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ABSTRACT 
The Hearsay model has heen presented as a paradigm for 

attacking errorful knowledge-intensive problems requiring multiple, 
cooperating knowledge sources. The Hearsay-II architecture is the 
latest attempt to explore the model. This paper describes 
experiences gained while successfully applying this architecture to 
the problem of speech understanding. The major conclusions are: 

1. The paradigm of viewing problem solving in terms of 
hypothesize-and-test actions distributed among distinct 
representations of the problem has been shown to be 
computationally feasible. 

2. A global working memory (the "blackboard"), in which the 
distinct representations are integrated in a uniform manner, 
has made it convenient to construct and integrate the 
individual sources of knowledge needed for the problem 
solution. 

3. The use of a uniform data-directed structure for controlling 
knowledge-source activity has made the system easy to 
understand and modify. 

4. A solution has been demonstrated to the problem of focus-
of-attention in this type of control environment. This 
solution does not need to be modified when the sources of 
knowledge in the system are changed. 

INTRODUCTION 
The Hearsay model [Red73Mo] has been developed for 

problem-solving in domains which must use large amounts of 
diverse, errorful, and incomplete knowledge in order to search in a 
large space. The Hearsay-1 architecture and system [Red73Hx and 
Erm74En] represented a first (and successful) attempt to apply that 
model to the problem of understanding connected speech in 
specialized task domains. In this first application, the size of the 
vocabulary (less than 100 words) and complexity of the grammar 
were very limited. 

Experiences with Hearsay-1 led to the more generalized 
Hearsay-II architecture [Les750r and Erm75Mu] in order to handle 
more difficult problems (e.g., larger vocabularies and less-
constrained grammars). The first configuration of knowledge 
sources (KSs) for Hearsay-II -- configuration CI — was complete in 
January, 1976 [CMU76W4]. This implementation had poor 
performance (e.g., 107 sentences correct in 85 MIPSS (million 
instructions per second of speech) on a 250-word vocabulary). 
Experience with this configuration has led to a substantially 
different set of KSs — configuration C2 [CMU77Su]. This 
configuration performs substantially better (e.g., 857. correct in 60 
MIPSS on a 1,000-word vocabulary). 

The Hearsay-II system, with the second configuration, has 
been successful: it comes close to the original performance goals 
set out in 1971 to be met by the end of 1976 for the ARPA speech 
understanding effort [New73Sp] and does so with a system 
organization that is of interest because of the potential for its 
application to other problem areas. Several other problems have 
been attacked with organizations strongly influenced by the 
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Hearsay-II structure: image understanding [Pra77Se], reading 
comprehension [Rum76To], protein-crystallographic analysis 
[Eng77Kn], signal understanding [Nii77Ru], and complex learning 
[Sol77Kn]. 

This paper is divided into two major parts. The first part 
presents an overview of the Hearsay model, the Hearsay-II 
architecture, which is a further specification of this model, and the 
two KS configurations. (More detailed descriptions of these 
configurations are contained in the appendix.) The second part of 
the paper discusses the implication of these experiences for the 
Hearsay model and the Hearsay-II architecture. In particular, those 
aspects of the architecture are identified that have contributed 
most strongly to the success of the system, as well as those parts 
that need the most future work.** This discussion is structured 
around two themes -- the multi-level global data base (blackboard) 
for KS cooperation, and the asynchronous, data-directed control 
structure for KS activation.5 

OVERVIEW OF THE HEARSAY MODEL 
A number of characteristics of the problem drive the Hearsay 

model: 
1. Large search space. 
2. Diverse sources of knowledge. Many of the KSs are large; 

some have large internal search problems of their own. 
3. Error and variability. These are characteristics of both the 

input data (the acoustic signal) and the processing of 
knowledge sources. 

4. Experimental approach needed for system development. 
This implies the need for iterating the system and running 
over large amounts of data. 

5. Performance requirement -- accuracy and speed. This is 
true of any practical solution to the problem as well as 
during development (because of the experimental nature). 

The basic notions of the Hearsay model [Red73Mo] were 
developed in response to the requirements just stated: 

1. The KSs are kept separate, independent, and anonymous. 
This separation is felt to be a decomposition which is natural 
and also can help make the combinatoric problems more 
tractable. For development purposes, the separation should 
help with system modifications (especially adding and 
modifying KSs) and evaluation. 

2. A global data structure -- the blackboard -- is the means of 
communication and interaction of KSs. This provides an 
hypothesize-and-test means of interaction. Each KS 
accesses and modifies the blackboard in a uniform way. 

3. A KS responds to changes to the blackboard which it is 
concerned with; it applies its knowledge within the context' 

4 The fact that certain parts of the implementation need further 
work does not necessarily indicate deficiencies with the basic 
Hearsay model, but rather points out inadequacies in the 
Hearsay-II implementation of the model. It is to the model's credit 
that even though some of its more sophisticated capabilities are 
not implemented effectively, it still provides an appropriate 
framework for the successful solution of a complex task. Thus, 
one of the intents of this paper is to define some of the major 
design goals for the next iteration in the implementation of the 
Hearsay model. 

5 While this paper discusses the means of organizing the 
knowledge and applying it to the problem, it does not describe in 
detail nor quantify the knowledge in the system. At least as much 
work has been expended on specifying and debugging the 
knowledge in the system as on building and refining the structure 
to hold and apply that knowledge. 
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of such a change. This implies data-directed activation of 
KSs. 

OVERVIEW OF THE HEARSAY-II ARCHITECTURE 
The Hearsay-II architecture is one framework for 

implementing the Hearsay model. In this section, a very brief 
overview of that architecture is given. More details are described 
in [Les750r and Erm75Mu]. 

The Blackboard 
The blackboard is partitioned into distinct information Levels; 

each level is used to hold a different representation of the problem 
space. (Examples of levels are "phrase", "word", "syllable", and 
"segment".) The decomposition of the problem space into levels is a 
natural parallel to the decomposition of the knowledge into separate 
KSs. For most KSs, the KS needs to deal with only a few (usually 
two) levels to apply its knowledge. Its interface to the rest of the 
system is in units and concepts that are natural to it. 

The sequence of levels forms a loose hierarchical structure in 
which the elements at each level can be described approximately as 
abstractions of elements at the next lower level. The possible 
hypotheses at a level form a problem space for KSs operating at 
that level. A partial solution (i.e., a group of hypotheses) at one 
level can be used to constrain the search at an adjacent level. For 
example, consider a KS which can predict and rate words based on 
acoustic information and another KS which knows about the 
grammar of the language. The first KS can generate a set of 
candidate word hypotheses. The second KS can use these 
hypotheses to generate phrase hypotheses which can be used, in 
turn, to predict words likely to precede or follow. These 
predictions can now constrain the search for the first KS. 

Associated with each level is a set of primitive elements 
appropriate for representing the problem at that level; e.g., the 
elements at the word level are the words of the vocabulary to be 
recognized. The major units on the blackboard are hypotheses. An 
hypothesis is an interpretation of a portion of the spoken utterance 
at a particular level. E.g., an hypothesis might represent the 
assertion that the word "GIVE" was spoken at the beginning of the 
utterance. Each hypothesis at a given level is labeled as being a 
particular element of the set of primitive elements at that level. 

Each hypothesis, no matter what its level, has a uniform 
attribute-value structure. Some attributes (and values) are 
required of all hypotheses and others are optional, as needed. 
Included among the required attributes of an hypothesis are its 
level (e.g., word), its element name (e.g., "GIVE"), and an estimate of 
its time coordinates within the spoken utterance (which can include 
notions of "fuzziness" of estimate). The level and time attributes 
place a two-dimensional structure on hypotheses which partitions 
the blackboard and can be used for addressing hypotheses. Note 
that two or more hypotheses at the same level with significantly 
overlapping times are competitors] i.e., they represent competing 
interpretations of a portion of the utterance. 

