
THE DESIGN AND AN
EXAMPLE USE OF HEARSAY-MI

Lee D. Erman

USC/lnformation Sciences Inst.
Marina del Rey. CA 90291

Philip E. London

USC/lnformation Sciences Inst.
Marina del Rey. CA 90291

Abstract

Hearsay-Ill provides a framework for constructing
knowledge-based expert systems. While Hearsay-
Ill makes no commitment to any particular
application domain, it does supply a variety of
generally applicable facilities. These include
representation primitives and an interpreter for
large-grained, flexibly schedulable production
rules called knowledge sources. A detailed
overview of the motivations behind Hearsay-Ill
and the facilities it provides are presented.
Finally, an application of Hearsay-Ill is described.

1. Introduction
Hearsay-III is a domain-independent framework for knowledge-

based expert systems. That is. rather than addressing the
problems in a specific application domain Hearsay-III provides a
"bare" architecture in which to cast an expert problem solver for a
chosen domain. In this sense, it is similar in spirit to EMYCIN [van
Melie 79] and AGE [Nii 79], and other "expert-system-building
systems". However. Hearsay-III differs substantially in the specific
representation and control regimes it makes available to the
expert-system builder.

Although Hearsay-Ill is specifically not a speech-understanding
system (and we know of no one who expects to use it for building
a speech understanding system), it draws strongly on the
architectures of the Hearsay! [Reddy 73] and Hearsay-II [Erman
80] speech-understanding systems As was intended by the
choice of its name, Hearsay-III can be viewed as an extension
along some dimensions of the Hearsay-II architectural style, and
as a generalization of it along others. The concepts of large
grained, modular knowledge sources and system-wide
communication via a structured global blackboard were attractive
to us because they provide a major first step toward achieving our
design goals for Hearsay-III.

This paper presents the motivations behind the design of
Hearsay-III, a detailed overview of its architecture and facilities.
and illustrations, via examples, of use of its features Although we
concentrate on the novel aspects of Hearsay-III. we do not attempt
to classify each feature as being new or from Hearsayll: (Balzer
80a) presents an overview of Hearsay-Ml with such an orientation.

This research was supported by Defense Advanced Research Projects Agency
contract DAHC15 72 C 0308 Views and conclusions contained inthis document
are those of the authors and should not be interpreted as repiesenting the otf<oai
opinion or policy of DARPA. the U S Government or any other person oi 2 ; : ~ : .
connected "i th them

Stephen F. Fickas

USC/lnformation Sciences Inst.
Marina del Rey. CA 90291

and
UC Irvine

Irvine. CA 92717

The overall design goal for Hearsay-III is the development of
representation and control facilities with which a user can
construct an expert system for his chosen domain. The specific
attributes we want our system-ouilding system to embody include:

— Facilities to support codification of diverse sources of
knowledge. We have avoided building into Hearsay-III any
commitment to a class of application domains (such as
medical diagnosis) which might allow some specificity in
the language for describing sources of knowledge
Instead, we attempt to provide as much generality as
possible in the types of knowledge that might be brought to
bear on a problem from the chosen application domain.

— Facilities to support application of these diverse sources of
knowledge. Beyond mere application of the knowledge
sources, an important design goal is to allow flexible
coordination of the knowledge sources in their pursuit of
an acceptable solution.

— Facilities to represent and manipulate competing solutions
which are incrementally constructed. This aspect of the
Hearsay-III architecture distinguishes it from the
"diagnosis-system-building system", such as KAS[Duda
78]. EMYCIN [van Melle 79], and EXPERT [Weiss 79].

—Facilities for reasoning about partial solutions. That is. not
only does Hearsay-III allow for incremental construction of
competing solutions, but it also supports in a
straightforward way the ability to reason about and
manipulate those solutions during the various stages of
their construction.

-Facilities for describing and applying domain dependent
consistency constraints to the competing partial solutions
Thus, the system supports application of knowledge
globally so as to aid in reducing the search for a solution

- Support for long term, large system development, and in
particular, experimentation with varying knowledge for the
application domain, and varying schemes for applying that
knowledge.

In summary, our goal for Hearsay-III is to develop, debug, and
experiment with theories of domain expertice. One important area
we do not emphasize as a goal for the Hearsay-III design is
performance of the application system. It is intended that one use
Hearsay-III to gain an understanding of the problem-solving
principles of a chosen domain •• to study the domain. Later, it may
be necessary to use a more efficient formalism to construct a
performance system for the domain.

