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Abstract 

Hearsay-Ill provides a framework for constructing 
knowledge-based expert systems. While Hearsay-
Ill makes no commitment to any particular 
application domain, it does supply a variety of 
generally applicable facilities. These include 
representation primitives and an interpreter for 
large-grained, flexibly schedulable production 
rules called knowledge sources. A detailed 
overview of the motivations behind Hearsay-Ill 
and the facilities it provides are presented. 
Finally, an application of Hearsay-Ill is described. 

1. Introduction 
Hearsay-III is a domain-independent framework for knowledge-

based expert systems. That is. rather than addressing the 
problems in a specific application domain Hearsay-III provides a 
"bare" architecture in which to cast an expert problem solver for a 
chosen domain. In this sense, it is similar in spirit to EMYCIN [van 
Melie 79] and AGE [Nii 79], and other "expert-system-building 
systems". However. Hearsay-III differs substantially in the specific 
representation and control regimes it makes available to the 
expert-system builder. 

Although Hearsay-Ill is specifically not a speech-understanding 
system (and we know of no one who expects to use it for building 
a speech understanding system), it draws strongly on the 
architectures of the Hearsay! [Reddy 73] and Hearsay-II [Erman 
80] speech-understanding systems As was intended by the 
choice of its name, Hearsay-III can be viewed as an extension 
along some dimensions of the Hearsay-II architectural style, and 
as a generalization of it along others. The concepts of large 
grained, modular knowledge sources and system-wide 
communication via a structured global blackboard were attractive 
to us because they provide a major first step toward achieving our 
design goals for Hearsay-III. 

This paper presents the motivations behind the design of 
Hearsay-III, a detailed overview of its architecture and facilities. 
and illustrations, via examples, of use of its features Although we 
concentrate on the novel aspects of Hearsay-III. we do not attempt 
to classify each feature as being new or from Hearsayll: (Balzer 
80a) presents an overview of Hearsay-Ml with such an orientation. 
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The overall design goal for Hearsay-III is the development of 
representation and control facilities with which a user can 
construct an expert system for his chosen domain. The specific 
attributes we want our system-ouilding system to embody include: 

— Facilities to support codification of diverse sources of 
knowledge. We have avoided building into Hearsay-III any 
commitment to a class of application domains (such as 
medical diagnosis) which might allow some specificity in 
the language for describing sources of knowledge 
Instead, we attempt to provide as much generality as 
possible in the types of knowledge that might be brought to 
bear on a problem from the chosen application domain. 

— Facilities to support application of these diverse sources of 
knowledge. Beyond mere application of the knowledge 
sources, an important design goal is to allow flexible 
coordination of the knowledge sources in their pursuit of 
an acceptable solution. 

— Facilities to represent and manipulate competing solutions 
which are incrementally constructed. This aspect of the 
Hearsay-III architecture distinguishes it from the 
"diagnosis-system-building system", such as KAS[Duda 
78]. EMYCIN [van Melle 79], and EXPERT [Weiss 79]. 

—Facilities for reasoning about partial solutions. That is. not 
only does Hearsay-III allow for incremental construction of 
competing solutions, but it also supports in a 
straightforward way the ability to reason about and 
manipulate those solutions during the various stages of 
their construction. 

-Facilities for describing and applying domain dependent 
consistency constraints to the competing partial solutions 
Thus, the system supports application of knowledge 
globally so as to aid in reducing the search for a solution 

- Support for long term, large system development, and in 
particular, experimentation with varying knowledge for the 
application domain, and varying schemes for applying that 
knowledge. 

In summary, our goal for Hearsay-III is to develop, debug, and 
experiment with theories of domain expertice. One important area 
we do not emphasize as a goal for the Hearsay-III design is 
performance of the application system. It is intended that one use 
Hearsay-III to gain an understanding of the problem-solving 
principles of a chosen domain •• to study the domain. Later, it may 
be necessary to use a more efficient formalism to construct a 
performance system for the domain. 
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2. The Architecture of Hearsay-Ill 
2 .1 . The Underlying Relational Database 

Hearsay-III is built on a foundation consisting of a relational 
database system and its corresponding control facilities. The 
database language is called AP3 (Goldman 78] and is embedded 
in Interlisp [Teitelman 78]. As will be seen in subsequent sections 
Hearsay-III relies critically on the facilities provided within AP3. 