Other attributes of an hypothesis include information about 
its structural relationships with other hypotheses (forming an 
AND/OR graph), validity ratings (i.e., estimates by KSs of the " t ru th" 
of the hypothesis), and processing state. The processing state 
attributes are summaries and classifications of the other attributes. 
E.g., the values of the rating attributes are summarized by the 
"rating state" attribute that takes a value from the set "Unrated", 
"Neutral", "Verified", "Guaranteed", or "Rejected". New attributes 
can be created by any KS and may be used for passing arbitrary 
information about an hypothesis between instantiations of the same 
or different KSs. 

A KS can create new hypotheses, specifying values for 
attributes of the new hypothesis. Given the "name" of an 
hypothesis, a KS can examine or modify attributes of that 
hypothesis. In addition, sets of hypotheses may be retrieved 
associatively, based on the values of their attributes (e.g., all 
hypotheses at the syllable level whose durations are greater than 
250 msec). The hypothesis structure is uniform across all levels in 
the blackboard. Thus, the form of access and modification to 

hypotheses by KSs can also be uniform and is accomplished by 
calling Kernel procedures; the set of these procedures comprises 
the blackboard handler. 

In addition to the information in each hypothesis which can 
be accessed by KSs, auxiliary state information is maintained by 
the blackboard handler in specialized data structures. Examples of 
this information are (1) a representation of hypotheses at each 
level arranged for efficient associative retrieval by time and (2) the 
name of the highest-rated hypothesis in each time area. These 
auxiliary structures are updated by the blackboard handler 
automatically as KSs make changes to the blackboard. 

Structure of Knowledge-Sources 
Each KS has two major components: a precondition and an 

action. The purpose of the precondition is to find a subset of 
hypotheses that are appropriate for action by the KS and to invoke 
the KS on that subset; the subset is called the stimulus frame of the 
KS instantiation. For example, the precondition of the KS that 
generates word hypotheses based on syllables looks for new 
syllable hypotheses. When invoking the KS, the precondition 
provides the system scheduler with, in addition to the stimulus 
frame, a stylized description of the likely action that the KS 
instantiation will perform (if and when it is allowed to execute); this 
estimate of action is called the response frame. For example, a 
response frame for the syllable-based word hypothesizer (MOW) 
indicates that the action will be to generate hypotheses at the word 
level and in a time area that includes at least that of the stimulus 
frame. The action part of a KS is a program (written in SAIL 
[Rei76SA]) for applying the knowledge to the stimulus frame and 
making appropriate changes to the blackboard. In general, the 
changes made will serve to trigger more KS activations. 

To keep from having to fire the precondition continuously to 
search the blackboard, each precondition declares to the blackboard 
handler in a non-procedural way the primitive kinds of blackboard 
changes in which it is interested. Each precondition is triggered 
only when such primitive changes occur (and is then given pointers 
to all of them). This changes a polling action into an interrupt-
driven one and is more efficient, especially as the number of 
preconditions gets large. After being triggered (and when 
scheduled for execution), the precondition (also a SAIL procedure) 
can do arbitrary searching of the blackboard for hypothesis 
configurations of interest to its KS. 

Several KSs may be grouped together into modules. The KSs 
within a module may share code and long-term built-in data. A 
discussion of the module construct, including its implications for KS 
independence, is given below in the section on "KS Independence". 

Scheduling 
Whenever a precondition is executed, it checks all blackboard 

events in which it is interested that have occurred since the last 
time it executed. For example, a "new hypothesis" to a precondition 
is any hypothesis which was created between the last time the 
precondition executed and its current execution. Thus, a 
precondition may be thought of as executing, then "sleeping" for a 
time while retaining state, then waking (executing again) and being 
able to find all new events of interest to it. 

However, whenever a KS executes, it uses the stimulus frame 
specific to that invocation. Each KS execution goes to completion; 
that is, the KS cannot put itself to "sleep", waiting for some other 
event (on the blackboard) to occur. 

At any point, there are, in general, a number of pending tasks 
to execute — both invoked KSs and triggered preconditions. (In 
practice, the number of pending tasks often exceeds 200.) A 
scheduler in the kernel [Hay77Fo] calculates a priority for each 
waiting task and selects for execution the task with the highest 
priori ty. The priority calculation attempts to estimate the 
usefulness of the action in fulfilling the overall system goal of 
recognizing the utterance. This estimation is based on the specific 
stimulus and response frames of the actions and on overall 
blackboard state information, which includes such notions as the 
best hypotheses in each time area in the utterance, and how much 
time has elapsed since the current best hypothesis was generated. 
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The priority of a KS is recalculated if the validity of its stimulus 
frame is changed or the auxiliary state pertinent to evaluating the 
significance of the response frame is modified. 

Some KSs are not directly involved in hypothesizing and 
testing partial solutions; instead, these control the search by 
influencing the activation of other KSs. These policy KSs can be 
used to impose global search strategies on the basic priority 
scheduling mechanism. 

THE CONFIGURATIONS 
Following are brief overviews of configurations CI and C2, to 

provide a basis for subsequent discussion. The appendix contains 
more detailed descriptions of the KSs, as well as pointers to 
published papers. 

Figure 1 gives a schematic of configuration C1 as it was 
operational in January, 1976. The levels are indicated by solid 
horizontal lines and are labeled at the left. KSs are indicated by 
vertical arcs with the circled end indicating the level where its 
stimulus frame is and the pointed end indicating the level of its 
response frame. The name of a KS is connected to its arc by a 
dashed horizontal line. As segment hypotheses were generated 
from the acoustic data (SEG), they might be combined to form larger 
segment hypotheses (CSEG). Phone hypotheses were created, 
based on one or more contiguous segments (PSYN). Syllables were 
predicted from the phones (POM) and words from the syllables 
(MOW). Phrase hypotheses were constructed from contiguous word 
or phrase hypotheses which were syntactically consistent (RECOG). 
Other KSs (PREDICT, RESPELL, and POSTDICT) accomplished various 
syntactic extension and prediction functions at the phrase and word 
levels. Verification of predicted words was carried out by 
expanding the words into their expected syllables (WOM), expanding 
the syllables into expected phonemes (MOS), and matching the 
sequences of expected phonemes with the recognized phones (TIME 
and SEARCH). Changes of ratings of hypotheses were propagated 
to structurally connected hypotheses (RPOL). The FOCUS policy KS 
controlled the search by setting priorities for various kinds of KS 
actions. 

Figure 2 gives a schematic of configuration C2 as it was 
operational in September, 1976. First, all segment hypotheses are 
generated from the parametric representation of the acoustic signal 
(SEG). Next, syllables are predicted from the segments (POM). 
Then, words are predicted from the syllables (MOW); the most likely 
words in each time interval placed on the blackboard (WORDCTL). 
Next, a heuristic word-sequence hypothesizer (WOSEQ) attempts to 
identify the most probable sequences of word hypotheses 
(consisting of successive language-adjacent word pairs). Because 
this KS exploits statistical methods to improve credibility, the initial 
word sequence hypotheses are much more accurate than are 
hypotheses based on single words. Subsequently, KSs are invoked 
to attempt to parse the hypothesized word sequences to determine 
if they are grammatical (PARSE), to predict possible time-adjacent 
grammatical word extensions (EXTEND), to hypothesize and verify 
new words satisfying these predictions (MEW), to concatenate 
grammatical and time-adj-acent word sequences (CONCAT), to 
propagate ratings (RPOL), to reject phrases and to determine when 
the serach should be terminated (STOP), and to generate new word 
sequence hypotheses (WOSCTL). 

The major system-related differences between these 
configurations6 are listed here; they will be discussed individually 
throughout the paper. 

1. CI has asynchronous processing throughout. C2 has an 
initial pass of sequential, bottom-up processing to the word 

6 Though we are here concerned with systems issues, it is worth 
pointing out that WOSEQ is a novel KS which significantly 
contributes to the success of C2. It limits the search space by 
providing large hypotheses which act as islands of reliability and 
bases for further search. This KS uses approximate syntactic 
knowledge to examine efficiently many alternative sequences of 
low-reliability word hypotheses and generate a small number of 
more reliable phrase hypotheses. 

level; i.e., all segments are created, then all syllables, then a 
selection of words. 

