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ABSTRACT 
Distributed Artificial Intelligence is concerned with problem 

solving in which groups solve tasks. In this paper we describe stra­
tegies of cooperation that groups require to solve shared tasks 
effectively. We discuss such strategies in the context of a specific 
group problem solving application: collision avoidance in air traffic 
control. Experimental findings with four distinct air-traffic control 
systems, each implementing a different cooperative strategy, are 
mentioned. 

I. INTRODUCTION 

Distributed Artificial Intelligence is concerned with problem 
solving in which groups solve tasks. Through systems like STRIPS 
|4], ABSTRIPS [9], BUILD [3], and NOAH [10], we now have some 
understanding of how a single agent can solve problems. Unfor­
tunately, recent work suggests that the representations of knowledge 
[5], [l] and planning expertise [8] required of agents in distributed or 
group problem solving is quite different than that required of single 
agent problem solvers. 

In this paper we focus on one particularly important but lit-
tie understood topic: The kinds of strategies of cooperation that 
groups require to solve shared tasks effectively. We begin with a 
discussion of the difficulties facing distributed problem-solving 
groups. From this analysis we infer a set of requirements on the 
information-distribution and organizational policies such groups 
require. We then discuss a set of distributed problem solvers that 
we have developed in the domain of air traffic control. We concen­
trate on the particular cooperative strategies they embed, how they 
are implemented, and how they successfully overcome some of the 
obstacles that make it difficult to coordinate groups of agents. 

II. DISTRIBUTED PROBLEM SOLVING DIFFICULTIES 

To understand the difficulties facing groups solving problems 
it helps to note some important characteristics of distributed prob­
lems. The following traits are true of a wide variety of group situa­
tions: 

• Most situations consist of a collection of agents, each with 
various skills, including sensing, communication (often over 
limited- bandwidth channels), planning, and acting. 

• The group as a whole has a set of assigned tasks. As in 
single agent problem-solving situations, these tasks may need 
to be decomposed into subtasks, not all of which may be 
logically independent. The group must somehow assign sub-
tasks to appropriate agents. 

• Typically each agent has only limittd knowledge. An agent 
may be subject to several kinds of limitations: limited 
knowledge of the environment (e.g., because of restricted 
sensing horizons), limited knowledge of the tasks of the 
group, or limited knowledge of the intentions of other 
agents. 

• There are often shared limittd resources with which each 
agent can attack tasks. For example, if the agents are in a 
blocksworld environment, the shared resources are the blocks 
out of which their constructions must be made. 

• Agents typically have differing appropriateness for a given 
task. The appropriateness of an agent for a task is a func­
tion of how well the agent's skills match the expertise 
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required to do the task, the extent to which its limited 
knowledge is adequate for the task, and current processing 
resources of the agent. 

Several kinds of distributed problem-solving difficulties follow 
from this characterization. First, there are difficulties with optimal 
task assignment. Many mappings of decomposed subtasks to 
agents are possible, but, because agents have differing appropri­
ateness with respect to a given task, only a few agents will be 
acceptable for any task. In many distributed problems it is cru­
cial for agents to adopt the right role. In addition to insuring that 
any given task is assigned to an appropriate agent, the group has to 
achieve task coverage. All subtasks should be assigned to some 
agent (complete role assignment) and multiple unnecessary agents 
should not be assigned a task (consistent role assignment). 
The limited knowledge of agents compounds the difficulty of optimal 
task assignment and task coverage. Incomplete knowledge 
prevents consistent and complete role assignment because no one 
agent may have a global knowledge of all the roles or subtasks 
that need to be assigned. Optimal task assignment is also 
threatened since agents may not know about tasks for which they 
are the most appropriate. 

Second, task coordination problems arise because tasks 
assigned to agents may not be independent. For example, if two 
blocksworld agents are each to build towers (as subtasks of a larger 
task), the plan that one agent produces might negatively interact 
with the plan of another if both intended to use the same block. 
While single-agent problem solvers have difficulties in handling 
non-independent tasks or subgoals, these difficulties multiply for 
distributed problem solvers. Again, limited knowledge is the rea­
son. If two agents have only local knowledge—if they know 
only the local environment, know only their tasks and intentions-
then they will not know of, or be able to prevent, negative 
interactions between their roles and those of other agents. 

