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ABSTRACT

. Distributed Atrtificial Inteligence is concemed with problem
solving in which groups solve tasks. In this paper we describe stra-
te#;l%. of oc\)/o\})erahon that groups require to solve shared tasks
effectively. We discuss sudh strategies in the context of a_ specific
group lem solving application: "callision, avoidance in air traffic
control. Experimental findings with four distinct air-traffic control
systen‘sﬁ ,edeam implementing”a different cooperative strategy, are
mentioned.

I. INTRODUCTION

. Distributed Atrtificial InteIIicR;senoe is concemed with lem
SOMR%SM which rouBs solve tasks. Through systems like STRIPS
4], TRIPS gliFoBN ILD [3], and NOAH ?10], we now have same
understanding a single a?ent can solve problems. Unfor-
tunately, recent work ag%g that the representations of knowledge
[5], [I] &d planning expertise [8] required of a%ﬁﬂs in distributed or
group problem solving is quite different than that required of single
agent problem solvers.

. In this paper we focus on one particularly important but lit-
tie understood topic: The kinds of strategies of cooperation that
roups _require to solve shared tasks effectively. We begin with a
iscussion ' of the difficulties facing distributed  problém-solving
groups. From this analysis we infer a set of requirements on the
information-distribution “and organizational policies such groups
require. We then discuss a set of distributed problem solvers that
we have ed in the domain of air traffic control. We concen-
trate on the particular cooperative strategies they embed, how they
are implemented, and how they ssiully
obstades that make it difficult to coordinate’groups of agents.

Il. DISTRIBUTED PROBLEM SOLVING DIFFICULTIES

) To understand the difficulties facing groups solving problems
it helps to note some important charactenstics of distributed prob-
Itiems. The following traits are true of a wide variety of group situa-
ons:

» Most situations consist of a collection of agents, each with
various skills, including sensing, communication (often over
limited- bandwidth channels), planning, and acting. )

» The group as a whole has a set of tasks. As in
smglg agent problem-solving situations, these tasks mey need
fokE ) into _subtasks, not all of which may be
ggléally independent. The group must somehow assign” sub-

t0 appropriate .
Typically each ag%nly limittd knowledge. An,
to several kinds of limitations: limited

mey be subj ) r

y of ‘the environment (e.g., of restricted
sensing ~ horizons), limited kmwted% of the tasks of the
group, or limited knowledge of the intentions of other

» There are often shared limittd resources with which each
aPent can attack tasks. For example, if the agents are in a
blocksworld environment, the resources are the blocks
ggter?fis Wlt;lch tnelﬁsg%ctpns must be made . orai

. ica iffering appropriateness for a given
task. Thg appyropn'aten&ss o) anpp pfor a task is a func-
tion of how well the agents skills match the expertise
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required to do the task, the extent to which its limited
knowledge is adequate for the task, and current processing
resources of the agent.

Several kinds of distributed problem-solving difficulties follow

1;ron2( this c_haracte?zatlon. First, there a]ge difficulties with optlmfl
ask assignment. Many ma of decomposed subtasks to
aregpossible, but, be(a?geng%erns have _differing appropri-

with respect to a given task, only a few agents will be
amega. ble for any task. In" many distributed problems it is cru-
cial Tor agents to adopt the right role. In addition to insuring that
g, given task is assgned o an aEpropnate %gent, the grou? to
ieve task coverage. All su should be assigned to some

complete role nment) and multiple unnecessary agents
éfagg}d(_no?l be e&&sgjg a tz?sk (consistent role assignment).
The limited knowledge of compounds the difficulty of optimal
task ignment  and . knowledge

assignm _Incomplete
prevents consistent and complete role N because no one
agent may have a global of all the roles or subtasks
that need to be “assigned. Oplimal task assignment is also
threatened since agents may not know about tasks for which they

are the most appropriate.

. Seoond, task coordination problems arise because tasks
to mey not be independent. For example, if two
bl rid agents areé each to build towers (as subtasks of a larger
task), the plan that one a%ent ﬂﬁxoduo&s mlt%ht negatively interact
with the plan of another I both intended fo use the same block.
While single-agent problem solvers have difficulties in  handling
norHnde tasks or subgoals, tese difficulties multiply for
distributed problem solvers. Again, limited knowledge is the " rea-
son. If two S have only local knc i know
only the local environment, know only their and intentions-
then they will not know of, or be able to prevent, negative
interactions between their roles and those of other agents.

