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ABSTRACT 

Learning Theory is the study of systems 
that implement functions from ev ident ia l 
states to theor ies . The theoret ica l 
framework developed in the theory makes 
possible the comparison of classes of 
algorithms which embody d i s t i n c t 
learning strategies along a var ie ty of 
dimensions. Such comparisons y ie ld 
valuable information to those concerned 
with inference problems in Cognit ive 
Science and A r t i f i c i a l I n te l l i gence . 
The present paper employs the framework 
of Learning Theory to study the design 
spec i f icat ions of induct ive systems 
which are of in terest in the domain of 
language acqu i s i t i on . 

Section 0: In t roduct ion 

Learning Theory is tho 
invest igat ion of systems that implement 
functions from ev ident ia l states to 
theor ies . Of central concern is the 
character izat ion of condit ions under 
which such funct ions s tab i l i ze to 
accurate theories of a given 
environment. Within the theory, the 
informal notions of "evidence," 
" theory," " s t a b i l i z a t i o n , " "accuracy," 
and "environment" are replaced by 
precise d e f i n i t i o n s . A l ternat ive 
formulations of these concepts y i e l d 
a l te rna t ive models w i th in the theory. 
The vigorous development of Learning 
Theory began with a celebrated paper by 
Gold (1967). Angluin & Smith (1982) 
provide a valuable review of formal 
resu l t s . 

Learning Theory is motivated by 
both s c i e n t i f i c and technological 
concerns. S c i e n t i f i c a l l y , the theory 
has proved useful in the analysis of 
human learn ing , p a r t i c u l a r l y , language 
acqu is i t ion (see Osherson, Stob & 
Weinstein, forthcoming, for a review of 
issues) . Technological ly, the theory 
helps specify what is learnable 1n 
p r i n c i p l e , and may thus guide the 
construct ion of p rac t i ca l systems of 
induct ive inference. 

Learning Theory y ie lds po ten t ia l l y 
valuable insights about problems of 
inductive inference in the context of 
Cognitive Science and A r t i f i c i a l 
I n te l l i gence . The theory provides the 
framework for systematic comparison of 
various learning a lgor i thms. Such 
comparisons are pa r t i cu la r l y useful in 
determining the re la t i ve strength of 
classes of algorithms which embody 
d i s t i n c t abstract learning s t ra teg ies , 
in assessing thei r resource 
requirements, and in predic t ing thei r 
behavior in various environments. W h e n 
combined with empir ical studies of 
language acqu i s i t i on , Learning Theory 
may provide constraints on the character 
of the learning strategies implemented 
by ch i l d ren , and re f lec t in turn on the 
character of the class of languages 
which m a y be a c q u i r e d . Such studies in 
C o g n i t i v e Science m a y be of importance 
to system bui lders in A r t i f i c i a l 
I n te l l i gence . They suggest that the 
search for ideal learning s t ra teg ies ' is 
not well mot ivated. Rather, by 
focussing on learners who embody 
d i f fe ren t "s ty les" of learn ing , and by 
invest igat ing thei r p roper t ies , the 
theory allows a comparison of the 
opt imal i ty of d i s t i n c t approaches to 
learning along a mult i tude of 
dimensions. In add i t i on , through the 
analysis of classes of algorithms that 
embody d i s t i n c t learning s t ra teg ies , 
t h i s t h e o r e t i c a l framework m a y provide a 
useful complement to studies of ad hoc 
systems b u i l t to perform induct ive 
inference in problem domains of l im i ted 
scope. 

The present paper reviews some of 
our recent work on p rac t i ca l inference 
and relates it to problems in language 
acqu i s i t i on . We consider design 
spec i f ica t ions for Inductive systems 
relevant to (a) the speed of Inference, 
(b) the s imp l ic i t y of in fer red theor ies , 
(c) the l i ke l ihood of i n f e r e n t i a l 
success, and (d) the res i l ience of such 
systems in environments subject to 
informational imperfect ion. At tent ion 
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is r e s t r i c t e d to l e a r n i n g paradigms in 
which only " p o s i t i v e i n f o r m a t i o n " i s 
a v a i l a b l e about the language or d a t a - s e t 
to be i n f e r r e d ; d i r e c t i n f o r m a t i o n about 
nonmembership is not o f f o r e d to the 
l e a r n e r ; A n g l u i n & Smith (1982) survey 
r e s u l t s r e l e v a n t to l e a r n i n g paradigms 
in which both p o s i t i v e and n e g a t i v e 
i n f o r m a t i o n is assumed a v a i l a b l e . 

