
A RETROSPECTIVE VIEW OF
THE HEARSAY-II ARCHITECTURE

Victor R. Lesser1 and Lee D. Erman

Department of Computer Science2

Carnegie-Mellon University, Pittsburgh, Pa, 15213

ABSTRACT
The Hearsay model has heen presented as a paradigm for

attacking errorful knowledge-intensive problems requiring multiple,
cooperating knowledge sources. The Hearsay-II architecture is the
latest attempt to explore the model. This paper describes
experiences gained while successfully applying this architecture to
the problem of speech understanding. The major conclusions are:

1. The paradigm of viewing problem solving in terms of
hypothesize-and-test actions distributed among distinct
representations of the problem has been shown to be
computationally feasible.

2. A global working memory (the "blackboard"), in which the
distinct representations are integrated in a uniform manner,
has made it convenient to construct and integrate the
individual sources of knowledge needed for the problem
solution.

3. The use of a uniform data-directed structure for controlling
knowledge-source activity has made the system easy to
understand and modify.

4. A solution has been demonstrated to the problem of focus-
of-attention in this type of control environment. This
solution does not need to be modified when the sources of
knowledge in the system are changed.

INTRODUCTION
The Hearsay model [Red73Mo] has been developed for

problem-solving in domains which must use large amounts of
diverse, errorful, and incomplete knowledge in order to search in a
large space. The Hearsay-1 architecture and system [Red73Hx and
Erm74En] represented a first (and successful) attempt to apply that
model to the problem of understanding connected speech in
specialized task domains. In this first application, the size of the
vocabulary (less than 100 words) and complexity of the grammar
were very limited.

Experiences with Hearsay-1 led to the more generalized
Hearsay-II architecture [Les750r and Erm75Mu] in order to handle
more difficult problems (e.g., larger vocabularies and less-
constrained grammars). The first configuration of knowledge
sources (KSs) for Hearsay-II -- configuration CI — was complete in
January, 1976 [CMU76W4]. This implementation had poor
performance (e.g., 107 sentences correct in 85 MIPSS (million
instructions per second of speech) on a 250-word vocabulary).
Experience with this configuration has led to a substantially
different set of KSs — configuration C2 [CMU77Su]. This
configuration performs substantially better (e.g., 857. correct in 60
MIPSS on a 1,000-word vocabulary).

The Hearsay-II system, with the second configuration, has
been successful: it comes close to the original performance goals
set out in 1971 to be met by the end of 1976 for the ARPA speech
understanding effort [New73Sp] and does so with a system
organization that is of interest because of the potential for its
application to other problem areas. Several other problems have
been attacked with organizations strongly influenced by the

1 Author's current address: Department of Computer and
Information Science, University of Mass., Amherst, Mass. 01003.

2 This work was supported by the Defense Advanced Research
Projects Agency (F44620-73-C-0074) and is monitored by the
Air Force Office of Scientific Research.

3 Other approaches for solving this class of problem include
production systems, frames [Min74Fr], heterarchical structures
[Wal770v and Woo76Fi], relaxation techniques [Bar76MS and
Ros76Sc), Planner [Hew72De], QA4 [Rul73Qa], and the Locus
model [Low76Ha and Rub77Lo].

Hearsay-II structure: image understanding [Pra77Se], reading
comprehension [Rum76To], protein-crystallographic analysis
[Eng77Kn], signal understanding [Nii77Ru], and complex learning
[Sol77Kn].

This paper is divided into two major parts. The first part
presents an overview of the Hearsay model, the Hearsay-II
architecture, which is a further specification of this model, and the
two KS configurations. (More detailed descriptions of these
configurations are contained in the appendix.) The second part of
the paper discusses the implication of these experiences for the
Hearsay model and the Hearsay-II architecture. In particular, those
aspects of the architecture are identified that have contributed
most strongly to the success of the system, as well as those parts
that need the most future work.** This discussion is structured
around two themes -- the multi-level global data base (blackboard)
for KS cooperation, and the asynchronous, data-directed control
structure for KS activation.5

OVERVIEW OF THE HEARSAY MODEL
A number of characteristics of the problem drive the Hearsay

model:
1. Large search space.
2. Diverse sources of knowledge. Many of the KSs are large;

some have large internal search problems of their own.
3. Error and variability. These are characteristics of both the

input data (the acoustic signal) and the processing of
knowledge sources.

4. Experimental approach needed for system development.
This implies the need for iterating the system and running
over large amounts of data.

5. Performance requirement -- accuracy and speed. This is
true of any practical solution to the problem as well as
during development (because of the experimental nature).

The basic notions of the Hearsay model [Red73Mo] were
developed in response to the requirements just stated:

1. The KSs are kept separate, independent, and anonymous.
This separation is felt to be a decomposition which is natural
and also can help make the combinatoric problems more
tractable. For development purposes, the separation should
help with system modifications (especially adding and
modifying KSs) and evaluation.

2. A global data structure -- the blackboard -- is the means of
communication and interaction of KSs. This provides an
hypothesize-and-test means of interaction. Each KS
accesses and modifies the blackboard in a uniform way.

3. A KS responds to changes to the blackboard which it is
concerned with; it applies its knowledge within the context'

4 The fact that certain parts of the implementation need further
work does not necessarily indicate deficiencies with the basic
Hearsay model, but rather points out inadequacies in the
Hearsay-II implementation of the model. It is to the model's credit
that even though some of its more sophisticated capabilities are
not implemented effectively, it still provides an appropriate
framework for the successful solution of a complex task. Thus,
one of the intents of this paper is to define some of the major
design goals for the next iteration in the implementation of the
Hearsay model.

5 While this paper discusses the means of organizing the
knowledge and applying it to the problem, it does not describe in
detail nor quantify the knowledge in the system. At least as much
work has been expended on specifying and debugging the
knowledge in the system as on building and refining the structure
to hold and apply that knowledge.

Specialal ized Svstems-2:
790

Lesser

of such a change. This implies data-directed activation of
KSs.

OVERVIEW OF THE HEARSAY-II ARCHITECTURE
The Hearsay-II architecture is one framework for

implementing the Hearsay model. In this section, a very brief
overview of that architecture is given. More details are described
in [Les750r and Erm75Mu].

The Blackboard
The blackboard is partitioned into distinct information Levels;

each level is used to hold a different representation of the problem
space. (Examples of levels are "phrase", "word", "syllable", and
"segment".) The decomposition of the problem space into levels is a
natural parallel to the decomposition of the knowledge into separate
KSs. For most KSs, the KS needs to deal with only a few (usually
two) levels to apply its knowledge. Its interface to the rest of the
system is in units and concepts that are natural to it.

The sequence of levels forms a loose hierarchical structure in
which the elements at each level can be described approximately as
abstractions of elements at the next lower level. The possible
hypotheses at a level form a problem space for KSs operating at
that level. A partial solution (i.e., a group of hypotheses) at one
level can be used to constrain the search at an adjacent level. For
example, consider a KS which can predict and rate words based on
acoustic information and another KS which knows about the
grammar of the language. The first KS can generate a set of
candidate word hypotheses. The second KS can use these
hypotheses to generate phrase hypotheses which can be used, in
turn, to predict words likely to precede or follow. These
predictions can now constrain the search for the first KS.

Associated with each level is a set of primitive elements
appropriate for representing the problem at that level; e.g., the
elements at the word level are the words of the vocabulary to be
recognized. The major units on the blackboard are hypotheses. An
hypothesis is an interpretation of a portion of the spoken utterance
at a particular level. E.g., an hypothesis might represent the
assertion that the word "GIVE" was spoken at the beginning of the
utterance. Each hypothesis at a given level is labeled as being a
particular element of the set of primitive elements at that level.

