PLAN SYNTHESIS: A Logical

Stanley J.

Artificial
SRI

ABSTRACT

explores some theoretical issues of
planning from the perspective of
dynamic logic. A generalized notion
and ‘"regression" of conditions
developed. This leads to a
planning algorithm that
hierarchical planning.
pairs, complex (e.g.,

goals, goals of
and plans with tests

This paper
robot system
propositional
of "progression"
through actions |Is
bidirectional single-level
I's easily extended to
Multiple pre-/postcondition
conjunctive, disjunctive)
maintenance and prevention,
are all handled in a natural way. The logical
framwork Is used to clarify gaps in existing
"nonlinear" and "hierachical" planning strategies.

| INTRODUCTION

Although the connection between the
artificial-Intelligence (Al) plannin-oblem and
automated program synthesis is widely edged,
relatively little planning researc made
explicit use of concepts from | c of
programs. Such logic, however, offers .etlcal
insight into various Issues in Al plann iuch as
compound goals and levels of ractlon
[11, 12, 14, 4]. Many of these issue .rise in
their purest form in domains descrlba e in the
propositional calculus (e.g. simple blocks worlds),
as evidenced by the literature on the subject
[13, 11, 15]. Thus, for clarity and continuity, we
choose the propositional setting to develop a
unified, abstract treatment of these issues using
propositional dynamic logic (PDL) as our primary

logical tool [7, 5, 8, 9, 3J.

PDL is a decldable modal propositional
reasoning about binary state relations

In theory, the existence of
logic provides an immediate "solution"

propositional planning problem: One could
systematically substitute all possible plans into a
schema (the specification) that asserts the desired
property of the plan. The resulting expressions
could be tested for validity to filter out
non-solutions. Unfortunately, this fact is of
little practical consequence, as such a procedure
is certain to be grossly inefficient. The approach
developed here imposes additional structure by (1)
considering a class of problems that require, in
effect, only nonmodal reasoning, and by (2) using

logic
induced
such a
to the

for
by programs.

In this paper was supported
Research under Contract

The research described
by the Office of Naval
Number N00014-80-C-0296.

Perspective

Rosenschein

Intelligence Center
International

suitable "progression" and "regression"
to structure the search for a solution
early pruning of hopeless paths.

and

restricted
of problems
Al

Surprisingly, even our
covers a more general class
handled by most comparable
For Instance, we allow goals
so that disjunctive goals (cited as
problem by Sacerdoti [12]) require
treatment at all. The approach
theoretical basis for hierarchical plan
that ties in directly with current Ideas
hierarchical program development (see Section
C.) In addition, the use of program
constitutes a formal basis for specifying
verifying the plan-generating system Itself.

than

an
no
provides

work can be
(propositional

generalized
axiom

Although our
several dimensions
plans with loops, quantified
etc.), these are beyond the
paper, which focuses instead
structure of the approach. At the same
should be noted that the use of axiom
seems to be a minimal requirement for
application. This paper should be
foundational study aimed at deepening
understanding of planning; a separate paper
discuss problems of implementation [10].

scope of the
on the
time,

I PRELIMINARIES

This section contains a brief

the basic concepts of a loop-free fragment
propositional dynamic logic (PDL). The Interested
reader Is referred to [7, 5, 3] for a more
comprehensive treatment of dynamic logic. Although
dynamic logic is ordinarily used to reason about
programs, it is equally appropriate for reasoning
about plans (in the Al sense); thus, in this paper
the terms program and plan are used
i nte rchangeably.

A. Syntax

Let (? and Q. denote two symbol sets: atomic
propositions and atomic actions, respectively.

Define wffs Pf* and programs AA7M?
(deleting subscripts for convenience):

1. <?SP

2. a*A

3. If p,g€ P, then -*p, pVq€ P
4. If pic P and *£ A, then <*>pfL P

331

operators
allow

formulation

planning methods.
to be arbitrary wffs,
unsolved
special

generation

logic

along
schemata,
pre-/po8tcondltions,
current
essential

schemata
practical

regarded as a

will

presentation of

simultaneously

5. AEA

6. 1f p€ P and p is nommodal (sea helow),
then plé€ A

7. 1f .8 € A, then w;8 , xuf tA

A formula 1is nonmodsl 4f it contains no
subformula of the form <m>p. We abbreviate
“(~pVnq) a8 pAg,~pYq as pagq, (p¥q) A (q2p) as
pEq, v<ud>~p as [w]p, pVYp as true, and pA~p as
false, Parentheses are used conventionally as
required.