The AP3 database is similar in structure to those available in the 
PLANNER-like languages [Hewitt 72]. but it also includes strong 
typing on assertion, retrieval and parameter passing in function 
calls. The type facility in AP3 is available to a Hearsay-III user for 
application domain modeling in addition to being used to 
advantage within the Hearsay-III system itself. The Hearsay-III 
blackboard (Sec. 2.2} and all publicly accessible Hearsay-III data 
structures are represented in the AP3 database. Additional 
annotations required by the application knowledge sources may 
also be placed in the AP3 database. Because knowledge source 
triggers are implemented as uniformly represented AP3 demons, 
modification to the database gives rise to knowledge-source 
activity (as described in Sec 2.3). 

AP3 also makes available to Hearsay-III applications a context 
mechanism similar to those found in Al programming languages 
such as QA4[Rulifson 72] and CONNIVER [McDermott 74]. 
Hearsay-III supports contexts in such a way as to make them an 
integrated part of the reasoning mechanisms made available to an 
application. This feature is somewhat unique among expert-
system writing systems. The context mechanism supported in 
Hearsay-III allows reasoning along independent paths which may 
arise both from a choice among competing knowledge sources 
and from a choice among competing partial solutions. 

The AP3 database system also provides facilities for inference 
rules and constraints. These facilities, in addition to being used in 
the implementation of Hearsay-III itself, are also available to the 
user for encoding global domain-dependent relationships. The 
interaction of constraints and contexts is supported by Hearsay ill 
in that reasoning in a context that produces a constraint violation 
results in the context being flagged as poisoned (see Sec 2.3) 

2.2. Blackboard Structure 
The blackboard is the central communication medium provided 

by Hearsay-III. It is used by an application program as a repository 
for a domain model, for representation of partial solutions, and for 
representation of pending activities Hearsay-Ill supports the 
representation on the blackboard of graph structures consisting of 
structured nodes called units and labeled arcs called roles. The 
blackboard is segmented into two: the domain blackboard and 
the scheduling blackboard. The domain blackboard is intended 
as the site for competence reasoning, while the scheduling 
blackboard is intended as the site for performance reasoning. The 
application writer can further subdivide each of these 
blackboards. 

2 .2 .1 . Units 
Blackboard units are the fundamental components of the 

representations built by application programs in Hearsay-III. Units 
are typed AP3 objects: their types are called unit-classes. In fact, 
the segmentation of the reasoning space into distinct blackboards 
is accomplished simply as the decomposition of the unit-class Unit 
into several distinct subclasses. Thus, the domain blackboard 
consists solely of units of class Domain-Unit (and its subclasses): 
the scheduling blackboard consists solely of units of class 

Scheduling-unit, When desired, access can be restricted to a 
given blackboard simply by using type-restricted AP3 database 
retrievals 

2.2.2. Choice Sets 
Units have structure in addition to their types One interesting 

feature of units is that they can be augmented to explicitly 
represent unresolved decisions Such units are called choice 
sets Associated with a choice-set unit is a set of alternatives or a 
generator of alternatives (or both). A choice set can be viewed as 
a partial elaboration of a decision point; the alternatives represent 
still further elaborations (and they themselves might be choice 
sets) Thus, competing problem solutions may be represented 
with a single locus. Furthermore, structure common to all 
alternatives may be factored out and associated with the choice-
set unit itself. The choice-set representation allows for the 
representation of decisions to be data about which the system can 
reason. 