Each hypothesis, no matter what its level, has a uniform
attribute-value structure. Some attributes (and values) are
required of all hypotheses and others are optional, as needed.
Included among the required attributes of an hypothesis are its
level (e.g., word), its element name (e.g., "GIVE"), and an estimate of
its time coordinates within the spoken utterance (which can include
notions of "fuzziness" of estimate). The level and time attributes
place a two-dimensional structure on hypotheses which partitions
the blackboard and can be used for addressing hypotheses. Note
that two or more hypotheses at the same level with significantly
overlapping times are competitors] i.e., they represent competing
interpretations of a portion of the utterance.

Other attributes of an hypothesis include information about
its structural relationships with other hypotheses (forming an
AND/OR graph), validity ratings (i.e., estimates by KSs of the " t ru th"
of the hypothesis), and processing state. The processing state
attributes are summaries and classifications of the other attributes.
E.g., the values of the rating attributes are summarized by the
"rating state" attribute that takes a value from the set "Unrated",
"Neutral", "Verified", "Guaranteed", or "Rejected". New attributes
can be created by any KS and may be used for passing arbitrary
information about an hypothesis between instantiations of the same
or different KSs.

A KS can create new hypotheses, specifying values for
attributes of the new hypothesis. Given the "name" of an
hypothesis, a KS can examine or modify attributes of that
hypothesis. In addition, sets of hypotheses may be retrieved
associatively, based on the values of their attributes (e.g., all
hypotheses at the syllable level whose durations are greater than
250 msec). The hypothesis structure is uniform across all levels in
the blackboard. Thus, the form of access and modification to

hypotheses by KSs can also be uniform and is accomplished by
calling Kernel procedures; the set of these procedures comprises
the blackboard handler.

In addition to the information in each hypothesis which can
be accessed by KSs, auxiliary state information is maintained by
the blackboard handler in specialized data structures. Examples of
this information are (1) a representation of hypotheses at each
level arranged for efficient associative retrieval by time and (2) the
name of the highest-rated hypothesis in each time area. These
auxiliary structures are updated by the blackboard handler
automatically as KSs make changes to the blackboard.

Structure of Knowledge-Sources
Each KS has two major components: a precondition and an

action. The purpose of the precondition is to find a subset of
hypotheses that are appropriate for action by the KS and to invoke
the KS on that subset; the subset is called the stimulus frame of the
KS instantiation. For example, the precondition of the KS that
generates word hypotheses based on syllables looks for new
syllable hypotheses. When invoking the KS, the precondition
provides the system scheduler with, in addition to the stimulus
frame, a stylized description of the likely action that the KS
instantiation will perform (if and when it is allowed to execute); this
estimate of action is called the response frame. For example, a
response frame for the syllable-based word hypothesizer (MOW)
indicates that the action will be to generate hypotheses at the word
level and in a time area that includes at least that of the stimulus
frame. The action part of a KS is a program (written in SAIL
[Rei76SA]) for applying the knowledge to the stimulus frame and
making appropriate changes to the blackboard. In general, the
changes made will serve to trigger more KS activations.

To keep from having to fire the precondition continuously to
search the blackboard, each precondition declares to the blackboard
handler in a non-procedural way the primitive kinds of blackboard
changes in which it is interested. Each precondition is triggered
only when such primitive changes occur (and is then given pointers
to all of them). This changes a polling action into an interrupt-
driven one and is more efficient, especially as the number of
preconditions gets large. After being triggered (and when
scheduled for execution), the precondition (also a SAIL procedure)
can do arbitrary searching of the blackboard for hypothesis
configurations of interest to its KS.

Several KSs may be grouped together into modules. The KSs
within a module may share code and long-term built-in data. A
discussion of the module construct, including its implications for KS
independence, is given below in the section on "KS Independence".

Scheduling
Whenever a precondition is executed, it checks all blackboard

events in which it is interested that have occurred since the last
time it executed. For example, a "new hypothesis" to a precondition
is any hypothesis which was created between the last time the
precondition executed and its current execution. Thus, a
precondition may be thought of as executing, then "sleeping" for a
time while retaining state, then waking (executing again) and being
able to find all new events of interest to it.

However, whenever a KS executes, it uses the stimulus frame
specific to that invocation. Each KS execution goes to completion;
that is, the KS cannot put itself to "sleep", waiting for some other
event (on the blackboard) to occur.

At any point, there are, in general, a number of pending tasks
to execute — both invoked KSs and triggered preconditions. (In
practice, the number of pending tasks often exceeds 200.) A
scheduler in the kernel [Hay77Fo] calculates a priority for each
waiting task and selects for execution the task with the highest
priori ty. The priority calculation attempts to estimate the
usefulness of the action in fulfilling the overall system goal of
recognizing the utterance. This estimation is based on the specific
stimulus and response frames of the actions and on overall
blackboard state information, which includes such notions as the
best hypotheses in each time area in the utterance, and how much
time has elapsed since the current best hypothesis was generated.

S p e c i a l i z e Systems-2: Lesser
791

The priority of a KS is recalculated if the validity of its stimulus
frame is changed or the auxiliary state pertinent to evaluating the
significance of the response frame is modified.

Some KSs are not directly involved in hypothesizing and
testing partial solutions; instead, these control the search by
influencing the activation of other KSs. These policy KSs can be
used to impose global search strategies on the basic priority
scheduling mechanism.

THE CONFIGURATIONS
Following are brief overviews of configurations CI and C2, to

provide a basis for subsequent discussion. The appendix contains
more detailed descriptions of the KSs, as well as pointers to
published papers.

Figure 1 gives a schematic of configuration C1 as it was
operational in January, 1976. The levels are indicated by solid
horizontal lines and are labeled at the left. KSs are indicated by
vertical arcs with the circled end indicating the level where its
stimulus frame is and the pointed end indicating the level of its
response frame. The name of a KS is connected to its arc by a
dashed horizontal line. As segment hypotheses were generated
from the acoustic data (SEG), they might be combined to form larger
segment hypotheses (CSEG). Phone hypotheses were created,
based on one or more contiguous segments (PSYN). Syllables were
predicted from the phones (POM) and words from the syllables
(MOW). Phrase hypotheses were constructed from contiguous word
or phrase hypotheses which were syntactically consistent (RECOG).
Other KSs (PREDICT, RESPELL, and POSTDICT) accomplished various
syntactic extension and prediction functions at the phrase and word
levels. Verification of predicted words was carried out by
expanding the words into their expected syllables (WOM), expanding
the syllables into expected phonemes (MOS), and matching the
sequences of expected phonemes with the recognized phones (TIME
and SEARCH). Changes of ratings of hypotheses were propagated
to structurally connected hypotheses (RPOL). The FOCUS policy KS
controlled the search by setting priorities for various kinds of KS
actions.

Figure 2 gives a schematic of configuration C2 as it was
operational in September, 1976. First, all segment hypotheses are
generated from the parametric representation of the acoustic signal
(SEG). Next, syllables are predicted from the segments (POM).
Then, words are predicted from the syllables (MOW); the most likely
words in each time interval placed on the blackboard (WORDCTL).
Next, a heuristic word-sequence hypothesizer (WOSEQ) attempts to
identify the most probable sequences of word hypotheses
(consisting of successive language-adjacent word pairs). Because
this KS exploits statistical methods to improve credibility, the initial
word sequence hypotheses are much more accurate than are
hypotheses based on single words. Subsequently, KSs are invoked
to attempt to parse the hypothesized word sequences to determine
if they are grammatical (PARSE), to predict possible time-adjacent
grammatical word extensions (EXTEND), to hypothesize and verify
new words satisfying these predictions (MEW), to concatenate
grammatical and time-adj-acent word sequences (CONCAT), to
propagate ratings (RPOL), to reject phrases and to determine when
the serach should be terminated (STOP), and to generate new word
sequence hypotheses (WOSCTL).

The major system-related differences between these
configurations6 are listed here; they will be discussed individually
throughout the paper.