2. CI used the blackboard extensively for intra-KS state-
saving between instantiations of a KS (e.g., SEARCH and 
RECOG-PREDICT-RESPELL-POSTDICT). in C2, this was 
greatly reduced, with KSs doing more computation internally 
and in larger units (e.g., MEW and PARSE-EXTEND-CONCAT). 

3. C2 generated simpler hypothesis networks than those in C I . 
For example, SEARCH and TIME built complex structures to 
represent verifications of words; MEW builds very simple 
ones for the same purpose. 

EXPERIENCES WITH HEARSAY-II 
This section addresses the following questions: How well did 

the Hearsay-II system meet its original design goals and were these 
goals appropriate for problem solving in the speech understanding 
domain (and more generally in errorful domains which require 
extensive search)? This discussion is based on approximately three 
years of experience with the Hearsay-II architecture, including 
numerous iterations of both the system architecture and KS 
configurat ions/ These questions will be discussed in the context of 
two major aspects of the Hearsay-II architecture: the blackboard 
global data base, and KS interaction and control. 

Blackboard Data Base 
There are two major design themes reflected in the structure 

of the blackboard. The first theme is the avoidance of expensive 
and complicated backtracking control structures by the 
representation of alternative, distributed hypotheses in an 
integrated multi-level manner. The second design theme is the 
representation of all information levels with a high-level, uniform 
structure, in order to allow all KSs to contribute their information to 
the blackboard in an identical and anonymous manner. 

Distributed Representation 
It was hoped that the first design theme would (a) avoid the 

redundant calculation of previously-generated results and (b) allow 
KSs to apply their knowledge selectively to places in the blackboard 
where further processing would resolve contradictory evidence 
supporting likely, alternative hypotheses. 

The ability to save partial results on the blackboard in an 
integrated manner, in terms of hypothesis sub-networks, has been a 
very positive characteristic of the architecture; it avoids a 
significant amount of unnecessary recalculation of results previously 
generated. This was especially true for KSs operating at the word 
and phrase levels. This was also true for KSs in the CI 
configuration operating at lower information levels, for example, the 
TIME and SEARCH KSs. However, later versions of these KSs (e.g., 
MEW in C2), for reasons of efficiency (to be discussed later), do not 
save partial results on the blackboard. 

The use of an integrated representation as a way of 
efficiently resolving competition among KSs wanting to work on the 
same hypotheses has not been exploited, nor has the ability to 
bring to bear specialized knowledge dynamically to resolve the 
conflict among competing, alternative hypotheses (for example, a 
specialized KS to resolve ambiguity between two word hypotheses 

7 The emphasis on the two configurations as fixed points can be 
misleading; rather than appearing full-grown, the configurations 
evolved over time, with numerous iterations required first to 
develop CI and then C2 from CI . 

8 Hayes-Roth [Hay77Ro], in discussing how to evaluate the 
potential usefulness of a KS action, introduces the concept of 
diagnostictty as an important component in a KS priority function. 
Diagnosticity is a measure of how much contradictory evidence 
could potentially be resolved by a particular KS action. 

9 The usual manner of accomplishing this is having each KS, as it is 
about to create a new hypothesis, first check that a hypothesis 
does not already exist which is sufficiently similar to the one it is 
about to create. 
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that are very close acoustically — e.g., "sit" and "split"). In addition, 
the ability given by the integrated representation to re-evaluate 
automatically (i.e., without KS intervention) an hypothesis* credibility 
when its supporting environment is modified is not exploited in the 
C2 configuration (although it was C1). In the C2 configuration, 
hypothesis credibility is never modified in an explicit sense; rather, 
new and different hypotheses are created. A side effect of this 
approach is that hypotheses are never deleted from the blackboard. 

One explanation for the lack of full use of the integrated, 
multi-level representation of hypotheses could be just that the 
particular task domain of speech understanding does not need these 
capabilities. However, it is our feeling that there are fundamental 
weaknesses in the Hearsay-II representation of an integrated, 
multi-level hypothesis; these weaknesses (to be discussed below) 
make it difficult, both in terms of execution time and programming 
complexity, to perform the desired analyses of the hypothesis 
structure and its surrounding environment. This type of analysis is 
the key to the effective use of the sophisticated processing 
capabilities that are possible within the framework of the Hearsay 
model. 

Hypothesis Network Structure 
A major problem in using the blackboard is that one cannot 

operate on a network (in its simplest form, a tree) of interconnected 
hypotheses as a composite unit. There is a basic confusion in 
Hearsay-IPs implementation of hypothesis networks between (a) the 
hypothesis at the top of the tree (the highest level of 
interpretation) and (b) the whole tree; the state information 
associated with an hypothesis is very local and does not adequately 
characterize the state(s) of the hypothesis network(s) connected to 
it. In order to operate effectively in a distributed manner on 
interconnected multi-level hypothesis networks, the state 
information associated with an individual hypothesis must allow a KS 
to analyze quickly the local environment of an hypothesis and, more 
importantly, the role that the hypothesis plays in the larger context 
of the hypothesis networks it is part of. One of the consequences 
of this deficiency is the difficulty encountered in making 
appropriate scheduling decisions because the more global import of 
a potential KS action cannot be determined easily. 

For example, in configuration C I , an hypothesis at the phrase 
level was constructed out of hypotheses at the phrase, word, 
syllable, surface-phoneme, phone, and segment levels. Because of 
the asynchronous nature of processing, a phrase hypothesis could 
be supported by word hypotheses in different stages of verification 
-- some might be fully verified, others only partially verified, or 
some totally unverified. Possible KS actions waiting to work on this 
hypothesis network could be a separate verification of each 
unverified word, an attempt to extend the phrase in either the right 
or left direction, a search for co-articulation effects among different 
word pairs, or a full verification of a partially verified word. These 
actions represent processing at different information levels. Given 
the existing hypothesis interconnection primitives, there is no way 
to determine easily that all these actions relate to the same 
hypothesis network, nor what import each action could potentially 
have in judging the credibility of the entire network. 

Another symptom of this problem is the inability to express, 
except in a very limited way, what type of processing has already 
been applied to* an hypothesis network and what further processing 
could possibly be applied. This inability again impacts the scheduler 
because it makes it difficult to schedule "competing" KSs (i.e., KSs 

10 It is expensive to trace through an hypothesis network to 
determine the global import of a potential KS action. But this 
cost is not unreasonable relative to the total system execution 
time for a configuration which contains KSs that perform 
moderately large amounts of internal computation. However, the 
major computational expense comes in dynamically updating the 
global import of a pending KS action as modifications are made to 
the blackboard since there are a large number of these 
modifications: it is necessary both to find which waiting KS 
instantiations have priorities that are affected by the modification 
and then to recalculate the priorities for those affected. 

which could work on the same or different parts of a specific 
hypothesis network) appropriately. Because of these difficulties 
there has been, in later KS configurations, only a very limited (and 
simply represented and analyzable) form of KS competition. 

Another aspect of the inadequate network structure is that 
the primitives for specifying structural relationships between 
hypotheses require many intermediate levels to represent certain 
types of connectivity patterns. This need for many intermediate 
levels is expensive in in storage space and, more importantly, time; 
it requires a great deal of network searching through the 
connection structure to analyze the relationship of an hypothesis to 
its immediate surrounding environment. These intermediate levels 
represent a level of detail which is unnecessary for some types of 
KS analysis and which interfere with these analyses by making them 
unwarrantedly complex. Once it has been constructed, it is 
impossible to bypass this level of detail in situations in which it is 
not pertinent. For example, an information level may contain many 
intermediate sublevels built out of the connection primitives; a KS 
using information at this level may want only to examine those 
hypotheses which are the highest sublevel in each time area. This 
type of operation, given the current blackboard retrieval primitives, 
requires the examination of all hypotheses in a specified time area. 
Another complication of not being able to hide these intermediate 
levels is that a KS in some cases has to know the exact structure of 
the intermediate levels used by another KS in order to be able to 
skip over them, thus making the KSs less independent. 