8. Samantics

A structure 3 is a triple (W, ®,m) vhere W is &
nonempt get of ‘"worlds," w:fe2¥, and
med 29" ¥, mae is, W assigns to each atomic
proposition p the subset of W where p holde, and m
assigne to each atomic action a the binary relation
over W representing the next-state relation for
a, Given a structure 5, meaninge can be assigned to
arbitrary progrems and Formulas by extending m and
LF

Meanings of Prograas
1. mfa) = {(s,0)| s €W}
(1dentity relation over W)
m(pt) = {{n,8)] sEw(p)}
{identicty relation restricted to worlds
whare p holds)

a(u;) = as)e n(f)

(composition of relations)

n(auf) = n{at)V o)
{union of relations conmidersd as wets)

3.

Maanings of Formulas

l.
2-
3.

whp) = W - W(p)
wipvyg) = W(pIVN(g)

w(<udp) = { 0 €W |
AeEW. (s,t)& n(as) and cE£T{p)}

The last equation asserts that <m>p Ils true in
those worlds » from which another world t 1is
reachable via «'s next—state ralation such that p
holds in t. In general, our forsulas will involve
the dusl of), namely [w]. [m]lp can be read
"after &, p." The formal meaning of [«]Jp is
{s6W ¥ tew, {s,0)€n(x) tmplies t&w{p}}. In
other words, (w]p holds in a world if p helds in
all worlds accessible from that world viae,., As
expacted, T(true) = W and x(falea) = B.

A formula p s wvalid in a
§ = (W,%,m) {(written S) p) 1ff W(p) » W; p is
valid (written w p) {Ff 1t is valid in every
sLructure.

C. Axjonatics

The following eystem captursas the seaantics
glven in the previous section:

Axioma

l. Axioms of the propositional calculus
2. i(poq) > ([=]p> [=]q)

structure

332

3. 0nlp B 9

4, [p?lq 2 pog

5. [#;8lp [}(Slp
6. lwvplp s [wlpniply

Rules of Inference

l, From p, p>q derive ¢ {modus ponans)
2, From p, derive [ofip (necessitation)

1f a formula p fellows from these axiome under
the stated rules of inference, we say it s
provable and write kp; if p can be proved from a
set of assumptions, §, we writa Q= p.

Do A Restricted Clags of Programs

PDL breaks the ordinary conditional statement
intoe more primitive notions of "tesat" (7) and
"nendeterministic cholce” {U). Though we allow the
primitive actions to be nondeterministic, we shall
be ioterested only in deterministic combining
forms. Thus, we limit the use of ? and U to
contexts of the form (p?;l)U(in;p) and require
(Eor convenlence only) that p be atomic. This
corresponds to the ordinary conditional, so we
abbreviate this prograz form to p-» d..,ﬁ and call
the clags of programs obeying thesg ayntactlc
restrictions C-programs (symbolically “9,0.)' The
requirement that p be atomlc ie not restrictive,
since arbitrary Boolean combinations of tests can

be expressed by appropriate use of (possibly
nested) conditfonals. For example, ~p-+«, 8 18
equivalent to p =80, (pAq)—wx,S is

equivalent to (p=(q =+ u,8).ﬁ), and so forth.

An important property of our combining forms
16 that they preserve terminstion; 1Lf the
primitives always terminate, every C-program over
those primitives will alwaye terminate. (Loops are
conspicuocusly absent.) In PDL, the fact that a
program always terminates is expressed dxOtrue,
since with true holding in every state, the only
way for this formula not to hold is for there to be
no states accesgible via wm--i.e., for « not to
terminate.

III A PLANNING METHOD

Having described a wsuitable language and
logic, we are now in a position to discuss planning
methods, Section A containe the formal definition
of 8 (single-lavel) "planning problem" and the
corresponding notion of a 'solution." This leads
directly {Section B} to a bidirectional
(aingle-level) planning algovrithm Dbased on
“"progressing” and "regressing” conditioms through
actions. Section C describes how the hierarchical
planning problem can be regarded as a succesaion of
single—level probdlems in = way that wmakes the
connaction between the levels logically precise.

