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A b s t r a c t 

Omega is a description system for knowledge embedding which 
incorporates some of the attractive modes of expression in natural 
language such as descriptions, inheritance, quantification, negation, 
attributions and multiple viewpoints. It combines mechanisms of the 
predicate calculus, type systems, and pattern matching systems. 
Description abstraction is a construct which we introduce to extend the 
expressive power of the system. The logic foundations for the basic 
constructs of Omega are investigated. Semantic models are provided, an 
axiomatization is derived and the consistency and completeness of the 

I I n t r o d u c t i o n 

Omega is a description system developed for knowledge 
representation and reasoning (10). Omega is a calculus of Ascriptions 
rather then a ceteufua of predicetes as ordinary logic. The concept of 
description in logic, and in particular of definite descriptions, can be 
traced back to the works by Frege and by Russell (15]. Logicians have 
always been bothered by the semantic problems raised by definite 
descriptions when none or more then one individual meets the 
description. Therefore they have favored their elimination by showing 
how descriptions can be contextually replaced by means of other 
constructs (16). 

In Omega we deal with indefinite descriptions such as the 
description "(eMan)". Omega then, has more the flavor of a naive set 
theory. Omega however aNows many ways to build new objects, rather 
than the single set formation construct of set theory. Omega is a type free 
system, in the sense that a single logical type is admitted, the type of 
descriptions. With Omega we achieve the goal of an intuitively sound and 
consistent theory of classes which permits unrestricted abstraction within 
a powerful logic system. Description abstraction is a construct provided 
in Omega similar to set abstraction. Abstractions add considerable 
expresaive power to a language, nevertheless such powerful constructs 
are likely to lead to inconsistencies or paradoxes. The rules for 
abstraction we present have been studied to avoid those problems. The 
proof of consistency that is provided in the paper is therefore significant 
to establish this claim. 

The main goal of this paper is to present the logic theory Omega, to 
introduce its models, derive an axiomatization and finally to show the 
consistency and completeness of the system. 

We consider the study of s knowledge representation system as a 
logic system to be of fundamental importance. In thie way we isolate the 
basic deductive mechanisms from the intricacies of specific programming 
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languages or implementations. The fundamental results obtained in this 
way can help us understand the basic mechanisms of reasoning on a 
knowledge base, and insure us of the soundness of the system. 

As an alternative to symbolic logic, many knowledge representation 
systems use semantic networks (14) as their basic formalism. The term 
"semantic" in the name "semantic network" refers to the fact that the 
formalism was originally developed to represent the semantic information 
necessary to understand natural language. Despite their name, the 
semantics of semantics network has never been satisfactorily developed. 
In the work by Brachman [4]. the ambiguities and inadequacies of 
semantics networks are investigated. A typical problem deals with the 
meaning and use of inheritance links. 

In most cases the semantics of semantic networks is determined by 
the way the processing routines of application programs manipulate the 
information represented by nodes and links of the network. Many authors 
consider semantic networks as embedded into first order predicate 
calculus (9,18], so the reasoning mechanisms are directly drawn from 
predicate logic. Semantic networks can then be considered a convenient 
notation (i.e. an alternative syntax) tor expressing variable-free assertions 
of predicate calculus. The notation is convenient because it suggests an 
organization of the data base of assertions, highly suitable for mechanical 
manipulation. Kowalski in [7] adopts this point of view, and also proposes 
an extension to the notation of semantic networks in order to express a 
more general class of formulas, including universally quantified variables. 
The class he suggests is the class of Horn clauses, i.e. formulas of the 
kind: 

A i A A j - A n - e - A ^ , 

where all A, are positive atomic formulas. For this class of formulas a 
uniform proof procedure based on resolution performs reasonably well. 
However the expressive power is still limited, mostly because of the 
restriction in the use of negation. 

By drawing such connections between semantic networks and 
predicate logic, one can argue that a semantics has been provided for 
semantic networks. However, many of the fundamental aspects of 
semantic networks, such as inheritance, remain unexplained. 