Our e x p o s i t i o n is o r g a n i z e d as 
f o l l o w s . The next s e c t i o n p r o v i d e s 

d e f i n i t i o n s and c o n s t r u a l s at the h e a r t 
of contemporary l e a r n i n g t h e o r y . 
S e c t i o n 2 e x h i b i t s theorems p r o p e r to 
the t o p i c s (a) - (d) l i s t e d a b o v e . 
P r o o f s of these theorems can be f o u n d in 
O s h e r s o n , Stob & W e i n s t e i n ( 1 9 8 2 , 
1 9 8 3 d ) . In S e c t i o n 3 we c o n s i d e r the 

r e l a t i o n between r e s u l t s r e v i e w e d here 
and language a c q u i s i t i o n by c h i l d r e n . 

1.2 Learning funct ions 

Let G be a f i x e d , c o m p u t a b l e 
i s o m o r p h i s m between SEQ and N. A 

learning function is any f u n c t i o n f r o m N 
i n t o M; such a f u n c t i o n w i l l be t h o u g h t 
of as o p e r a t i n g on members of SEQ ( v i a 
G) , y i e l d i n g i n d i c e s f o r r e c u r s i v e l y 
enumerable s e t s . L e a r n i n g f u n c t i o n s may 
be t o t a l or p a r t i a l , r e c u r s i v e or 
n o n r e c u r s i v e . The ( p a r t i a l ) r e c u r s i v e 

l e a r n i n g f u n c t i o n s are j u s t Φ, Φ 1 , . . . , 

Φ The c l a s s of a l l l e a r n i n g 

f u n c t i o n s is d e n o t e d : F. The c l a s s of 
a l l r e c u r s i v e l e a r n i n g f u n c t i o n s 

( p a r t i a l or t o t a l ) is d e n o t e d : F r e c . 

1.3 Convergence, i d e n t i f i c a t i o n 

Section 1: The Gold modol 

1.1 Sequences, languages, texts 

N is the set of natural numbers. 
We take the notions f i n i t e sequence ( i n 
N) and i n f i n i t e sequence ( i n N) to be 
basic. The set of a l l f i n i t e sequences 
is denoted: SEQ, For n £ N, and 
i n f i n i t e sequence, t: r n g ( t ) is the set 
of numbers appearing in t; t

n
 is the 

nth member of t ; and t n is the f i n i t e 
sequence of length n in t. 

Let P0. P1 pi,... be a f i x e d 

l i s t o f a l l p a r t i a l recursive functions 
of one variable, and assume the 1 i s t to 
be acceptable in the sense of Rogers 
(1967, Ch. 2). For i £ N, l e t W1 -
domain pi, the recursively enumerable 
subset of N with Index i, Languages are 
I d e n t i f i e d with nonempty members of 
{W1 € N). The c o l l e c t i o n of a l l 
languages is denoted: . For L £ , 
1 C N, 1f L = Wi then 1 1s said to be 
f o r L. 

S e c t i o n 2 : P r a c t i c a l l e a r n i n g 

2 . 1 E f f i c i e n t i n f e r e n c e 

A t e x t for L £ &6, Is any I n f i n i t e 
sequence such that r n g ( t ) = L, The 
class of a l l texts f o r L is denoted: TL. 
Given a c o l l e c t i o n , L, 
"T, denotes uL € L 

of languages. 

, the class of 

a l l texts for languages 1n L. 