409

2. The Architecture of Hearsay-Ill
2 .1 . The Underlying Relational Database

Hearsay-III is built on a foundation consisting of a relational
database system and its corresponding control facilities. The
database language is called AP3 (Goldman 78] and is embedded
in Interlisp [Teitelman 78]. As will be seen in subsequent sections
Hearsay-III relies critically on the facilities provided within AP3.

The AP3 database is similar in structure to those available in the
PLANNER-like languages [Hewitt 72]. but it also includes strong
typing on assertion, retrieval and parameter passing in function
calls. The type facility in AP3 is available to a Hearsay-III user for
application domain modeling in addition to being used to
advantage within the Hearsay-III system itself. The Hearsay-III
blackboard (Sec. 2.2} and all publicly accessible Hearsay-III data
structures are represented in the AP3 database. Additional
annotations required by the application knowledge sources may
also be placed in the AP3 database. Because knowledge source
triggers are implemented as uniformly represented AP3 demons,
modification to the database gives rise to knowledge-source
activity (as described in Sec 2.3).

AP3 also makes available to Hearsay-III applications a context
mechanism similar to those found in Al programming languages
such as QA4[Rulifson 72] and CONNIVER [McDermott 74].
Hearsay-III supports contexts in such a way as to make them an
integrated part of the reasoning mechanisms made available to an
application. This feature is somewhat unique among expert-
system writing systems. The context mechanism supported in
Hearsay-III allows reasoning along independent paths which may
arise both from a choice among competing knowledge sources
and from a choice among competing partial solutions.

The AP3 database system also provides facilities for inference
rules and constraints. These facilities, in addition to being used in
the implementation of Hearsay-III itself, are also available to the
user for encoding global domain-dependent relationships. The
interaction of constraints and contexts is supported by Hearsay ill
in that reasoning in a context that produces a constraint violation
results in the context being flagged as poisoned (see Sec 2.3)

2.2. Blackboard Structure
The blackboard is the central communication medium provided

by Hearsay-III. It is used by an application program as a repository
for a domain model, for representation of partial solutions, and for
representation of pending activities Hearsay-Ill supports the
representation on the blackboard of graph structures consisting of
structured nodes called units and labeled arcs called roles. The
blackboard is segmented into two: the domain blackboard and
the scheduling blackboard. The domain blackboard is intended
as the site for competence reasoning, while the scheduling
blackboard is intended as the site for performance reasoning. The
application writer can further subdivide each of these
blackboards.

2 .2 .1 . Units
Blackboard units are the fundamental components of the

representations built by application programs in Hearsay-III. Units
are typed AP3 objects: their types are called unit-classes. In fact,
the segmentation of the reasoning space into distinct blackboards
is accomplished simply as the decomposition of the unit-class Unit
into several distinct subclasses. Thus, the domain blackboard
consists solely of units of class Domain-Unit (and its subclasses):
the scheduling blackboard consists solely of units of class

Scheduling-unit, When desired, access can be restricted to a
given blackboard simply by using type-restricted AP3 database
retrievals

2.2.2. Choice Sets
Units have structure in addition to their types One interesting

feature of units is that they can be augmented to explicitly
represent unresolved decisions Such units are called choice
sets Associated with a choice-set unit is a set of alternatives or a
generator of alternatives (or both). A choice set can be viewed as
a partial elaboration of a decision point; the alternatives represent
still further elaborations (and they themselves might be choice
sets) Thus, competing problem solutions may be represented
with a single locus. Furthermore, structure common to all
alternatives may be factored out and associated with the choice-
set unit itself. The choice-set representation allows for the
representation of decisions to be data about which the system can
reason.

Hearsay-III provides two mechanisms for resolving the
ambiguity represented by a choice set. These mechanisms
interact in an integrated fashion with the context mechanism of
AP3. The first mechanism is called a deduce-mode Choose of the
choice set. An application program may perform a deduce-mode
Choose when it has conclusive evidence that one alternative is the
correct solution for the problem represented by the choice set and
that there will be no desire to retract that choice based on further
evidence In this case, the choice set is replaced by the
alternative (i.e.. their properties are merged) in the context in
which the choice is made In this context, all evidence that the
choice set ever existed is eliminated and the blackboard structure
appears as if this choice set was never there

