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Abstract

Omega is a description system for knowledge embedding which
incorporates some of the attractive modes of expression in natural
language such as descriptions, inheritance, quantification, negation,
attributions and multiple viewpoints. It combines mechanisms of the
predicate calculus, type systems, and pattern matching systems.
Description abstraction is a construct which we introduce to extend the
expressive power of the system. The logic foundations for the basic
constructs of Omega are investigated. Semantic models are provided, an
axiomatization is derived and the consistency and completeness of the

| Introduction

Omega is a description system developed for knowledge
representation and reasoning (10). Omega is a calculus of Ascriptions
rather then a ceteufua of predicetes as ordinary logic. The concept of
description in logic, and in particular of definite descriptions, can be
traced back to the works by Frege and by Russell (15]. Logicians have
always been bothered by the semantic problems raised by definite
descriptions when none or more then one individual meets the
description. Therefore they have favored their elimination by showing
how descriptions can be contextually replaced by means of other
constructs (16).

In Omega we deal with indefinite descriptions such as the
description "(eMan)". Omega then, has more the flavor of a naive set
theory. Omega however aNows many ways to build new objects, rather
than the single set formation construct of set theory. Omega is a type free
system, in the sense that a single logical type is admitted, the type of
descriptions. With Omega we achieve the goal of an intuitively sound and
consistent theory of classes which permits unrestricted abstraction within
a powerful logic system. Description abstraction is a construct provided
in Omega similar to set abstraction. Abstractions add considerable
expresaive power to a language, nevertheless such powerful constructs
are likely to lead to inconsistencies or paradoxes. The rules for
abstraction we present have been studied to avoid those problems. The
proof of consistency that is provided in the paper is therefore significant
to establish this claim.

The main goal of this paper is to present the logic theory Omega, to
introduce its models, derive an axiomatization and finally to show the
consistency and completeness of the system.

We consider the study of s knowledge representation system as a
logic system to be of fundamental importance. In thie way we isolate the
basic deductive mechanisms from the intricacies of specific programming
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languages or implementations. The fundamental results obtained in this
way can help us understand the basic mechanisms of reasoning on a
knowledge base, and insure us of the soundness of the system.

As an alternative to symbolic logic, many knowledge representation
systems use semantic networks (14) as their basic formalism. The term
"semantic” in the name "semantic network" refers to the fact that the
formalism was originally developed to represent the semantic information
necessary to understand natural language. Despite their name, the
semantics of semantics network has never been satisfactorily developed.
In the work by Brachman [4]. the ambiguities and inadequacies of
semantics networks are investigated. A typical problem deals with the
meaning and use of inheritance links.

In most cases the semantics of semantic networks is determined by
the way the processing routines of application programs manipulate the
information represented by nodes and links of the network. Many authors
consider semantic networks as embedded into first order predicate
calculus (9,18], so the reasoning mechanisms are directly drawn from
predicate logic. Semantic networks can then be considered a convenient
notation (i.e. an alternative syntax) tor expressing variable-free assertions
of predicate calculus. The notation is convenient because it suggests an
organization of the data base of assertions, highly suitable for mechanical
manipulation. Kowalski in [7] adopts this point of view, and also proposes
an extension to the notation of semantic networks in order to express a
more general class of formulas, including universally quantified variables.
The class he suggests is the class of Horn clauses, i.e. formulas of the
kind:

AiAAj-An-e-A",
where all A, are positive atomic formulas. For this class of formulas a
uniform proof procedure based on resolution performs reasonably well.
However the expressive power is still limited, mostly because of the
restriction in the use of negation.

By drawing such connections between semantic networks and
predicate logic, one can argue that a semantics has been provided for
semantic networks. However, many of the fundamental aspects of
semantic networks, such as inheritance, remain unexplained.