Other knowledge representation systems provide deductive 
mechanisms of their own. most often procedurally defined [8], [3], [5], 
(19). Such deductive mechanisms are not formally investigated, so their 
logical soundness can be questioned. It is in fact the case that some of 
these systems perform unwanted or incorrect deductions. An example of 
this kind of problems is the so-called "copy confusion" effect reported by 
Fehlman about his NETL system. 

In comparison with other knowledge representation systems, 
Omega has increased expressive power deriving from including: 

• variables: this allows description of complex general relations, 
rather then isolated assertions; 

• quantification: both over individuals and classes (descriptions): 



•negation: this removes the major limitation of systems like 
PROLOG, based on the use of Horn clauses; 

• abstraction: allows description of classes of individuals in terms of 
their properties. It is a very powerful construct, which allows for 
instance to define the concept of converse of a relation, that had 
to be given as primitive in [10]. 

We believe that recent proposals of parallel problem solving 
systems such as Ether [12] will be suitable for implementing the reasoning 
mechanisms demanded by a rich system such as Omega. For instance 
the ability to process concurrently proponents and opponents [12] of a 
same goal, is what is needed to appropriately deal with sentences 
containing negations. Conversely, it is the provision of negative facts 
what makes the proponents/opponents metaphor profitable and 
effective. So far the limitations on the use of negation seem to have been 
dictated mainly by considerations related to sequential proof algorithms. 

In this paper we present and develop the description system 
Omega, as a logic system. The system we develop has some similarities 
with the one presented by R. Martin in [13], even though we started with 
different aims and motivations. Martin's system is proposed as a system 
of mathematical foundation, as an alternative to the classical theory of 
sets. However no result of completeness or consistency for that logic is 
presented. 

A sound logical theory for Omega is necessary as a formal concise 
specification for the algorithms that will carry out the reasoning process. 
Results such as the correctness or the completeness of such algorithms 
can be established only with respect to the theory. Properties and 
theorems about the theory can be exploited in the design of the proof 
procedure, as it was the case for the resolution algorithm in First Order 
Predicate Logic. 

We are leaving out from the present discussion other features of 
Omega such as the calculus of attributions and of metadescriptions. 

A version of Omega has been implemented on the MIT LISP 
machine by the authors and has been used to describe the base of active 
knowledge supporting an experimental system of office forms [1]. A 
second implementation of Omega is currently under development by 
Jerry Barber. A subset of Omega is being used to describe two 
dimensional objects within the SBA system by Peter de Jong [6]. 

Our experience has proven that the axiomatization provides an 
extremely useful guideline in the process of implementation. 

I I Desc r i p t i ons and Pred ica t ions 

This section is intended as an informal introduction to the theory 
Omega. For more exhaustive presentation and examples we refer to [10]. 

The simplest kind of description is the individual description, like: 
Boston 

or 
Paul 

Here the names Boston and Paul are names describing individual entities. 

An instance description is a way to describe a collection of 
individuals. For instance 

(•Man) 

represents the collection of individuals in the class of men. 

The most elementary sentence in Omega is a predication. A 
predication relates a subject to a predicate by the relation is. For instance 
the predication 

Paul is (a Man) 

is meant to assert that the individual named Paul belongs to the class of 

man. Predication can be used to relate arbitrary deecriptione. For 
instance tha sentence: 

(a Man) it (a Mortal) 

states the fact that any Individual of claaa man is also an individual of 
class mortal. A fundamental property of the relation la is rransWvrty, that 
allows tor instance to conclude that 

Socra tes / * (a Mortal) 

from 

Socrates /a(a Man) and (a Man) 1$ (a Mortal) 

The description operators *nd% or and not allow us to build mora 
complex descriptions, like in the following example: 

(a Boolean) Is (true or M$o) 

Note the difference between description operators and statement 
connectives in the following examples: 

where Nothing is our notation for "the null entity". 

I l l Syn tax 

The language of the theory Omega is presented hare using the kind 
of notation which has become standard in logic and denotational 
semantics. We list first the syntactic categories of the language. For 
each of them we show our choice of metavariables ranging on the 
elements of that category, that we will uae in the rest of the expoaition. 