The second choice mechanism is called an assume-mode
Choose. An assume-mode Choose also replaces the choice set
with a unit which represents a merge of the properties of the
choice set and the chosen alternative. However, an assume-mode
Choose makes these changes in a newly created context that is a
child of the one in which the choice was made. The appearance
of the blackboard structure in the new context is identical to that
resulting from a deduce-mode Choose. The choice-set unit still
exists in the parent context with structure modified only to
eliminate the alternative just chosen. Thus, if subsequent
reasoning indicates this alternative may not be best, it is possible
to return to the original context and select a different alternative

2.2.3. Acceptance
Units have associated with the a further attribute called

acceptance. Acceptance can be thought of as the process of
assimilating a unit into larger structure and verifying that it is
appropriate in that structure. More simply. Hearsay-III allows the
application writer to associate with each unit class a collection of
procedurally defined predicates, called Vaudator, CanonicaHzer.
Uniqueness-Determiner. Conflict-Determiner, and integrator.
Each time a unit is created or is marked unaccepted by a KS. the
acceptance routines defined for the unit s class are run. If all
succeed, the unit is marked as accepted. If any fail, the unit is
marked as being unacceptable: this usually results in the currently
active context being poisoned (see Sec 2.3) Until a unit has been
accepted. Hearsay-III prevents KSs from triggering on it

"The names are merely intended to be suggestive of no., they are to be used

410

2.2.4. Component Roles
As mentioned earlier. Hearsay-III supports the construction of

labeled graphs on the blackboard Units are the nodes in those
graphs The labeled arcs are called component roies (or simply
roles), and are represented as typed relations connecting two
units The typing of roles is of significant convenience, because it
allows the use of type-restricted AP3 retrievals to simplify
searching the structure. Roles, in addition to being typed, are also
placed in classes called ro/e sets. Role sets are used for two
purposes. First, they define distinct component hierarchies in
which units are related by the transitive closure of the roles in a
given role set This allows the supression of detail along chosen
dimensions when examining the blackboard structure. The
second use of role sets relates to consumption, discussed next.

2.2.5. Consumption
Hearsay-III supports a facility for describing mutual exclusion of

units in an aggregated blackboard structure This is
accomplished by prohibiting any structure in which two units are
both components of a third unit (by transitive closure over a role
set), while at the same time those two units are declared to
consume a fourth This facility allows a convenient form for
expressing the undesirability of using the same partial solution or
interpretation for different purposes in an overall solution

2.3. Knowledge Sources
The domain specific knowledge for an application built in

Hearsay-Ill is embodied in knowledge sources (KSs) Each KS
can be thought of as a large-grained production rule: it reacts to
blackboard changes produced by other KS executions and in turn
produces new changes.

To define a KS, the user provides a triggering pattern,
immediate code, and a body. Whenever the pattern is matchabte
on the blackboard. Hearsay-Ill creates an activation record unit for
the blackboard and runs the immediate code At some later time,
the activation record may be selected (see Sec. 2 4 about
scheduling) and executed, i.e.. the body, which is arbitrary Lisp
code, is run. In more detail:

- T h e triggering pattern is expressed as an AP3 pattern As
such it is a predicate whose primitives can be AP3 fact
templates and arbitrary Lisp predicates composed with
AND and OR operators. Whenever the AP3 database
(which includes the Hearsay III blackboard i.e.. the units
and roles) is modified such that any of the AP3 templates in
the pattern is matched, the entire pattern is evaluated If
the entire pattern matches an activation record is created
and has stored in it the KS s name, the AP3 context in
which the pattern matched3 (called the triggering context).
and the values of the variables instantiated by the match.

- A t the point the activation record is created the immediate
code of the KS is executed This code which also is
arbitrary Lisp code, may associate information with the
activation record that may be of value later in deciding
when to select this activation for execution In addition,
the immediate code must return as its value the name of
some unit class of the scheduling blackboard. The
activation record is then placed on the blackboard as a
unit of that class The immediate code is executed in the
triggering context and haa available to it the instantiated
pattern variables.

3in AP3 the content in which a • pattern matches is defined to oe the least
general context which each of the pattern pa ' t i has mstched

- A t some subsequent time, the systems base scheduler
(see below) may call the Hearsay-Ill Execute action on the
activation record. The usual result of this is for the body of
the KS to be run in the triggering context and with the
pattern variables instantiated If, however, at the point of
execution, the triggering context of the activation is
poisoned and the KS haa not been marked as a poison
handier, the body is not run: rather, the activation record is
marked aa awaiting unpoisomng. and wm have its status
reverted to ready if the poieon status of the context is ever
removed.