1. CI has asynchronous processing throughout. C2 has an
initial pass of sequential, bottom-up processing to the word

6 Though we are here concerned with systems issues, it is worth
pointing out that WOSEQ is a novel KS which significantly
contributes to the success of C2. It limits the search space by
providing large hypotheses which act as islands of reliability and
bases for further search. This KS uses approximate syntactic
knowledge to examine efficiently many alternative sequences of
low-reliability word hypotheses and generate a small number of
more reliable phrase hypotheses.

level; i.e., all segments are created, then all syllables, then a
selection of words.

2. CI used the blackboard extensively for intra-KS state-
saving between instantiations of a KS (e.g., SEARCH and
RECOG-PREDICT-RESPELL-POSTDICT). in C2, this was
greatly reduced, with KSs doing more computation internally
and in larger units (e.g., MEW and PARSE-EXTEND-CONCAT).

3. C2 generated simpler hypothesis networks than those in C I .
For example, SEARCH and TIME built complex structures to
represent verifications of words; MEW builds very simple
ones for the same purpose.

EXPERIENCES WITH HEARSAY-II
This section addresses the following questions: How well did

the Hearsay-II system meet its original design goals and were these
goals appropriate for problem solving in the speech understanding
domain (and more generally in errorful domains which require
extensive search)? This discussion is based on approximately three
years of experience with the Hearsay-II architecture, including
numerous iterations of both the system architecture and KS
configurat ions/ These questions will be discussed in the context of
two major aspects of the Hearsay-II architecture: the blackboard
global data base, and KS interaction and control.

Blackboard Data Base
There are two major design themes reflected in the structure

of the blackboard. The first theme is the avoidance of expensive
and complicated backtracking control structures by the
representation of alternative, distributed hypotheses in an
integrated multi-level manner. The second design theme is the
representation of all information levels with a high-level, uniform
structure, in order to allow all KSs to contribute their information to
the blackboard in an identical and anonymous manner.

Distributed Representation
It was hoped that the first design theme would (a) avoid the

redundant calculation of previously-generated results and (b) allow
KSs to apply their knowledge selectively to places in the blackboard
where further processing would resolve contradictory evidence
supporting likely, alternative hypotheses.

The ability to save partial results on the blackboard in an
integrated manner, in terms of hypothesis sub-networks, has been a
very positive characteristic of the architecture; it avoids a
significant amount of unnecessary recalculation of results previously
generated. This was especially true for KSs operating at the word
and phrase levels. This was also true for KSs in the CI
configuration operating at lower information levels, for example, the
TIME and SEARCH KSs. However, later versions of these KSs (e.g.,
MEW in C2), for reasons of efficiency (to be discussed later), do not
save partial results on the blackboard.

The use of an integrated representation as a way of
efficiently resolving competition among KSs wanting to work on the
same hypotheses has not been exploited, nor has the ability to
bring to bear specialized knowledge dynamically to resolve the
conflict among competing, alternative hypotheses (for example, a
specialized KS to resolve ambiguity between two word hypotheses

7 The emphasis on the two configurations as fixed points can be
misleading; rather than appearing full-grown, the configurations
evolved over time, with numerous iterations required first to
develop CI and then C2 from CI .

8 Hayes-Roth [Hay77Ro], in discussing how to evaluate the
potential usefulness of a KS action, introduces the concept of
diagnostictty as an important component in a KS priority function.
Diagnosticity is a measure of how much contradictory evidence
could potentially be resolved by a particular KS action.

9 The usual manner of accomplishing this is having each KS, as it is
about to create a new hypothesis, first check that a hypothesis
does not already exist which is sufficiently similar to the one it is
about to create.

S p e c i a l i z e d Systems-2 :
792

Lesser

that are very close acoustically — e.g., "sit" and "split"). In addition,
the ability given by the integrated representation to re-evaluate
automatically (i.e., without KS intervention) an hypothesis* credibility
when its supporting environment is modified is not exploited in the
C2 configuration (although it was C1). In the C2 configuration,
hypothesis credibility is never modified in an explicit sense; rather,
new and different hypotheses are created. A side effect of this
approach is that hypotheses are never deleted from the blackboard.

One explanation for the lack of full use of the integrated,
multi-level representation of hypotheses could be just that the
particular task domain of speech understanding does not need these
capabilities. However, it is our feeling that there are fundamental
weaknesses in the Hearsay-II representation of an integrated,
multi-level hypothesis; these weaknesses (to be discussed below)
make it difficult, both in terms of execution time and programming
complexity, to perform the desired analyses of the hypothesis
structure and its surrounding environment. This type of analysis is
the key to the effective use of the sophisticated processing
capabilities that are possible within the framework of the Hearsay
model.

Hypothesis Network Structure
A major problem in using the blackboard is that one cannot

operate on a network (in its simplest form, a tree) of interconnected
hypotheses as a composite unit. There is a basic confusion in
Hearsay-IPs implementation of hypothesis networks between (a) the
hypothesis at the top of the tree (the highest level of
interpretation) and (b) the whole tree; the state information
associated with an hypothesis is very local and does not adequately
characterize the state(s) of the hypothesis network(s) connected to
it. In order to operate effectively in a distributed manner on
interconnected multi-level hypothesis networks, the state
information associated with an individual hypothesis must allow a KS
to analyze quickly the local environment of an hypothesis and, more
importantly, the role that the hypothesis plays in the larger context
of the hypothesis networks it is part of. One of the consequences
of this deficiency is the difficulty encountered in making
appropriate scheduling decisions because the more global import of
a potential KS action cannot be determined easily.

For example, in configuration C I , an hypothesis at the phrase
level was constructed out of hypotheses at the phrase, word,
syllable, surface-phoneme, phone, and segment levels. Because of
the asynchronous nature of processing, a phrase hypothesis could
be supported by word hypotheses in different stages of verification
-- some might be fully verified, others only partially verified, or
some totally unverified. Possible KS actions waiting to work on this
hypothesis network could be a separate verification of each
unverified word, an attempt to extend the phrase in either the right
or left direction, a search for co-articulation effects among different
word pairs, or a full verification of a partially verified word. These
actions represent processing at different information levels. Given
the existing hypothesis interconnection primitives, there is no way
to determine easily that all these actions relate to the same
hypothesis network, nor what import each action could potentially
have in judging the credibility of the entire network.

Another symptom of this problem is the inability to express,
except in a very limited way, what type of processing has already
been applied to* an hypothesis network and what further processing
could possibly be applied. This inability again impacts the scheduler
because it makes it difficult to schedule "competing" KSs (i.e., KSs

10 It is expensive to trace through an hypothesis network to
determine the global import of a potential KS action. But this
cost is not unreasonable relative to the total system execution
time for a configuration which contains KSs that perform
moderately large amounts of internal computation. However, the
major computational expense comes in dynamically updating the
global import of a pending KS action as modifications are made to
the blackboard since there are a large number of these
modifications: it is necessary both to find which waiting KS
instantiations have priorities that are affected by the modification
and then to recalculate the priorities for those affected.

which could work on the same or different parts of a specific
hypothesis network) appropriately. Because of these difficulties
there has been, in later KS configurations, only a very limited (and
simply represented and analyzable) form of KS competition.

Another aspect of the inadequate network structure is that
the primitives for specifying structural relationships between
hypotheses require many intermediate levels to represent certain
types of connectivity patterns. This need for many intermediate
levels is expensive in in storage space and, more importantly, time;
it requires a great deal of network searching through the
connection structure to analyze the relationship of an hypothesis to
its immediate surrounding environment. These intermediate levels
represent a level of detail which is unnecessary for some types of
KS analysis and which interfere with these analyses by making them
unwarrantedly complex. Once it has been constructed, it is
impossible to bypass this level of detail in situations in which it is
not pertinent. For example, an information level may contain many
intermediate sublevels built out of the connection primitives; a KS
using information at this level may want only to examine those
hypotheses which are the highest sublevel in each time area. This
type of operation, given the current blackboard retrieval primitives,
requires the examination of all hypotheses in a specified time area.
Another complication of not being able to hide these intermediate
levels is that a KS in some cases has to know the exact structure of
the intermediate levels used by another KS in order to be able to
skip over them, thus making the KSs less independent.