. In summary, a main challenge to distributed problem soIviLng%
is that the solutions which a distributed agent produces m
not only be locally acceptable, achieving the tasks, but also
they must be interfaced comectly with the actions of other
agents solving dependent tasks. The solutions must not only be rea-
sonable with™ res to the local task, they must be globally
coherent and this global coherence must be achieved by local comi-
putation alone.

I1l. STRATEGIES FOR COOPERATION

) How can grou&seadwieye global ooherence in the face of lim-
ited and requirement that all computation be local?
Broadly, the key to coherent distributed problem solving lies in
the fact that while distributed agents have greater difficulties
in solving a given task, potentially more options as well.
For example, a distributed may plan or act, but he may also
request others to do so. In short, mucn of the power of distributed
problem solving aomes through cooperation and communication.

Although communication between provides the besis
for effective ” cooperative  problem solvmr?, is just another
?roblem-solwng tool that may be used poorly or effectively. If the
ool is used poorly then group problem-solving performance mey
be worse than individual problem-solving performance.  Consider-
able expertise is required to use communication effectively. We
refer to such experise as cooperative strategies. Our main
theoretical and empirical ?oa.ls have been to understand two dis-
tinct dasses of such strafegies: organizational policies and
information-distribution policies.
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A. Organizational Policies

Organizational policies dictate how a larger task should be
ddeoorrposedI hioes |r_1|§o $mﬁller (sub)tasks Whld]d cznI beraﬁgmed. to indivi-
ual . ically a organizational poli a&gwsspeoﬁc
roles 10 each o%/ﬁ?me ) gi_n_a grr%cl#). Such apgolciycy is useful if for
e the resulting division of labor enables ‘agents to work
independently. For example, the corporate_hierarchy Is an organi-
zational policy that is particularly effective if the corporate task can
be in such a way that an agent_at ore level can work
independently of others at that level, reporting results only to his
immediate sUperior who takes care of any necessary interfacing.

Orgggizational policies not only define a task decomposition
but prescri

communication paths among% a%ents hey turn a ran-
dom collection of agents into a network that is fixed, at least for a
given task. In the comporate hierarchy, again, the arcs between
agents usually indicate which pairs are permmitted to talk to one
another, and, in addition, determine the nature of the messages that
are allowed. Such communication restrictions will be beneficial if
they encourage only those agents who should communicate to do so;
in particular, agents that have de fasks or mey share
resources. In general, organizational policies strongly diréct and
constrain the behavior of distributed agents. If those constraints
ae appropriate to the task at hand, then the organization is
effective, its performance may be sub-optimal.

In our distributed problem-solving systems and others |II),1£12€1
groups begin by establishing an organizational policy. To do so,

must not only know which policy is appropriate to the

current circumstances, but also must know techniques by which a

group canimplementthe chosen policy in a distributed fashion.

riefly, @/ distributed method of implemenﬁrég an organizational
policy must answer a variety of questions, including:

» When does organization structuring take place’

* How is the ment of roles specified by the policy made to
agens? In other words, how is the agent who is most
appropriate found for a given task found?

* Are agents "extemally-directed” or "data-directed" [7]? That
is. an amve at i ing to m or is
is. does atits r being told the
information relayed, allowing make assignment
rof% 'rtsglfo layed, all it to the of

» When an agent is requested by another to conform fo a role,
or take on another subtask for that agent, does the first
agent have a right to ? How does an agent weigh

the value of competing ?

) Smith |I1] hes proposed the contract net as a formalism for
implementing organizational policies in a distributed fashion. In
Secton V.B,, we discuss how some organizational policies were
imposed in distributed air-traffic control

B. Information-distribution Policies

An information-distribution policy addesses the nature of
communication between cooperating agents. Dedsions about how
agents communicate with each other are, first of all, constrained b
the choioe of organizational policy, since that policy deddes the net-
work of permissible communicators. However, within these con-
straints, a great number of lower level dedsions must be made
about how and when communications should occur. Briefly:

» Broadcast or selective communication. Are agents discrim-
inating about who they talk to. [f so what criteria arc used
to select recipients? o
Unsolicited or on-demand communication. Assuming you
know who you want to communicate with, do you do so only
if information is requested, or do you infer thé informational
other and transmit data accordingly?

depends on cumrent conditions. These include the bandwidth of the
communication channel, the reliability of the channel, the load of
the channel, the maximum acceptable information tum-around
time, atwld the relative cost (and time) of computation versus com-
munication.