Other knowledge representation systems provide deductive
mechanisms of their own. most often procedurally defined [8], [3], [5],
(19). Such deductive mechanisms are not formally investigated, so their
logical soundness can be questioned. It is in fact the case that some of
these systems perform unwanted or incorrect deductions. An example of
this kind of problems is the so-called "copy confusion" effect reported by
Fehlman about his NETL system.

In comparison with other knowledge representation systems,
Omega has increased expressive power deriving from including:

« variables: this allows description of complex general relations,
rather then isolated assertions;

* quantification: both over individuals and classes (descriptions):



*negation: this removes the major limitation of systems like
PROLOG, based on the use of Horn clauses;

« abstraction: allows description of classes of individuals in terms of
their properties. It is a very powerful construct, which allows for
instance to define the concept of converse of a relation, that had
to be given as primitive in [10].

We believe that recent proposals of parallel problem solving
systems such as Ether [12] will be suitable for implementing the reasoning
mechanisms demanded by a rich system such as Omega. For instance
the ability to process concurrently proponents and opponents [12] of a
same goal, is what is needed to appropriately deal with sentences
containing negations. Conversely, it is the provision of negative facts
what makes the proponents/opponents metaphor profitable and
effective. So far the limitations on the use of negation seem to have been
dictated mainly by considerations related to sequential proof algorithms.

In this paper we present and develop the description system
Omega, as a logic system. The system we develop has some similarities
with the one presented by R. Martin in [13], even though we started with
different aims and motivations. Martin's system is proposed as a system
of mathematical foundation, as an alternative to the classical theory of
sets. However no result of completeness or consistency for that logic is
presented.

A sound logical theory for Omega is necessary as a formal concise
specification for the algorithms that will carry out the reasoning process.
Results such as the correctness or the completeness of such algorithms
can be established only with respect to the theory. Properties and
theorems about the theory can be exploited in the design of the proof
procedure, as it was the case for the resolution algorithm in First Order
Predicate Logic.

We are leaving out from the present discussion other features of
Omega such as the calculus of attributions and of metadescriptions.

A version of Omega has been implemented on the MIT LISP
machine by the authors and has been used to describe the base of active
knowledge supporting an experimental system of office forms [1]. A
second implementation of Omega is currently under development by
Jerry Barber. A subset of Omega is being used to describe two
dimensional objects within the SBA system by Peter de Jong [6].

Our experience has proven that the axiomatization provides an
extremely useful guideline in the process of implementation.

Il Descriptions and Predications

This section is intended as an informal introduction to the theory
Omega. For more exhaustive presentation and examples we refer to [10].

The simplest kind of description is the individual description, like:
Boston
or
Paul
Here the names Boston and Paul are names describing individual entities.

An instance description is a way to describe a collection of
individuals. Forinstance
(Man)
represents the collection of individuals in the class of men.
The most elementary sentence in Omega is a predication. A

predication relates a subject to a predicate by the relation is. For instance
the predication

Paul is (a Man)

is meant to assert that the individual named Paul belongs to the class of

man. Predication can be used to relate arbitrary deecriptione. For
instance tha sentence:

(a Man) it (a Mortal)

states the fact that any Individual of claaa man is also an individual of
class mortal. A fundamental property of the relation la is rransWhvrty, that
allows tor instance to conclude that

Socrates/* (a Mortal)
from

Socrates /a(aMan) and (aMan) 18 (a Mortal)

The description operators *ndy, or and not allow us to build mora
complex descriptions, like in the following example:
(a Boolean) Is (true or M$o)
Mors complax statements can be tuilt by combining statements with the
logicel connectivea A, V, — and =», ae in;
Jesn is {{e Man) or (s Woman)} A ™ (Jean ls {s Man})
w Joan is (o Woman)
Note the difference between description operators and statement
connectives in the following examples:
(true A faise) Is felse
{true and Iaise) is Nothing

where Nothing is our notation for "the null entity".