Each KS execution ia indivisible it runs to completion and is not
interrupted for the execution of any other KS activation This
insulates the KS execution and simplifies the coding of the body:
there need be no concern that during a KS execution anything on
the blackboard is modified except as effected by the KS itself.

2.4. Scheduling
Hearsay-III is intended for use in domains in which scheduling

schemes are likely to be complex. Also, the application writer is
not expected to have a good a priori notion how to accomplish the
scheduling. Thus he will need to be able to experiment freely with
various schemes. Since we view the scheduling problem itself as
having characteristics similar to the domain problem, we feel the
Hearsay-Ill blackboard-oriented knowledge-based approach is
appropriate for its solution aa well and thus supply the same
mechanisms for its solution.

Because of the indivisibility of KS execution, the scheduling
problem in Hearsay-III can be stated as follows: At the end of each
KS execution, determine, from the state of the system, the KS
activation to execute next. To help solve this problem, several
concepts features, and mechanisms are useful:

- As described above, the time of execution of a KS body is
delayed arbitrarily long from its triggering with the
activation record unit, on the scheduling blackboard as
the mechanism for representing the activation Also the
immediate code of the KS is run on creation of the
activation record, allowing KS specific scheduling
information to be added to the activation record

— Some knowledge-sources, termed scneauimg rSs. may
make additional changes to the scheduling blackboard to
facilitate the selection of activation records. Scheduling
KSs may respond to changes both on the domain
blackboards and on the scheduling blackboard including
the creation of activation records. The actions they may
take include associating information with activation
records (e.g.. assigning and modifying priorities) and
creating new units to represent meta-information about the
domain blackboards (e.g.. pointers to the current highest-
rated unite on the domain blackboard). The scheduling
blackboard is the database for solving the scheduling
problem

• The application writer provides s base scheduler
procedure that is called by Hearsay-III after startup and
actually calls the primitive Execute operation for executing
each selected KS activation. We intend the base scheduler
to be very simple: most of the knowledge about scheduling
should be embodied in the scheduling KSs For example,
the base scheduler might consist simply of a loop that
removes the first element from a queue, maintained by
scheduling KSs. and calls for its execution. If the Queue is

411

ever empty, the base scheduler simply terminates marking
the end of system execution

Hearsay-III provides a default base scheduler it is
comoosed of two functions, either of which can be
replaced by the application writer. The default outer base
scheduler repeatedly calla the default inner base scheduler
and expects it to return a list of activation record units.
(When the inner base scheduler returns the empty list, the
outer base scheduler exits, hatting system execution.) The
outer base scheduler executes each activation record in
turn If the KS executed is a scheduling KS and its
execution returns a list of (non-scheduling) activation
records, the outer base scheduler immediately executes
each of thoee activation records in turn. Each time the
default inner base scheduler is called it non-
deterministically chooses one ready scheduling KS
activation record, or. if there are none, one non scheduling
KS activation record. The default inner base scheduler is
particularly trivial and is expected to be replaced in any
serious application: the default outer base scheduler is
likely to be a reasonable skeleton for many applications

3. An Example of Use
To illustrate the use of Hearsay-III as an implementation

language for expert systems we describe here the implementation
of the Jitterer problem-solving system (Fickas 60]. The problem
addressed by the Jitterer is the automatic transformation of
program parse trees The Jitterer maps a given parse tree (initial
state) into a new parse tree (the goal state) by the application of a
sequence of equivalence-preserving transformations The initial
parse tree and the intermediate and final parse trees generated by
the transformation sequence are called program development
states. The description of the goal state is supplied by the user.

The Jitterer is one component of a Transformational
implementation system [Balzer 80b] which allows a user to semi
automatically refine and optimize a high-level program
specification into an efficient implementation. An example of an
optimization step a Transformational Implementation user might
attempt is the merging of two set enumeration loops. Before
actually executing the merge step the user might call on the
Jitterer to reach a (goal) atate in which the two loops a) are
adjacent, b) generate the same sets, and c) do not rely upon or
affect the enumeration order of the set elements. If the Jitterer is
successful, the uaer can execute the merge step and achieve the
desired optimization.