Hearsay-III provides two mechanisms for resolving the 
ambiguity represented by a choice set. These mechanisms 
interact in an integrated fashion with the context mechanism of 
AP3. The first mechanism is called a deduce-mode Choose of the 
choice set. An application program may perform a deduce-mode 
Choose when it has conclusive evidence that one alternative is the 
correct solution for the problem represented by the choice set and 
that there will be no desire to retract that choice based on further 
evidence In this case, the choice set is replaced by the 
alternative (i.e.. their properties are merged) in the context in 
which the choice is made In this context, all evidence that the 
choice set ever existed is eliminated and the blackboard structure 
appears as if this choice set was never there 

The second choice mechanism is called an assume-mode 
Choose. An assume-mode Choose also replaces the choice set 
with a unit which represents a merge of the properties of the 
choice set and the chosen alternative. However, an assume-mode 
Choose makes these changes in a newly created context that is a 
child of the one in which the choice was made. The appearance 
of the blackboard structure in the new context is identical to that 
resulting from a deduce-mode Choose. The choice-set unit still 
exists in the parent context with structure modified only to 
eliminate the alternative just chosen. Thus, if subsequent 
reasoning indicates this alternative may not be best, it is possible 
to return to the original context and select a different alternative 

2.2.3. Acceptance 
Units have associated with the a further attribute called 

acceptance. Acceptance can be thought of as the process of 
assimilating a unit into larger structure and verifying that it is 
appropriate in that structure. More simply. Hearsay-III allows the 
application writer to associate with each unit class a collection of 
procedurally defined predicates, called Vaudator, CanonicaHzer. 
Uniqueness-Determiner. Conflict-Determiner, and integrator. 
Each time a unit is created or is marked unaccepted by a KS. the 
acceptance routines defined for the unit s class are run. If all 
succeed, the unit is marked as accepted. If any fail, the unit is 
marked as being unacceptable: this usually results in the currently 
active context being poisoned (see Sec 2.3) Until a unit has been 
accepted. Hearsay-III prevents KSs from triggering on it 

"The names are merely intended to be suggestive of no., they are to be used 
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2.2.4. Component Roles 
As mentioned earlier. Hearsay-III supports the construction of 

labeled graphs on the blackboard Units are the nodes in those 
graphs The labeled arcs are called component roies (or simply 
roles), and are represented as typed relations connecting two 
units The typing of roles is of significant convenience, because it 
allows the use of type-restricted AP3 retrievals to simplify 
searching the structure. Roles, in addition to being typed, are also 
placed in classes called ro/e sets. Role sets are used for two 
purposes. First, they define distinct component hierarchies in 
which units are related by the transitive closure of the roles in a 
given role set This allows the supression of detail along chosen 
dimensions when examining the blackboard structure. The 
second use of role sets relates to consumption, discussed next. 

2.2.5. Consumption 
Hearsay-III supports a facility for describing mutual exclusion of 

units in an aggregated blackboard structure This is 
accomplished by prohibiting any structure in which two units are 
both components of a third unit (by transitive closure over a role 
set), while at the same time those two units are declared to 
consume a fourth This facility allows a convenient form for 
expressing the undesirability of using the same partial solution or 
interpretation for different purposes in an overall solution 

2.3. Knowledge Sources 
The domain specific knowledge for an application built in 

Hearsay-Ill is embodied in knowledge sources (KSs) Each KS 
can be thought of as a large-grained production rule: it reacts to 
blackboard changes produced by other KS executions and in turn 
produces new changes. 

To define a KS, the user provides a triggering pattern, 
immediate code, and a body. Whenever the pattern is matchabte 
on the blackboard. Hearsay-Ill creates an activation record unit for 
the blackboard and runs the immediate code At some later time, 
the activation record may be selected (see Sec. 2 4 about 
scheduling) and executed, i.e.. the body, which is arbitrary Lisp 
code, is run. In more detail: 

- T h e triggering pattern is expressed as an AP3 pattern As 
such it is a predicate whose primitives can be AP3 fact 
templates and arbitrary Lisp predicates composed with 
AND and OR operators. Whenever the AP3 database 
(which includes the Hearsay III blackboard i.e.. the units 
and roles) is modified such that any of the AP3 templates in 
the pattern is matched, the entire pattern is evaluated If 
the entire pattern matches an activation record is created 
and has stored in it the KS s name, the AP3 context in 
which the pattern matched3 (called the triggering context). 
and the values of the variables instantiated by the match. 