A. Definitions

A planning problem 1s & triple (V,Q,R(u)),
where

v = (@0

is the vocabulary of the problem,

conaisting of the atomic
proposit&onl and the atomic
actions.

1] is a finite set of axioms, which we
will refer to as domain

constraints. (is partitioned into
two subsets: static constraints,
which are nonmodsl formulsae, and
dynamic constraiots, which are
always of the form p > fa)]q, p and
q being arbitrary nonmodel wffas and
a an atomic action. We implieclicly
assume an axiom of the form <adtrue
for every atomic action a; this
expresses the fact that the action
a alwaya terminates, though O may
only partially specify in what
state a terminates. We also sssume
that ¢ is consimtent.

Rlu) iz a finite sat of formulas called
the plan constraints. Like che
dynamic dowain constraincs, each of
these 1a of the form p > [u]q for
nonmodal p and q. The symbol u is a
distinguished atomic action not
contained in &,

A solution to a planning problem {V,Q,R{u)) is
an expresaion & in the programming language Ay such
that for every r(m) {obtained by substituting « for
u in R}, Qp= r(m}., Thet is, it is provable from
the domain constr:&nts Q that e« satisfies all the
plan constraints. {Because of the termination
constralnty on the atomic actions, ® is guaranteed
to terminate. Therefore, 1in the language of
program logic, we are talking about ‘'total
correctness.")

B. Finding Solutions

Having defined ‘'solutions,"” we turn our
attention to methods for discovering them. A
natural way of organizing the asearch for solutions
is to follow the ayntactic structure of the
prograsming language,

Let us recall that a progras is either A, an
atomic action a, or a coaposite of the form ;@8
or t —sor, £ where = andﬁ are programs and t is
an atomic propoalition. It will simplify the
algorithm to consider only programs in a normal
form, which we now define.

l. Normal Form for Conditional Flans

A program is in normal form if it consiats of

*ror some applications 1t is desirable to
conetrain the progrusming language to use only a
designated subset of the propositions as tests in
conditionals. This requires a atraightforward
wodification of our definition and will not be
pursued here.

**gquivalently in semantic terms: Structures
that satisfy the domain constrainte also satisfy
the ai-instantiated plan constralnts.

a sequence” of zero or mora atomlic actions
followed optionally by a conditional program, both
branches of which are in normal form, followad in
turn by 0 or more further atomic actions, More
formally stated, a prograw is in normal form if it
can be written as Ajjeasidy, n 2 0, with at most
one A; not atomic, in which case A; {s of the form
t—» BH ;ﬁ where both B, are thenselves in normal
form. e null sequenck is identiffed withA, and
we take Ajal = ojA = o,

We have not precluded any assantfal solutions
by ineisting on this form, wsince every C-progran
can be put into normal form by transforming the
longest {length > 1) sequence of steps whose fiyst
and last steps are conditionals into & single
conditional as follows:

{e »A,B); «.. ; (t~=»C,D)
==} ("“k;ooo;(t ".C'D)g B;-u',(l:-“c,D))
and applying this transformation recursively to A,
B, and the residual ...;(t = C, D).

2. An Algorithm

Let wus suppose we ara looking for a
nermal-form program o that satisfies one of the
dynamic conetraints p » {m]q in R. We consider the
following cases corresponding to the possible forms
of of:

l. ot =A, Thia {s a solution if
Q= poq.

2. w= a; or W= f;a for wesome atomic
action a. In the former casea, o is a
solution 1f Q = p/ad(f]lq , where p/a
reprasents the strongest provable
post—condition of p and a. Analogously,
in the second case, o is a solution if
Qb p>[Bla\q, where a\y 18 the
weakest provable precondition of » and
q. We call the former case "prograssion”
and the latter "regreasion.”

3. oL =t """’1-‘2' In this case, o is a
solution Lif = pAt > [filq and
Q= pAat @ iR]q.

We see that (1) defines success, (2) suggests
forward and backward etvategies for wsequential
steps, and (3) auggests a forwvard stratagy for
conditionals.

*Stnce “:" ig associative, wa write sequences

ajbjesejc without indicating the order of
asnociation.