In summary, the experience to date on the distributed
representation approach indicates that the implementations of this
concept explored so far are neither general nor efficient enough in
two major interrelated aspects -- how hypotheses can be combined
into a network and how the state information associated with an
individual hypothesis reflects the hypothesis networks connected to
it. To elaborate further, what is missing from the blackboard
structure is a way of viewing the shared network structure from a
different perspective. This perspective should permit the particular
path through the network that defines a specific composite
hypothesis to be both viewed in isolation from other paths that are
intertwined with it, and also in a way that eliminates superfluous
sub-structure. From this type of perspective, the importance of
potential KS actions could be judged efficiently and related to the
history of previous processing.11

Uniform Blackboard Structure
Let us now examine the second major design theme used to

structure the blackboard: a uniform structure at all information
levels. From a programming point of view, both in terms of KS
writers and system implementors, the uniform structure of the
blackboard has been a good design choice. By having a uniform
structure, a variety of standard blackboard creation, accessing,
display, analysis, and debugging functions could be developed that
are usable by all KSs. These standard functions, some of which are
quite complex, make it convenient for a KS writer to interface his
knowledge source with the system. The ease with which this
interfacing could be accomplished is exemplified by the fact that, in
a period of six months, configuration C2, which is almost entirely
new relative to C I , was developed and debugged. Because of this
uniform structure of hypotheses and their connections, it is often
possible for a KS to be recoded so that it generates a different
local hypothesis structure without requiring the recoding of other
KSs in the system; this is true because a KS can probe the
blackboard with sophisticated built-in retrieval operations which, in
many cases, shield the KS from changes made by other KSs. For
example, there is the structural-adjacency blackboard primitive
which, given a hypothesis, finds all hypotheses at a particular
information level that are immediately adjacent to the given
hypothesis based on the AND/OR connection structure among
hypotheses.

The uniformity of the attribute structure of hypotheses also

11 A possible approach for implementing this different type of
perspective is discussed in work by Hendrix [Hen75Ex] on
partitioned semantic networks.

Special ized Systems-2: Lesser
793

makes it possible to monitor efficiently for blackboard changes
which are to trigger preconditions. Each precondition needs only to
declare to the blackboard handler the names of the attributes at
each level in which it is interested. When an attribute is changed,
the blackboard handler then triggers all preconditions interested in
it.

The uniform blackboard structure, though efficiently
implemented, is not appropriate as a scratchpad for the internal
computations of a KS. This type of use of the blackboard is often
inappropriate because its uniform, general structure does not come
completely free in the storage requirements for an hypothesis and
the cost of creation and access; most internal computations of a KS
do not need this generality. An example of a misuse of the
blackboard was the case of the syntax analyzer knowledge source,
SASS [Hay77Un], In early versions of this KS, the blackboard was
used to hold the partial parse trees developed in attempting to
parse a language fragment; current versions of this KS, which use a
tailored, internal data structure for parsing, are two orders of
magnitude faster than the original blackboard-based version of this
KS. This case history seems to confirm the notion that there are
advantages to specialization of structures: one for KS interaction
(i.e., the blackboard), and separate ones for each KS.

The blackboard has also proven to be useful as a data base
for the scheduler [Hay77Fo]. Because of the uniform hypothesis
structure, instantiations of KSs can specify scheduling information in
a uniform way (as stimulus and response frames), allowing new KSs
to be introduced without having to modify the scheduler. The
representation of alternative hypotheses in an integrated, uniform
fashion also makes it possible to compare directly the pending KS
instantiations to determine which will likely contribute most to
further progress; the scheduler 1) can determine those areas on the
blackboard that most need further work and locate the pending KS
instantiations that are relevent to those areas and 2) estimate the
amount that a KS instantiation will improve the quality of
hypotheses in the area of its action.

Long-Term Information Structures
Associated with each information level of the blackboard,

there is, as previously discussed, a set of primitive elements that
are used to label hypotheses at that level. The kernel interface
provides facilities for creating, accessing, and displaying these
labels. In addition, arbitrary data structures can be associated with
each label. These structures, for example at the word information
level, can be simple, such as the average expected duration of each
word, or complex, such as a network which specifies alternative
syllabic spellings for each word. In the complex case, this structure
often is used to relate labels at one information level with labels at
another; this relationship is used by a KS which operates between
different levels (e.g., in the example given here, WOM in
configuration CI). These data structures related to labels constitute
much of the long-term (built-in) KS-defined information structures
of the system and often represent most of the problem-specific
knowledge in a KS.

Each KS (or group of KSs) defines whatever ad hoc structure
seems appropriate for the particular kind of information to be
represented. There has been no attempt to define a uniform set of
kernel interfaces for creating and accessing these long-term data
structures, nor a set of relationships (connection primitives) for
relating labels at different levels. However, it seems possible to
attempt to define a small number of representations within the
kernel; these structures would mimic the hierarchical structure of
the blackboard. (Hanson and Riseman in their work on image
understanding have a system architecture [Pra77Se] very similar to
the blackboard and have included a complementary long-term
memory structure.)

The major drawback of not having a predefined long-term
memory is that if KSs want to share this information they have to
agree among themselves upon a specific structure, thus violating
independence considerations. In addition, uniform structures could
make KSs easier to understand, develop, and analyze.

On the other hand, these long-term structures must be highly
optimized because of their large size and the high frequency with

which they are accessed.12 The approach taken of tailoring these
structures to the particular KS(s) using them allowed for efficient
implementations in terms of both time and space. It is also possible
that explicit tailoring has led to KSs which are easier to understand
than if they were forced to fit their requirements into a uniform
structure.

Thus, there are still open questions about the desirability of
providing uniform structures for representing the knowledge in KSs;
hopefully, future implementations will explore these possibilities.

Conclusions About Blackboard Usage
In trying to draw some conclusions about our experiences

with the use of the blackboard, the main issue that constantly
comes up is time and space efficiency. In errorful task domains,
such as speech understanding, a large number of alternative
interpretations of the data must be examined and analyzed. The
blackboard concept is effective in the Hearsay-II implementation to
the degree that it allows this search to be efficient. Analysis of the
CI configuration indicated that certain types of KS processing on
the blackboard were not efficient. Reimplementation of the KSs in
order to eliminate those types of processing resulted in the C2
configuration. The major uses of the blackboard in the C2
configuration are:

1. A storage, area for high-level intermediate results generated
by the search. This storage area avoids the unnecessary
recalculation of these results if they are encountered on
future search paths.

2. A communication area for KSs, with strong and simplified
assumptions by a KS of what structures can be generated
by other KSs.

3. A data base for the scheduler.
4. A common display, debugging, and performance evaluation

area.

Knowledge-Source Interaction and Control
The asynchronous, data-directed control structure used In

Hearsay-II was designed to permit:
1. The quick refocusing of attention to appropriate hypotheses

in the blackboard.
2. The flexible reconfiguration of the system with different

sets of independent (and possibly competing) KSs, and
different global control strategies.

3. The exploration of parallel processing.
This section will examine each of these requirements along

two dimensions: Were the capabilities embodied in the requirement
important to the project, and how well did the control structure (in
terms of time, space, and ease of representation) implement these
capabilities?

Appropriateness of a Data-Directed Control Structure
The first requirement, quick refocussing, was based on the

following model for processing in the speech domain. Processing
can be organized in terms of the incremental additions of small units
of information to a limited number of alternative hypotheses. The
limited number of alternatives derives from the view that there are
islands of reliability in the acoustic data that can be used to anchor
the search. Each small increment of information should help to
veri fy, refute, or augment (expand) an hypothesis. A KS action,
though performed in a local context, could also have the side effect
of contributing information useful in the evaluation of alternative
hypotheses (i.e., in other contexts). Thus, after each incremental
addition of information (through the execution of a KS), it is
necessary to re-examine the set of potential actions that now can
be activated and determine which of these will most likely resolve

12 For example, the description of the grammar used by the KSs
within the SASS module in configuration C2 is a network of 3100
nodes. Each node has about seven pointers to other nodes, plus
several pieces of auxiliary information. A typical KS action, e.g.,
parsing a four-word phrase, might make 100 to 5,000 node
accesses.