- A t the point the activation record is created the immediate 
code of the KS is executed This code which also is 
arbitrary Lisp code, may associate information with the 
activation record that may be of value later in deciding 
when to select this activation for execution In addition, 
the immediate code must return as its value the name of 
some unit class of the scheduling blackboard. The 
activation record is then placed on the blackboard as a 
unit of that class The immediate code is executed in the 
triggering context and haa available to it the instantiated 
pattern variables. 

3in AP3 the content in which a • pattern matches is defined to oe the least 
general context which each of the pattern pa ' t i has mstched 

- A t some subsequent time, the systems base scheduler 
(see below) may call the Hearsay-Ill Execute action on the 
activation record. The usual result of this is for the body of 
the KS to be run in the triggering context and with the 
pattern variables instantiated If, however, at the point of 
execution, the triggering context of the activation is 
poisoned and the KS haa not been marked as a poison 
handier, the body is not run: rather, the activation record is 
marked aa awaiting unpoisomng. and wm have its status 
reverted to ready if the poieon status of the context is ever 
removed. 

Each KS execution ia indivisible it runs to completion and is not 
interrupted for the execution of any other KS activation This 
insulates the KS execution and simplifies the coding of the body: 
there need be no concern that during a KS execution anything on 
the blackboard is modified except as effected by the KS itself. 

2.4. Scheduling 
Hearsay-III is intended for use in domains in which scheduling 

schemes are likely to be complex. Also, the application writer is 
not expected to have a good a priori notion how to accomplish the 
scheduling. Thus he will need to be able to experiment freely with 
various schemes. Since we view the scheduling problem itself as 
having characteristics similar to the domain problem, we feel the 
Hearsay-Ill blackboard-oriented knowledge-based approach is 
appropriate for its solution aa well and thus supply the same 
mechanisms for its solution. 

Because of the indivisibility of KS execution, the scheduling 
problem in Hearsay-III can be stated as follows: At the end of each 
KS execution, determine, from the state of the system, the KS 
activation to execute next. To help solve this problem, several 
concepts features, and mechanisms are useful: 

- As described above, the time of execution of a KS body is 
delayed arbitrarily long from its triggering with the 
activation record unit, on the scheduling blackboard as 
the mechanism for representing the activation Also the 
immediate code of the KS is run on creation of the 
activation record, allowing KS specific scheduling 
information to be added to the activation record 

— Some knowledge-sources, termed scneauimg rSs. may 
make additional changes to the scheduling blackboard to 
facilitate the selection of activation records. Scheduling 
KSs may respond to changes both on the domain 
blackboards and on the scheduling blackboard including 
the creation of activation records. The actions they may 
take include associating information with activation 
records (e.g.. assigning and modifying priorities) and 
creating new units to represent meta-information about the 
domain blackboards (e.g.. pointers to the current highest-
rated unite on the domain blackboard). The scheduling 
blackboard is the database for solving the scheduling 
problem 

• The application writer provides s base scheduler 
procedure that is called by Hearsay-III after startup and 
actually calls the primitive Execute operation for executing 
each selected KS activation. We intend the base scheduler 
to be very simple: most of the knowledge about scheduling 
should be embodied in the scheduling KSs For example, 
the base scheduler might consist simply of a loop that 
removes the first element from a queue, maintained by 
scheduling KSs. and calls for its execution. If the Queue is 
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ever empty, the base scheduler simply terminates marking 
the end of system execution 