**arren’s method [17] for intrvoducing
conditionals produces plans of an even nore

restricted form: the conditional mue: be the last
action in the wsequence. That is, a plan, once
split, may nevear rejoin. Thia is not an essantial
limtcation, but it introduces & somevhat greater
degree of redundsncy than does our form. We note
in passing that Warren’'s view of che conditionsl
test as an action has such in common with PDL's p?
action.

In addition, we cbserve that there are several
obvious ways to limit the seatch. Firat, If
p @ pla, the forward search need not conslder
action a. {A special case of this arlees when
p/a = tyum.) Dually, if a\q 4q, the backward
seatch nead not consider a. (Hare we have a special
case when a\g = false.) These checks aliminate
self-loope. We can eliminate cycling in the search
spsce altogether iEf we are willing to pay the price
of checking whether p; D p/a for any p; in the
leading chain of preconditions. Likewise we can
check whether a\g D q, for any q, in the trailing
chain of postcondiciohs, It should also be noted
that {f p>t or p»=t, the forward conditional
search involving t need not be pursued, p/fa can
nevar be false, since thias would imply fallure of a
to terminate, contradicting our aasumptions about
the domain constraints Q.

Theae observations lead directly to the
following nondeterministic algorithm for computing
solutions for the single constraint p > [miq:

{Multiple constraints will be discussed latar.)

BIGRESSION" ALGORLTHM
Assume p, q are not false.

Solve(p,q) ~ Bigress(p,q,N,).

Bigresu(pre,post,laader,trailer):

IF Qwpre> post THEN RETURN(leader;trailer).
CHOOSE:
CHOOSE <a, pre/a> from LiveForward(pre):
RETURN(Bigress(pre/a, post, leader;a, trailer))
CROOSE <a, a\post> from LiveBackward(posr):
RETURN(Bigresw(pre, a\post, leader, ajtrailer))
CHOOSE ¢ from NonTrivi(pre):
RETURN(leader;C;trailer)
where C = (t =»Bigress(preA t, post, A, A),
Bigress(preA~t, post, A A))
LiveForward(p):
IF 8
where 5« { Ca, p/a> | a €@, g W p >p/a}
THEN RETURN{ S)}
ELSE PFAIL().

LiveBackward{(q):
IF S
where § = { <a, a\q> { a €A, QM a\qg D q}
THEN RETURN(S }
ELSE FAIL().

NonTriv{p):
IFSF 4
whera 5 = { ¢t | t€P , Qmpat,
THEN RETURN(§ }
ELSE FAIL().

Qb= pd>vt}

The algorithea as presented finds solutions for
o ¢ingle plan constraint. Howavar, tha extansion
to the general case is straightforward: To ansure
that all the plan constraints are satisfied, a

'“Bi.rullon" stands for "bidirectional

progression and regression.”

"Cartesian product” version of this algorithm must
be run. A fallure in any of the constralnt
conponants counts as fallure and serves to pruue
that branch.

The bigression algorithn makes use of three
additional auxiliary funccions: "Qr", /", and
"W, "ge" is a procedure that takes as input a
nonmodal formula p and decides whecther p is
provable from Q. If the static axloms are rich
enpugh, this check can be done using only nonmodal
reasoning, 1.e., ordinary propositional decision
methode. The functions "/" (progreasion) and '"\"
{(regression) are the aubject of the next section.

3. Progression and Regression

Ideally, we would like p/a to compute the
strongest postcondition of condition p and asction
a, Sinflarly, we would like a\q to compute the
weakest preconditfon. [l, 15] In PDL the weakest
precondition of p and a can be expressed simply as
{a]p, which s obviously the weakest formula
implying "after s, p." Tha strongest postcondition
can be expressad using a "converase"” operator that
we have not describved. (See |[5].)

given the restricted form of our
there will be 0o propositional
formila provably equivalent to elther of these
wodal formulas. On the other hand, we can
effectively compute the weakest precondition pre
and strongest postcondition pest for which it is
provable from Q that pre implies "after a, g and p
implies "after a, post. It is these propositional
formulae that we label p/a and a\q.

Howaver,
dynamic axionms,

The formula p/a {8 found by taking the
conjunction of the set of formulas each of which is

a disjunction of a eet of q; drawn from the
“right-hand side” of the dynamic axfoms of Q
(py @ laJqg) such that the disjunction of the

cotredponding p;’s is implied by p. Dually, a\q is
found by taking the disjuaccion of the set
of formulas, each of which fs a conjunction of a
set of p; drawn from the "left~hand side" of the
dynamic axiome of Q (p; > [a]q;) euch that that
conjunction of the corresponding q;°s implies q.