S p e c i a l i z e d S y s t e n s - 2 : L e s s e r
794

ambiguity. An asynchronous, data-directed architecture makes it
convenient to implement such a processing strategy by permitting
KS action to be directed by the data: it delays the application of
Knowledge until there is enough information for a meaningful result
(decision), and it re-applies the Knowledge when, at a later time,
additional information is generated that bears on the original
decision.

In those parts of the blacKboard where processing followed
this model, the data-directed control structure was very effective.
However, at lower levels of speech processing (i.e., segmentation
and labeling, syllable hypothesis generation based on segments, and
word spotting based on syllables), this model was found to be
inappropriate because there is not enough reliability in credibility
scores of hypotheses to form hypothesis islands that can reliably
anchor the search. Thus, processing at these levels cannot be
selective (depth-first), and instead requires a complete scan
(breadth-first), for which asynchronous control has no advantages
(and considerable costs).

A major change in going from configuration CI to C2 was
maKing the lower levels of processing more sequential and bottom-
up. Not until the word level is reached do hypothesis credibility
scores have enough reliability to justify the more complex
processing required of an asynchronous, data-directed control
structure. The presence of these islands of reliability is in itself
not a sufficient condition for the use of this sophisticated control
structure. What is additionally required is that there is either a
significant cost to evaluate each alternative or a large number of
alternatives (combinatoric explosion in the search space); only then
is the overhead involved in implementing a data-directed control
structure worthwhile.

In addition to the control overhead, an asynchronous control
structure requires a more complex internal structure for a KS. This
complexity arises because, as new information is asynchronously
generated, a KS must have the additional logic to determine whether
this new information allows it to make a decision it could not
previously maKe or whether this information contradicts a previous
decision. In the latter case, it must modify the previous decision,
which may involve modifying decisions made as a consequence of
the original one. Where processing involves a complex hypothesis
networK structure with much detailed structure, the nature of
asynchronous processing in response to a change at the detailed
level is costly, both in terms of processing time and complexity of
the KS, and should be avoided unless the compensatory benefits are
large. As previously mentioned, the inadequacies in the blacKboard
structure which maKe it difficult to sKip over detailed structure
exacerbate these problems. (The SEARCH KS in configuration CI is
an example of a KS worKing asynchronously at a detailed level.
Although the acoustic-phonetic Knowledge applied by SEARCH was
represented by a relatively simple data structure within the KS, the
code necessary for examining and incrementally building large,
integrated, and competing AND/OR structures on the blacKboard was
very complex and the number of KS executions needed to verify a
word was large -- on the order of ten to one hundred. In C2, the
function of word verification was replaced by the MEW KS -- here,
verifying a word is an atomic act (as far as other KS actions are
concerned) and is carried out using tailored structures internal to
the KS. Each execution of MEW forced a recalculation of the
detailed structure, rather than sharing such structures across
executions.)

Overhead Costs of Data-Directed Control
The overhead cost of implementing an asynchronous data-

directed control structure for computation of medium level
granularity (i.e., a KS action which involves greater than 1/10
second of internal computation) is not significant. The major cost
involves monitoring each modify operation to the blacKboard to
determine whether any preconditions are interested in being
notified of this specific change. This cost of monitoring and
notification makes a modify operation 12 times as expensive as a
read operation. However, in the C2 configuration there are 29
times as many reads as modify operations, thus maKing this aspect
of implementing a data-directed control only 4% of the total cost of
a run.

Another cost associated with implementing this type of
control structure involves maintaining a scheduler queue of waiting
KS instantiations and performing priority calculations to decide
which instantiation to run next. However, these focus of control
calculations, possibly expressed in a different way, are necessary in
any problem-solving system that involves a dynamic search. The
more general implementation of these calculations in the context of
an asynchronous control structure does not appear to generate
significantly more system overhead than a specialized
implementation of them in a system with more explicit control
structure. The cost of maintaining and updating the scheduler
queues and calculating the priorities was about 57 to 77 of a total
run.

Further costs involved in implementing this type of
asynchronous control structure arise because of the delay between
the invocation of a KS and its execution. The KS must, in general,
contain code that revalidates its invocation context before beginning
execution. However, by maKing some assumptions about the type of
processing other KSs could effect at particular information levels,
there was in practice very little need for context revalidation. KSs
did not in general interact by modifying previously-made
assumptions and detailed structures constructed by other KSs, but
rather through the incremental addition of new hypotheses to
existing structures or the verification of previously unverified
hypotheses.

KS Independence
As indicated above, complete independence among KSs was

not accomplished. However, information about the processing
characteristics of other KSs is generally very restricted, and relates
only to KSs which share either dynamic information on the
blacKboard or long-term static information. To facilitate such data
sharing, the concept of a module was introduced into the
architecture. A module contains a set of preconditions and KSs
which share common structures and related accessing procedures.
The KSs contained in a module generally operate at the same or
adjacent information levels and thus also share specialized
accessing and display routines for these information levels of the
blacKboard. A module usually represents the code of one KS
programmer and typically contains one to four KSs and one to four
preconditions. The clustering of KSs by their long-term information
structures turned out to be a convenient decomposition for
separably instantiable but related activity. The KS module is the
atomic unit which is the basic building blocK for different KS
configurations.13

How important is the property of independence of KSs? For
the two configurations discussed here, the KS modules are not
completely independent. However, during the lifetime of the
project, which involved numerous iterations of KSs, there has been
very little difficulty encountered by this lacK of complete
independence (i.e., the "subroutine interaction problem" did not
haunt us). It has been possible to configure systems with subsets
of KS modules (e.g., a "top-end" system that deals only with word
and phrase hypotheses or a "bottom-end" system which deals only
at and below the word level) without modifications to the modules
involved.

The reason for having little difficulty with the subroutine
interaction problem can be traced to the data-directed activation of
KSs. In general, interaction among KSs is accomplished by having a
KS modify the attribute structure of an hypothesis in a way which
causes some other KS(s) to be activated and attend to that
hypothesis. In order for KSs to communicate information which is
not representable using the standard, Kernel-supplied attributes,
the communicating KSs need only agree on the name of a new
attribute and the form of its value; this new attribute can then be
used to pass the information. Thus, it is not necessary for a KS to
Know the names of the other KSs involved. Individual KSs which

13 Each module is implemented as a separately compiled body of
code. A configuration is specified at load time by selecting the
desired modules. Additionally, any KS or precondition can be
inhibited at run-time, effectively excising it from the system.

S p p c l a l f T ^ H S y s t e m s - 2 : L e s s e r
795

create, are activated by, or use this information may be added to or
deleted from the system without requiring modifications to the
other KSs.
A KS as a Hypothesis Generator

There are two major reasons, in addition to the one already
discussed about context validation, why total independence was not
achieved; both of these relate to a KS as a generator of
hypotheses. The first reason concerns the control of the number of
hypotheses a KS should initially generate and the reinvocation of it
to generate additional, alternative hypotheses. The parameters
associated with hypothesis generation should be set by a policy KS
which has a more global view of the current state of the recognition
process. The need then arises for a mechanism by which a policy
KS can transmit its desires, in an anonymous and independent
manner, to the appropriate KS.

