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ABSTRACT

Learning Theory is the study of systems
that implement functions from evidential
states to theories. The theoretical
framework developed in the theory makes
possible the comparison of classes of

algorithms which embody distinct
learning strategies along a variety of
dimensions. Such  comparisons yield

valuable information to those concerned
with  inference problems in Cognitive
Science and Artificial Intelligence.
The present paper employs the framework
of Learning Theory to study the design
specifications of inductive systems
which are of interest in the domain of
language acquisition.

Section 0: Introduction

Learning Theory is tho
investigation of systems that implement
functions from evidential states to
theories. Of central concern is the
characterization of conditions under
which such functions stabilize to

accurate theories of a given
environment. Within the theory, the
informal notions of "evidence,"
"theory," “stabilization," "accuracy,"”
and "environment" are replaced by
precise definitions. Alternative

formulations of these concepts vyield
alternative models within the theory.
The vigorous development of Learning
Theory began with a celebrated paper by
Gold (1967). Angluin & Smith (1982)
provide a valuable review of formal
results.

Learning Theory is motivated by
both scientific and technological
concerns. Scientifically, the theory
has proved useful in the analysis of
human learning, particularly, language

acquisition (see  Osherson, Stob &
Weinstein, forthcoming, for a review of
issues). Technologically, the theory

helps specify what is learnable 1n
principle, and may thus guide the
construction of practical systems of
inductive inference.
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Learning Theory yields potentially
valuable insights  about problems of
inductive inference in the context of

Cognitive Science and Artificial
Intelligence. The theory provides the
framework for systematic comparison of
various learning  algorithms. Such

comparisons are particularly wuseful in
determining the relative strength of
classes of algorithms  which  embody
distinct abstract learning strategies,
in assessing their resource
requirements, and in predicting their
behavior in various environments. W h e n
combined  with  empirical studies  of
language acquisition, Learning Theory
may provide constraints on the character
of the learning strategies implemented
by children, and reflect in turn on the
character of the class of languages
whichmaybeacquired. Such studies in
Cognitive Science may be of importance

to system builders in Artificial
Intelligence. They suggest that the
search for ideal learning strategies' is
not  well motivated. Rather, by
focussing on learners who embody
different "styles" of learning, and by
investigating their properties, the

theory allows a comparison of the
optimality of distinct approaches to
learning along a multitude of
dimensions. In addition, through the
analysis of classes of algorithms that
embody distinct learning strategies,
thistheoreticalframework may provide a
useful complement to studies of ad hoc
systems built to perform inductive
inference in problem domains of Ilimited
scope.

The present paper reviews some of
our recent work on practical inference
and relates it to problems in language
acquisition. We consider design
specifications for Inductive systems
relevant to (a) the speed of Inference,
(b) the simplicity of inferred theories,

(c) the likelihood of inferential
success, and (d) the resilience of such
systems in environments subject to

informational imperfection. Attention



is restricted to learning paradigms in
which only "positive information” is
available about the language or data-set
to be inferred; direct information about
nonmembership is not offored to the
learner; Angluin & Smith (1982) survey
results relevant to learning paradigms
in which both positive and negative
information is assumed available.

Our exposition is organized as
follows. The next section provides
definitions and construals at the heart
of contemporary learning theory.
Section 2 exhibits theorems proper to
the topics (a) - (d) listed above.
Proofs of these theorems can be found in
Osherson, Stob & Weinstein (1982,
1983d). In Section 3 we consider the

relation between results reviewed here
and language acquisition by children.

Section 1: The Goldmodol
1.1 Sequences, languages, texts

N is the set of natural numbers.
We take the notions finite sequence (in
N) and infinite sequence (in N) to be
basic. The set of all finite sequences
is denoted: SH, For n £ N, and
infinite sequence, t: rng(t) 1is the set
of numbers appearing in t; t, is the

nth member of t; and t , is the finite
sequence of length n in t.

Let PO. P1. .. pi.. be a fixed
list of all partial recursive functions
of one variable, and assume the 1ist to
be acceptable in the sense of Rogers
(1967, Ch. 2). For 1 £ N, let Wl -
domain pi, the recursively enumerable
subset of N with Index i, Languages are
Identified with nonempty members of
w1 € N. The collection of all
| anguages is denoted: . For L £
1 CN 1 L =W then 1 1s said to he
for L

A text for L £ &, Is any Infinite
sequence such that rng(t) = L, The
class of all texts for L is denoted: T.

