+e) of optimum (e > 0). The 
basic idea is to avoid doing any search at all on 
most near optimal partial solutions by sticking to 
a small number of most f ru i t fu l paths. Various 
strategies for searching for near optimal partial 
solutions are discussed. Experimental results are 
presented indicating that A e has average complexity 
of lower order than A* and compares favorably to 
the related algorithm Af* (Pearl and Kim, 1982). 

I INTRODUCTION — ADMISSIBLE SEARCH IS EXPENSIVE 

This paper emphasizes the main ideas behind Ae 
and serves to introduce new empirical results 
concerning i ts behavior. A more extensive 
presentation of Ae and its properties appears in 
(Ghallab, 1982) and in (Ghallab and Allard, 1982). 
We assume familiarity with A* and notation of 
(Nilsson, 1979). We denote the set of successors 
of node n by X(n). The cost of arc <n,x> is 
k(n,x)>0. We denote a path between n and m by 
<n...m>. For start node s, the true costs of 
minimal cost paths <s...n>, <n...t>, and 
<s...n...t>, over all goal nodes t, are denoted by 
g*(n), h*(n), and f*(n) respectively. The 
estimators for these functions are g, h, and f 
respectively. OPEN is assumed ordered by 
increasing f (and decreasing g in the case of 
ties). At al l times, n' denotes the f i rst (least 
f) element of OPEN. 

The complexity of A* has been studied in some 
detail. For perfect h = h*, A* is linear. But in 
general it has worst case complexity which is expo­
nential as a function of the number of nodes in the 
found solution path (Pohl, 1970,77). For a large 
class of problems A* remains exponential in the 
average case unless h is very precise and remains 
unrealistically close to h* (Pearl, 1983). 
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The second drawback is that A* makes no explicit 
attempt to minimize search cost, i.e. the number of 
nodes expanded. Given two equally promising paths 
with respect to path cost, it would seem wise to 
develop that path which is the fewest arcs from 
completion. But for A*, it does not matter too 
much which promising path is developed next since 
eventually al l promising paths must be. Thus A* 
does not have much need for an explicit heuristic 
to reduce search cost. Simply put, admissible 
search is inherently expensive. 

Our basic premise is that a bounded loss of 
optimality can always be favorably traded for a 
gain in computational efficiency. The very notion 
of "cost" and "optimal cost" are imprecise in most 
applications involving modelling of the real world. 
Moreover, in heuristic search one often requires 
only a near optimal or even just decent solution. 
For example, in robotics, there is a tradeoff 
between the cost of generating a plan and the 
optimality of the plan when the plan is to be 
executed only once. 

II A6 AND NEAR OPTIMAL PATH SEARCH STRATIGIES 

Ae drops the strict optimality criteria and 
seeks instead a solution within a factor (l+f) of 
optimum for a user specified €>,0, This at least 
makes possible avoiding A*'s defect of having to 
investigate all optimal looking paths. The problem 
now becomes — which of the many near optimal paths 
merit attention? 

A€ attempts to answer this question by 
generalizing A* in two primary ways. First, A€ 
performs a depth oriented search, preferring to 
stay on a single path as long as a successor to the 
frontier node (the last one expanded) of that path 
is "acceptable". An open node n is acceptable i f f 
f(n) is bounded by ( I +€)max f (n')} over al l n' 
which have appeared as the first element (least f) 
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in OPEN. To choose an acceptable successor to 
expand next o r , in the case tha t no such 
successor ex i s t s , to choose which node in OPEN to 
backtrack to , A€ can make use of a second 
heurist ic hc. hc(n) provides an expl ic i t guess as 
to the computational cost involved in reaching a 
goal node by estimating the minimum number of arcs 
between n and a goal node. 

The second difference between A€ and A* is that 
A€ possesses an inner loop invoked when the 
f r o n t i e r node has no acceptable successor. The 
inner loop attempts to render some successors 
acceptable by expanding a certain number of times 
the f i r s t node of OPEN, n'. Doing so of ten ( i f h 
is monotone, always) increases f (n ' ) and thus may 
turn unacceptable nodes in to acceptable ones. We 
refer to this idea as the perserverant strategy of 
A€. A more precise spec i f i ca t i on of A€ is as 
follows. 

Notice output €' which gives the actual relat ive 
cost of the found s o l u t i o n w i t h respect to 
max {f(n')')}. It is always true that €'<:€ since the 
output solution ( i f any) sat isf ies Acceptable. 