It was hoped initially that these "processing goals" could be
specified in terms of the basic hypothesize-and-test paradigm (i.e.,
by having the policy KS create the appropriate type of hypotheses
which would in turn trigger the desired activity). However, "asking
for something to be done" cannot always be specified conveniently
in this way nor in an anonymous manner. For example, if there is a
need for more word hypotheses to be generated in a particular
time area, the action of creating a new hypothesis at the phrase
level which will then be expanded at the word level does not
precisely capture the desired activity, nor does the somewhat
clumsy approach of modifying some attribute of the lower level data
(e.g., the syllable level) to force a KS to reprocess this data so as to
accomplish the desired activity. Note in this example, that by trying
to force the concept of processing goal into the hypothesize-and-
test paradigm, the policy KS must know the type of input stimulus
that will trigger a KS to produce the desired results, thus violating
the independence among modules. In addition, a KS which is
designed to do hypothesizing-and-testing does not necessarily
produce a response that will precisely match the desired processing
goal. Due to these difficulties of directly embedding goal processing
control in the hypothesize-and-test paradigm, an alternative
approach was developed (but not implemented) which integrates
smoothly with the data-directed control flow of Hearsay-11.

This alternative approach is based on introducing the concept
of a goal node into the blackboard, with types of attributes distinct
from those of an hypothesis and a means of relating goals at
different levels. The action of creating a goal at a particular level
is a monitorable event that triggers a KS that can do processing at
that level. By making a goal node distinct from an hypothesis, a
policy KS can generate goals without interfering with KSs that
operate at that information level but that cannot respond to the
goal. If the triggered KS cannot directly satisfy the goal, it can
generate a subgoal, linked to the original goal, to generate data at
another level which could be used by the KS to satisfy the original
goal. In this way, a policy KS can interact with KSs in an
anonymous and independent way. For example, if there is no KS to
react to the goal, processing can still continue. In the same manner,
if there is more than one KS that can respond to the goal (i.e.,
competing KSs), the scheduler can resolve this conflict without the
need for any action by the KS that generated the goal. A goal node
can also be used as a convenient place for a generator type of KS
action to leave internal state information about how much and what
type of further processing it can do in this area.

The other major reason for violating the independence
criterion was based on an efficiency consideration. As previously
mentioned, it is comparatively expensive to create an hypothesis on
the blackboard. The cost of hypothesis creation is especially
critical with a KS that can potentially generate a large number of
hypotheses. For example, the syntax prediction KS (EXTEND, in C2)
can create, based on a prediction from a single phrase hypothesis,
several hundred word hypotheses. Each of these must then be
processed by the word verifier KS (MEW) and verified or rejected.
Before these hypotheses are verified they share almost identical
structures. All but twenty, perhaps, will be rejected by MEW. To
avoid the expense of expanding these as distinct blackboard word
hypotheses, special data structures have been constructed to store
the predicted words compactly, these data structures are then

attached as an attribute of the phrase hypothesis. This example
further illustrates the weakness in the current Hearsay-II
implementation of efficiently representing and processing groups of
hypotheses.

Uniformity of Control
Another issue associated with the data-directed control

structure is the ease with which different global control strategies
can be explored. The uniform interface conventions used for
specifying and activating KSs and preconditions, together with
treating policy (strategy) KSs in the same way as other KSs makes
the total system easy to modify and understand.

As part of the uniform convention for specifying each KS,
non-procedural declarations are required which tell the system the
type of pattern that triggers the KS and the type of action that can
result from the activation of the KS. By separating the activation of
a KS from its scheduling, it has been easy to introduce new global
strategies by applying a new priority evaluation function to the
information supplied by each KS. In addition, by allowing a policy
KS to be able to trigger upon certain conditions that occur in the
scheduling "data base" (such as the absence of any invoked KSs, or
the lack of any invoked KSs above a certain priority level), it is
possible to add different types of policy KSs into the system in a
modular manner (e.g., WOSCTL in configuration C2).

In the initial specification of the Hearsay-II architecture, the
approach required for focus of control was not well developed and
represented one of the major conceptual problems which would
determine the success of the design. As a result of work on this
problem over the last three years, it is felt that the problem,
though not completely solved, is now understood well enough so
that it no longer represents a major obstacle to the effective use of
the architecture. It is interesting to note that much of the
discussion in preceding sections is based on a better understanding
of what features need to be present in the architecture in order to
efficiently support complex focus of control strategies.

Parallel Processing
One of the initial design goals of the Hearsay-II architecture

was that it should be efficiently (and correctly) executable on a
multiprocessor [Les75Pa and Fen75Mu]. In order to test the
parallel processing capabilities of this architecture on an actual KS
configuration, a multiprocessor simulation system was embedded in
the multiprocess implementation of Hearsay-II. Each KS in this
configuration was modified with the appropriate synchronization
primitives.

The result of this simulation, which used an early version of
the CI configuration that was strictly bottom-up in its processing
(because it did not include the SASS module), showed that effective
parallelism factors of four to six could be achieved [Fen77Pa].
Unfortunately, there does not exist similar simulation data for a fully
configured CI or C2 configuration, both of which include top-down
processing. However, it is expected that the C2 configuration would
exhibit a much higher degree of parallelism, because KS interaction
is more loosely-coupled and the system does a large amount of
breadth-first type of search.

The parallelism factors of four to six that were achieved
were less than expected. Further experiments were performed to
determine the reason for these low factors. One of these
experiments was to run the system with all uses of the
synchronization primitives turned off. In this mode, the parallelism
factors increased to fourteen. This dramatic increase is due to the
fact that much superfluous synchronization was performed in each
KS to maintain data consistency because no assumptions were made
about how the blackboard was modified by other KSs. This
superfluous synchronization, combined with synchronization
primitives whose granularity of locking was too coarse, led to
unnecessarily large areas of the blackboard being locked in order
to maintain data consistency; this resulted both in significant
interference among concurrently executing KS processes and a high
system overhead (between 50 and 100 percent) in order to support
parallel processing. As with context validation (discussed above),
this was a price paid for complete independence among KSs.

S p e c i a l i z e d S y s t e m s - 2 : L e s s e r
79G

A surprising result was that system performance, in terms of
accuracy, was as good with the synchronization disabled as its
performance with the full synchronization. The explanation for this
phenomenon is that the asynchronous, data-directed control of
Hearsay-II is robust in the face of certain types of synchronization
errors. For example, consider the normal activity sequence of a KS
which involves first examining the blackboard, and then, based on
the values read, modifying the blackboard. Suppose that between
the time when the KS read the value of an attribute on the
blackboard and when it modified the blackboard, the value of the
attribute was changed; therefore, the modification was inconsistent
with the current state of the blackboard data. However, because of
the data-directed nature of KS activation, the changing of the
attribute will probably trigger the same KS to be reinvoked to
recalculate its original modification. Thus, the need is obviated for a
KS, while executing, to lockout the areas of the blackboard it has
read, in order to maintain the consistency of its modifications. In
addition, other types of inconsistency can often be resolved
because another KS with a different view of the problem will
correct an incorrect hypothesis whether it resulted from a
synchronization error, a mistake in the theory used by the KS, or
from errorful data. Thus, this self-correcting nature of information
flow among KSs, created through the use of a data-directed form of
the hypothesize-and-test paradigm, in many cases obviates the
need for explicit use of synchronization.

CONCLUSIONS
The major conclusions on the use of the multi-level

blackboard structure are the following:
1. The paradigm of viewing problem solving in terms of

hypothesize-and-test actions distributed among distinct
representations of the problem (where these
representations form a hierarchy of abstractions) has been
shown to be a computationally feasible approach to solving
knowledge-intensive tasks. This paradigm also provides a
convenient framework for structuring and applying
knowledge. This has been demonstrated both by the
successful application of the Hearsay-II architecture to the
speech understanding task and also its adoption as an
approach to problem-solving in a diverse set of other

' domains such as image understanding [Pra77Se], reading
comprehension [Rum76To], protein-crystallographic analysis
[Eng77Kn], signal understanding [Nii77Ru], and complex
learning [Sol77Kn].

2. The representation of alternative hypotheses in an
integrated manner on the blackboard has been shown to
have positive aspects. In particular, the integrated
representation avoids unnecessary recalculation and makes
it easy to compute a global view of the current state of the
problem solution, for the purpose of focussing. The
problems still to be resolved arise because the integrated
representation permits hypotheses to be used
simultaneously in (shared by) multiple contexts (hypothesis
networks). Existing primitives for grouping alternative
hypotheses are inefficient in space, and, more importantly,
make it difficult to determine easily the different contexts
that use a hypothesis; these primitives also do not provide a
convenient framework for representing and determining the
fact that two contexts have very similar hypothesis
structures.