Gven a collection, L, of languages.
"T, denotes UL £ L , the class of
all texts for languages 1n L.
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1.2 Learning functions

Let G be a fixed, computable
isomorphis m between SEQ and N. A
learning  function is any function from N

into M; such a function will be thought
of as operating on members of SEQ (via
G), yielding indices for recursively
enumerable sets. Learning functions may
be total or partial, recursive or
nonrecursive. The (partial) recursive
learning functions are just ®, ®1,...,
0] The class of all learning
functions is denoted: F. The class of
all recursive learning functions

(partial or total) is denoted: F'*°.
1.3 Convergence, identification

let T €F, t € Tegp, 1 € K. We say
that f converges to 1 on % just in case
{a) f{o) 1is defined for all ¢ in t, and
{o) for alt but finitely many n € N,
f(f,) = i. Intuitively, f converges to
i on t just in case (&) [ nevar becomes
“stuck" in examining ever Tonger finite
sequences in t, and {b) f weventually
conjectures 1, and nover departs from it
thereafter,

Let T € F, t € Type. f s said to
identify t just 1in case f convarges to
&n indea, i, on t such that Wy = rng(t).
f identifies L € %B just in case f
identifies every t € T, f JTdentifies L
G %E just in case f idantifies avery ¢t
€ Tgi in this case L 1is said to be
fdantifiable,

Gold's Theorem (18987): Let L
include &1l finite languages and any
infinite language. Than L i3 not
identifiable,

Section 2: Practical learning

2.1 Efficient inference

Useful learning must not take too
much time. This vague admonition can be
resolved into two demands: (i) the

learner must not examine too many inputs
before settling for good on a correct
hypothesis, and (11) the learner must
not spend too long examining each input.
Learners satisfying (i) will be called
"text-efficient;" learners satisfying
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(1t) will be called "time-efficient;"
learners satisfying both (i) and {ii)
will be called "efficient.” In this
section these requirements are
fornulated precisely and examned for
their inpact on Identifiablllty.

2.1.1  Text-efficiency

Following Gold (1987, Section 10),
wo defing the partial functional CONV:¥
5 Tgg — N as follows. Ffor ald f € ¥,

t€ T”o
CONV(T.t) o pa[(¥m > »a)(t{t) °
{(Tm-1 111,

CONV i3 defined on f € 9, ¢ € Tqe if f
converges on t, in whichk case CONV(T.t)
is the length of the smallest o € SEQ im
t such that f's last revised conjecture
in t is made on o.

Wow let F € 9, L C %€, We say
that f identifies L text efficlently
just in case F identifies L, and for 811
g € 7 that idestify L,

(*) 1t (3t € Tp)(COMV(g. L) < CONV(T.L)),
then (33 € Ty )(COMV(r.s) < CONV(g,3)}).

f is satd to identify L text efficiently
with respect to 97 just in case f
igentifies L, and for all g € ¥7%C that
dentify L, (*) holds.

Intuitively, f identifies L
tent-efficiently [with respect to 97e¢)
just  in  cass no  other [recursive]
learning function Lhat identifies L is
strictly faster Lhan © in termms of
convargence delay. This notion of leat
esfficiency yiolds:

Proposition 1: A collection, L, of
Tanguages is identiftable if and only if
some T € 9 identifies L teat
sfficient)y.

Proposition 1 shows that text
efficiency is not a restrictive design
feature relative to the class of all

learning functions. In contrast, the
next proposition shows that text
efficiency is restrictive relative to
the class of recursive | earning
functions.

Proposition 2: There is some L
®E such that (i) some f € grec
identifigs L, but (ii) no f € grec
identifies L text efficiently with
respect to ¥rec,

2.1.2 Time efficiency

A learnsr is Lime efficient 1f ¢
reacts quickly to new inputs, We
formalize this notion only for the case
of recursive learning functions. A
computational complericy measure in the
sense of Blum {1967a) is imposed upon
our  acceptable ordering of psrtial
recursive  fuactions. he  mcasure
justifies reference to the number of
"steps” raquired for ¢; to halt on )
(i.j € W), fFor i,s.k € N, we Jet
q.i‘,(k) be the owiput (if any) after s
steps in thé computatiom of ¢;(X):
*[@i(k)|" denotes psle; (k) halts).