In summary, a main challenge to distributed problem solving 
is that the solutions which a distributed agent produces must 
not only be locally acceptable, achieving the assigned tasks, but also 
they must be interfaced correctly with the actions of other 
agents solving dependent tasks. The solutions must not only be rea-
sonable with respect to the local task, they must be globally 
coherent and this global coherence must be achieved by local com­
putation alone. 

III. STRATEGIES FOR COOPERATION 

How can groups achieve global coherence in the face of lim­
ited knowledge and the requirement that all computation be local? 
Broadly, the key to coherent distributed problem solving lies in 
the fact that while distributed agents have greater difficulties 
in solving a given task, they have potentially more options as well. 
For example, a distributed agent may plan or act, but he may also 
request others to do so. In short, much of the power of distributed 
problem solving comes through cooperation and communication. 

Although communication between agents provides the basis 
for effective cooperative problem solving, it is just another 
problem-solving tool that may be used poorly or effectively. If the 
tool is used poorly then group problem-solving performance may 
be worse than individual problem-solving performance. Consider­
able expertise is required to use communication effectively. We 
refer to such expertise as cooperative strategies. Our main 
theoretical and empirical goals have been to understand two dis­
tinct classes of such strategies: organizational policies and 
information-distribution policies. 
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A. Organizational Policies 
Organizational policies dictate how a larger task should be 

decomposed into smaller (sub)tasks which can be assigned to indivi­
dual agents. Typically a given organizational policy assigns specific 
roles to each of the agents in a group. Such a policy is useful if for 
some tasks the resulting division of labor enables agents to work 
independently. For example, the corporate hierarchy is an organi­
zational policy that is particularly effective if the corporate task can 
be decomposed in such a way that an agent at one level can work 
independently of others at that level, reporting results only to his 
immediate superior who takes care of any necessary interfacing. 

Organizational policies not only define a task decomposition 
but prescribe communication paths among agents. They turn a ran­
dom collection of agents into a network that is fixed, at least for a 
given task. In the corporate hierarchy, again, the arcs between 
agents usually indicate which pairs are permitted to talk to one 
another, and, in addition, determine the nature of the messages that 
are allowed. Such communication restrictions will be beneficial if 
they encourage only those agents who should communicate to do so; 
in particular, agents that have dependent tasks or who may share 
resources. In general, organizational policies strongly direct and 
constrain the behavior of distributed agents. If those constraints 
are appropriate to the task at hand, then the organization is 
effective, otherwise its performance may be sub-optimal. 

In our distributed problem-solving systems and others |ll),[2] 
groups begin by establishing an organizational policy. To do so, the 
agents must not only know which policy is appropriate to the 
current circumstances, but also must know techniques by which a 
group can implement the chosen policy in a distributed fashion. 
Briefly, any distributed method of implementing an organizational 
policy must answer a variety of questions, including: 

• When does organization structuring take place' 
• How is the assignment of roles specified by the policy made to 

agents? In other words, how is the agent who is most 
appropriate found for a given task found? 

• Are agents "externally-directed" or "data-directed" [7|? That 
is. does an agent arrive at its roles by being told thern or is 
information relayed, allowing it to make the assignment of 
roles itself? 

• When an agent is requested by another to conform to a role, 
or take on another subtask for that agent, does the first 
agent have a right to negotiate? How does an agent weigh 
the value of competing tasks? 

Smith |ll] has proposed the contract net as a formalism for 
implementing organizational policies in a distributed fashion. In 
Section V.B., we discuss how some organizational policies were 
imposed in distributed air-traffic control 

B. Information-distribution Policies 

An information-distribution policy addresses the nature of 
communication between cooperating agents. Decisions about how 
agents communicate with each other are, first of all, constrained by 
the choice of organizational policy, since that policy decides the net­
work of permissible communicators. However, within these con­
straints, a great number of lower level decisions must be made 
about how and when communications should occur. Briefly: 

• Broadcast or selective communication. Are agents discrim­
inating about who they talk to. If so what criteria arc used 
to select recipients? 

• Unsolicited or on-demand communication. Assuming you 
know who you want to communicate with, do you do so only 
if information is requested, or do you infer the informational 
needs of other agents and transmit data accordingly? 

• Acknowledged or unacknowledge communication. Do you indi­
cate that you have received information? 

• Single-transmission or repeated-transmission communication. 
Is a piece of information only sent once, or can it be 
repeated? How frequently? Lesser and Erman [6] refer to a 
repeated-transmission policy as murmuring. 