3. There are problems with the current formulation of a partial

solution as a distributed network of hypotheses at different
information levels. There is a basic confusion in the
Hearsay-II implementation between the hypothesis in the
network which is at the highest level of abstraction
(interpretation) and the entire network. This confusion,
combined with the problem of handling of multiple uses of a
hypothesis, makes it difficult to perform some of the
complex focus-of-attention strategies possible in the
architecture.

4. The uniform structure of the blackboard at all information
levels has turned out to be a very positive feature of the
architecture. It has made it possible to integrate new KSs
into the system easily and to develop a large set of utilities
applicable to all KSs. It has also permitted numerous
reimplementations of the internal structure of the
blackboard without requiring KS modification.

The major conclusions on the uniform, asynchronous, data-
directed control structure are the following:

5. The use of an implicit and uniform control structure for KS
cooperation makes the system easy to modify and
understand. The separation permitted between the
invocation of a KS and its scheduling makes it convenient to
implement a variety of scheduling policies without KS
modification.

6. The overhead costs involved in implementing this type of
control structure are acceptable for KSs which do moderate
amounts of internal computation at each invocation (e.g.,
more than 1/10 second in the current implementation).

7. This control structure is not appropriate for domains in
which the hypothesis credibility ratings are not selective
enough to suggest strongly good paths to search.

8. The problem of focus of attention in this type of control
environment, though not completely solved, is now
understood well enough so that it no longers represents a
major obstacle to the effective use of the architecture. The
integrated representation of alternatives on the blackboard,
which permits a global view of the current state of problem
solution, and the data-directed control structure make it
possible to quickly refocus attention to the appropriate
places in the blackboard.

9. The initial attempt to have complete KS independence (in
both a sequential and parallel processing environment)
resulted in a significant amount of overhead, and thus seems
not to be worth the cost. A more balanced approach, based
on some knowledge about the type of processing done by
other KSs in the configuration, has been more effective.
This knowledge does not violate anonymity of KSs because
it is based on a functional characterization of their activity
and not on their "names". Using this approach, KS
configurations are still highly modular (i.e., there has been
no serious subroutine interaction problem) without paying
the severe costs (in complexity of KS programming and
execution time) of complete independence.

10.Parallel processing can be exploited effectively in this
architecture. The techniques which are needed because of
the errorful nature of the processing in this problem domain
provide a form of processing which is also robust in the
face of data inconsistency caused by not imposing complete
synchronization among parallel processes. Thus, the
overhead costs of the synchronization are reduced
substantially, allowing effective use of parallelism.

14 Another example of this self-correcting type of computational
structure is a class of iterative refinement methods used to solve
partial differential equations. This type of computational
structure can be decomposed for multiprocessor implementation
so as to avoid most explicit synchronization at the expense of
more cycles to reach convergence [Bau76As]. This decomposition
is accomplished by not requiring each point in the differential
grid to be calculated based on the most up-to-date value of its
neighboring points.

ACKNOWLEDGMENTS
Raj Reddy has provided much of the vision and energy for

this work, most of the central ideas in the Hearsay model, and much
technical expertise in many of the knowledge sources in the
Hearsay-II system. Richard Fennell and Rick Hayes-Roth have been
particularly instrumental in formulating and testing the Hearsay-II
architecture. All members of the CMU "speech group" have
contributed to this work; their substantial efforts are gratefully
acknowledged. Oan Corkhill, Mark Fox, Doug Lenat, Jack Mostow,

S p e c i a l i z e d Sys tens-2 ;
797

Lesser

Don McCracken, John McDermott, Allen Newell, Ed Riseman, and Elliot
Soloway have made helpful suggestions for this paper.

APPENDIX - CONFIGURATIONS OF KNOWLEDGE SOURCES

Configuration CI
The KSs of CI (see Figure 1) are functionally described here

briefly. The name given in parentheses following the name of the
KS is the module in which it was embedded.

SEG (SEG) — The SEG KS [Gol76Se] generated, from the
digitized acoustic signal, a sequence of contiguous, variable-length
segment hypotheses.

CSEG (PSYN) -- This KS [Sho76Ph] combined segment
hypotheses into larger segment hypotheses. The stimulus frame
was a sequence of three contiguous segment hypotheses; the action
was to generate one or more new segment hypotheses, each of
whose times lay within the time span of the three hypotheses in the
stimulus frame. The precondition for this KS was triggered highly
asynchronously — whenever a new segment hypothesis was
created. The KS was then invoked once for every pair of segment
hypotheses immediately preceding and following the new one.

PSYN (PSYN) - This KS [Sho76Ph] created phone
hypotheses, based on segment hypotheses. The stimulus frame was
also a sequence of three contiguous segment hypotheses; the action
was to generate one or more phonetic hypotheses, again with times
within the boundaries of the stimulus hypotheses. The comment
above about asynchrony of execution of CSEG also holds for PSYN.

POM (POMOW) - The POM KS [Smi76Wo] generated syllable
hypotheses from phone hypotheses. The stimulus frame contained
phone hypotheses that were classified as syllable nuclei; the action
of the KS was to create syllable hypotheses based on the stimulus
frame and adjacent segment hypotheses. The precondition for this
KS was very complex because it made no assumptions about the
order in which phone hypotheses would be created. Thus, the
creation of a new phone hypothesis of any kind (syllable nucleus or
other) triggered the precondition and caused an invocation of the
KS for each nucleus hypothesis with which the new phone
hypothesis might possibly interact.

MOW (POMOW) -- The MOW KS [Smi76Wo] generated word
hypotheses from contiguous syllable hypotheses. The stimulus
frame consisted of a newly-created syllable hypothesis; the output
word hypotheses covered the same time as the stimulus hypothesis,
but could also encompass syllable hypotheses on either side of the
stimulus hypothesis (i.e., for multi-syllabic words.) If the stimulus
hypothesis suggested a multi-syllabic word but the hypothesis for
the other syllables did not exist, the word would not be
hypothesized; however, if at some later time the required syllable
hypothesis did appear, the KS would be triggered (by the new
syllable) and the word hypothesized.

RECOG (SASS) -- This RECOGnition KS [Hay76Sy] used
syntactic knowledge to generate phrase hypotheses from
contiguous word or phrase hypotheses. The precondition triggered
on a new phrase or word Hypothesis (or one with a changed rating).
If the triggering hypothesis completed, with existing hypotheses, a
phrase and the constituents were rated sufficiently high, the KS
was invoked. This was a bottom-up parsing action.

PREDICT (SASS) - The PREDICTion KS [Hay76Sy] used
syntactic knowledge to generate a new phrase hypothesis, given
another phrase hypothesis that was highly rated. This was
essentially a "sidewise" or "outward*' action.

RESPELL (SASS) - This KS [Hay76Sy], given a predicted
phrase hypothesis (i.e., one with no links to lower level hypotheses,
either phrase or word) with a sufficiently high prediction rating,
generated hypotheses of the constituents (words and/or phrases)
of the predicted hypothesis. Thus, respelling drove processing
downward, from predicted hypotheses towards the word level, so
that predictions could ultimately be matched to acoustic data and
verif ied or rejected.

POSTDICT (SASS) — Given a weakly recognized or predicted
phrase or word hypothesis, this KS [Hay76$y] looked for other

hypotheses that tended to confirm it. Such hypotheses were linked
to the "postdicted" hypothesis, increasing its rating.

WOM (WOMOS) -- This KS [Cro76Wo] was triggered on new
word hypotheses that were not linked to syllable hypotheses (i.e.,
ones that were generated "from above", by RESPELL or PREDICT).
For each such hypothesis, it generated (via a dictionary lookup)
expected syllable hypotheses which were likely to describe it.