Now let L C 98, 18t i € N, and tet
h:¥ — N be a total recursive functiom,
Woe say that ¢ identifies L h-time
efficiently just dn  cese (1) ¢y
identifies L. and (ii) for every t €
Tg. there is a k € N such that for all j
bR

|9i([j+1“ < l"i(tj” * "(tj-n-l)‘

Intuitively, ¢, identifies L h-time
effictently 1f for every t € Tp, ¢4
eventuzlly takes no more Lhan h{t,,.q)

additiosal steps to respond to ¥,  than

to respond to %,: that is. except for a
constant. the growth in ¢@;'s response
time to ever longer initial segments of
t is bounded by h. h-time afficiency
turns out not to restrict the classes of
langueges  fdentifiable by recursive
Tearning function. This is the burden
of the aext proposition.

Proposition 3: There 18
recursive function, h, such that for all
L C %8, some f € FFC jdentifies L it
and only 1f some ¢4 € FMOC identifies £
h=time of ficiently,

Indeed, any h such that h(x) > x
al nost  everywhere can be chosen in
Proposition 3.



2.1.3 Efficiency

Let /| C RE>6, and let h be a total
recursive  function. o is said to
identify L  h-efficientlyy just in case
(i) @i identifies L text efficiently

with respect to F™° (in particular, @i
identifies L), and (ii) ®j is h-time
efficient for L. h-efficiency, that is.
combines the virtues of text efficiency
(with respect to F°°) and h-time
efficiency. The next proposition shows
that, for any h, h-efficiency is more
restrictive than text efficiency as a
design feature of recursive learning
functions.

Proposition  4: For every total
recursive  function, h, there is a
collection, L, of languages such that
(i) some f € F* identifies L text
efficiently, but (ii) no ® € Frec
identifies L h-efficiently.

Proposition  5: For some total
recursive function, h, there is L C RE
such that (i) some f € F'° identifies L
text efficiently, (ii) some @i
identifies L h-time efficiently, but
(iii) no ®j identifies L h-efficiently.

2.2 Simple conjectures

To be useful, a learner should not
only converge rapidly to a correct
theory of its environment, it should
also converge to a relatively simple
theory: excessively complex theories,
even if true, are of little practical
use. To study the impact of such
simplicity constraints on learnability,
a total recursive size measure, SN --
N, is now imposed on our acceptable
ordering of partial recursive functions.
Intuitively, S may be conceived as

mapping indices to sizes, S(i) being the
length of the program for @1
corresponding to index i. The measure
is governed by the following two axioms,
due to Blum (1967b).

Axiom 1: For all i € N, there are
only finitely many j € N such that S(j)

Axiom  2: The predicate
S_I(1)," for ij € N, is decidable.

i €
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Define the function MS°RE -> N as
follows. For L € RE, RE(L)
uJ[(BK)(Wx = L & S(k) = j]. Thus, MS(L)
is the size of the smallest program that
accepts L. Concern about simple
conjectures may take the followingform.
Let g be a total recursive function, let
f € F and let L C RE. f is said to
identify L g-slmply just in case f
identifiesL andforallt€ T, f
converges on t to an index, j, such that
S(J) < g(MS(rng(t)). To exemplify, let
g be \X.2X. Then f identifies L
g-simply just in case f identifies L,
and for a |l Il L € L and t € T, f
converges on t to an index of size no
greater than twice MS(L) (the size of
the smallest program that accepts L *

rng(t)).

Text efficiency and g-simplicity
are more restrictive design features of
recursive learning functions than either
is alone. This is the content of the
next proposition.

Proposition 6: There is L C RE
such that (i) some f € F'®° identifiesL
text efficiently, (ii) for any total
recursive function, g, such that g(x) >

x forallx € N, some f € F'*¢
identifies L g-simply, but (iii) for
every f € F'°°, and every total

recursive function, h, if f identifies L
text efficiently with respect to F'®°,
then f does not identify L h-simply.

2.3 Learning in likely environments

In some environments eachpotential
element of a language is associated with
a fixed probability of occurrence,
invariant through time. Such
environments m a y be thought of as
infinite sequences of stochastically
independent events, the probability of a
given element, e, appearing in the n+lst
position being independent of the
contents of positions 0 through n.