Use fu l l e a r n i n g must not take too 
much t i m e . Th is vague admon i t i on can be 
r e s o l v e d i n t o two demands: ( i ) the 
l e a r n e r must not examine too many i npu ts 
b e f o r e s e t t l i n g fo r good on a c o r r e c t 
h y p o t h e s i s , and (11) the l e a r n e r must 
not spend too long examin ing each i n p u t . 
Learners s a t i s f y i n g ( i ) w i l l be c a l l e d 
" t e x t - e f f i c i e n t ; " l e a r n e r s s a t i s f y i n g 
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( 1 t ) w i l l be called "time-efficient;" 
learners satisfying both ( i ) and { i i ) 
w i l l be called " e f f i c i e n t . " In this 
section these requirements are 
formulated precisely and examined for 
their impact on I d e n t i f i a b l l l t y . 

2.1.1 Text-efficiency 2.1.2 Time efficiency 

Proposition 1 shows that text 
efficiency is not a restrictive design 
feature relative to the class of a l l 
learning functions. In contrast, the 
next proposition shows that text 
efficiency is restrictive relative to 
the class of recursive learning 
functions. Indeed, any h such that h(x) > x 

almost everywhere can be chosen in 
Proposition 3. 
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2.1.3 Eff ic iency 

Let I C RE>6, and let h be a t o t a l 
recursive f u n c t i o n . Φ i is said to 
ident i fy L h-efficientlyy just in case 
( i ) Φi i d e n t i f i e s L text e f f i c i e n t l y 

with respect to F r e c (in p a r t i c u l a r , Φi 
i d e n t i f i e s L), and ( i i ) Φj is h-time 
e f f i c i e n t for L. h-ef f ic iency, that is . 
combines the v i r tues of text e f f i c i e n c y 
(with respect to F r e c ) and h-time 
e f f i c i e n c y . The next proposit ion shows 
that, for any h, h-eff iciency is more 
r e s t r i c t i v e than text e f f i c i e n c y as a 
design feature of recursive learning 
funct ions. 

Proposition 4: For every total 
recursive f u n c t i o n , h, there is a 
c o l l e c t i o n , L, of languages such that 
( i ) some f € Frec i d e n t i f i e s L tex t 
e f f i c i e n t l y , but ( i i ) no Φ € Frec 
iden t i f i es L h -e f f i c i en t l y . 

Proposition 5: For some tota l 
recursive funct ion, h, there is L C RE 
such that ( i ) some f € F rec i d e n t i f i e s L 
text e f f i c i e n t l y , ( i i ) some Φi 
i d e n t i f i e s L h-time e f f i c i e n t l y , but 
( i i i ) no Φj i d e n t i f i e s L h - e f f i c i e n t l y . 

2.2 Simple conjectures 

To be usefu l , a learner should not 
only converge rapidly to a correct 
theory of its environment, it should 
also converge to a r e l a t i v e l y simple 
theory: excessively complex theor ies, 
even if t r u e , are of l i t t l e pract ica l 
use. To study the impact of such 
s i m p l i c i t y constraints on l e a r n a b i l i t y , 
a t o t a l recursive size measure, S:N -• 
N, is now imposed on our acceptable 
ordering of part ia l recursive funct ions. 
I n t u i t i v e l y , S may be conceived as 

mapping indices to sizes, S(i) being the 
length of the program for Φ1 
corresponding to index i. The measure 
is governed by the fo l lowing two axioms, 
due to Blum (1967b). 

Axiom 1: For a l l i € N, there are 
only f i n i t e l y many j € N such that S(j) 
• i. 

Axiom 2: The predicate "j € 
S_l(1) ," for ifj € N, is decidable. 

Define the f u n c t i o n MS:°RE -> N as 
fo l lows. For L € RE, RE(L) 
uJ[(3k)(Wk = L & S(k) = j ] . Thus, MS(L) 
is the size of the smallest program that 
accepts L. Concern about simple 
conjectures may take the f o l l o w i n g form. 
Let g be a to ta l recursive f u n c t i o n , let 
f € F, and let L C RE. f is said to 
ident i fy L g-s1mply just in case f 
i d e n t i f i e s L, and for a l l t € TL, f 
converges on t to an index, j, such that 
S( j) < g(MS(rng( t ) ) . To exempli fy, let 
g be \x.2x. Then f i d e n t i f i e s L 
g-simply just in case f i den t i f i es L, 
and f o r a l l L € L and t € T L , f 
converges on t to an index of size no 
greater than twice MS(L) (the size of 
the smallest program that accepts L * 
r n g ( t ) ) . 