Each transformation is composed of 1) a left-hand-aide pattern
(or simply LHS) that must match a portion of the current program
development state. 2) zero or more enabling conditions that must
hold in the LHS match context, and 3) a set of actions to perform
when 1 and 2 have been satisfied. The application of a
transformation generates a new. semantically equivalent, program
development state.

The Jittering system faces several interesting problems:

- Many transformations the catalog may be applicable in a
given development atate. Further, many transformations
have a corresponding inverse transformation, allowing
infinite sequences.

-Establishing the enabling conditions of a transformation
may be coatly. in both machine time and user effort.

— Each Jittering problem has in general more than one
solution (sequence of transformation applications leading
to the goal state) Metrics must be identified for ordering
competing solutions 4

3 . 1 . Design of the Jitterer
The Jitterer s basic problem solving mechanism is a backward

chaining, best first search. This choice helps alleviate the
problems associated with the Iarge transformation fan-out. the
potentially high cost of establishing enabling conditions, infinite
paths and solution ordering

The Jitterer makes two types of control decisions a selection
from among the competing partial solution paths of the next path
to extend, and a selection from among competing transformations
of a transformation for continuing the chosen path In order to
limit search, rules are used to guide both K-nds of decisions A"
example of a path selection rule is "if a path s ieng:r< exceeds
PathThreshoid. suspend it", where PathThreshoid has been
determined experimentally. An example of a transformation
selection rule is "If a transformation has side-effect X lower
(raise) its desirability'

These selection rules reference features extracted from the
current state as well as features predicted about the effects of
possible selections Features referenced by the path selection
rules include current path cost predicted cost to solution number
of transformations applied predicted number of total
transformations needed current status (dead suspended alive
complete solution) and solution compatability For transformation
selection, features of interest include transformation side-effects
and predicted transformation cost, as computed in both machine
time and uaer effort Feature information can be computed on
demand or stored and maintained explicitly: the latter approach
waa chosen because of perceived recomputation costs

A transformation can be applied to a program development
atate only after its LHS has been matched and its enabling
conditions have been established A straightforward approach to
establishing these conditions for a single transformation
application would lump all teats into a single scheduiable activity
Given the potentially high cost of establishing enabling conditions
this approach is too inflexible It may be more efficient to order
the establishing of the enabling conditions: an attempt to establish
one enabling condition may provide information which will lead to
the suspension or abandonment of the transformation application
Thus we require that the establishment of each enabling
condition be a separate scheduiable activity

3.2. Hearsay-Ill Implementation of the Jitterer
In this section, we describe how each component of the Jitterer

is implemented in Hearsay-III.

3 .2 .1 . State/Space Representation
The Jitterer design requires two collateral spaces: the program

development space, generated by transformation applications and
representing various program development states, and the
reasoning space, generated by the best-first and backward
chaining search and representing partial solution paths and goal/

One Solution metric it ho* * * l l a Solution fits in ..»tn the uftt' S "*?<$ g ' r r *
development ttrateg> For example an> Jitterer produced solution ••'*•: i undoes
a previous optimization o< prevents a future optimization must be given ic.\ pno» t>
To compute this metric the Jitterer must be able tc analyze past dev*iopment
steps and predict future development steps, the latter p r e s s i n g ©t :..s
problems

412

subgoal relationships. By using Hearsay-Ills unit-class
mechanism, the class of Domain-Units can be subdivided into
Reasoning-Units and Development-Units, and thus we implement
the two spaces as a segmentation of the domain blackboard.
Although the reasoning space references units in the development
space, the two spaces are essentially independent.

A state in the reasoning space is an AND/OR goal tree. The
goal tree is built from Reasoning-Units {goa'unit, transformation-
unit) and component roles {sub-gcai. achieves). An OR node
represents the choice among competing transformations. An AND
node represents the set of goals (transformation applicability
checks) that must be satisfied in order to apply a particular
transformation. The Hearsay-in choice-set mechanism (see
Sec. 2.2.2) provides a framewor* both for structuring the set of
competing transformations and for managing child contexts
assooated with the choice. An assume-mode choose is used.
spawning new reasoning states (contexts) when a transformation
is chosen.