Let ug consider the following sample axioms:

A S(a) (BVYC)
G =(a) 2B
(FAE)D[a] D

In this case, a\{CV¥D) = (AAG)Vv (FAE). The
reason for this is that (BY C) conjoined with =B
implies (CVD), 8o the conjunction of the
corresponding left-hand sides (A A G) is ome
disjunct of a\(C V D). Likewise, the formula D

alone implies (CVYD), making the corresponding

*Speclficall.y, the otatic asxiozs aust generate
41l the nonmodal formulae ganerated by all of ¢. In
cercain pathological cases, such &g when Q contains
a dynamic axiom of the form p & [a]false, { would
have to be extended to fnclude extra wtatic axioms,
since pDla)fulse and <adtrue together imply sp-=-a
nonmodal formula derivable only through modal
reasoning.

left-hand side (F A E) the second disjunct. These
two cases exhaust the possibilities for getting
(CVD).

The reason the formulas p/a and a\q defined in
this way are not exactly equivalent to the
strongest postcondition and the weakest
precondition lies In the nature of our atomic
actions. Briefly stated, In the context of
programming languages one typically begins with

primitives whose semantics are fully characterized
and focuses on characterizing the derived
operations (sequencing, etc.) [1]. For example,
the weakest precondition for the assignment
primitive is given by the equation: wp("x:= E",
P(x)) - P(E), which asserts that the weakest
precondition for condition P and action "x gets E"
is precisely P with E substituted for x.

In our
are specified
implications.
a "non-monotonlc"

case,

only
Thus,
nature,

however, the primitive actions
by axioms stating one-way
unless we make assumptions of
we would generally be

able to consistently add axioms that "weaken' the
precondition or "strengthen" the postcondition of
an action. Since "provably weakest" is
unattainable, we make do with "weakest provable."
This does not affect the completeness of the search
algorithm, since we are looking only for programs
that provably satisfy the specifications.

C. Hierarchical Planning

The key observation to be made in extending

the single-level algorithm to multilevel,
hierarchical planning is that an atomic action at
level k Is a plan to be solved for at level k+1.
This point of view is possible because of the way

Specifically,
of dynamic
program is
in R. Since
of dynamic
is natural
with given
solve for a
k+1.

the planning problem was formalized.
an atomic action is described by a set
axioms in Q. Likewise, the desired
described by a set of dynamic axioms

the same formal objects—namely, sets
axioms—are Involved in both cases, it
to assume as primitive some action
properties at level k and then to
program having those properties at level

In formal cterms, a4 hierarchical planning
problem is a tree of eingle-leavel probleans. 1f
W =<@,,8,5,Q, R (u)> i the problem ac nonleaf
node k, then node k hae one successor for each a1
in Ok, and chat succeuor s pro‘blen has the form
<vk+1,qk+1,q (‘k where Q° denotes the aubset
of dynamic axiou of @ Thaving cthe forn
p > [a (- In other words, the domain
comtrnlutl on the primitive "a™ at level k become
plan requirements at level k+l. A solution is 2a
plan using the vocabulary of the leaf nodes that
satisfies the requirements of the root node. That
is, is a sclution 4f Lt solves <V ,Q.,R;j{u;)>.
The propositional wvocabulary and the action
vocabulary can change from level to level, provided
that the domain axioms have encugh inferential
structure to make the transfer from level to level
aeaningful.

Obviously, for any node k, only the successor
nodes corresponding to actions actually used in k's
solution need be solved. Furthermore, finding a

335

solution for each of these nodes guarantees that we

have an overall solution.

As with other the main

benefit of levels

hierarchic planners,
In our approach is heuristic:
The selection of Intermediate vocabularies and
domain axioms constitutes a choice of "planning
islands." Any algorithm that tries to solve a
problem by solving the nodes in the hierarchy is,
in essence, searching for a plan constrained to go
through the states defined by the domain
constraints of the intermediate actions. The main
benefit of logic here is to define a reasonable
relation between the levels, namely the relation:
"correctly Implementss'*

For a fixed determination of levels and a
small number of actions it would be possible to
precompute solutions to the subproblems, in which
case, after solving the problem at the top level,
the system would act more like a compiler than a
problem solver. In dynamic situations in which the
lower-level actions (in effect, the "tools" for
solving the problem) are changing or when few
actions are ever actually wused, it seems more
natural to solve subproblems as they arise.