Text e f f i c iency and g -s imp l i c i t y 
are more r e s t r i c t i v e design features of 
recursive learning funct ions than ei ther 
is alone. This is the content of the 
next p ropos i t i on . 

Proposition 6: There is L C RE 
such that ( i ) some f € F r e c i d e n t i f i e s L 
text e f f i c i e n t l y , ( i i ) for any t o ta l 
recursive f unc t i on , g, such that g(x) > 
x f o r a l l x € N, some f € F r e c 

i d e n t i f i e s L g-simply, but ( i i i ) for 
every f € F r e c , and every t o t a l 
recursive f unc t i on , h, if f i d e n t i f i e s L 
text e f f i c i e n t l y with respect to F r e c , 
then f does not iden t i f y L h-simply. 

2.3 Learning in l i k e l y environments'1 

In some environments each p o t e n t i a l 
element of a language is associated wi th 
a f ixed p robab i l i t y of occurrence, 
invar iant through t ime. Such 
environments m a y be thought of as 
i n f i n i t e sequences of s tochas t i ca l l y 
independent events, the p r o b a b i l i t y of a 
given element, e, appearing in the n+lst 
pos i t ion being independent of the 
contents of posi t ions 0 through n. 

To study such environments, each L 
€ RE is associated with a p robab i l i t y 
measure* m, on N such that for a l l x € 
N, x € L if and only 1f mL({x}) > 0. 
(Recall that every L € RE 1s nonempty; 
see Section 1.1.) Next, we impose on 
TRE its Baire topology, RE; that 1s, 
for each a € SEQ, we take Bg • {t € 
T6bSla is in T to basic open set 
of F RE. For each L € R£, we define the 



(unique) complete p r o b a b i l i t y measure, 
by s t i p u l a t i n g that f o r a l l a 

We 
now assume the existence of a f i x e d 
c o l l e c t i o n , of measures on 
correponding members of 
I n t u i t i v e l y . for measurable TL-

is the probabi1ity that an 
a r b i t r a r i l y selected t e x t f o r L is drawn 
from S. 

The f o l l o w i n g f a c t s are easy to 
est a b l i s h . For at 1 

In the stochastic context j u s t 
discussed, the Gold d e f i n i t i o n of 
language t d e n t i f i c a t ion seems needlessly 
r e s t r i c t i v e . Rather than requiring 
i d e n t i f i c a t i o n of every t e x t f o r a given 
language, L, it seems enough to require 
i d e n t i f i c a t i o n of any subset of of 
s u f f i c i e n t p r o b a b i l i t y . We are thus led 
to the f o l l o w i n g d e f i n i t i o n . Let 

f is said to measure-one 
i f l e n t i r y L j u s t in case 
i d e n t i f i e s t l ) = 1, f measure-one 
i d e n t i f i e s j u s t in case f 
measure-one i d e n t i f i e s every in 
t h i s case, is said to be measure-one 
i d e n t i f i a b l e . The d e f i n i t i o n of 
measure-one i d e n t i f i a b i l i t y i s inspired 
by Waxier & Culicover (1980, Ch. 3). 

Measure-one i d e n t i f i c a t i o n of a 
language d i f f e r s from ordinary 
i d e n t i f i c a t i o n only by a set of measure 
zero. The next proposition reveals the 
significance of t h i s small d i f f e r e n c e . 

Proposition 7 : i s measure-one 
I d e n t i f i a b l e . 

Let be an Indexed 
c o l l e c t i o n of languages, and l e t 
N} be the corresponding measures on 
then. is said to be uniformly 
measured j u s t 1n case the predicates "x 

and are decidable 
l i n e d e c i d a b i l i t y of the l a t t e r 
predicate a c t u a l l y implies that of the 
former). Minor modifications in the 
proof of Proposition 7 y i e l d the 
f o l l o w i n g . 