A state in the program development space represents the entire
program parse tree at a particular stage of development. The
parse tree is built from Development-Units (e.g.. loop-unit,
assignment-unit) and component roles (e.g.. predicate, then-
clause, loop-body). In the development space, there is no notion
of a choice set, rather, simply a recording of various program
development paths. The application of a transformation generates
a new Hearsay- III/AP3 context. Note that there is no need to copy
the program development state (i.e.. the syntax tree) into the new
context; the Jitterer relies on the context inheritance mechanism
and thus needs to represent explicitly only those portions of the
structure that are new or modified

3.2.2. Transformation Representation
Each transformation is implemented as a domain KS

(henceforth, transformation KS). Because of the Jitterer s
backward-chaining control, the trigger of a transformation KS
corresponds to the action portion (translated so to match the
goals of the reasoning space) of the corresponding
transformation. The immediate code of a transformation KS is
responsible for setting up as subgoals the LHS pattern to be
matched and the enabling conditions to be established: we
describe this further in tne next section The body. when
executed, creates a new context (program development state) and
makes the appropriate modifications

3.2.3. Control Knowledge
As described in Sec 3.1. the Jitterer uses rule-based selection

knowledge to control search Each selection rule is implemented
as a scheduling KS (see Sec. 2.4). For example, one selection rule
treats the desirability of a transformation as a function of the side-
effects it produces Figure 3 1 shows the scheduling KS form for
one instance of this rule namely that a transformation that unfolds
a function in-line has the deleterious side-effect of flattening the
program structure.5

(Declare-SKS s t r u c t u r a l - f l a t t e n i n g (Op)
Trigger: (AND (Compet i ngOperator OP)

(S ideEf fec t Op UnfoldsFunction))
immediate Code: Operator-orderinglevel
Body: (Dec reaseDes i r a b i l i t y O P))

Figure 3 -1 : A transformation selection rule

'The actual AP3'Hearsay-Ill syntax has been modifiec here for da' i t .

Earlier we mentioned a rule that checks for a path growing
beyond a PathThreshold. Figure 3-2 shows the scheduling KS
form of this rule Note that the evaluation of the immediate code of
the two scheduling KSs places their corresponding activation
records on separate scheduling levels. The Jitterers base
scheduler gives Path-state-change-level priority over
Operator-ordering-level and hence path suspension is
attempted before transformation ordering.

(Declare-SKS lengthy-oath (Path)
Trigger:

(AND
(CompetingPath Path)
(> (CurrentPathLength Path) PathThreshold))

immediate Code: Path-state-change-level
Body: (MerkAsSuspended Path))

Figure 3-2: A path selection rule

As discussed in Sec. 3.1. the Jitterer's selection rules reference
certain computed problem-solving features This information is
stored as auxiliary reasoning structures attached to the relevant
units on the scheduling and domain blackboards. For example, an
auxiliary reasoning structure for path selection is attached to each
goal-unit in the reasoning space6 The scheduling KS in Fig. 3-2
makes reference to the path length of Path. Current path length
information is stored in and retrieved from the auxiliary structure
associated with Path s frontier goal.

To descibe the auxiliary reasoning structure used for
transformation selection, we must look more closely at the
implementation of transformations as KSs. Hearsay-III divides a
KS application between triggering and execution. As described
Sec. 2.4. once a KS is triggered, an activation record is created on
the scheduling blackboard where it resides until executed oy the
application's base scheduler. The Jitterer selects from among the
set of activation records of triggered transformation KSs. Thus,
this set that must be ordered. The immediate code of each
transformation KS is responsible for attaching an auxiliary
reasoning structure to the corresponding activation record. For
example, the scheduling KS in Fig 3-1 makes reference to the
side-effects of a transformation. These side-effects are among the
information stored in the auxiliary reasoning structure attached to
the corresponding activation record. The immediate code is also
responsible for adding the activation record to the choice set of
the appropriate OR goal in the reasoning space.

3.2.4. The Scheduling of Enabling Conditions
The Jitterer design calls for the separate scheduling of each

enabling condition. This is implemented in Hearsay-III in the same
manner described for auxiliary reasoning structures in the
previous section: the immediate code of a transformation KS
augments the activation record with the set of enabling
conditions The scheduling KSs and the base scheduler order the
set and determine when to attempt establishment of the individual
conditions In some cases it may be undesirable to execute an
activation record even though all enabling conditions have been
established A few scheduling KSs look for these cases ard flag
the activation record accordingly in general the ability to divide
problem solving into such fine-grained activities has been helpful
for the Jitterer