Hearsay-III provides a default base scheduler it is 
comoosed of two functions, either of which can be 
replaced by the application writer. The default outer base 
scheduler repeatedly calla the default inner base scheduler 
and expects it to return a list of activation record units. 
(When the inner base scheduler returns the empty list, the 
outer base scheduler exits, hatting system execution.) The 
outer base scheduler executes each activation record in 
turn If the KS executed is a scheduling KS and its 
execution returns a list of (non-scheduling) activation 
records, the outer base scheduler immediately executes 
each of thoee activation records in turn. Each time the 
default inner base scheduler is called it non-
deterministically chooses one ready scheduling KS 
activation record, or. if there are none, one non scheduling 
KS activation record. The default inner base scheduler is 
particularly trivial and is expected to be replaced in any 
serious application: the default outer base scheduler is 
likely to be a reasonable skeleton for many applications 

3. An Example of Use 
To illustrate the use of Hearsay-III as an implementation 

language for expert systems we describe here the implementation 
of the Jitterer problem-solving system (Fickas 60]. The problem 
addressed by the Jitterer is the automatic transformation of 
program parse trees The Jitterer maps a given parse tree (initial 
state) into a new parse tree (the goal state) by the application of a 
sequence of equivalence-preserving transformations The initial 
parse tree and the intermediate and final parse trees generated by 
the transformation sequence are called program development 
states. The description of the goal state is supplied by the user. 

The Jitterer is one component of a Transformational 
implementation system [Balzer 80b] which allows a user to semi 
automatically refine and optimize a high-level program 
specification into an efficient implementation. An example of an 
optimization step a Transformational Implementation user might 
attempt is the merging of two set enumeration loops. Before 
actually executing the merge step the user might call on the 
Jitterer to reach a (goal) atate in which the two loops a) are 
adjacent, b) generate the same sets, and c) do not rely upon or 
affect the enumeration order of the set elements. If the Jitterer is 
successful, the uaer can execute the merge step and achieve the 
desired optimization. 

Each transformation is composed of 1) a left-hand-aide pattern 
(or simply LHS) that must match a portion of the current program 
development state. 2) zero or more enabling conditions that must 
hold in the LHS match context, and 3) a set of actions to perform 
when 1 and 2 have been satisfied. The application of a 
transformation generates a new. semantically equivalent, program 
development state. 

The Jittering system faces several interesting problems: 

- Many transformations the catalog may be applicable in a 
given development atate. Further, many transformations 
have a corresponding inverse transformation, allowing 
infinite sequences. 

-Establishing the enabling conditions of a transformation 
may be coatly. in both machine time and user effort. 

— Each Jittering problem has in general more than one 
solution (sequence of transformation applications leading 
to the goal state) Metrics must be identified for ordering 
competing solutions 4 

3 . 1 . Design of the Jitterer 
The Jitterer s basic problem solving mechanism is a backward 

chaining, best first search. This choice helps alleviate the 
problems associated with the Iarge transformation fan-out. the 
potentially high cost of establishing enabling conditions, infinite 
paths and solution ordering 

The Jitterer makes two types of control decisions a selection 
from among the competing partial solution paths of the next path 
to extend, and a selection from among competing transformations 
of a transformation for continuing the chosen path In order to 
limit search, rules are used to guide both K-nds of decisions A" 
example of a path selection rule is "if a path s ieng:r< exceeds 
PathThreshoid. suspend it", where PathThreshoid has been 
determined experimentally. An example of a transformation 
selection rule is "If a transformation has side-effect X lower 
(raise) its desirability' 

These selection rules reference features extracted from the 
current state as well as features predicted about the effects of 
possible selections Features referenced by the path selection 
rules include current path cost predicted cost to solution number 
of transformations applied predicted number of total 
transformations needed current status (dead suspended alive 
complete solution) and solution compatability For transformation 
selection, features of interest include transformation side-effects 
and predicted transformation cost, as computed in both machine 
time and uaer effort Feature information can be computed on 
demand or stored and maintained explicitly: the latter approach 
waa chosen because of perceived recomputation costs 

A transformation can be applied to a program development 
atate only after its LHS has been matched and its enabling 
conditions have been established A straightforward approach to 
establishing these conditions for a single transformation 
application would lump all teats into a single scheduiable activity 
Given the potentially high cost of establishing enabling conditions 
this approach is too inflexible It may be more efficient to order 
the establishing of the enabling conditions: an attempt to establish 
one enabling condition may provide information which will lead to 
the suspension or abandonment of the transformation application 
Thus we require that the establishment of each enabling 
condition be a separate scheduiable activity 

3.2. Hearsay-Ill Implementation of the Jitterer 
In this section, we describe how each component of the Jitterer 

is implemented in Hearsay-III. 