IV DISCUSSION

A#

Modeling Actions: The Legacy of STRIPS

the research into the control of
planning has been ~carried out in the STRIPS
paradigm (2, 6J. In this approach, actions are
regarded not as mappings from states to states, but
rather as syntactic transformations of state
descriptions to other state descriptions, where
state descriptions are logical formulas. One
consequence |Is the oft-cited advantage of not
having to mention the various "frame conditions,"
i.e., the properties that are invariant under an
action. Unfortunately, the need for operators to
be sensitive to the syntax of state descriptions
led researchers to consider only very simple state
descriptions (e.g. sets of atomic propositions) and
very simple transformations (e.g., addlists and

deletelists).

Much of

As an example of an action that is difficult
to specify with a single addlist/delatelisr pair,
consider the action toggle, described by a pair of
dynamic axioms:

On(light) o[toggle{switch) } " 0n{lighc)

= 0n{light) = [toggle{switch) } On({light)
Since the consequents depend conditionally on the
antecedents, it cannot be derermined in lsolation
whether toggle adda or deletes the wif On({light).
Nonetheless, s planning system given these sxioms
wight reason that after twc toggles, the light

would surely heve gons on at lesst once. Siaillar
remarks hold for actions with disjunctive
postconditions.
These possibilities notwithstanding, many
However, these invariants need not be as large
an obstacle to practical implementation as s

commonly supposed (see [10]).

planning systems do make the assumption that the
truth of a given atomic proposition In the state
resulting from applying a sequence of operators is
a determinate, calculable thing. Techniques that
rely critically on these assumptions are sometimes

difficult to adapt to less constraining
assumptions. We offer two illustrations from NOAH
[11].

B. Nonlinear Planning: Problems with Partial

Orders and Shuffles

The basic
the following.

idea behind nonlinear planning is
To solve a conjunctive goal Gl &
G2, find a sequence Sl = a;b;...;c that achieves Gl
and another sequence S2 -+ d;e;...;f that achieves
G2. Represent the overall plan as a network of
partially ordered actions with SI and S2 as
parallel branches* Now use the "resolve-conflicts
critic" to detect interference between the plans
and impose additional ordering constraints upon the
actions to eliminate the interference. The network
encodes the subset of the possible shuffles of S1
with S2 that are believed to achieve the overall

goal Gl & G2.
For the resolve conflicts critic to filter
interference correctly, it must know what is true

the network. for

at each node of Unfortunately,

nodes that occur after joins, what is true depends
critically on the wultimate linearization of the
parallel branches. In the general case, the best

that can be done is to represent the disjunction of
the strongest oostconditions of the alternative
linearizations. This requires considering the
alternatives, of which there are ("Jj'')* where m and

n represent the lengths of the action sequences In
the two parallel branches. Since It is easy to
imagine cases in which resolve-conflicts criticism

the belief that
computationally

the empirical
in practice

would be an expensive operation,
using a nonlinear strategy is
efficient seems to be grounded in
hypothesis that operators encountered
will permit easy detection of conflicts.
with

C. Hierarchical Planning: Problems

Heuristic Decompositions

orderings in
to commit the
linear order of
correct at one
plans at lower
of course,

The justification for partial
NOAH is linked with a desire not
system prematurely to a particular
actions which, though seemingly
level, may expand into incorrect
levels. This possibility can arise,
only if the relation between levels ("Plan A
achieves the same effect as Action a") is not
exact. However, such Inexactness undermines the
original rationale for hierarchical planning—
namely, reducing complexity by means of
factorization—since it destroys composltionallty
and requires that we check complex lower-level
plans for "unexpected" global interactions. Here
too, an empirical hypothesis is presumably invoked,
namely, that by some suitable metric the plan comes

Actually, NOAH does not represent disjunctive
postconditions—which may explain why disjunctive
goals are considered problematical.

336

"close" to implementing the abstract action. (It
is not Immediately obvious, though, what metric
could be meaningful for the space in question.)