'Each goal is ne.-.ed as the frontier of a pair, from the 'oot goat

413

3.2.5. The Scheduling of Scheduling KSs
The Jitterer's selection rules, implemented as scheduling KSs.

help order the path and transformation search space. However,
we are left with the problem of scheduling the scheduling KSs
The Jitterer's scheduling blackboard is divided into a set of
mutually exclusive, prioritized scheduling levels. Each scheduling
KS is assigned to a single level by its immediate code The
Jitterer's base scheduler returns, for execution, an activation
record from the highest level on which activation records reside

For many levels, intra-level scheduling consists simply of
executing activation records in arbitrary order until none remain
on the particular level Operator-ordering level, referenced in
Fig. 3-1. is scheduled in this way. However, some scheduling
levels provide structures for ordering their activation records
One example is the level on which the activation records of
competing transformations are placed; the transformation
selection rules maintain an ordered list. Another level. Report-
solution-level, discussed below, provides a queue for recording
the order of activation record appearance. When an activation
record is placed on this level, a "queue maintenance" scheduling
KS adds it to the end of the queue. Given the best-first search the
final queue will contain spokesmen for all solutions found by the
Jitterer in their order of preference

We have previously seen in Fig. 3-1 and Fig 3 2, two of the
defined scheduling levels Another example is the scheduling
blackboards highest priority level.7 Report-solution level.
Because the KS that detects complete solutions is assigned to this
level by its immediate code, its activation records are executed
immediately following any KS activation that satisfies its triggering
pattern. Thus, the Jitterer reports a solution to the user as soon as
it is found. If instead the Jitterer was to find all solutions to a
problem before reporting any Report solution level should be
made the lowest priority scheduling level.

3.2.6. Use of the Acceptance Routines
The Jitterer's scheduling KSs normally determine the difficulty

of achieving a particular goal, attaching appropriate information to
the goals auxiliary structure However, detecting Jittering goals
that are inherently impossible is performed by a Validator
acceptance routine. When a new Jittering goal is posted in the
reasoning space, the appropriate Validator determines whether it
falls into this special class. If so. the goal is marked as impossible
before being considered by the rest of the system. Currently, only
easily determined impossible goals are handled by the Validator
routines. Thus, more sophisticated tests about impossible goal
states are not included in the Validator routines because we want
the system to be able to schedule these costly activities. Once a
goal unit is created, all Validator routines pertaining to that goal
are run.

The Jitterer applies a set of normalization and simplification
rules each time a new program development state is generated
(i.e.. whenever a parse tree is changed).8 This cleanup process
has been implemented in Hearsay-III through the Canonicalizer
acceptors: each node type (unit-class) of a parse tree (e.g.. loop-
unit, assignment-unit, conditional-unit) has an associated
Canonicalizer: each Canonicalizer embodies the set of clean-up

This is actually not quite the highest level even higher are those used by the
scheduling KSs that do mtra-ievel structuring

o
While these rotes also make changes to the parse tree they do not cat:-: •**

generation oi ne.. development states

rules for its node-type It is the responsibility of a transformation
changing the parse tree to mark the relevant nodes (units) for (re-
Acceptance (see Sec. 2.2 3)

4. Conclusion
Hearsay-III was exercised initially on two small test cases: a

cryptarithmatic problem and a cryptogram decoding problem In
addition to the Jitterer. two major implementation efforts are
currently underway The first of these is the reimplementation of
SAFE, a system for constructing formal specifications of programs
from informal specifications [Balzer 78]. Second. Hearsay-Ill is
being used as the basis for a system for producing natural
language descriptions of expert system data structures [Mann 79].

In some problem domains, the major implementation effort will
be the encoding of the competency portion of the problem-solving
system in the form of KSs. The performance portion of the system
may not require sophisticated scheduling techniques sufficing on
a reasonably tunable set of hardwired scheduling regimes, such
as the AGE system provides In these cases, the Hearsay-III
system may seem less useful since the user will have to build-up
all but the most primitive control structures from scratch.
Although such is currently the case, as more and more projects
use Hearsay-III. the stock of different application schedulers will
grow. It seems reasonable to assume that with a little worn these
schedulers can be generalized to provide a new user with a library
of Hearsay-III schedulers from which to choose. A new problem
domain may be able to use an existing scheduler directly or as the
foundation for a more application specific scheduler

Our experience to date supports our belief that the Hearsay-III
architecture is a helpful one The separation of competence
knowledge from performance knowledge helps in rapidly
formulating the expert knowledge required for a solution. The
flexibility that the Hearsay-III architecture gives toward developing
scheduling algorithms will undoubtably go a long way toward
simplifying this difficult aspect of the overall problem-solving
process