IV. DISTRIBUTED PROBLEM SOLVING
IN AIR-TRAFFIC CONTROL

Problem_solving in air-traffic control may be distributed in
several ways Elsewhere [12) we discuss a variety of architectures of
distribution. Currently we have implemented only object-centered
systems, where one agent is assodated with each aircraft. In our
air-traffic control task, aircraft enter a rectangular (14 x 23 mllgg
airspace at any time, either at one of 10 infixes on the borders
the airspace, or from one of two _alr%orts. The main goal of the

assodated with each aircraft is to fraverse the airspace to an

S destin —either a boundary outfix, or an airport.
aircraft hes only a limited sersor&/ horizon, hence its knowledge of
the world is never complete and it must continually gather informa-
tion as it moves through the airspace. Information”may be accumu-
lated either by sensing or communication. r@erﬂs are dlowed to
communicate over a limited bandwidth channel to other aircraft for
puposes of exchanging information and instructions

Distributed ATC is a group problem not only because agents
maey help one another gather information but also because the
of one agent may interact with those of another Coal interacions
ame in the form of shared conflicts A conflict between two or
more | arises when, according to their current plans, the two
will violate minimum separation requirements at some point in the
future. When shared conflicts arise, agents must negotiate to solve
them. In a cowded airspace, such goal conflicts can get particu-

larly complex, and involve several aircraft, thus necessitaing a high

of group cooperation.

) In terms of the vocabulary in Section |1, the detec-
tion and resolution of conflicts “are the main distributed problem-
solving, fasks. These tasks r into several subtasks
or distinct roles. mey gather information about a shared
conflict, evaluate or interpret” the information, develop a plan to
avod a%rgected conflict, or execute such a plan. 5 may be
more or af)propr/ate for such roles depending on their cuirent

: 1 (Are lhg}/ currently involved in_helping resolve other
ponﬂlc.js?;, their state of knowledge (Do know a lot about the
intentions of other agents in the confiict?), or their sg\tgl con-
stralntsm(ﬁa)n they s.2 many nearby aircraft? Do they much
ecsss fuel’).

. Theissue of optimal task assignment arises because a group of
aircraft mey fail to a e agent that is the most appropriaté to
each role in a conflicttask if some of the confiictees do not know
about a shared conflict In addition, care must be taken that a com-
plete and consistent set of roles is assigned. role inconsisten-
des can be fatal, lor example, two agents would be adopting incon-
sistent roles if one derides to move left to avoid a headon collision
with the second while the second deddes to jog right. Severe fask
coordination problems aso threaten to arise in distributed ATC.
The action of moving to avoid one conflict mey create or worsen
other conflicts inega. e task interactions) or leSsen other conflicts
%?gsme task interactions). Both forms of interaction are caused by

fact that while several agents be ds?'glrlgg with different
conflict-tasks, they are nevertheless exploiting limited spatial
PeSOUICES.

V. FOUR DISTRIBUTED PROBLEM SOLVERS
FOR AIR TRAFFIC CONTROL

ies embedded in four

We now outline the cooperative strateg I
ted in our

distinct ATC . All four are im|

» Acknowledge orunacknowled%e communication. Do you indiramework for Constructing distriblted agents [8).  This in tum is

cate that you” have received information?

implemented in INTERLISP- D, running on Xerox Dolphins.

+ Single-transmission or repeated-transmission communication.

Is a pece of information only sent once, or can it be
? frequently? Lesser and Emman [6] refer to a
repeated-ransmission policy as murmuring.