In summary, the experience to date on the distributed 
representation approach indicates that the implementations of this 
concept explored so far are neither general nor efficient enough in 
two major interrelated aspects -- how hypotheses can be combined 
into a network and how the state information associated with an 
individual hypothesis reflects the hypothesis networks connected to 
it. To elaborate further, what is missing from the blackboard 
structure is a way of viewing the shared network structure from a 
different perspective. This perspective should permit the particular 
path through the network that defines a specific composite 
hypothesis to be both viewed in isolation from other paths that are 
intertwined with it, and also in a way that eliminates superfluous 
sub-structure. From this type of perspective, the importance of 
potential KS actions could be judged efficiently and related to the 
history of previous processing.11 

Uniform Blackboard Structure 
Let us now examine the second major design theme used to 

structure the blackboard: a uniform structure at all information 
levels. From a programming point of view, both in terms of KS 
writers and system implementors, the uniform structure of the 
blackboard has been a good design choice. By having a uniform 
structure, a variety of standard blackboard creation, accessing, 
display, analysis, and debugging functions could be developed that 
are usable by all KSs. These standard functions, some of which are 
quite complex, make it convenient for a KS writer to interface his 
knowledge source with the system. The ease with which this 
interfacing could be accomplished is exemplified by the fact that, in 
a period of six months, configuration C2, which is almost entirely 
new relative to C I , was developed and debugged. Because of this 
uniform structure of hypotheses and their connections, it is often 
possible for a KS to be recoded so that it generates a different 
local hypothesis structure without requiring the recoding of other 
KSs in the system; this is true because a KS can probe the 
blackboard with sophisticated built-in retrieval operations which, in 
many cases, shield the KS from changes made by other KSs. For 
example, there is the structural-adjacency blackboard primitive 
which, given a hypothesis, finds all hypotheses at a particular 
information level that are immediately adjacent to the given 
hypothesis based on the AND/OR connection structure among 
hypotheses. 

The uniformity of the attribute structure of hypotheses also 

11 A possible approach for implementing this different type of 
perspective is discussed in work by Hendrix [Hen75Ex] on 
partitioned semantic networks. 
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makes it possible to monitor efficiently for blackboard changes 
which are to trigger preconditions. Each precondition needs only to 
declare to the blackboard handler the names of the attributes at 
each level in which it is interested. When an attribute is changed, 
the blackboard handler then triggers all preconditions interested in 
it. 

The uniform blackboard structure, though efficiently 
implemented, is not appropriate as a scratchpad for the internal 
computations of a KS. This type of use of the blackboard is often 
inappropriate because its uniform, general structure does not come 
completely free in the storage requirements for an hypothesis and 
the cost of creation and access; most internal computations of a KS 
do not need this generality. An example of a misuse of the 
blackboard was the case of the syntax analyzer knowledge source, 
SASS [Hay77Un], In early versions of this KS, the blackboard was 
used to hold the partial parse trees developed in attempting to 
parse a language fragment; current versions of this KS, which use a 
tailored, internal data structure for parsing, are two orders of 
magnitude faster than the original blackboard-based version of this 
KS. This case history seems to confirm the notion that there are 
advantages to specialization of structures: one for KS interaction 
(i.e., the blackboard), and separate ones for each KS. 

The blackboard has also proven to be useful as a data base 
for the scheduler [Hay77Fo]. Because of the uniform hypothesis 
structure, instantiations of KSs can specify scheduling information in 
a uniform way (as stimulus and response frames), allowing new KSs 
to be introduced without having to modify the scheduler. The 
representation of alternative hypotheses in an integrated, uniform 
fashion also makes it possible to compare directly the pending KS 
instantiations to determine which will likely contribute most to 
further progress; the scheduler 1) can determine those areas on the 
blackboard that most need further work and locate the pending KS 
instantiations that are relevent to those areas and 2) estimate the 
amount that a KS instantiation will improve the quality of 
hypotheses in the area of its action. 

Long-Term Information Structures 
Associated with each information level of the blackboard, 

there is, as previously discussed, a set of primitive elements that 
are used to label hypotheses at that level. The kernel interface 
provides facilities for creating, accessing, and displaying these 
labels. In addition, arbitrary data structures can be associated with 
each label. These structures, for example at the word information 
level, can be simple, such as the average expected duration of each 
word, or complex, such as a network which specifies alternative 
syllabic spellings for each word. In the complex case, this structure 
often is used to relate labels at one information level with labels at 
another; this relationship is used by a KS which operates between 
different levels (e.g., in the example given here, WOM in 
configuration CI). These data structures related to labels constitute 
much of the long-term (built-in) KS-defined information structures 
of the system and often represent most of the problem-specific 
knowledge in a KS. 

Each KS (or group of KSs) defines whatever ad hoc structure 
seems appropriate for the particular kind of information to be 
represented. There has been no attempt to define a uniform set of 
kernel interfaces for creating and accessing these long-term data 
structures, nor a set of relationships (connection primitives) for 
relating labels at different levels. However, it seems possible to 
attempt to define a small number of representations within the 
kernel; these structures would mimic the hierarchical structure of 
the blackboard. (Hanson and Riseman in their work on image 
understanding have a system architecture [Pra77Se] very similar to 
the blackboard and have included a complementary long-term 
memory structure.) 

The major drawback of not having a predefined long-term 
memory is that if KSs want to share this information they have to 
agree among themselves upon a specific structure, thus violating 
independence considerations. In addition, uniform structures could 
make KSs easier to understand, develop, and analyze. 

On the other hand, these long-term structures must be highly 
optimized because of their large size and the high frequency with 

which they are accessed.12 The approach taken of tailoring these 
structures to the particular KS(s) using them allowed for efficient 
implementations in terms of both time and space. It is also possible 
that explicit tailoring has led to KSs which are easier to understand 
than if they were forced to fit their requirements into a uniform 
structure. 

Thus, there are still open questions about the desirability of 
providing uniform structures for representing the knowledge in KSs; 
hopefully, future implementations will explore these possibilities. 

Conclusions About Blackboard Usage 
In trying to draw some conclusions about our experiences 

with the use of the blackboard, the main issue that constantly 
comes up is time and space efficiency. In errorful task domains, 
such as speech understanding, a large number of alternative 
interpretations of the data must be examined and analyzed. The 
blackboard concept is effective in the Hearsay-II implementation to 
the degree that it allows this search to be efficient. Analysis of the 
CI configuration indicated that certain types of KS processing on 
the blackboard were not efficient. Reimplementation of the KSs in 
order to eliminate those types of processing resulted in the C2 
configuration. The major uses of the blackboard in the C2 
configuration are: 

1. A storage, area for high-level intermediate results generated 
by the search. This storage area avoids the unnecessary 
recalculation of these results if they are encountered on 
future search paths. 

2. A communication area for KSs, with strong and simplified 
assumptions by a KS of what structures can be generated 
by other KSs. 

3. A data base for the scheduler. 
4. A common display, debugging, and performance evaluation 

area. 

Knowledge-Source Interaction and Control 
The asynchronous, data-directed control structure used In 

Hearsay-II was designed to permit: 
1. The quick refocusing of attention to appropriate hypotheses 

in the blackboard. 
2. The flexible reconfiguration of the system with different 

sets of independent (and possibly competing) KSs, and 
different global control strategies. 

3. The exploration of parallel processing. 
This section will examine each of these requirements along 

two dimensions: Were the capabilities embodied in the requirement 
important to the project, and how well did the control structure (in 
terms of time, space, and ease of representation) implement these 
capabilities? 

Appropriateness of a Data-Directed Control Structure 
The first requirement, quick refocussing, was based on the 

following model for processing in the speech domain. Processing 
can be organized in terms of the incremental additions of small units 
of information to a limited number of alternative hypotheses. The 
limited number of alternatives derives from the view that there are 
islands of reliability in the acoustic data that can be used to anchor 
the search. Each small increment of information should help to 
veri fy, refute, or augment (expand) an hypothesis. A KS action, 
though performed in a local context, could also have the side effect 
of contributing information useful in the evaluation of alternative 
hypotheses (i.e., in other contexts). Thus, after each incremental 
addition of information (through the execution of a KS), it is 
necessary to re-examine the set of potential actions that now can 
be activated and determine which of these will most likely resolve 

12 For example, the description of the grammar used by the KSs 
within the SASS module in configuration C2 is a network of 3100 
nodes. Each node has about seven pointers to other nodes, plus 
several pieces of auxiliary information. A typical KS action, e.g., 
parsing a four-word phrase, might make 100 to 5,000 node 
accesses. 
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ambiguity. An asynchronous, data-directed architecture makes it 
convenient to implement such a processing strategy by permitting 
KS action to be directed by the data: it delays the application of 
Knowledge until there is enough information for a meaningful result 
(decision), and it re-applies the Knowledge when, at a later time, 
additional information is generated that bears on the original 
decision. 