To study such environments, each L
€ RE is associated with a probability
measure* m, on N such that for all x €
N, x € L if and only 1f m.({x}) > O.
(Recall that every L € RE 1s nonempty;
see Section 1.1.)) Next, we impose on
TRE jts Baire topology, RE; that 1s,
for each a € SEQ, we take By + {t €
T6bSI® is in T to basic open set
of F RE. For each L € RE, we define the
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(unique) conplete Frobability neasure,
M, on Tge Dy stipulating that for all a
€ SEQ, “L{Bﬂ) = nj ¢ -|h(a)m|_(aj). &
now assune the existence of a” fixed
collection,fM L € KB} of nmeasures on
correponding nenbers of {T L € <8},
Intuitively. for measurable 8 € 'L-
W (5) s the probability that an
arbitrarily selected text for L is drawn
from S.

The following facts are easy to
establish. For atl L,L' € %8,

(1) if L # L', then M {T,.) = 0;

(11} for f € F, M {{t € T jf
identifies t}} is defined,

In the stochastic context just
discussed, the Gold definition of
language tdentification seems needlessly
restrictive. Rather ~ than  requiring
identification of every text for a given
| anguage, L, it seems enough to require
identification of any subset of ¥ of
sufficient probability. W are thus led
to the following definition, et f € <,

L € =g, f is said to measure-one
iflentiry L just in case M {{t € Ty|f
identifies tl) =1, f measure-one

identifies £ € %8 just in case f
neasure-one identifies every L € 4: in
this case, L is said to be measure-one
identifiable. The definition of
measure-one identifiability i s inspired
by Waxier & Culicover (1980, Ch. 3).

Measure-one identification of a
| anguage differs from ordinary
identification only by a set of measure
zero.  The next proposition reveals the
significance of this smll difference.

Proposiion 7 & s  neasure-one
Identifiable.

Let £ = {Lj|t € N} be an Indexed
collection af “languages, and | et {py]1 €
N} be the corresponding neasures on
then. L is said to be uniformy
measured just 1n case the predicates "x
€ by" and "py{{¥})} = z" are decidable
frhe decidability of the latter
Fredicate actually implies that of the
ormer). Mnor modifications in the
Froof ~of  Proposition 7 yield the
ol lowing.

Proposition 8; Let L be a
uniformy measur ed collection of
| anguages. Then, some f € e ¢

neasure-one identifies L.

Thus, in contrast to Gold' s Theorem
(Section 1.3, ~ above), any uniformly

measur ed col lection of | anguages
consisting of all finite wsets and any
infinite set is measur e- one
identif iable.

2.4 lmerfect environments
2,41 Noisy texts

A noisy text for a Iangua?e, L, is
any text for a language of the Torm LD,
where D i s a .finite set. Thus, a noisy
text for a language, L, can be pictured
as a text for L into which any nunber of
intrusions from a finite set have been
inserted. Since the enpty set s
finite, texts for L count as noisy texts
for L. W say that a learning function,
f. identifies a Ian%uage, L. on noisy
text just in case converges to an
index for L on every noisy text for L.
A learning function, f, ~ identifies a
Collection, L, of languages on noisy
text just in case f identifies every
language in L on noisy text.

It is clear that noisy text renders
imossible the identification of the
collection of ell finite languages. The
following proposition provides a less
obvious example of the disruptive
effects  of such  envi ronments  for
recursive learning functions.

Proposition 9: There Is a
collection, L. of languages such that
(a) every language in L Is infinite and
disjoint fromevery other Iangua?e In L,
(b) sone recursive learning function
identifies L, and (c) no recursive
learning function identifies L on noisy
text.

2.4.2  Incomplete texts

An Inconplete text for a language,
L. is defined to be a text for L0
where D |s any finite set. An
inconplete text for a language, L, can
be pictured as a text for L from which
al | occurrences of a given finite set of



sentences have been removed. Texts for
L count as incomplete texts for L. We
say that a learning function, f.
identifies a language, L, on incomplete
text just in case f converges to an
index for L on every incomplete text for
L. Identifiability of collections of
languages on incomplete text is defined
straightforwardly.