. Poor decisions at this level result, at besktin the higt}(l%
inefficent use of limited-bandwidth channels. worst,

choices global coherence by preventing agents whose tasks
ey interact from talking to one another. The goal of information-
distribution policies _is minimize these possibiliies. As with
organizational policies, the utility of communication policies

A. Information-distribution Policies In ATC

The information-distribution poli I
tems prescribes that information should be sent to other aircraft
selectively (no broadcasting), without waiting for a request, without
expecting an acknowedgement, and without repeating the informa-
tion a second time. These choices are reasonable since we assure in
all systems that communication is error-free. VWhen we add noise to
the ‘communication channel, we envision adopting a policy that
injects some needed redundancy or safely into communication; for

common to all four sys-



example a policy that indudes murmuring 16]. We also assumed a
constant ‘e communication bandwidth' for all four systems.
Each aircraft wes allowed to send a maximum of 5 messages per 15
seqonds of time.

B. Organizational Policies In ATC

The organizational policy embedded in three of the four sys-
tems may be characterized as task centralization, and the fourth sys-
tem adheres to a policy of task sharing. Under task centralization
the agents involved in” any given conflict task will choose ane of
their number to ?lay most ‘of the rdles. In particular one agent will
perform the evaluation role (do all the evaluation of the potential
conflict between aircraft), the plan-fixing role (attempt to devise a
planix to dissolve the entire conflict) and the actor role (act on the
new plan). The selected agent is required to modify only his plan to
resove the conflict, thus the remaining agents perform "no pannlrg
or actions. Instead these conflictees, having agreed on the choice
a replanner, adopt passive |nfom1at10n-gathenn(£; roles, merely send-
ing their intentions gplan) to the selected agent’ The policy of task
centralization, its shortoomings, is worth = considering
becasse it enjoys meny of the aj\ranta% of centralized, singe-
agent Ipr.oblem solving ‘that it is meant To mimic. Specifically, by
centralizing most task roles in a single the group hes to worry
less about negative task_interactions as the threat of two air-
craft acting in"an inconsistent fashion, noted above.

. Although three of our four systems embed a task centraliza-
tion policy, they differ in how they measure and dhoose the agent
who is the most appropriate for the several centralized roles.

Selection by shared convention. Here each aircraft uses only
directly sensed information about ihe other airerafi [position, head-
ing, and spred} to decide who should plan and who should transmit
its rurrent reute. The aircraft sifently use a common set of conven-
ilons for this decision, minimizing communications. Figure 1 shows
a proletypic kequence of 1asks and communications between twe aire
craft under this policy.

Compule = urrelated Corflrel Plap  Retransmit  Faecute

A e--Demguated----acdiwidies "2 Detection—Fixing-—FPlan——-—- Flan: .-
apoer
Compute Rrpd

B ----Demgaaled Man R TL L T R a2 P — —

FPlapoer
Figure 1 Frolotypic task seqrence ynder Shared Conventioa pohoy

Tume hnes for tasks executed by areralt A and B Schid liora mdirale communica-
tiana

Because of Lhe lmited criteria wsed, the aircraft selected as the
replanper i oot likely to be the most appropriate. This version
mainly serves as a benchmark against which to judge the utility of
more intelligeat methods of selection which are also more costly in
terms of computation and eommunication.

Selection of the {rosl apatially consirained agen!. Here cach
aircraft ip a potential conflict transmits ils corsziraint faclsr to the
other aircraft. The constraint factor in an aggregalion of surh con-
siderations as the number of other nearby aircraft, fuel remaining,
distance from destination, and message load. Figure 2 gives an idea
of the standard sequence of tasks and eommunications under this
policy.

Send < warrfated Conllet Plan  HRetrazrmt Execuie
A ——-Constramt——-getivsdien s e Detertion—-——Fixing—-—Ilaneceneee- Flan—
Factor
M*d Setd )
H oopnConalrainl— samen cememee Flan-——-—- < unrelated aclwit
Faclor

Figure 2. Protolypic task wequeace under Least Comolrained palicy

This method of selecion maintains that the that is the most
appropriate is the one with the most freedom for modify-
ing its plan. It is a more complex selection than the shared conven-
tion, and should result in more effective replanner choices, afthough
at some additional cost in initial communications.