Il Syntax

The language of the theory Omega is presented hare using the kind
of notation which has become standard in logic and denotational
semantics. We list first the syntactic categories of the language. For
each of them we show our choice of metavariables ranging on the
elements of that category, that we will uae in the rest of the expoaition.

k individusl congtants (I, 1y, Iy, )y ..}, including the
corgtants irue and false

v: variables (v, vy, vy, v; ...}

C: Class constants (¢, ¢y, ¢4, 03 -..}

& stastorwnta (0, 0y, 03, 0y ...}

& deacriptions (8, 8, 85, 85 ...)

Descriptions and statements are built from constants and variables
according to the following syntax:

Descriptions Statements
|, Nothing, Something true, falve
¥ ¥
ne) 8, i28,)
{Any v such thal o) Yv.o
{3, or 8y} {wy V 5y}
(8, and8y) loy Aay)
{not (~a
e (o) = oy)

Nothing ardl Something are two 3pacial constanie.



IV Semantics

We have followed in this work the method of defining validity in a
semantic way. First we characterize a dees of models lor Omega and
define the notion of truth in a model. This gives an intuitive and immediate
semantic interpretation for our theory. Then we look for en
axiomatization for valid formulas of the theory. The models defined
earlier ere useful in this stage for providing a guideline and a criterion for
the suitability of the axiomatization.

By proving the completeness theorem, we show that the
axiomatization is adequate. Furthermore the completeness result telle
that our theory is consistent if end only if it has a model. Therefore the
existence of models presented in this section implies the consistency of
Omega.

The structure of the interpretation is
Ad=DLD

where 0 Is the domain of interpretation, a nonempty set of individuals, 3 is
a mapping from individual constants into elements of D

31D
and Cieamapping from class constants into subsete of D

c:C—~2°

A. Definition of Value of a Description
The value of a description can be defined as a mapping from
descriptions and environments into subsets of P.

TAE-P

An environment defines an association between variables end subsets of
D.

E:V—e 2P
1. Yalus of constant descriptions:
o Yo = 51D
b. TiNothing]p » O
o. Y{Something]p » D
2.7v}p » ptv)
3. iscklp = Cfc)p
4. Y§lany v sueh that o)) p = {x€D | 4= 4 1ejpi{x}/v]}
5. Y8 0r 820 = YIS J0 VU Y13}
6. 7113, and 39l » V18,101 V18,0
7.¥](not 8i]p « 0 - Y8]p
8.1a)p = Tltrue]p it = {a)p, Yitatoe]p it i 4 fo]p

The interpretation of the description abstraction Any Is the set of
individuals which, substituted for v in the statement a, make the
statement true. The notation

= [elp

means the! the statement a in the environment p is true relative to the
structure JL, and it is completely defined in the next section.

B. Definition of Truth Valve

1.0 4 trwelp, == ( {1 inise]s

50b

2, Variables
s b= [vloitt plv) = Y{rrwelp

0. = [ vlpit piv) = Y]taise]p
Ay 18, a8 o Y18, Je C Y14de
&M 4 [(¥v.o))p it torati x € 2°, ke fe]plx/v]"
8.k o, Vopl]pitri= (foidpor k= g [on]p
6. ke [to, A oy]pittim ¢ fo,)pand b= 4 [os)p
7.0 4 [ olpitt notim ¢ Jolp
8.0 [to, » g )]pitt b= ¢ [or,]p implres k= 4 [ap]p

Tha truth of & siatement relative 1o 8 structure A is defined as:
Definition 1: (Truth) b= s oitt ¥ pim  [o}p

Givan: the dafinition of Iruth, vakdity is defined &e follows:
Definition 2: (Validity} W ot ¥ M=, o

V Axiomatization

The method that we foliowsd in deriving the axiometization, s
based on noting ruies that preserve vaNdity of formuiag and making them
intD axioms or inferencs rules.

A. Axtom Schemata

We pregant the axioms ol the system in the form of nalural
deduction inlerence ruies [11]. As a matter of nolation we will use a
double ber lo indicate that & ruls can be applied in both directions. The
bar s omitted if the set of premises is smply.