Poor decisions at this level result, at best, in the highly 
inefficient use of limited-bandwidth channels. At worst, such 
choices endanger global coherence by preventing agents whose tasks 
may interact from talking to one another. The goal of information-
distribution policies is to minimize these possibilities. As with 
organizational policies, the utility of communication policies 

depends on current conditions. These include the bandwidth of the 
communication channel, the reliability of the channel, the load of 
the channel, the maximum acceptable information turn-around 
time, and the relative cost (and time) of computation versus com­
munication. 

IV. DISTRIBUTED PROBLEM SOLVING 
IN AIR-TRAFFIC CONTROL 

Problem solving in air-traffic control may be distributed in 
several ways Elsewhere |12) we discuss a variety of architectures of 
distribution. Currently we have implemented only object-centered 
systems, where one agent is associated with each aircraft. In our 
air-traffic control task, aircraft enter a rectangular (14 x 23 mile) 
airspace at any time, either at one of 10 infixes on the borders of 
the airspace, or from one of two airports. The main goal of the 
agent associated with each aircraft is to traverse the airspace to an 
assigned destination—either a boundary outfix, or an airport. Each 
aircraft has only a limited sensory horizon, hence its knowledge of 
the world is never complete and it must continually gather informa­
tion as it moves through the airspace. Information may be accumu­
lated either by sensing or communication. Agents are allowed to 
communicate over a limited bandwidth channel to other aircraft for 
purposes of exchanging information and instructions 

Distributed ATC is a group problem not only because agents 
may help one another gather information but also because the goals 
of one agent may interact with those of another Coal interactions 
come in the form of shared conflicts A conflict between two or 
more agents arises when, according to their current plans, the two 
will violate minimum separation requirements at some point in the 
future. When shared conflicts arise, agents must negotiate to solve 
them. In a crowded airspace, such goal conflicts can get particu­
larly complex, and involve several aircraft, thus necessitating a high 
degree of group cooperation. 

In terms of the vocabulary developed in Section II, the detec­
tion and resolution of conflicts are the main distributed problem-
solving tasks. These tasks may be decomposed into several subtasks 
or distinct roles. Agents may gather information about a shared 
conflict, evaluate or interpret the information, develop a plan to 
avoid a projected conflict, or execute such a plan. Agents may be 
more or less appropriate for such roles depending on their current 
processing load (Are they currently involved in helping resolve other 
conflicts?), their state of knowledge (Do they know a lot about the 
intentions of other agents in the conflict?), or their spatial con­
straints ((an they see many nearby aircraft? Do they have much 
excess fuel7). 

The issue of optimal task assignment arises because a group of 
aircraft may fail to assign the agent that is the most appropriate to 
each role in a conflict-task if some of the conflictees do not know 
about a shared conflict In addition, care must be taken that a com­
plete and consistent set of roles is assigned. Some role inconsisten­
cies can be fatal, lor example, two agents would be adopting incon­
sistent roles if one derides to move left to avoid a head-on collision 
with the second while the second decides to jog right. Severe task 
coordination problems also threaten to arise in distributed ATC. 
The action of moving to avoid one conflict may create or worsen 
other conflicts (negative task interactions) or lessen other conflicts 
(positive task interactions). Both forms of interaction are caused by 
the fact that while several agents may be dealing with different 
conflict-tasks, they are nevertheless exploiting shared limited spatial 
resources. 

V. FOUR DISTRIBUTED PROBLEM SOLVERS 
FOR AIR TRAFFIC CONTROL 

We now outline the cooperative strategies embedded in four 
distinct ATC systems. All four systems are implemented in our 
framework for constructing distributed agents |8). This in turn is 
implemented in INTERLISP- D, running on Xerox Dolphins. 

A. Information-distribution Policies In ATC 

The information-distribution policy common to all four sys­
tems prescribes that information should be sent to other aircraft 
selectively (no broadcasting), without waiting for a request, without 
expecting an acknowledgement, and without repeating the informa­
tion a second time. These choices are reasonable since we assume in 
all systems that communication is error-free. When we add noise to 
the communication channel, we envision adopting a policy that 
injects some needed redundancy or safety into communication; for 
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example a policy that includes murmuring I6|. We also assumed a 
constant effective communication bandwidth for all four systems. 
Each aircraft was allowed to send a maximum of 5 messages per 15 
seconds of time. 