Descriptions and statements are built from constants and variables 
according to the following syntax: 

Descriptions Statements 
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IV S e m a n t i c s 

We have followed in this work the method of defining validity in a 
semantic way. First we characterize a dees of models lor Omega and 
define the notion of truth in a model. This gives an intuitive and immediate 
semantic interpretation for our theory. Then we look for en 
axiomatization for valid formulas of the theory. The models defined 
earlier ere useful in this stage for providing a guideline and a criterion for 
the suitability of the axiomatization. 

By proving the completeness theorem, we show that the 
axiomatization is adequate. Furthermore the completeness result telle 
that our theory is consistent if end only if it has a model. Therefore the 
existence of models presented in this section implies the consistency of 
Omega. 

The structure of the interpretation is 

where 0 Is the domain of interpretation, a nonempty set of individuals, 3 is 
a mapping from individual constants into elements of D 

and Cieamapping from class constants into subsete of D 

A. Definit ion of Value of a Description 
The value of a description can be defined as a mapping from 

descriptions and environments into subsets of P. 

An environment defines an association between variables end subsets of 
D. 

The interpretation of the description abstraction Any Is the set of 
individuals which, substituted for v in the statement a, make the 
statement true. The notation 

means the! the statement a in the environment p is true relative to the 
structure JL, and it is completely defined in the next section. 

B. Definit ion of Truth Valve 
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Note that this axiom set ia not minimal, since for instance S1 -82.83-
S4 and"S6S6 are pairwiae derivable from one another. (A similar remark 
applies to the axioms for descriptions presented below). 

The notion of individual, as it ia formally defined, correeportde in our 
interpretation to the aet consisting of a single element, or singleton. 
Axiom D1 then corresponds to the following version of the axiom of 
extentionality for sets: 

Axiom D2 states the fact that individual constants are individuals. 

We have choaen thia aet of axioms so that there ia an almost 
complete symmetry between the axioms for statements and the axioms 
for descriptions. In thia way any theorem about descriptions has a 
corresponding dual theorem about statements. A single proof procedure 
will work for both descriptions and statements. 

There ia another strong correspondence between statements and 
descriptions, which ia expressed in the following 

Lemma S: 

1. Nothing —am (Any v such ttmt flefae) 

2. Something f e m e (Any v such that try) 

3- (61 or ty —nr (Any v eucJi thmt (v fa «,) V (v la <*)) 
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component relationship. Omega is a constructive set theory and has no 
axiom corresponding to the powerset axiom of classical est theory. The 
constructive nature of Omega implies that It is possible to use the proof of 
a statement to determine a description which meets some requirements 
or is the answer to a question. 

IX Conc lus i on 

The results of this paper provide us with a solid base on which to 
build a theory of Knowledge repreeentetion. 

The system presented is powerful enough to express arithmetic, by 
following the construction of [13]. The use of attributions as in [10] 
however increases the naturalness of the notation. There are a number of 
problems regarding attributions to be addressed such as: interaction 
between attributions, merging and inheritance; functional dependencies 
between attributions; contrasting uses of attributions (for instance 
attributions have been used to express part/whole relationships as wen 
as to express n-ary relations). In [10] a preliminary set of axioms for 
attributions was presented. A set theoretical model along the lines of the 
present work has to be defined in order to obtain a satisfactory full 
axiomatization of attributions. Such sxiomatization will appear in a 
forthcoming paper [2]. 

Another important construct allowed in Omega is the A-abetractkxv 
The axiomatizat»on for this construct is similar to the axiomatization of the 
A calculus. This construct interacts nicely with the inheritance 
mechaniam of Omega, allowing the same notation to be used for 
describing the type of a function aa well as for defining its values. 

We have also investigated the problems arising from allowing self-
reference in the language. In order to avoid logical paradoxes Mke the Her 
paradox, it is necessary to give up the rules of excluded middle (axiom 
S5) and contradiction (axiom 86). This allows models where the value of 
a sentence can be neither true nor false. Such solution follows the lines 
of the one suggested by Viseer in [20]. The logic can still be proved to be 
complete, but the proofs by hypothetical reasoning become more 
cumbersome. 
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