Selection of the most , least committed
As above, aircraft share constraint factors with the other conflictees,
but here they are computed differently. This method of selection
maintains that the best agent to replan is the one who knows the
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most about other agents' intentions, because, in replanning, a well
informed agent can” explicitly take account of ble interactions
between his intentions and “those of other agents. More globally
coherent plan-fixes should therefore result. In addition, this method
also says that agents whose intentions are known by others should
not replan. If such an agent does modify its plan, it will have
violated the expectations “of cooperating nts, making _their
Knowe |noolrrect atrs\d in turn making cooperation c{jn‘ﬁculltj T‘thlcjjso
is policy implements a common adage of cooperation: Don
16 thexpecied >

In spite of their sim@licity, task centralization policies are
often ineffective. Although the selected to perform the cen-
tralized roles may be overall the , that agent Is rarely the best
for each of the centralized roles. For example, we still might want
to assign the actor role to the in a conflict set who is least
consfrained in the serse defined above. However, that agent might
not be the best in the set for fixing his plan — for making a
modification to the plan and evaluating the implications of

a
. Presumably the best'é?emfor his role is the (possibly dis-
tinc_t% member of ‘the conflict’ set that knows moé abotﬁ( the
envionment and intentions of aircraft neighboring the one whose
an is to be fixed. This aircraft is in the best position to determine
hat any dhanged plan is not only locally reasonable, solving the
conflict, but that it is globally reasonable, not creating new confiicts
with other aircratft.

Our lask #haring policy attempls o aveid such problems by
evaluating agents’ qualifications with respect 1o each of the roles
associated with a conficl. While in centralized policies a single
negotistion determines an overall replanner, in the task sharing pol-
icy Awo rounds of negotiation are necessary, one to delermine the
ptan-tixer and one to deterinine the artar, Figure 3 gives a detailed
deseription of a protolypical seguence of Lasks and communications
showing how such a policy is implemented in a distributed fashion.

Seod Send < unrelated  Coplicl Plas  Secd < wwrelated
A - Cogsttaiol--Koowledge-— aclinbies - —-Detection-—Fiang—FPlan-—actistien >
Fartor Farior

(IO T

B --Canstrawt--Koowled gras ——eeeeePlagaeeas = anredafed e enm Plapem e Map e
Facter Facter aclavilice

Figurr 3 Prototypic Lask sequence under Taak Shaning pohey

Performance of groups working under a task sharin polic¥ is
Potentlally superior to groups working under a policy of centraliza-
ion becalse In the fomer the group attempts to optimize on each
role. However, in practice this policy hes possile draw-
backs. It is communication intensive and mey be |n|\a}f)propnat_e
when communication channels are unreliable or ‘costly. Moreover, it
risks potential negative interactions, because several ‘agents have to
coordinate intimately to achieve a solution.

V1. EXPERIMENTAL STUDIES

i We are conducting a seties of rudimentary experimental stu-
dies on the four policies outlined above. We report here on results
pertaining to only the three task centralization policies, since data
collection for the task sharing policy is not yet complete. AH three
variants were tested on eight distributed scenarios. Each scenario
stipulated (i) how aircraft would enter the airspace in the ses-
sion, (i) w [ y would enter, and (iii) where they
would  exit. This control over the parameters of distributed

mblem situations allowed us to isolate situation features
hat u the strengths and weaknesses in performance of our
policies. In particular, scenarios varied considerably in task
density, time stress, and task difficulty.

We examined three performance indices when comparing the

me%nmmunicaﬁon load, prooessug% time, and ‘task
. Task effectiveness was indicated by two distinct fac-
tors; separation erors (more important) and fuel usage (less impor-
tant). A summary of the main resullts is given in Table 1.

VII. DISCUSSION OF RESULTS

. Examining the individual scenarios, we found, the Shared con-
vention policy, relying on essentlall?/ arbitrary assignment of plan-
n!?fg responsibility, performed well only in"low complexity, low
difficulty tasks. " It minimized ocommunications and Y
rapidly “compared to the other policies but quickly foundered in 3-
and 4body conflicts.
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Shared Least Most

Convention Constrained Knowledgeable
Communications (i) 109 286 282
Processing time (ii) 1265 1726 1651
Separation emors (i) 4.3 14 23
Fuel usae (iv) 9% 108 101