B. Organizational Policies In ATC 

The organizational policy embedded in three of the four sys­
tems may be characterized as task centralization, and the fourth sys­
tem adheres to a policy of task sharing. Under task centralization, 
the agents involved in any given conflict task will choose one of 
their number to play most of the roles. In particular one agent will 
perform the evaluation role (do all the evaluation of the potential 
conflict between aircraft), the plan-fixing role (attempt to devise a 
plan-fix to dissolve the entire conflict) and the actor role (act on the 
new plan). The selected agent is required to modify only his plan to 
resolve the conflict, thus the remaining agents perform no planning 
or actions. Instead these conflictees, having agreed on the choice of 
a replanner, adopt passive information-gathering roles, merely send­
ing their intentions (plan) to the selected agent. The policy of task 
centralization, whatever its shortcomings, is worth considering 
because it enjoys many of the advantages of centralized, single-
agent problem solving that it is meant to mimic. Specifically, by 
centralizing most task roles in a single agent the group has to worry 
less about negative task interactions such as the threat of two air­
craft acting in an inconsistent fashion, noted above. 

Although three of our four systems embed a task centraliza-
tion policy, they differ in how they measure and choose the agent 
who is the most appropriate for the several centralized roles. 

This method of selection maintains that the agent that is the most 
appropriate is the one with the most degrees of freedom for modify­
ing its plan. It is a more complex selection than the shared conven­
tion, and should result in more effective replanner choices, although 
at some additional cost in initial communications. 

Selection of the most knowledgeable, least committed agent. 
As above, aircraft share constraint factors with the other conflictees, 
but here they are computed differently. This method of selection 
maintains that the best agent to replan is the one who knows the 

most about other agents' intentions, because, in replanning, a well 
informed agent can explicitly take account of possible interactions 
between his intentions and those of other agents. More globally 
coherent plan-fixes should therefore result. In addition, this method 
also says that agents whose intentions are known by others should 
not replan. If such an agent does modify its plan, it will have 
violated the expectations of cooperating agents, making their 
knowledge incorrect and in turn making cooperation difficult. Thus, 
this policy implements a common adage of cooperation: Don't do 
the unexpected. 

In spite of their simplicity, task centralization policies are 
often ineffective. Although the agent selected to perform the cen­
tralized roles may be overall the best, that agent is rarely the best 
for each of the centralized roles. For example, we still might want 
to assign the actor role to the agent in a conflict set who is least 
constrained in the sense defined above. However, that agent might 
not be the best in the set for fixing his plan — for making a 
modification to the plan and evaluating the implications of such a 
change. Presumably the best agent for this role is the (possibly dis­
tinct) member of the conflict set that knows most about the 
environment and intentions of aircraft neighboring the one whose 
plan is to be fixed. This aircraft is in the best position to determine 
that any changed plan is not only locally reasonable, solving the 
conflict, but that it is globally reasonable, not creating new conflicts 
with other aircraft. 

Performance of groups working under a task sharing policy is 
potentially superior to groups working under a policy of centraliza­
tion because in the former the group attempts to optimize on each 
role. However, in practice this policy has several possible draw­
backs. It is communication intensive and may be inappropriate 
when communication channels are unreliable or costly. Moreover, it 
risks potential negative interactions, because several agents have to 
coordinate intimately to achieve a solution. 

VI. EXPERIMENTAL STUDIES 

We are conducting a series of rudimentary experimental stu­
dies on the four policies outlined above. We report here on results 
pertaining to only the three task centralization policies, since data 
collection for the task sharing policy is not yet complete. AH three 
variants were tested on eight distributed scenarios. Each scenario 
stipulated (i) how many aircraft would enter the airspace in the ses­
sion, (ii) when and where they would enter, and (iii) where they 
would exit. This control over the parameters of distributed 
problem-solving situations allowed us to isolate situation features 
that uncovered the strengths and weaknesses in performance of our 
policies. In particular, the scenarios varied considerably in task 
density, time stress, and task difficulty. 

We examined three performance indices when comparing the 
systems: communication load, processing time, and task 
effectiveness. Task effectiveness was indicated by two distinct fac­
tors: separation errors (more important) and fuel usage (less impor­
tant). A summary of the main results is given in Table 1. 