3 .2 .1 . State/Space Representation 
The Jitterer design requires two collateral spaces: the program 

development space, generated by transformation applications and 
representing various program development states, and the 
reasoning space, generated by the best-first and backward 
chaining search and representing partial solution paths and goal/ 

One Solution metric it ho* * * l l a Solution fits in ..»tn the uftt' S "*?<$ g ' r r * 
development ttrateg> For example an> Jitterer produced solution ••'*•: i undoes 
a previous optimization o< prevents a future optimization must be given ic.\ pno» t> 
To compute this metric the Jitterer must be able tc analyze past dev*iopment 
steps and predict future development steps, the latter p r e s s i n g ©t :..s 
problems 
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subgoal relationships. By using Hearsay-Ills unit-class 
mechanism, the class of Domain-Units can be subdivided into 
Reasoning-Units and Development-Units, and thus we implement 
the two spaces as a segmentation of the domain blackboard. 
Although the reasoning space references units in the development 
space, the two spaces are essentially independent. 

A state in the reasoning space is an AND/OR goal tree. The 
goal tree is built from Reasoning-Units {goa'unit, transformation-
unit) and component roles {sub-gcai. achieves). An OR node 
represents the choice among competing transformations. An AND 
node represents the set of goals (transformation applicability 
checks) that must be satisfied in order to apply a particular 
transformation. The Hearsay-in choice-set mechanism (see 
Sec. 2.2.2) provides a framewor* both for structuring the set of 
competing transformations and for managing child contexts 
assooated with the choice. An assume-mode choose is used. 
spawning new reasoning states (contexts) when a transformation 
is chosen. 

A state in the program development space represents the entire 
program parse tree at a particular stage of development. The 
parse tree is built from Development-Units (e.g.. loop-unit, 
assignment-unit) and component roles (e.g.. predicate, then-
clause, loop-body). In the development space, there is no notion 
of a choice set, rather, simply a recording of various program 
development paths. The application of a transformation generates 
a new Hearsay- III/AP3 context. Note that there is no need to copy 
the program development state (i.e.. the syntax tree) into the new 
context; the Jitterer relies on the context inheritance mechanism 
and thus needs to represent explicitly only those portions of the 
structure that are new or modified 

3.2.2. Transformation Representation 
Each transformation is implemented as a domain KS 

(henceforth, transformation KS). Because of the Jitterer s 
backward-chaining control, the trigger of a transformation KS 
corresponds to the action portion (translated so to match the 
goals of the reasoning space) of the corresponding 
transformation. The immediate code of a transformation KS is 
responsible for setting up as subgoals the LHS pattern to be 
matched and the enabling conditions to be established: we 
describe this further in tne next section The body. when 
executed, creates a new context (program development state) and 
makes the appropriate modifications 

3.2.3. Control Knowledge 
As described in Sec 3.1. the Jitterer uses rule-based selection 

knowledge to control search Each selection rule is implemented 
as a scheduling KS (see Sec. 2.4). For example, one selection rule 
treats the desirability of a transformation as a function of the side-
effects it produces Figure 3 1 shows the scheduling KS form for 
one instance of this rule namely that a transformation that unfolds 
a function in-line has the deleterious side-effect of flattening the 
program structure.5 

(Declare-SKS s t r u c t u r a l - f l a t t e n i n g (Op) 
Trigger: (AND (Compet i ngOperator OP) 

(S ideEf fec t Op UnfoldsFunction)) 
immediate Code: Operator-orderinglevel 
Body: (Dec reaseDes i r a b i l i t y O P ) ) 

Figure 3 -1 : A transformation selection rule 

'The actual AP3'Hearsay-Ill syntax has been modifiec here for da' i t . 