In those parts of the blacKboard where processing followed 
this model, the data-directed control structure was very effective. 
However, at lower levels of speech processing (i.e., segmentation 
and labeling, syllable hypothesis generation based on segments, and 
word spotting based on syllables), this model was found to be 
inappropriate because there is not enough reliability in credibility 
scores of hypotheses to form hypothesis islands that can reliably 
anchor the search. Thus, processing at these levels cannot be 
selective (depth-first), and instead requires a complete scan 
(breadth-first), for which asynchronous control has no advantages 
(and considerable costs). 

A major change in going from configuration CI to C2 was 
maKing the lower levels of processing more sequential and bottom-
up. Not until the word level is reached do hypothesis credibility 
scores have enough reliability to justify the more complex 
processing required of an asynchronous, data-directed control 
structure. The presence of these islands of reliability is in itself 
not a sufficient condition for the use of this sophisticated control 
structure. What is additionally required is that there is either a 
significant cost to evaluate each alternative or a large number of 
alternatives (combinatoric explosion in the search space); only then 
is the overhead involved in implementing a data-directed control 
structure worthwhile. 

In addition to the control overhead, an asynchronous control 
structure requires a more complex internal structure for a KS. This 
complexity arises because, as new information is asynchronously 
generated, a KS must have the additional logic to determine whether 
this new information allows it to make a decision it could not 
previously maKe or whether this information contradicts a previous 
decision. In the latter case, it must modify the previous decision, 
which may involve modifying decisions made as a consequence of 
the original one. Where processing involves a complex hypothesis 
networK structure with much detailed structure, the nature of 
asynchronous processing in response to a change at the detailed 
level is costly, both in terms of processing time and complexity of 
the KS, and should be avoided unless the compensatory benefits are 
large. As previously mentioned, the inadequacies in the blacKboard 
structure which maKe it difficult to sKip over detailed structure 
exacerbate these problems. (The SEARCH KS in configuration CI is 
an example of a KS worKing asynchronously at a detailed level. 
Although the acoustic-phonetic Knowledge applied by SEARCH was 
represented by a relatively simple data structure within the KS, the 
code necessary for examining and incrementally building large, 
integrated, and competing AND/OR structures on the blacKboard was 
very complex and the number of KS executions needed to verify a 
word was large -- on the order of ten to one hundred. In C2, the 
function of word verification was replaced by the MEW KS -- here, 
verifying a word is an atomic act (as far as other KS actions are 
concerned) and is carried out using tailored structures internal to 
the KS. Each execution of MEW forced a recalculation of the 
detailed structure, rather than sharing such structures across 
executions.) 

Overhead Costs of Data-Directed Control 
The overhead cost of implementing an asynchronous data-

directed control structure for computation of medium level 
granularity (i.e., a KS action which involves greater than 1/10 
second of internal computation) is not significant. The major cost 
involves monitoring each modify operation to the blacKboard to 
determine whether any preconditions are interested in being 
notified of this specific change. This cost of monitoring and 
notification makes a modify operation 12 times as expensive as a 
read operation. However, in the C2 configuration there are 29 
times as many reads as modify operations, thus maKing this aspect 
of implementing a data-directed control only 4% of the total cost of 
a run. 

Another cost associated with implementing this type of 
control structure involves maintaining a scheduler queue of waiting 
KS instantiations and performing priority calculations to decide 
which instantiation to run next. However, these focus of control 
calculations, possibly expressed in a different way, are necessary in 
any problem-solving system that involves a dynamic search. The 
more general implementation of these calculations in the context of 
an asynchronous control structure does not appear to generate 
significantly more system overhead than a specialized 
implementation of them in a system with more explicit control 
structure. The cost of maintaining and updating the scheduler 
queues and calculating the priorities was about 57 to 77 of a total 
run. 

Further costs involved in implementing this type of 
asynchronous control structure arise because of the delay between 
the invocation of a KS and its execution. The KS must, in general, 
contain code that revalidates its invocation context before beginning 
execution. However, by maKing some assumptions about the type of 
processing other KSs could effect at particular information levels, 
there was in practice very little need for context revalidation. KSs 
did not in general interact by modifying previously-made 
assumptions and detailed structures constructed by other KSs, but 
rather through the incremental addition of new hypotheses to 
existing structures or the verification of previously unverified 
hypotheses. 

KS Independence 
As indicated above, complete independence among KSs was 

not accomplished. However, information about the processing 
characteristics of other KSs is generally very restricted, and relates 
only to KSs which share either dynamic information on the 
blacKboard or long-term static information. To facilitate such data 
sharing, the concept of a module was introduced into the 
architecture. A module contains a set of preconditions and KSs 
which share common structures and related accessing procedures. 
The KSs contained in a module generally operate at the same or 
adjacent information levels and thus also share specialized 
accessing and display routines for these information levels of the 
blacKboard. A module usually represents the code of one KS 
programmer and typically contains one to four KSs and one to four 
preconditions. The clustering of KSs by their long-term information 
structures turned out to be a convenient decomposition for 
separably instantiable but related activity. The KS module is the 
atomic unit which is the basic building blocK for different KS 
configurations.13 

How important is the property of independence of KSs? For 
the two configurations discussed here, the KS modules are not 
completely independent. However, during the lifetime of the 
project, which involved numerous iterations of KSs, there has been 
very little difficulty encountered by this lacK of complete 
independence (i.e., the "subroutine interaction problem" did not 
haunt us). It has been possible to configure systems with subsets 
of KS modules (e.g., a "top-end" system that deals only with word 
and phrase hypotheses or a "bottom-end" system which deals only 
at and below the word level) without modifications to the modules 
involved. 

The reason for having little difficulty with the subroutine 
interaction problem can be traced to the data-directed activation of 
KSs. In general, interaction among KSs is accomplished by having a 
KS modify the attribute structure of an hypothesis in a way which 
causes some other KS(s) to be activated and attend to that 
hypothesis. In order for KSs to communicate information which is 
not representable using the standard, Kernel-supplied attributes, 
the communicating KSs need only agree on the name of a new 
attribute and the form of its value; this new attribute can then be 
used to pass the information. Thus, it is not necessary for a KS to 
Know the names of the other KSs involved. Individual KSs which 

13 Each module is implemented as a separately compiled body of 
code. A configuration is specified at load time by selecting the 
desired modules. Additionally, any KS or precondition can be 
inhibited at run-time, effectively excising it from the system. 
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create, are activated by, or use this information may be added to or 
deleted from the system without requiring modifications to the 
other KSs. 
A KS as a Hypothesis Generator 

There are two major reasons, in addition to the one already 
discussed about context validation, why total independence was not 
achieved; both of these relate to a KS as a generator of 
hypotheses. The first reason concerns the control of the number of 
hypotheses a KS should initially generate and the reinvocation of it 
to generate additional, alternative hypotheses. The parameters 
associated with hypothesis generation should be set by a policy KS 
which has a more global view of the current state of the recognition 
process. The need then arises for a mechanism by which a policy 
KS can transmit its desires, in an anonymous and independent 
manner, to the appropriate KS. 