VII. DISCUSSION OF RESULTS 

Examining the individual scenarios, we found the Shared con­
vention policy, relying on essentially arbitrary assignment of plan­
ning responsibility, performed well only in low complexity, low 
difficulty tasks. It minimized communications and responded 
rapidly compared to the other policies but quickly foundered in 3-
and 4-body conflicts. 
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Shared Least Most 
Convention Constrained Knowledgeable 

Communications (i) 10.9 28.6 28.2 
Processing time (ii) 1265 1726 1651 
Separation errors (iii) 4.3 1.4 2.3 
Fuel usage (iv) 96 108 101 

(i) Communication load = Mean messages sent per aircraft while 
flying from infix to outfix 

(ii) Processing time = mean Xerox 1100 cpu seconds per aircraft 
while flying 

(iii) Separation errors = Mean number of near misses or collisions 
for all aircraft in a scenario 

(iv) Fuel usage = Mean number of fuel units used for all aircraft 

Figure 1. Performance measures of three organizational policies 
(statistics averaged across 8 scenarios) 

The Least Constrained policy performed best overall. It did 
particularly well with high complexity, high difficulty tasks. In such 
cases the planning aircraft tended to be located at the edge of the 
fray, able to find more viable solutions than those aircraft in the 
interior. The policy was time and communication intensive, how­
ever, largely because of the high number of messages needed to 
cooperatively determine the replanner and to maintain consistency 
after replanning. In any of the three systems, when a replanner is 
successful it must send data retransmission messages to all aircraft 
to which it had previously sent its intentions. The number of data 
retransmissions was especially high under the Least Constrained pol­
icy. 

The Most Knowledgeable policy was intermediate in perfor­
mance. It performed best in tasks of low complexity and high 
difficulty, that is, tasks with primarily 2- and 3-body interactions 
but having few potential solutions. In complex multi-aircraft situa­
tions, if the wrong aircraft was chosen for planning, the effect was 
often catastrophic. This is because the aircraft that then received 
replan requests tended to have little knowledge about the routes of 
other aircraft. By design of the policy, this knowledge was typically 
concentrated in the initially selected planner. 

When successful, the Most Knowledgeable policy's perfor­
mance was in some ways better than that of the Least Constrained 
policy. In particular, when an agent found a solution to a local 
conflict-task under the Most Knowledgeable policy its solution was 
likely to be more globally coherent than under other policies, since 
the replanning agent was selected partially because of his wide 
knowledge of other aircraft's plans. This knowledge allowed the 
agent to more effectively replan without incurring new conflicts. In 
addition, a successful replanning agent under a Most Knowledgeable 
policy generally needed to issue less data retransmission messages 
than under the other policies, since it was selected to replan 
partially because its intentions were known to fewer others (i.e., it 
was the less committed agent). We had initially anticipated minim­
izing data retransmissions would be very important for guaranteeing 
globally coherent performance. We envisioned situations where one 
retransmission would cause the receiving agent to re-evaluate, possi­
bly finding new conflicts, causing more replanning, further data 
retransmissions, and so on in a vicious propagation of changes. This 
did not happen as much as we had expected under the the Least 
Constrained policy, although a few instances were observed. 

Another expectation that did not arise was a wide variation 
in processing times among the aircraft under the Most Knowledge-
able policy. This policy should tend to bias replanning in the favor 
of a few agents. If an agent is the replanner once, it gains new 
knowledge of other's plans making it an even better choice as 
replanner for later conflict-tasks. We anticipated that this concen­
tration would skew the processing times compared to a more uni­
form distribution of responsibilities under the other policies. This 
would have been a disadvantage in a truly distributed system, as 
some agents would be quiescent much of the time. The expected 
variation in times did not evidence itself, however, except in the 
relatively easy scenarios. 

VII. CONCLUSIONS 
Distributed problem solving is an enigma. Potentially, a group of 
agents should be able to solve problems more effectively than the 
same agents working individually. In practice, however, groups 
often work ineffectively and their joint productivity is less than the 
sum of the productivities expected of each member. Our aim is to 
discover the elusive cooperative strategies that enable groups to 
reach optimum productivity. On the theoretical side we are 
developing concepts that allow us to simply and formally describe 
various cooperative strategies. On the empirical side, we are testing 
such strategies by imposing them on groups and observing the 
resulting group performance. Both phases are necessary. The 
theoretical investigations are valuable because most problem solving 
models presently available describe only the information processing 
of single agent problem solvers, not distributed problem solvers. 
The empirical work is necessary because many of the behavioral 
properties of complex cooperative strategies are not apparent 
without observing how they actually perform in real or simulated 
settings. 
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