Axtoma tor Statements
81: frve
82 ™ lnlge
L - o= lrue
M falsg = o
. trueme gV " g
80: o A =1 0w Inise
Oy = 0,0y = 0y
8T SEEE——
oy gy Aoy
¥y - 7y, 03 - L/
88: —————
o Vo= oy
L0 -y L)
84: ——
"\g' = gy
$10: e ) (™Mg)
t 313 H ()= g
8t o= gisirne
313: =g =» g iz Inlte

" p[R7v] 18 1w arne arwironment ms p Bl Jor warisbie v 15 Which N Eookies B.



Note that this axiom set ia not minimal, since for instance S1-82.83-
S4 and"S6S6 are pairwiae derivable from one another. (A similar remark
applies to the axioms for descriptions presented below).

Tha notion of “samensm” betwsen descriptions is defined as
follows:

Datinition 3: (Samenem)
(3, sama 8y} Mt (8, 1980 A (B, in 8D
We will siao need tha following abbreviation:

Definition 4:  (Individusiity) Individual[3] stands for
“Ha isNothingd A Y v.lvis 8 = (5 isv) V {v }a Nothing

Axiomes lor Descriptions
D1: 3,is8; = Vv.individuatlv] Avia 3, =»visd,
D2: individuaifl]
03: & is Something
D4 Nothingis §
DS: Somathing Iz (3 or (not 8))
De: (8 and {not 5)} is Nothing
8 i85, 8,is8,
or:
’| is tag and a”
81 in 8,. 8, ] 8,
08
(3, 0r83)is 8y
' TN
[+ H
not & is not &
D10: not {not 8} ia 8
D11 & is not {not &

The notion of individual, as it ia formally defined, correeportde in our
interpretation to the aet consisting of a single element, or singleton.
Axiom D1 then corresponds to the following version of the axiom of
extentionality for sets:

ACBmYxEA (NCA= (B
Axiom D2 states the fact that individual constants are individuals.

We have choaen thia aet of axioms so that there ia an almost
complete symmetry between the axioms for statements and the axioms
for descriptions. In thia way any theorem about descriptions has a
corresponding dual theorem about statements. A single proof procedure
will work for both descriptions and statements.

There ia another strong correspondence between statements and
descriptions, which ia expressed in the following

Lemma S:

1. Nothing —am (Any v such ttmt flefae)
2. Something feme (Any v such that try)

3- (61 or ty —nr(Anyv eucdi thmt(v fa «,) V (v la <*))
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4. (8, and &) seme (Any v such thal{vis 8} Alvis &)
5. (ol 5) same {Any v such that = (v is &)

Actually these sistements couid have as walt been given a8 an
asiternative axiomatization for description operators. We prejer however
the et of axiome pressniad sbove aince they do not involve explicity
description sbetraction. The inferance rules for description atwstraction
wre rather complicated. With the axioms we have chosen, the use of
sbetraction rules and exisntionality {axiom D1) can often ba avolded,

8. inferance Rules
I is sany 10 varify thal thees two fransitivity rulss preserve the iruth
acconding to our inlerpretation:

‘1"". 8,!!‘;

8, is8y

The ordinasy rule of Modus Ponens can be derived from transltivity
by letting o, be truve.

Sianderd rules can be ueed for =+ |ntraduction, ¥ inraduction
{generalization) and ¥ alimination (instantistion).

The ruies lor description asbstraction require more carslul
axamination. Tha mast obvious lormulation of the abstraction rule for
dascriptions would be:

Ty = 04,803 ™ 0y

’1“"

oid) a
& ialAny v such thai ofv})
and the cormmpanding concretion rule:
& is (Any v such that ofv])
1
off]

Unfortunaiely, thess unrestricted forme for the abstracion wnd
concretion rules lesd to contradiction. Coneicer lor sxample

John is{s Man}
With (s Man) for §, by AT, we pat:

(o Man} is (Any v such that (John is v))
but if sheo

Paul is (s Man)
then by traneitivity:

Paul is {Any v such thet {Jotn iz v))
and by Ct:

Liohn fs Paul}
which might not be trus.