It was hoped initially that these "processing goals" could be 
specified in terms of the basic hypothesize-and-test paradigm (i.e., 
by having the policy KS create the appropriate type of hypotheses 
which would in turn trigger the desired activity). However, "asking 
for something to be done" cannot always be specified conveniently 
in this way nor in an anonymous manner. For example, if there is a 
need for more word hypotheses to be generated in a particular 
time area, the action of creating a new hypothesis at the phrase 
level which will then be expanded at the word level does not 
precisely capture the desired activity, nor does the somewhat 
clumsy approach of modifying some attribute of the lower level data 
(e.g., the syllable level) to force a KS to reprocess this data so as to 
accomplish the desired activity. Note in this example, that by trying 
to force the concept of processing goal into the hypothesize-and-
test paradigm, the policy KS must know the type of input stimulus 
that will trigger a KS to produce the desired results, thus violating 
the independence among modules. In addition, a KS which is 
designed to do hypothesizing-and-testing does not necessarily 
produce a response that will precisely match the desired processing 
goal. Due to these difficulties of directly embedding goal processing 
control in the hypothesize-and-test paradigm, an alternative 
approach was developed (but not implemented) which integrates 
smoothly with the data-directed control flow of Hearsay-11. 

This alternative approach is based on introducing the concept 
of a goal node into the blackboard, with types of attributes distinct 
from those of an hypothesis and a means of relating goals at 
different levels. The action of creating a goal at a particular level 
is a monitorable event that triggers a KS that can do processing at 
that level. By making a goal node distinct from an hypothesis, a 
policy KS can generate goals without interfering with KSs that 
operate at that information level but that cannot respond to the 
goal. If the triggered KS cannot directly satisfy the goal, it can 
generate a subgoal, linked to the original goal, to generate data at 
another level which could be used by the KS to satisfy the original 
goal. In this way, a policy KS can interact with KSs in an 
anonymous and independent way. For example, if there is no KS to 
react to the goal, processing can still continue. In the same manner, 
if there is more than one KS that can respond to the goal (i.e., 
competing KSs), the scheduler can resolve this conflict without the 
need for any action by the KS that generated the goal. A goal node 
can also be used as a convenient place for a generator type of KS 
action to leave internal state information about how much and what 
type of further processing it can do in this area. 

The other major reason for violating the independence 
criterion was based on an efficiency consideration. As previously 
mentioned, it is comparatively expensive to create an hypothesis on 
the blackboard. The cost of hypothesis creation is especially 
critical with a KS that can potentially generate a large number of 
hypotheses. For example, the syntax prediction KS (EXTEND, in C2) 
can create, based on a prediction from a single phrase hypothesis, 
several hundred word hypotheses. Each of these must then be 
processed by the word verifier KS (MEW) and verified or rejected. 
Before these hypotheses are verified they share almost identical 
structures. All but twenty, perhaps, will be rejected by MEW. To 
avoid the expense of expanding these as distinct blackboard word 
hypotheses, special data structures have been constructed to store 
the predicted words compactly, these data structures are then 

attached as an attribute of the phrase hypothesis. This example 
further illustrates the weakness in the current Hearsay-II 
implementation of efficiently representing and processing groups of 
hypotheses. 

Uniformity of Control 
Another issue associated with the data-directed control 

structure is the ease with which different global control strategies 
can be explored. The uniform interface conventions used for 
specifying and activating KSs and preconditions, together with 
treating policy (strategy) KSs in the same way as other KSs makes 
the total system easy to modify and understand. 

As part of the uniform convention for specifying each KS, 
non-procedural declarations are required which tell the system the 
type of pattern that triggers the KS and the type of action that can 
result from the activation of the KS. By separating the activation of 
a KS from its scheduling, it has been easy to introduce new global 
strategies by applying a new priority evaluation function to the 
information supplied by each KS. In addition, by allowing a policy 
KS to be able to trigger upon certain conditions that occur in the 
scheduling "data base" (such as the absence of any invoked KSs, or 
the lack of any invoked KSs above a certain priority level), it is 
possible to add different types of policy KSs into the system in a 
modular manner (e.g., WOSCTL in configuration C2). 

In the initial specification of the Hearsay-II architecture, the 
approach required for focus of control was not well developed and 
represented one of the major conceptual problems which would 
determine the success of the design. As a result of work on this 
problem over the last three years, it is felt that the problem, 
though not completely solved, is now understood well enough so 
that it no longer represents a major obstacle to the effective use of 
the architecture. It is interesting to note that much of the 
discussion in preceding sections is based on a better understanding 
of what features need to be present in the architecture in order to 
efficiently support complex focus of control strategies. 

Parallel Processing 
One of the initial design goals of the Hearsay-II architecture 

was that it should be efficiently (and correctly) executable on a 
multiprocessor [Les75Pa and Fen75Mu]. In order to test the 
parallel processing capabilities of this architecture on an actual KS 
configuration, a multiprocessor simulation system was embedded in 
the multiprocess implementation of Hearsay-II. Each KS in this 
configuration was modified with the appropriate synchronization 
primitives. 

The result of this simulation, which used an early version of 
the CI configuration that was strictly bottom-up in its processing 
(because it did not include the SASS module), showed that effective 
parallelism factors of four to six could be achieved [Fen77Pa]. 
Unfortunately, there does not exist similar simulation data for a fully 
configured CI or C2 configuration, both of which include top-down 
processing. However, it is expected that the C2 configuration would 
exhibit a much higher degree of parallelism, because KS interaction 
is more loosely-coupled and the system does a large amount of 
breadth-first type of search. 

The parallelism factors of four to six that were achieved 
were less than expected. Further experiments were performed to 
determine the reason for these low factors. One of these 
experiments was to run the system with all uses of the 
synchronization primitives turned off. In this mode, the parallelism 
factors increased to fourteen. This dramatic increase is due to the 
fact that much superfluous synchronization was performed in each 
KS to maintain data consistency because no assumptions were made 
about how the blackboard was modified by other KSs. This 
superfluous synchronization, combined with synchronization 
primitives whose granularity of locking was too coarse, led to 
unnecessarily large areas of the blackboard being locked in order 
to maintain data consistency; this resulted both in significant 
interference among concurrently executing KS processes and a high 
system overhead (between 50 and 100 percent) in order to support 
parallel processing. As with context validation (discussed above), 
this was a price paid for complete independence among KSs. 
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A surprising result was that system performance, in terms of 
accuracy, was as good with the synchronization disabled as its 
performance with the full synchronization. The explanation for this 
phenomenon is that the asynchronous, data-directed control of 
Hearsay-II is robust in the face of certain types of synchronization 
errors. For example, consider the normal activity sequence of a KS 
which involves first examining the blackboard, and then, based on 
the values read, modifying the blackboard. Suppose that between 
the time when the KS read the value of an attribute on the 
blackboard and when it modified the blackboard, the value of the 
attribute was changed; therefore, the modification was inconsistent 
with the current state of the blackboard data. However, because of 
the data-directed nature of KS activation, the changing of the 
attribute will probably trigger the same KS to be reinvoked to 
recalculate its original modification. Thus, the need is obviated for a 
KS, while executing, to lockout the areas of the blackboard it has 
read, in order to maintain the consistency of its modifications. In 
addition, other types of inconsistency can often be resolved 
because another KS with a different view of the problem will 
correct an incorrect hypothesis whether it resulted from a 
synchronization error, a mistake in the theory used by the KS, or 
from errorful data. Thus, this self-correcting nature of information 
flow among KSs, created through the use of a data-directed form of 
the hypothesize-and-test paradigm, in many cases obviates the 
need for explicit use of synchronization. 

CONCLUSIONS 
The major conclusions on the use of the multi-level 

blackboard structure are the following: 
1. The paradigm of viewing problem solving in terms of 

hypothesize-and-test actions distributed among distinct 
representations of the problem (where these 
representations form a hierarchy of abstractions) has been 
shown to be a computationally feasible approach to solving 
knowledge-intensive tasks. This paradigm also provides a 
convenient framework for structuring and applying 
knowledge. This has been demonstrated both by the 
successful application of the Hearsay-II architecture to the 
speech understanding task and also its adoption as an 
approach to problem-solving in a diverse set of other 

' domains such as image understanding [Pra77Se], reading 
comprehension [Rum76To], protein-crystallographic analysis 
[Eng77Kn], signal understanding [Nii77Ru], and complex 
learning [Sol77Kn]. 