An Incomplete t e x t f o r a language, 
L. is defined to be a t e x t f o r L-0, 
where D Is any f i n i t e set. An 
incomplete t e x t for a language, L, can 
be pictured as a t e x t f o r L from which 
a l l occurrences of a given f i n i t e set of 

Proposition 9: There Is a 
c o l l e c t i o n , L . of languages such that 
(a) every language in L is i n f i n i t e and 
d i s j o i n t from every other language 1n L, 
(b) some recursive learning f u n c t i o n 
i d e n t i f i e s L, and (c) no recursive 
learning function i d e n t i f i e s L on noisy 
t e x t . 

2.4.2 Incomplete t e x t s 

It is clear that noisy t e x t renders 
impossible the i d e n t i f i c a t i o n of the 
c o l l e c t i o n of e l l f i n i t e languages. The 
following proposition provides a less 
obvious example of the d i s r u p t i v e 
e f f e c t s of such envi ronments f o r 
recursive learning functions. 

A noisy text f o r a language, L, is 
any text for a language of the form 
where D is a . f i n i t e set. Thus, a noisy 
text for a language, L, can be pictured 
as a t e x t f o r L i n t o which any number of 
intrusions from a f i n i t e set have been 
inserted. Since the empty set is 
f i n i t e , texts for L count as noisy texts 
for L. We say that a learning f u n c t i o n , 
f. i d e n t i f i e s a language, L. on noisy 
text j u s t in case f converges to an 
index f o r L on every noisy t e x t f o r L. 
A learning f u n c t i o n , f, i d e n t i f i e s a 
Collection, L , of languages on noisy 
text j u s t in case f i d e n t i f i e s every 
language in L on noisy t e x t . 

Proposition 8; Let L be a 
uniformly measured c o l l e c t i o n of 
languages. Then, some f g r e c 
measure-one i d e n t i f i e s L. 

Thus, in contrast to Gold's Theorem 
(Section 1.3, above), any uniformly 
measured col l e c t i o n of languages 
consisting of a l l f i n i t e sets and any 
i n f i n i t e set is measure-one 
i d e n t i f iable. 

2.4 Imperfect environments 

2,4.1 Noisy texts 

570 D. Osherson et a l . 
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sentences have been removed. Texts for 
L count as incomplete texts for L. We 
say that a learning f u n c t i o n , f. 
identifies a language, L, on incomplete 
text j u s t in case f converges to an 
index for L on every incomplete text for 
L. I d e n t i f i a b i l i t y of co l lec t ions of 
languages on incomplete text is defined 
s t ra igh t fo rward l y . 

Proposition 10: There is a 
c o l l e c t i o n , L, of languages such that 
(a) every language in L is i n f i n i t e and 
d i s j o i n t from every other language in L, 
(b) some recursive learning f u n c t i o n 
i d e n t i f i e s 1, and (c) no recursive 
learning funct ion i d e n t i f i e s L on 
incomplete t ex t . 

Given the margin of error to le ra ted 
in f i n i t e - d i f f e r e n c e i d e n t i f i c a t i o n , one 
might doubt that imperfect ion r e s t r i c t s 
t h i s kind of l e a r n i n g . It is thus 
natural to conjecture: 

L is f i n i t e - d i f f e r e n c e i d e n t i f i a b l e [by 
recursive learning func t i on ] if and only 
i f 1 is f i n i t e - d i f f e r e n c e i d e n t i f i a b l e 
on noisy text [by recursive learning 
f u n c t i o n ] ; and 

L is f i n i t e - d i f f e r e n c e i d e n t i f i a b l e [by 
recursive learning func t ion ] if and only 
i f L is f i n i t e - d i f f e r e n c e i d e n t i f i a b l e 
on incomplete text [by recursive 
learning f u n c t i o n ] . 

The next two proposi t ions show that both 
versions of both conjectures are f a l s e . 