() Communication load = Mean messages sent per aircraft while
. flying from infix to outfix .
(ii) I:\’lcﬁfeﬁsmg time = mean Xerox 1100 cpu seconds per aircraft
ile flyin
(iii) Separg/.tign errors = Mean number of near misses or collisions
for all aircraft in a scenario
(iv) Fuel usage = Mean number of fuel units used for all aircraft

Figure 1. Performance measures of three organizational policies
(statistics averaged across 8 scenarios)

. The Least Constrained policy performed best overall. It did
particularly well with_high mxny, |§fh difficulty tasks. In such
s the planning aircraft to be located at the of the
fray, able to find more viable solutions than those aircratt in the
interior. The policy was time and communication intensive, how-
ever, larg > of the high number of messages ne
cooperatively determine the replanner and to maintain consistency

of the three systems, when a replanner is

after reﬁla_nnlng. In syst )
| it must send data retransmission messages to all aircraft

to which_ it had previously sent its intentions. The number of data
refransmissions wes especially high under the Least Constrained pol-
icy.

The Most Knowledgeable pol(i?/ wes intermediate in perfor-
mance. It performed best 'in tasks of low complexity high
difficulty, that is, tasks with primarily 2- and dy “interactions
but having few potential solutions. In complex multi-aircraft situa-
tions, if the wrong aircraft was chosen for planning, the effect wes
often catastrophic. This is because the aircraft that then received
replan requeﬁcls tended toor]laﬁ/% I|tt||<_e I«thvledge about the rt?,utes I?f

er aircraft. dw? ign policy, this knowledge wes typically
concentrated in the inifially selected planner.

When successful, the Most Knowledgeable policy's perfor-
mance was in some ways better than that of the Least Constrained
policy. In particular, when an ag;ent found a solution to a local
conflict-task under the Most Knowledgeable policy its solution wes
likely to be more globally coherent than under other policies, since
the “replanning agent wes selected partially because of his wide
knowledge of other aircraft's plans. ' This KmMedge alowed the

1t to more effectively replan without incurring new conflicts. In
addition, a successful replanning Kn
Eilollcy generaly to issue less data refransmission
an under the other policies, since it was selected to replan
partially because its intentions were known to fewer others (i.e., it
wes the less committed agent). We hed |.n|t|allr¥aanhapated minim-
izing data retransmissions would be very important for guaranteeing
globally coherent performance. We envisioned situations where one
retransmission would cause the receiving agent to re-evaluate,
bly finding new conflicts, causing more replanning, further data
retransmissions, and so on in a vicious propagation o . This
did not happen as much as we had under the the Least
Constrained policy, although a few instances were observed.

. Another expectation that did not arise was a wide variation
in processing imes ar the aircraft under the Most Knowkedge-
gfb/e OIICE};QG;EQS %ollw ager1t'd'teg1d to bilas replanning it|n the favor
a . If an is the replanner once, it gains new
of other's plans making it an_even better choice as
replanner for later contlict-tasks, We anticipated that this concen-
tration would skew the processing times compared to a more uni-
form distribution of responsibiliies under the other policies. This
would have been a disadvantage in a truly distributed system, as
same agents would be quiescent much of the time. ¢
variation in times did not evidence itself, however, except in the
relatively essy scenarios.

under a Most Knowledgeable

VII. CONCLUSIONS
Distributed ﬁroblem solving is an enigma. Potentially, a group of
should be able fo solve problems more effectively than' the
agents working individually. In

e : ( : practice, however, grou
often work |neﬁ‘ech\(eg¥ and their | ductivity is kess than the
sum of the productivifies

oint pro
L I 3 of eg(h member. Our am is o
discover the elusive coopeyahve strategies that enable groups to
reach optimum productivity. On the theoretical side” we are
developing epts that allow us to simply and formally describe
various cooperative strategies. On the empirical side, we are testing
strategies by imposing on groups and observing _the
resulting group perfomance. Both phases are .~ The
theoretical investigations are valuable because most problem’ solving
els presently available describe only the information processing
of single agent” problem solvers, not distributed problem solvers.
The empirical work is necessary because many of the behavioral
properties of com cooperative strategies” are not apparent
ngi]OUt observing they actually perform in real or simulated
settings.
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