2. The representation of alternative hypotheses in an 
integrated manner on the blackboard has been shown to 
have positive aspects. In particular, the integrated 
representation avoids unnecessary recalculation and makes 
it easy to compute a global view of the current state of the 
problem solution, for the purpose of focussing. The 
problems still to be resolved arise because the integrated 
representation permits hypotheses to be used 
simultaneously in (shared by) multiple contexts (hypothesis 
networks). Existing primitives for grouping alternative 
hypotheses are inefficient in space, and, more importantly, 
make it difficult to determine easily the different contexts 
that use a hypothesis; these primitives also do not provide a 
convenient framework for representing and determining the 
fact that two contexts have very similar hypothesis 
structures. 

3. There are problems with the current formulation of a partial 

solution as a distributed network of hypotheses at different 
information levels. There is a basic confusion in the 
Hearsay-II implementation between the hypothesis in the 
network which is at the highest level of abstraction 
(interpretation) and the entire network. This confusion, 
combined with the problem of handling of multiple uses of a 
hypothesis, makes it difficult to perform some of the 
complex focus-of-attention strategies possible in the 
architecture. 

4. The uniform structure of the blackboard at all information 
levels has turned out to be a very positive feature of the 
architecture. It has made it possible to integrate new KSs 
into the system easily and to develop a large set of utilities 
applicable to all KSs. It has also permitted numerous 
reimplementations of the internal structure of the 
blackboard without requiring KS modification. 

The major conclusions on the uniform, asynchronous, data-
directed control structure are the following: 

5. The use of an implicit and uniform control structure for KS 
cooperation makes the system easy to modify and 
understand. The separation permitted between the 
invocation of a KS and its scheduling makes it convenient to 
implement a variety of scheduling policies without KS 
modification. 

6. The overhead costs involved in implementing this type of 
control structure are acceptable for KSs which do moderate 
amounts of internal computation at each invocation (e.g., 
more than 1/10 second in the current implementation). 

7. This control structure is not appropriate for domains in 
which the hypothesis credibility ratings are not selective 
enough to suggest strongly good paths to search. 

8. The problem of focus of attention in this type of control 
environment, though not completely solved, is now 
understood well enough so that it no longers represents a 
major obstacle to the effective use of the architecture. The 
integrated representation of alternatives on the blackboard, 
which permits a global view of the current state of problem 
solution, and the data-directed control structure make it 
possible to quickly refocus attention to the appropriate 
places in the blackboard. 

9. The initial attempt to have complete KS independence (in 
both a sequential and parallel processing environment) 
resulted in a significant amount of overhead, and thus seems 
not to be worth the cost. A more balanced approach, based 
on some knowledge about the type of processing done by 
other KSs in the configuration, has been more effective. 
This knowledge does not violate anonymity of KSs because 
it is based on a functional characterization of their activity 
and not on their "names". Using this approach, KS 
configurations are still highly modular (i.e., there has been 
no serious subroutine interaction problem) without paying 
the severe costs (in complexity of KS programming and 
execution time) of complete independence. 

10.Parallel processing can be exploited effectively in this 
architecture. The techniques which are needed because of 
the errorful nature of the processing in this problem domain 
provide a form of processing which is also robust in the 
face of data inconsistency caused by not imposing complete 
synchronization among parallel processes. Thus, the 
overhead costs of the synchronization are reduced 
substantially, allowing effective use of parallelism. 

14 Another example of this self-correcting type of computational 
structure is a class of iterative refinement methods used to solve 
partial differential equations. This type of computational 
structure can be decomposed for multiprocessor implementation 
so as to avoid most explicit synchronization at the expense of 
more cycles to reach convergence [Bau76As]. This decomposition 
is accomplished by not requiring each point in the differential 
grid to be calculated based on the most up-to-date value of its 
neighboring points. 
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APPENDIX - CONFIGURATIONS OF KNOWLEDGE SOURCES 

Configuration CI 
The KSs of CI (see Figure 1) are functionally described here 

briefly. The name given in parentheses following the name of the 
KS is the module in which it was embedded. 

SEG (SEG) — The SEG KS [Gol76Se] generated, from the 
digitized acoustic signal, a sequence of contiguous, variable-length 
segment hypotheses. 

CSEG (PSYN) -- This KS [Sho76Ph] combined segment 
hypotheses into larger segment hypotheses. The stimulus frame 
was a sequence of three contiguous segment hypotheses; the action 
was to generate one or more new segment hypotheses, each of 
whose times lay within the time span of the three hypotheses in the 
stimulus frame. The precondition for this KS was triggered highly 
asynchronously — whenever a new segment hypothesis was 
created. The KS was then invoked once for every pair of segment 
hypotheses immediately preceding and following the new one. 

PSYN (PSYN) - This KS [Sho76Ph] created phone 
hypotheses, based on segment hypotheses. The stimulus frame was 
also a sequence of three contiguous segment hypotheses; the action 
was to generate one or more phonetic hypotheses, again with times 
within the boundaries of the stimulus hypotheses. The comment 
above about asynchrony of execution of CSEG also holds for PSYN. 

POM (POMOW) - The POM KS [Smi76Wo] generated syllable 
hypotheses from phone hypotheses. The stimulus frame contained 
phone hypotheses that were classified as syllable nuclei; the action 
of the KS was to create syllable hypotheses based on the stimulus 
frame and adjacent segment hypotheses. The precondition for this 
KS was very complex because it made no assumptions about the 
order in which phone hypotheses would be created. Thus, the 
creation of a new phone hypothesis of any kind (syllable nucleus or 
other) triggered the precondition and caused an invocation of the 
KS for each nucleus hypothesis with which the new phone 
hypothesis might possibly interact. 

MOW (POMOW) -- The MOW KS [Smi76Wo] generated word 
hypotheses from contiguous syllable hypotheses. The stimulus 
frame consisted of a newly-created syllable hypothesis; the output 
word hypotheses covered the same time as the stimulus hypothesis, 
but could also encompass syllable hypotheses on either side of the 
stimulus hypothesis (i.e., for multi-syllabic words.) If the stimulus 
hypothesis suggested a multi-syllabic word but the hypothesis for 
the other syllables did not exist, the word would not be 
hypothesized; however, if at some later time the required syllable 
hypothesis did appear, the KS would be triggered (by the new 
syllable) and the word hypothesized. 

RECOG (SASS) -- This RECOGnition KS [Hay76Sy] used 
syntactic knowledge to generate phrase hypotheses from 
contiguous word or phrase hypotheses. The precondition triggered 
on a new phrase or word Hypothesis (or one with a changed rating). 
If the triggering hypothesis completed, with existing hypotheses, a 
phrase and the constituents were rated sufficiently high, the KS 
was invoked. This was a bottom-up parsing action. 

PREDICT (SASS) - The PREDICTion KS [Hay76Sy] used 
syntactic knowledge to generate a new phrase hypothesis, given 
another phrase hypothesis that was highly rated. This was 
essentially a "sidewise" or "outward*' action. 

RESPELL (SASS) - This KS [Hay76Sy], given a predicted 
phrase hypothesis (i.e., one with no links to lower level hypotheses, 
either phrase or word) with a sufficiently high prediction rating, 
generated hypotheses of the constituents (words and/or phrases) 
of the predicted hypothesis. Thus, respelling drove processing 
downward, from predicted hypotheses towards the word level, so 
that predictions could ultimately be matched to acoustic data and 
verif ied or rejected. 

POSTDICT (SASS) — Given a weakly recognized or predicted 
phrase or word hypothesis, this KS [Hay76$y] looked for other 

hypotheses that tended to confirm it. Such hypotheses were linked 
to the "postdicted" hypothesis, increasing its rating. 

WOM (WOMOS) -- This KS [Cro76Wo] was triggered on new 
word hypotheses that were not linked to syllable hypotheses (i.e., 
ones that were generated "from above", by RESPELL or PREDICT). 
For each such hypothesis, it generated (via a dictionary lookup) 
expected syllable hypotheses which were likely to describe it. 

MPS (WOMOS) -- The MOS KS [Cro76Wo], given a new 
syllable hypothesis, generated (via a dictionary lookup) a set of 
surface-phonemic hypotheses which described the syllable. 

TIME (POSSE) - This KS [Cro76Wo] responded to the 
creation of a new phone or surface-phonemic hypothesis and 
attempted to create a link between the new hypothesis and an 
existing hypothesis at the other level. 