Proposition 12: There is a 
c o l l e c t i o n , L, of languages such that 
some recursive learning funct ion 
i d e n t i f i e s L, but no learning funct ion 
( recurs ive or not) f i n i t e - d i f f e r e n c e 
i d e n t i f i e s L on noisy t e x t . 

Proposition 13: There 1s a 
c o l l e c t i o n , JL, of languages such t h a t 
some recursive learning funct ion 
i d e n t i f i e s L, but no learning funct ion 
( recurs ive or not) f i n i t e - d i f f e r e n c e 
i d e n t i f i e s L on incomplete t e x t . 

Section 3: Language acqu is i t i on and 
formal models of Inference 

The circumstances of normal 
language acqu is i t i on by ch i ld ren appear 
to share a fundamental feature with the 
inference paradigms discussed above. 
Infants apparently have no d i rec t access 
to the nonsentences (so labeled) of the 
target language. This assert ion rests 
on evidence that ch i ld ren are seldom 
corrected for ungrammatical utterances 
per se, nor do they communicate more 
successful ly with grammatical than wi th 
ungrammatical sentences (Brown & Hanlon, 
1970). In shor t , ch i ld ren learn t h e i r 
language on t e x t s . 

As a consequence of th is shared 
environmental f ea tu re , the proposi t ions 
adduced above are relevant to the study 
of language a c q u i s i t i o n . Thus: (a) 
Proposi t ions 1 - 4 reveal some of the 
consequences of e f f i c i e n t learning by 
c h i l d r e n ; i f language acqu is i t i on 
proceeds e f f i c i e n t l y in the senses 
e a r l i e r de f ined , the class of learnable 
languages is narrower on th is account, 
(b) If the class of natural languages Is 
i n f i n i t e , then a co ro l l a ry of resu l ts in 
Section 2.2 shows that i n f i n i t e l y many 
grammars conjectured by ch i ld ren are 
w i l d l y oversized (by any reasonable 
measure of s i z e ) , (c) If each sentence 
in the target language can be associated 
wi th a lower bound on the p r o b a b i l i t y of 
I ts occurrence in the c h i l d ' s l i n g u i s t i c 
environment, then Proposi t ion 7 shows 
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that the set of languages that can be 
learned with cer ta in ty is very la rge . 
And (d) Proposit ions 9 and 10 reveal the 
surpr is ing consequences for language 
acqu is i t ion of even mi ld imperfect ions 
in ch i ld ren 's l i n g u i s t i c environments. 
These kinds of connections between 
Formal Learning Theory and language 
acqu is i t i on by ch i ld ren have become 
increasingly centra l to l i n g u i s t i c 
theory and developmental 
psycho l ingu is t ics (see Wexler & 

Cul icover, 1980; Osherson, Stob & 
Weinstein 1983a). 

The resul ts reviewed in th is paper 
represent only one of several 
perspectives on language acqu is i t i on 
of fered by Formal Learning Theory. 
Thus, in addi t ion to e f f i c i e n c y , soveral 
other learning s t ra teg ies p laus ib ly 
a t t r i bu ted to ch i ldren have been 
invest igated from the learning theoret ic 
point of view (Osherson, Stob & 
Weinstein 1983b). These include such 
response tendencies as (a) r e s t r i c t i o n 
to hypotheses compatible with ava i lab le 
data, (b) gradual s h i f t s in hypotheses 
rather than large leaps, (c) 
perseverat ion on conjectures that 
predict the ava i lab le l i n g u i s t i c data , 
(d) r e s t r i c t i o n to grammars with 
n o n t r i v i a l " recurs ive" ru les , and (e) 
exclusion of long-past data in 
hypothesis s e l e c t i o n . A d d i t i o n a l l y , 
c r i t e r i a of successful acqu is i t i on less 
s t r ingent than i d e n t i f i c a t i o n have been 
formulated and studied in the context of 
contemporary l i n g u i s t i c theory and 
language a c q u i s i t i o n . These issues are 
discussed in Osherson & Weinstein 
(1983c). 
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