D. Some Benefits of Bigresslon

Some of the benefits of regression were first
discussed by Waldinger [15] and appreciated by
Warren [16]. These benefits accrue dually by

Including progression, which completes the logical
symmetry and allows bidirectional search. As we
have described them, the progression and regression

operations handle arbitrary Boolean formulas, thus
solving conjunctive and disjunctive goals as
particular applications of a more general strategy.

Goals of maintenance and prevention can be
incorporated into the algorithm as well by
expressing as (nonmodal) wffs the condition to be
maintained (m) and the condition to be prevented
(v). Since the planning algorithm actually
develops a descriptive wff (d) for each state
reachable during plan execution, it is
straightforward to add a check to the procedures

LiveForward, LiveBackward, and NonTrlv eliminating

paths through states where Qt»d:>-imVv -
This simple approach will work in situations in
which no dynamic replanning is anticipated; goals

of maintenance and prevention involving execution
monitoring, feedback, and replanning require more
complex strategies. Further research should be
directed at these problems as well as at efficiency
issues, especially clarification of the role of
heuristics and the compilation of deductive

processes.

ACKNOWEDCEMENTS

| have profited considerably from discussions
with Richard Waldinger, Vaughan Pratt, Kurt
Konollge, Dave Wilkins, Jerry Hobbs, and Bob Moore.

For a more thoroughgoing treatment of reasoning
about processes with Intermediate states, see [9].

REFERENCES

1. Dijkstra, Edsger W. Guarded Commands,
Nondetermlnacy and Formal Derivation of Programs.
Communications of the ACM 18, 8 (August 1975),
453-457.

2. Fikes, R.E. and N.J. Nllsson. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence 2, 3-4
(Winter 1971), 189-208.

3. Harel, David. Lecture Notes in Computer
Science. Volume 68: First Order Dynamic Logic.
Springer-Verlag, 1979.

4. Hayes-Roth, B. and F. Hayes-Roth,

5. Rosen8cheln, and S. Cammarata. Modeling
Planning as an Incremental, Opportunistic Process.
Proceedings of 6th International Joint Conference
on Artificial Intelligence, Tokyo, August, 1979,
pp. 375-383.

5. Utvintchouk, S.D. and V.R. Pratt. A
Proof-Checker for Dynamic Logic. Proceedings of
5th International Joint Conference on Artificial
Intelligence, Massachusetts Institute of
Technology, August, 1977, pp. 552-558.

6. Nllsson, Nils J. Principles of Artificial
Intelligence. Tioga Publishing Co., 1980.

7. Pratt, Vaughan R. Semantical Considerations on
Floyd-Hoare Logic. Proceedings of the 17th IEEE
Symposium on Foundations of Computer Science,
October, 1976, pp. 109-121.

8. Pratt, Vaughan R. A Near-Optimal Method for
Reasoning about Action. MIT/LCS/TM-113,
Massachusetts Institute of Technology, September,
1978.

9. Pratt, Vaughan R. Six Lectures on Dynamic
Logic. MIT/LCS/TM-117, Massachusetts Institute of
Technology, December, 1978.

10. Rosenscheln, Stanley J. Hierarchical
Planning: Implementation Considerations. SRI
Technical Report. Forthcoming.

11. Sacerdotl, Earl D. The Nonlinear Nature of
Plans. Advance Papers of 4th International Joint
Conference on Artificial Intelligence, Thbilisi,
Georgia, USSR, September, 1975, pp. 206-214.

12. Sacerdotl, Earl D. A Structure for Plans and
Behavior. Elsevier, 1977.

13. Sussman, G.J. A Computer Model of Skill
Acquisition. American Elsevier, New York, 1975.
14. Tate, Austin. Generating Project Networks.
Proceedings of 5th International Joint Conference
on Artificial Intelligence, Massachusetts Institute
of Technology, August, 1977, pp. 888-893.

15. Waldinger, Richard. Achieving Several Goals
Simultaneously. Technical Note 107, SRI,
International, Artificial Intelligence Center,
July, 1975.

16. Warren, David H.D. WARPLAN: A System for
Generating Plans. Department of Computational
Logic Memo 76, University of Edinburgh, July, 1974.
17. Warren, David H.D. Generating Conditional
Plans and Programs. Proceedings of Summer
Conference on Artificial Intelligence and
Simulation of Behavior, University of Edinburgh,
July, 1976, pp. 344-354.

337