SelectAX selects which acceptable successor of n 
is to become the new n. A general approach is to 
minimize a weighted sum Af(x) + Bhc(x). Since the 
main purpose here is to stay on a path previously 
seen to be near op t ima l , we bel ieve that A should 
be larger than B. The extreme approach of taking 
A = 1 and B - 0 leads to a depth or iented best 
f i r s t search and has the advantage of simpl i fy ing 
the main loop -- statement 2.1 can be replaced by 

if Acceptable(xmin) then 
n: = xmin 

else 
n:= SelectOPEN fi 

where xmin is the open successor of n having least 
f. And statement 2.4 can be removed ent i re ly. 

Select OPEN has the more d i f f i c u l t task of 
deciding which acceptable n in OPEN to backtrack 
to. Again we can minimize some weighted function 
Cf(n) + Dhc(n) over a l l n in OPEN. Minimizing f n ) 
gives us prec ise ly n'. This would lead a f te r 
expansion to raising fthreshold as much as possible 
hence increasing the l ikel ihood that the developed 
path w i l l remain acceptable. Min imiz ing hc(n) 
moves us closer to a so lu t ion but increases the 
r i s k that the inner loop may have to abandon the 
selected path soon thus provoking backtracking. 
Nevertheless, we argue that SelectOPEN should place 
importance on hc since the inner loop w i l l be 
capable o f r a i s i n g € th resho ld . In g e n e r a l , 
experimentation should help determine weights for f 
and hc in any specific application. 

The perserverant strategy of A6 is embodied in 
the predicate Perservere, the heurist ic element of 
the inner loop. Perservere should return t r ue as 
long as it seems wise to try to render at least one 
of the successors of n acceptable, i .e. to perser­
vere on the current path. We l i s t below factors 
which would indicate that doing so is worthwhile. 

- n has a successor which is "almost" acceptable. 

- n has a successor close to a goal (hc small). 

- The second or th i rd best f(n) over n in OPEN is 
s igni f icant ly greater than f ( n ' ) . 

- The inner loop has iterated few times. 

- A node already in SOLVED is almost acceptable (n ' 
should be expanded to t ry rendering a found goal 
acceptable). 

- ( l + f ) f ( n ' ) = fthreshold. If h is monotone this 
w i l l always be true so this condition would not be 
useful in that case. 

Notice that A* halts when it runs into a goal node 
as f i r s t element of OPEN whereas A€ con t inua l l y 
surveys a l l generated goal nodes and e x p l i c i t l y 
attempts to render one or more of them acceptable. 
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I I I EXPERIMENTAL RESULTS AND CONCLUSION 

We have tested the hehavior of A€ on TSP (the 
t r a v e l l i n g salesman problem) under the same test 
condit ions (N = 9 c i t i e s randomly d i s t r i bu ted 
uni formly in the uni t square) and using the same 
heur is t i cs h and hc as (Pearl and Kim, I982). 
Tests were made on sixty different distr ibut ions of 
c i t i e s . For each test A, was run wi th € set 
successively to 0, 0.0I, 0.05, 0.10, 0.15, 0.25, 
and 00 ( € = 0 y ie lds the optimum so lu t ion ; € = oo 
yields a solution in the minimum number of steps --
exactly N-2 nodes are expanded). 

Table I indicates the computational e f f o r t 
exerted by A,. Three complexity ind icators were 
employed: E, the number of nodes expanded, G the 
number of nodes generated, and B ,the number of 
times A, had to backtrack (switch paths). Table 2 
gives the actual cost of the solutions obtained and 
f', the guarantee returned by A€ of the degree of 
o p t i m a l i t y o f the s o l u t i o n s . A l l f i g u r e s 
(€ excepted) are given relative to their values for 
f = 0 (corresponding to what A* would do). The 

numbers in parentheses give the standard deviation 
( for the corresponding mesures. 

Notice that for a l l indicators (Table I) , compu­
t a t i o n a l cost decreases rap id ly wi th increasing € 
(from exponential complexity for t = 0 down to 
l inear complexity for ( = 0 0 ) . The obtained 
results compare favorably with those of (Pearl and 
Kim, 1982, Fig. 4) shown as E1 in Table I below. 

As Table 2 shows, the actual so lu t ion costs 
remain quite near optimal. It is interesting that 
with ( = 00, the found solution is guaranteed to be 
within 27 % of optimal. 

To obtain completeness wi th respect to Pearl's 
resu l ts we also tested A, on " d i f f i c u l t problems" 
in which i n t e r c i t y distances are confined to the 
i n t e r va l (0.75,1.25). In 25 test cases, as soon as 
( exceeded .05, no backtracking was ever performed. 
Our resu l ts for number of nodes developed are 
s im i l a r to those of Pearl (c.f . his Fig. 6); E = 81 
and 28 for < = .0 1 and .05 respect ive ly . 

These results compare A€ favorably to A* and to 
A€ *. We are currently conducting further tests on 
TSP and other search problems in order to 
experiment with the search strategies discussed in 
section I I . 
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