A restricted form of the abstraction principle that avoide such

problems e the following:

ol81 A Ingividuat]]
A2

& ia tAny v such that ofv))

Similar problema sriss with an unmeetriced concretion nule.  Let
o[v] » Individusi{y] and suppoas for instance:

individusi[John}

individuai{Paul}



then by A2

John s (Any v such that individuai]v]}
Paul is(Any ¥ such thet ingividusi{v])

From the axiom B8, which introduces the or description, we get:
Wohn or Paul) is lAny v such that individuallv])
and from thig and G1:
Individuai[John or Peul]
We solve this probiem by resiricting C1 snalogously 1o what we tid for Af:

8 iz {Any v such ihat av]} A indivieusl[8)
o{8)

With this restriction 4o individuals, it is sasy 10 verily that the abairaction
and concration rules are sound.

Note that with this form of the concretion prinGiple Rumsell's

paradox is avoided. Suppoas wi call 2 the oliowing description:

t's {Any v such that = {v isv))
i we pliow C1, since 2 18 X ls truw by reliexvity of is, we would derive the
PRrRCONICEl CONMGUINCS:

=xisn)
Wa can show however that:

z same Noihing

c2

bacauss
{Any v such thal ™ (v is v)) same Aay v such thei lalse)
‘same Nothing
Thersiors ruils C2 cannot be applied because Nothing & not an
Inciividual,

The compieis sat of inference rulgs is summarized in the following
table.

inference Rules
Statements Deacriptions
L0
o
oy => o,
.'1"'."-” ‘1 '.8" "“"
&y b d L1 " 'l."
o o{8] A individuail}
Yv.o & is{Any v such thet ofv))
provided v is not iree
in any assumplion
on which g depends
¥v.ofv] S in{Any v such that ofv]) A ndividuel[8]
ol oid]

As tt can be seen lrom the formulation of the rules of abstraption
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and concretion, Omage cannot be finitely axiomatized in first order logic.

Vi Soundness snd Completensss
The first resuit ©© be proved about the axiomatization is ty
SO
Theorem §: {Sountdness)
For every Cicsed sistement A, [k~ A =» ["jm 4
W are using the notstion I’ b A sa sn abbreviation for:
YM.(Yo.0€ET A, g)mju

The derivabikty refation = is defined in a stendard way, o that T o
maans that the ststernant o can be derived from the statements ivy [ and
from the axioms by applying the rules of inferencs.

The soundness thecrem ataiss that whanever a statement can be
derived from the set of pramises I then it is trus in every model that
ualistion the sisternents in T. We omit hers the prool since the
srgumentation is straightiorwand.

We next tum to prove tha compieteness thaorem lor the theory
prosented above.

The complsteness theorem gives us 8 messure of the adequecy of
Our axiomalization. In fact it asserte that the wel of valid formules
coincides with the sat of theorema of our theory. So it provides a bridge
betwesn what is sstablishod as semantically valid, snd what ia satablished
by symbolic manipulations.

More important, this result is the fundamenial step in showing the
conmslency of our formal thaory.

The compisiencas thearem can be tormulated as follows:

Thecrem 7: (Completenses)

For wvary closed statemant A, T = A w = A

Proot: We follow a Gosdel-Henkin argument [17]. The implication
Ci= Axe [ A coresponds 10 the soundness theorem. The olher
dirsction of the implication is squivsient to saying:

Ci-A = 30 T s, A
it A cannot be derived from [ then there axists & moded that satisfies I but
not A. S0 we can prove the result by building a model b, possibly in
dependencs from A, such that:

Ti-Am Cimg A

In order to do that, for any given clossd formula A, wa bulld
complets Henkin extansion of theory I, called T, heving the following
additional properties:

Ti-AmT, A {1

r“F-Ill,sz}l. r.l'-n,nrl'"f— O3 @

Since T, is & complete Heniin sxtension of T, il aieo satisfies the
folowing properties:

rgra 3
For all closed ¢ either Fyl—o or Ty == 0o )
For svery siatement ofv], thers is a constant ¢, such that: {5)

Ty b= ofc] = ¥ v._afv]

T', i9 buill as the limit of an inGuctive saquence of theories, starting
from . For the detaits of the construction we reter 1o {2).