Earlier we mentioned a rule that checks for a path growing 
beyond a PathThreshold. Figure 3-2 shows the scheduling KS 
form of this rule Note that the evaluation of the immediate code of 
the two scheduling KSs places their corresponding activation 
records on separate scheduling levels. The Jitterers base 
scheduler gives Path-state-change-level priority over 
Operator-ordering-level and hence path suspension is 
attempted before transformation ordering. 

(Declare-SKS lengthy-oath (Path) 
Trigger: 

(AND 
(CompetingPath Path) 
(> (CurrentPathLength Path) PathThreshold)) 

immediate Code: Path-state-change-level 
Body: (MerkAsSuspended Path)) 

Figure 3-2: A path selection rule 

As discussed in Sec. 3.1. the Jitterer's selection rules reference 
certain computed problem-solving features This information is 
stored as auxiliary reasoning structures attached to the relevant 
units on the scheduling and domain blackboards. For example, an 
auxiliary reasoning structure for path selection is attached to each 
goal-unit in the reasoning space6 The scheduling KS in Fig. 3-2 
makes reference to the path length of Path. Current path length 
information is stored in and retrieved from the auxiliary structure 
associated with Path s frontier goal. 

To descibe the auxiliary reasoning structure used for 
transformation selection, we must look more closely at the 
implementation of transformations as KSs. Hearsay-III divides a 
KS application between triggering and execution. As described 
Sec. 2.4. once a KS is triggered, an activation record is created on 
the scheduling blackboard where it resides until executed oy the 
application's base scheduler. The Jitterer selects from among the 
set of activation records of triggered transformation KSs. Thus, 
this set that must be ordered. The immediate code of each 
transformation KS is responsible for attaching an auxiliary 
reasoning structure to the corresponding activation record. For 
example, the scheduling KS in Fig 3-1 makes reference to the 
side-effects of a transformation. These side-effects are among the 
information stored in the auxiliary reasoning structure attached to 
the corresponding activation record. The immediate code is also 
responsible for adding the activation record to the choice set of 
the appropriate OR goal in the reasoning space. 

3.2.4. The Scheduling of Enabling Conditions 
The Jitterer design calls for the separate scheduling of each 

enabling condition. This is implemented in Hearsay-III in the same 
manner described for auxiliary reasoning structures in the 
previous section: the immediate code of a transformation KS 
augments the activation record with the set of enabling 
conditions The scheduling KSs and the base scheduler order the 
set and determine when to attempt establishment of the individual 
conditions In some cases it may be undesirable to execute an 
activation record even though all enabling conditions have been 
established A few scheduling KSs look for these cases ard flag 
the activation record accordingly in general the ability to divide 
problem solving into such fine-grained activities has been helpful 
for the Jitterer 

'Each goal is ne.-.ed as the frontier of a pair, from the 'oot goat 
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3.2.5. The Scheduling of Scheduling KSs 
The Jitterer's selection rules, implemented as scheduling KSs. 

help order the path and transformation search space. However, 
we are left with the problem of scheduling the scheduling KSs 
The Jitterer's scheduling blackboard is divided into a set of 
mutually exclusive, prioritized scheduling levels. Each scheduling 
KS is assigned to a single level by its immediate code The 
Jitterer's base scheduler returns, for execution, an activation 
record from the highest level on which activation records reside 

For many levels, intra-level scheduling consists simply of 
executing activation records in arbitrary order until none remain 
on the particular level Operator-ordering level, referenced in 
Fig. 3-1. is scheduled in this way. However, some scheduling 
levels provide structures for ordering their activation records 
One example is the level on which the activation records of 
competing transformations are placed; the transformation 
selection rules maintain an ordered list. Another level. Report-
solution-level, discussed below, provides a queue for recording 
the order of activation record appearance. When an activation 
record is placed on this level, a "queue maintenance" scheduling 
KS adds it to the end of the queue. Given the best-first search the 
final queue will contain spokesmen for all solutions found by the 
Jitterer in their order of preference 