SEARCH (POSSE) - This KS [Cro76Wo] responded to the 
creation of a new link between a phone hypothesis and a surface-
phoneme hypothesis and attempted to create new links adjacent to 
the triggering one. Thus, TIME and SEARCH together incrementally 
built, through structural connections on the blackboard, a 
synchronization of a sequence of surface-phonemes representing a 
syllable with a sequence of lower-level, acoustically-based phones. 
The SEARCH KS was very complex in that it built up competing 
synchronizations (multiple interpretations); this was done with 
localized, incremental actions and while attempting to have the 
competing interpretations share maximal consistent sub-structures. 

RPQL (RPOL) — This policy KS [Hay76Hy] was responsible for 
propagating validity ratings. It triggered on the creation of an 
hypothesis, the establishment of a structural connection between 
two hypotheses, or the change of rating of an hypothesis. It 
calculated ratings for an hypothesis based on the values of KS-
assigned attributes and the ratings of its structurally connected 
neighboring hypotheses. 

FOCUS (FOCUS) —This policy KS imposed a global control 
strategy on the function of ail other KSs in the system. It imposed 
this control through the setting of goal hypotheses which indicated 
to a KS both that it should attempt to generate particular types of 
hypotheses and also what internal criterion (thresholds) it should 
apply in order to generate such hypotheses. 

The strategy implemented by this KS was based on a 
progressive enlarging of the search space of hypotheses as existing 
hypotheses prove fruitless; the idea behind this strategy is that one 
should open up the combinatorics in the search space only when 
absolutely necessary. The strategy was implemented by setting up 
initial goal hypotheses with very high criteria for hypothesis 
generation and then successively lowering these thresholds when 
the search stagnated. 

Configuration C2 (see Figure 2) 

SEG (SEG) — Functionally similar to SEG in C I . 
POM (POMOW) - This KS is similar to POM in C I , but 

hypothesizes directly from segment hypotheses (rather than phone 
hypotheses). Another difference from POM in CI is that the 
precondition here assumes that by the time it responds to the 
creation of a syllable nucleus segment hypothesis, all other segment 
hypotheses in the vicinity have also been created, thus simplifying 
the precondition considerably. 

MOW (POMOW) -- Functionally similar to MOW in C I . 
WORDCTL (WOSEQ) - This policy KS controls the generation 

of word hypotheses by MOW by creating "goal" hypotheses at each 
time area in the utterance which are interpreted by MOW as 
indicating how many word hypotheses are desirable in that area. 

WOSEQ (WOSEQ) - This KS [Les77Se] uses pair-wise 
syntactic knowledge to create, from contiguous word hypotheses, 
word-sequence hypotheses. Two preconditions can invoke this KS: 
One precondition responds to the creation of new word hypotheses 
bottom-up (and typically fires once per utterance, after all such 
word hypotheses have been created). The other precondition is 
tr iggered by previously-created word-sequence hypotheses being 
marked "rejected". 

WOSCTL (WOSEQ) — This policy KS monitors for stagnation in 
the search process; this condition is recognized if there are no 
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waiting KS instantiations above a certain priority or if the global 
measures of current state of the problem solution have not 
increased in the last n KS executions. If stagnation is recognized, 
this KS attempts to generate new word-sequence islands from 
which the search may be more fruitful. This is accomplished by 
decomposing existing word-sequence islands already on the 
blackboard or generating new islands which were initially discarded 
because their rating were too low. 

PARSE (SASS) ~ This KS [Hay77Sy] uses the full constraints 
of the grammar to parse word-sequence hypotheses by searching a 
graph representation of the grammar. Each such parsing action is 
done internally to the KS; the parse trees themselves do not appear 
on the blackboard. The stimulus hypothesis is a newly-created 
word-sequence hypothesis. If the words do not parse, the stimulus 
hypothesis is marked as "rejected". If the words do parse (i.e., can 
occur contiguously in some sentence of the language defined by the 
grammar), a phrase hypothesis is created. 

EXTEND (SASS) - The EXTEND KS [Hay77Sy] uses the 
grammar to predict words that might occur immediately preceding 
and following a phrase hypothesis. The stimulus hypothesis is a 
newly-created phrase hypothesis; the action is to a attach a "word-
prediction" attribute to the hypothesis which names the predicted 
words. 

MEW (POMOW) - The MEW KS is used to verify words which 
are predicted adjacent to a phrase hypothesis. The precondition 
triggers on a phrase hypothesis which has a word-prediction 
attr ibute added. An attempt is made to verify or reject each 
predicted word. The KS first checks the blackboard for a 
previously-hypothesized word that satisfies the time-adjacency 
criteria (i.e., immediately precedes/follows the predicting phrase). If 
none is found, a search is made of POMOW's internal store to see if 
the candidate can be matched by a word previously generated by 
MOW which has not been hypothesized on the blackboard. If one is 
still not found, the WIZARD procedure [McK77Wo] is called; this 
compares the segment hypotheses in the predicted area to a 
network description of possible pronunciations for the word. The 
result of the call to WIZARD is either a rejection of the predicted 
word, or else a verification, including a rating and an estimated end-
time (or begin-time, if predicted preceding the phrase).15 In 
general, several different "versions" of the word may be verif ied 
which differ in their end-times (begin-times); a word hypothesis is 
created for each such version and a "word-verification" attribute is 
added to the phrase hypothesis which names all the verified word 
hypotheses. 

CONCAT (SASS) - The CONCAT KS [Hay77Sy] responds to a 
phrase hypothesis which has a word-verification attribute added. 
The action is, for each verified word, to parse the words of the 
original phrase augmented by the newly verified word. The 
extended phrase is then hypothesized. If all predictions to the 
right or left of the phrase are rejected, the phrase hypothesis is 
marked as rejected, as is the underlying word-sequence hypothesis. 
(Note that this last action will re-trigger WOSEQ to generate more 
word sequences.) 

RPOL (RPOL) - This KS [Hay77Po] is similar to its counterpart 
in CI except that ratings of hypotheses above the word level (i.e., 
word sequences and phrases) are based on the word hypotheses 
that ultimately -underly them, rather than on the hypotheses that 
are directly connected to them from below (which are usually other 
word sequence or phrase hypotheses). 

STOP (RPOL) - This policy KS [Mos77Ha] triggers on the 
creation of each phrase hypothesis whose initial and final 
supporting hypotheses are the unique "begin-" and "end-of-
utterance" word hypotheses, respectively. Each such phrase 
hypothesis is a complete sentence and spans the entire utterance 
and thus is a candidate for selection as the system's recognition 
result. In general, the control and rating strategies do not 
guarantee that the first such complete spanning hypothesis found 

15 WIZARD is, in effect, a miniature version of the HARPY speech 
recognition system [Low76Ha], except that it has one network for 
each word, rather than one network with all words and all 
sentences. The WIZARD procedure is also used in the MOW KS. 

At aII levels: RPOL 

Fiaury 2: The levels and Knowledge-sources of configurat ion C2. 
(As operational in September, 1976.) 
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will have the highest rating of all poss.ble spanning sentence 
hypotheses that might be found if the search were allowed to 
continue, so the system should not just stop with the first one 
generated. However, the characteristics of such an hypothesis are 
used by STOP to prune from further consideration (by marking as 
"rejected") other partial hypotheses which, because of their low 
ratings, are unlikely to be extendible into spanning hypotheses with 
ratings higher than the best already-discovered spanning sentence. 
If the pruning process is severe enough, there will be no more 
partial phrase hypotheses left to consider by EXTEND; thus, KS 
activity will die out. This also triggers STOP, which then halts the 
system and selects the highest-rating complete spanning hypothesis 
as the "result". If this quiescence does not occur, the STOP KS will 
eventually force a halt after the expenditure of a predefined 
amount of computing resources (time or space). In this case, it also 
selects the highest-rated complete spanning hypothesis; if no such 
hypothesis exists, it selects several of the highest-rated partial 
phrase hypotheses as the "result". (This set of fragments is 
interpreted by the semantic interpretation program [Fox77Ma] 
which interfaces to the Hearsay-II system.) 
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