Next we prove the foliowing lemma in order 1o prove thai T, has a
modet:

Lomma 8: {Mainlemma) IM. Yo . T l-om T, i= o



The prool i cutlined in the next section. Lat /b be such & model
tor T, Assuming now that T - A, it follows that [y b= A and then
To g A

Qince a model of [, is aiso & model of T, we have proved that:

Tir-Awe IM . Tim, A
and ths Complatenoss thaanim.

A. Proof of Main Lemms

We will prove the lemma by building a model b such that:

Vol l-ow [, I= 40

Jb will be & lerm model built out of syntactic material. More
pracissly equivalence ciasess of individusl descriptions wil be the

slements of the domain of interpretation, Let us define tha equivalence
ralation ~ .

$-Fml, {asamed)
We will denote s |5 the equivaience class of § atcording 1o ~.
We will cati Ind = (8 € AT - individual[8]}. The domain of
intgrpratation is the quctiont of the ast ind with reapect 10 the relation ~.
The madat Ab is defined ae: A = lind/ ~, 3, € whire
I@ =N
Cic) = (|8} 8§ € Indana T, - (& fa{ach)
This madat haa the following significant property:
5] = (18118 € Indanc T, - (¥ iz 8))

This property establishes the connection between the semanlics (velue of
descriptions) and the synlax (dervabilily of predications). BeCause
Omaega aliows siatemants &y special cases of deacriptions, thia property
is all is noadad to establish the main lemma, as the following resuit shows:

Lemma®: H¥]o] = (8118 €lndand T, I~ (8 10 o))
then[y o=l = ya

Prool: Assume first that T, 0. By aziom 512, it i» sec
[, (o5 true). Using this tact and transitivity in the premisa of the
lemma, we have

o] C {181] 8 € ind and T, i (8" is true)} = {Jtruef}
But by the definition of ¥
Tio] = {truvel} itand only it T, = g &
On the other hand, if we assume that T, e _y o then
Tlof  {ltrvef} = {}6)8' € Ind and T, b (& iz o)}
This moana that T, - {true is o). Since [, is complste, then sither
[yl e or Ty b= ™. But the latier case is imposaible becauss, by
applying axiom 513, we woukl get T, I (0 5 falss), and by tranaitivity
T, b {irue iz Inise), which coniradicts the consistency assumption jor
r‘.
Lemma 10: Y[8] = (18|85 Eindand [, (8 s )
Proof: The proof is gone by induction on the structure of
deacriplions. We give the flavor of the proof preseniing & fow of the cases.
1.8=m0
11 = () = 18118 € ndanc Tx b= (5 a3}
sinca i € Ind by axiom D2. Note thal this case taskes care alsc of e
individual constants true and false.

2.3mis,0r8y).

16, 0r 8] = Y51 U5 - (by induction hypothesis)
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(HI13€EmeanaT, (38U
(1)18Emdanc T, —(3iz8)) =
(NISEmdand -~ (Sind)orT ~(disd)) = (byprop.2)

18)18€Endand T, i~ (8108, )VBia8))»  (yLemmats)
(1318 € ndand T, (3 15(3, or &)
.om(B sy
181C 1Ml (Assumption)
(I8{8€ Indand [, - (3ind)) C
{181 8 € \nd ans T, b= (8 s B3} foy md. hyp.)

BEmdand T, -8 ind, = I 8is8,
Ta=8,ia8, {by aniom D1)
Tol=(8,128;) ta true {by axiom 812}
(316 € indanad T - (819(8, ix 80} C .