Acknowledgments
Hearsay-III was originally designed was by Bob Balzer. Lee

Erman. and Chuck Williams, with contributions by Jeff Barnett.
Mark Fox. and Bill Mann Subsequently. Phil London and Neil
Goldman contributed significant design modifications Lee Erman
and Phil London implemented and maintain Hearsay-Ill. AP3 was
designed, implemented and maintained by Neil Goldman. Steve
Fickas designed and implemented the Jitterer Neil Goldman. Bill
Mann. Jim Moore, and Dave Wile have also served as helpful and
patient initial users of the Hearsay-III system

414

References
[Balzer 78] Balzer. RM N. Goldman, and D. Wile. "Informality in

Program Specifications." IEEE Trans. Software Eng. SE-4.
(2). March 1978.

[Balzer 80a] Balzer, R.. L D. Erman. P. London, and C. Williams,
"Hearsay-III: A Domain-Independent Framework for Expert
Systems." in Proc. 1st National Conf. on Artificial
intelligence, pp. 108-110. Stanford. CA. August 1980.

[Balzer 80b] Balzer. R.. N.. "Transformational Implementation: An
Example." IEEE Trans. Software Eng.. November 1980. (Also
appeared as Technical Report. USC/lnformation Sciences
Institute. RR-79-79)

[Duda 78] Duda, R O.. P. E. Hart N J. Nilsson. and G. L.
Southerland. "Semantic Network Representation in Rule
based Inference Systems." in D. A. Waterman and F. Hayes-
Roth (eds.). Pattern-Directed Inference Systems, pp. 203-222.
Academic Press. New York. 1978

[Erman 80] Erman. L. D.. F. Hayes-Roth. V. R. Lesser, and D R
Reddy. "The Hearsay-II Speech-Understanding System:
Integrating Knowledge to Resolve Uncertainty " Computing
Surveys 12. (2). June 1980. 213-253.

[Fickas80] Fickas. S.. "Automatic Goal-Directed Program
Transformation." in Proc. 1st National Conf. on Artificial
Intelligence, pp. 68-70. Palo Alto. CA. August 1980.

[Goldman 78] Goldman. N . AP3 User's Guide 1978 Unpublished
Memorandum. USC/lnformation Sciences Institute.

[Mann 79) Mann. W. C. and J. A Moore. Computer as Author ••
Results and Prospects. USC/lnformation Sciences Institute.
Technical Report RR-79-82. 1979

[McDermott 74] McDermott. D.. and G. J. Sussman. The
CONNiVER Reference Manual. MIT Al Laboratory.
Memo 259a. 1974

[Nil 79] Nn. H. P.. and N Aiello. "AGE (Attempt to Generalize): A
Knowledge-based Program for Building Knowledge-based
Programs." in Proc 6tn int. Joint Conf. on Artificial
Intelligence, pp. 645-655. Tokyo. 1979

[Reddy 73] Reddy. D. R.. L. D. Erman. R. D. Fennel!, and R. B.
Neely. "The Hearsay Speech Understanding System: An
Example of the Recognition Process," in Proc. 3rd int. Joint
Conf. on Artificial intelligence, pp. 185-193. Stanford. CA.
1973.

[Rulifson 72] Rulifson, J. F., R. J. Waldinger, and J. A. Derksen.
"A Language for Writing Problem-Solving Programs." in IFIP
71, pp. 201-205, North-Holland, Amsterdam. 1972.

[Teitelman 78] Teitelman, W.. interiisp Reference Manual, Xerox
Palo Alto Research Center. 1978.

[van Melle 79] van Melle. W.. "A Domain-independent Production-
rule System for Consultation Programs." in Proc. 6th int
Joint Conf on Artificial Intelligence, pp. 923-925. Tokyo.
1979.

[Weiss 79] Weiss. S. M and C. A Kulikowski "EXPERT: A System
for Developing Consultation Models." in Proc. 6th int joint
Conf on Artificial intelligence pp 942-947. Tokyo 1979

[Hewitt 72] Hewitt. C. E.. Description and'Theoreticai Analysis
(Using Schemata) of PLANNER A Language for Proving
Theorems and Manipulating Models m a Robot. MIT Al
Laboratory. Technical Report TR258 1972

415