Proposition 10: There is a
collection, L, of languages such that
(a) every language in L is infinite and
disjoint from every other language in L,
(b) some recursive learning function
identifies 1, and (c) no recursive
learning function identifies L on
incomplete text.

2.4.3 Neisy and incomplate fext
conparad

Let €y be the family of all

collections, L, of languages such that L
can be identified (by arbitrary learning
function) on noisy text, Define &

similarly with respect te incomplete
text. We have:

Proposition 11:
subset of Cy.

Cy is a proper

2.4.4 Finite-differance
identification on imperfect text

Let L. L' € ®E., L is said to0 be a
finite wvariant of {' just in case (L -
L'y U (L - L") is finite. A learniag
function, T, is said to
finite-difference identify a languaga,
L, on noisy text just in case for evary
noisy text, t, fer L, f converges on t
to &n index for a finite-variant of L; f
finite-difference identifies a
collection, L, of 1languages on noisy
text just in case for every LEL, f
finite-difference idantifies L on noisy
taxt, Finite~difference identification
on incomplete text is defined similarly.

Given the margin of error tolerated
in finite-difference identification, one
might doubt that imperfection restricts
thiskindofl earning.Itis thus
natural to conjecture:

L is finite-difference identifiable [by
recursive learning function] if and only
if 1 is finite-difference identifiable
on noisy text [by recursive learning
function];and
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L is finite-difference identifiable [by
recursive learning function] if and only
if L is finite-difference identifiable
on incomplete text [by recursive
learning function].

The next two propositions show that both
versions of both conjectures are false.

Proposition 12: There is a
collection, L, of Ilanguages such that
some recursive learning function

identifies L, but no learning function
(recursive or not) finite-difference
identifies L on noisy text.

Proposition 13: There 1s a
collection, JL of languages sucht h at
some recursive learning function

identifies L, but no learning function
(recursive or  not) finite-difference
identifies L on incomplete text.

Section  3: Language acquisition and
formal models of Inference

The circumstances of normal
language acquisition by children appear
to share a fundamental feature with the
inference paradigms discussed above.
Infants apparently have no direct access
to the nonsentences (so labeled) of the
target language. This assertion rests
on evidence that children are seldom
corrected for ungrammatical utterances
per se, nor do they communicate more
successfully with grammatical than with
ungrammatical sentences (Brown & Hanlon,
1970). In short, children learn their
language on texts.

As a consequence of this shared
environmental feature, the propositions
adduced above are relevant to the study
of language acquisition. Thus: (a)
Propositions 1 -4 reveal some of the
consequences of efficient Ilearning by
children; if language acquisition
proceeds efficiently in the senses
earlier defined, the class of learnable
languages is narrower on this account,
(b) If the class of natural languages |Is
infinite, then a corollary of results in
Section 2.2 shows that infinitely many
grammars conjectured by children are
wildly oversized (by any reasonable
measure of size), (c) If each sentence
in the target language can be associated
with a lower bound on the probability of
Its occurrence in the child's linguistic
environment, then Proposition 7 shows
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that the set of languages that can be
learned with certainty is very large.
And (d) Propositions 9 and 10 reveal the
surprising consequences for language
acquisition of even mild imperfections
in children's linguistic environments.
These kinds  of connections between
Formal Learning Theory and language
acquisition by children have become

increasingly central to linguistic
theory and developmental
psycholinguistics (see Wexler &

Culicover, 1980; Osherson, Stob &
Weinstein 1983a).

The results reviewed in this paper
represent only one of several
perspectives on language acquisition
offered by Formal Learning Theory.
Thus, in addition to efficiency, soveral

other learning strategies plausibly
attributed to children have been
investigated from the Ilearning theoretic
point of view (Osherson, Stob &
Weinstein  1983b). These include such

response tendencies as (a) restriction
to hypotheses compatible with available
data, (b) gradual shifts in hypotheses

rather than large leaps, (c)
perseveration on conjectures that
predict the available linguistic data,
(d) restriction to grammars with
nontrivial “"recursive" rules, and (e)
exclusion of long-past data in
hypothesis selection. Additionally,

criteria of successful acquisition less
stringent than identification have been
formulated and studied in the context of

contemporary linguistic theory and
language acquisition. These issues are
discussed in Osherson &  Weinstein
(1983c).
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