We have previously seen in Fig. 3-1 and Fig 3 2, two of the 
defined scheduling levels Another example is the scheduling 
blackboards highest priority level.7 Report-solution level. 
Because the KS that detects complete solutions is assigned to this 
level by its immediate code, its activation records are executed 
immediately following any KS activation that satisfies its triggering 
pattern. Thus, the Jitterer reports a solution to the user as soon as 
it is found. If instead the Jitterer was to find all solutions to a 
problem before reporting any Report solution level should be 
made the lowest priority scheduling level. 

3.2.6. Use of the Acceptance Routines 
The Jitterer's scheduling KSs normally determine the difficulty 

of achieving a particular goal, attaching appropriate information to 
the goals auxiliary structure However, detecting Jittering goals 
that are inherently impossible is performed by a Validator 
acceptance routine. When a new Jittering goal is posted in the 
reasoning space, the appropriate Validator determines whether it 
falls into this special class. If so. the goal is marked as impossible 
before being considered by the rest of the system. Currently, only 
easily determined impossible goals are handled by the Validator 
routines. Thus, more sophisticated tests about impossible goal 
states are not included in the Validator routines because we want 
the system to be able to schedule these costly activities. Once a 
goal unit is created, all Validator routines pertaining to that goal 
are run. 

The Jitterer applies a set of normalization and simplification 
rules each time a new program development state is generated 
(i.e.. whenever a parse tree is changed).8 This cleanup process 
has been implemented in Hearsay-III through the Canonicalizer 
acceptors: each node type (unit-class) of a parse tree (e.g.. loop-
unit, assignment-unit, conditional-unit) has an associated 
Canonicalizer: each Canonicalizer embodies the set of clean-up 

This is actually not quite the highest level even higher are those used by the 
scheduling KSs that do mtra-ievel structuring 

o 
While these rotes also make changes to the parse tree they do not cat:-: •** 

generation oi ne.. development states 

rules for its node-type It is the responsibility of a transformation 
changing the parse tree to mark the relevant nodes (units) for (re-
Acceptance (see Sec. 2.2 3) 

4. Conclusion 
Hearsay-III was exercised initially on two small test cases: a 

cryptarithmatic problem and a cryptogram decoding problem In 
addition to the Jitterer. two major implementation efforts are 
currently underway The first of these is the reimplementation of 
SAFE, a system for constructing formal specifications of programs 
from informal specifications [Balzer 78]. Second. Hearsay-Ill is 
being used as the basis for a system for producing natural 
language descriptions of expert system data structures [Mann 79]. 

In some problem domains, the major implementation effort will 
be the encoding of the competency portion of the problem-solving 
system in the form of KSs. The performance portion of the system 
may not require sophisticated scheduling techniques sufficing on 
a reasonably tunable set of hardwired scheduling regimes, such 
as the AGE system provides In these cases, the Hearsay-III 
system may seem less useful since the user will have to build-up 
all but the most primitive control structures from scratch. 
Although such is currently the case, as more and more projects 
use Hearsay-III. the stock of different application schedulers will 
grow. It seems reasonable to assume that with a little worn these 
schedulers can be generalized to provide a new user with a library 
of Hearsay-III schedulers from which to choose. A new problem 
domain may be able to use an existing scheduler directly or as the 
foundation for a more application specific scheduler 

Our experience to date supports our belief that the Hearsay-III 
architecture is a helpful one The separation of competence 
knowledge from performance knowledge helps in rapidly 
formulating the expert knowledge required for a solution. The 
flexibility that the Hearsay-III architecture gives toward developing 
scheduling algorithms will undoubtably go a long way toward 
simplifying this difficult aspect of the overall problem-solving 
process 
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