{iX| 8 € ind and T, b= (8 iz true)) (by ranalitvity)
(8118 € indand [, = (3 s true)) = {Jiruel} =
718,10 8,] (by definition of 1}
mmummmmmwﬂmcqq

4omio Vo)

Talm g o,0rT, e g 0y {Assumplion)
Tala, 0Ty -0, {by ind. hyp. snd lsmma 0)
Fyb={o, Vay (by property 3of I,)
Tab{o, Vo) isirve {by axiom 812)
{S56§€mdand N, (Bislo, Val} C

{1818 € ind and [, I~ (8 !a troe)) {ty tranaitivity)
{1516 € indand T, = (8 Is trua}} = {Itruel} =
o, Vo] {oy delinition of %)

The proof is similer under the hypothesia that [, e g o,
and T, =g 0p

Once lsmma 10 hae been esiablished we can prove the main
lemma. in tact from lemma 9 we can deduce the foliowing:

NV a. Vo] = (16115 €indand [, - (B ts.0))
then¥o. T, -ogm b= g o

The main leenma follows from this and lemma 10.

Vii Consistency
The consistency of Omega can be established by mesne of the
following result:
Theoram 11: N an Omega theory I" hae a model, then # is
consisien.

Proaf: Suppose [ hae & model M. Then T by, faise. From the
comploteness resit it follows tha Tkt felse which proves he
conaistency of I".

Vil Omega and other Formal Logic Thearies

Omega is not a First Order Predicate Logic, since it inchsdes &
variable binding operstor, namaly the Any conatruct, which i not prasent
nor expromaible in First Order Predicale Logic. In this sense Omegs is
more similar 1o set theory, which includes wet! absiraction, besides
universal and sxisientisl quantifisrs,

The varsion of Omega presenisd here la a first order ihaory. Wa ane
investigating extending the axiomatization to higher orders. In [10] we
prossnied sxaempies of tha ues of higher order capabilities.

COrmaga In & Set Theory, Howsvar Omaga reliss on constructon for
building new deacriptions. In ast theory, pairs lor instance are bultt by
means of set formation slone. In Omega a Pair construcior can be used
to describa pairs of objects. A Psir of two indivicunie will be an individual
itmed, therslore separsting the inhartance relationship fom the



component relationship. Omega is a constructive set theory and has no
axiom corresponding to the powerset axiom of classical est theory. The
constructive nature of Omega implies that It is possible to use the proof of
a statement to determine a description which meets some requirements
or is the answer to a question.

IX Conclusion

The results of this paper provide us with a solid base on which to
build a theory of Knowledge repreeentetion.

The system presented is powerful enough to express arithmetic, by
following the construction of [13]. The use of attributions as in [10]
however increases the naturalness of the notation. There are a number of
problems regarding attributions to be addressed such as: interaction
between attributions, merging and inheritance; functional dependencies
between attributions; contrasting uses of attributions (for instance
attributions have been used to express part/whole relationships as wen
as to express n-ary relations). In [10] a preliminary set of axioms for
attributions was presented. A set theoretical model along the lines of the
present work has to be defined in order to obtain a satisfactory full
axiomatization of attributions. Such sxiomatization will appear in a
forthcoming paper [2].

Another important construct allowed in Omega is the A-abetractkxv
The axiomatizat»on for this construct is similar to the axiomatization of the
A calculus. This construct interacts nicely with the inheritance
mechaniam of Omega, allowing the same notation to be used for
describing the type of a function aa well as for defining its values.

We have also investigated the problems arising from allowing self-
reference in the language. In order to avoid logical paradoxes Mke the Her
paradox, it is necessary to give up the rules of excluded middle (axiom
S5) and contradiction (axiom 86). This allows models where the value of
a sentence can be neither true nor false. Such solution follows the lines
of the one suggested by Viseer in [20]. The logic can still be proved to be
complete, but the proofs by hypothetical reasoning become more
cumbersome.
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