MPS (WOMOS) -- The MOS KS [Cro76Wo], given a new
syllable hypothesis, generated (via a dictionary lookup) a set of
surface-phonemic hypotheses which described the syllable.

TIME (POSSE) - This KS [Cro76Wo] responded to the
creation of a new phone or surface-phonemic hypothesis and
attempted to create a link between the new hypothesis and an
existing hypothesis at the other level.

SEARCH (POSSE) - This KS [Cro76Wo] responded to the
creation of a new link between a phone hypothesis and a surface-
phoneme hypothesis and attempted to create new links adjacent to
the triggering one. Thus, TIME and SEARCH together incrementally
built, through structural connections on the blackboard, a
synchronization of a sequence of surface-phonemes representing a
syllable with a sequence of lower-level, acoustically-based phones.
The SEARCH KS was very complex in that it built up competing
synchronizations (multiple interpretations); this was done with
localized, incremental actions and while attempting to have the
competing interpretations share maximal consistent sub-structures.

RPQL (RPOL) — This policy KS [Hay76Hy] was responsible for
propagating validity ratings. It triggered on the creation of an
hypothesis, the establishment of a structural connection between
two hypotheses, or the change of rating of an hypothesis. It
calculated ratings for an hypothesis based on the values of KS-
assigned attributes and the ratings of its structurally connected
neighboring hypotheses.

FOCUS (FOCUS) —This policy KS imposed a global control
strategy on the function of ail other KSs in the system. It imposed
this control through the setting of goal hypotheses which indicated
to a KS both that it should attempt to generate particular types of
hypotheses and also what internal criterion (thresholds) it should
apply in order to generate such hypotheses.

The strategy implemented by this KS was based on a
progressive enlarging of the search space of hypotheses as existing
hypotheses prove fruitless; the idea behind this strategy is that one
should open up the combinatorics in the search space only when
absolutely necessary. The strategy was implemented by setting up
initial goal hypotheses with very high criteria for hypothesis
generation and then successively lowering these thresholds when
the search stagnated.

Configuration C2 (see Figure 2)

SEG (SEG) — Functionally similar to SEG in C I .
POM (POMOW) - This KS is similar to POM in C I , but

hypothesizes directly from segment hypotheses (rather than phone
hypotheses). Another difference from POM in CI is that the
precondition here assumes that by the time it responds to the
creation of a syllable nucleus segment hypothesis, all other segment
hypotheses in the vicinity have also been created, thus simplifying
the precondition considerably.

MOW (POMOW) -- Functionally similar to MOW in C I .
WORDCTL (WOSEQ) - This policy KS controls the generation

of word hypotheses by MOW by creating "goal" hypotheses at each
time area in the utterance which are interpreted by MOW as
indicating how many word hypotheses are desirable in that area.

WOSEQ (WOSEQ) - This KS [Les77Se] uses pair-wise
syntactic knowledge to create, from contiguous word hypotheses,
word-sequence hypotheses. Two preconditions can invoke this KS:
One precondition responds to the creation of new word hypotheses
bottom-up (and typically fires once per utterance, after all such
word hypotheses have been created). The other precondition is
tr iggered by previously-created word-sequence hypotheses being
marked "rejected".

WOSCTL (WOSEQ) — This policy KS monitors for stagnation in
the search process; this condition is recognized if there are no

S p e c i a l i z e d Sys tens -2 : Lesser
708

waiting KS instantiations above a certain priority or if the global
measures of current state of the problem solution have not
increased in the last n KS executions. If stagnation is recognized,
this KS attempts to generate new word-sequence islands from
which the search may be more fruitful. This is accomplished by
decomposing existing word-sequence islands already on the
blackboard or generating new islands which were initially discarded
because their rating were too low.

PARSE (SASS) ~ This KS [Hay77Sy] uses the full constraints
of the grammar to parse word-sequence hypotheses by searching a
graph representation of the grammar. Each such parsing action is
done internally to the KS; the parse trees themselves do not appear
on the blackboard. The stimulus hypothesis is a newly-created
word-sequence hypothesis. If the words do not parse, the stimulus
hypothesis is marked as "rejected". If the words do parse (i.e., can
occur contiguously in some sentence of the language defined by the
grammar), a phrase hypothesis is created.

EXTEND (SASS) - The EXTEND KS [Hay77Sy] uses the
grammar to predict words that might occur immediately preceding
and following a phrase hypothesis. The stimulus hypothesis is a
newly-created phrase hypothesis; the action is to a attach a "word-
prediction" attribute to the hypothesis which names the predicted
words.

MEW (POMOW) - The MEW KS is used to verify words which
are predicted adjacent to a phrase hypothesis. The precondition
triggers on a phrase hypothesis which has a word-prediction
attr ibute added. An attempt is made to verify or reject each
predicted word. The KS first checks the blackboard for a
previously-hypothesized word that satisfies the time-adjacency
criteria (i.e., immediately precedes/follows the predicting phrase). If
none is found, a search is made of POMOW's internal store to see if
the candidate can be matched by a word previously generated by
MOW which has not been hypothesized on the blackboard. If one is
still not found, the WIZARD procedure [McK77Wo] is called; this
compares the segment hypotheses in the predicted area to a
network description of possible pronunciations for the word. The
result of the call to WIZARD is either a rejection of the predicted
word, or else a verification, including a rating and an estimated end-
time (or begin-time, if predicted preceding the phrase).15 In
general, several different "versions" of the word may be verif ied
which differ in their end-times (begin-times); a word hypothesis is
created for each such version and a "word-verification" attribute is
added to the phrase hypothesis which names all the verified word
hypotheses.

CONCAT (SASS) - The CONCAT KS [Hay77Sy] responds to a
phrase hypothesis which has a word-verification attribute added.
The action is, for each verified word, to parse the words of the
original phrase augmented by the newly verified word. The
extended phrase is then hypothesized. If all predictions to the
right or left of the phrase are rejected, the phrase hypothesis is
marked as rejected, as is the underlying word-sequence hypothesis.
(Note that this last action will re-trigger WOSEQ to generate more
word sequences.)

RPOL (RPOL) - This KS [Hay77Po] is similar to its counterpart
in CI except that ratings of hypotheses above the word level (i.e.,
word sequences and phrases) are based on the word hypotheses
that ultimately -underly them, rather than on the hypotheses that
are directly connected to them from below (which are usually other
word sequence or phrase hypotheses).

STOP (RPOL) - This policy KS [Mos77Ha] triggers on the
creation of each phrase hypothesis whose initial and final
supporting hypotheses are the unique "begin-" and "end-of-
utterance" word hypotheses, respectively. Each such phrase
hypothesis is a complete sentence and spans the entire utterance
and thus is a candidate for selection as the system's recognition
result. In general, the control and rating strategies do not
guarantee that the first such complete spanning hypothesis found

15 WIZARD is, in effect, a miniature version of the HARPY speech
recognition system [Low76Ha], except that it has one network for
each word, rather than one network with all words and all
sentences. The WIZARD procedure is also used in the MOW KS.

At aII levels: RPOL

Fiaury 2: The levels and Knowledge-sources of configurat ion C2.
(As operational in September, 1976.)

S p e c i a l i z e d Systems-2: Lesser
799

will have the highest rating of all poss.ble spanning sentence
hypotheses that might be found if the search were allowed to
continue, so the system should not just stop with the first one
generated. However, the characteristics of such an hypothesis are
used by STOP to prune from further consideration (by marking as
"rejected") other partial hypotheses which, because of their low
ratings, are unlikely to be extendible into spanning hypotheses with
ratings higher than the best already-discovered spanning sentence.
If the pruning process is severe enough, there will be no more
partial phrase hypotheses left to consider by EXTEND; thus, KS
activity will die out. This also triggers STOP, which then halts the
system and selects the highest-rating complete spanning hypothesis
as the "result". If this quiescence does not occur, the STOP KS will
eventually force a halt after the expenditure of a predefined
amount of computing resources (time or space). In this case, it also
selects the highest-rated complete spanning hypothesis; if no such
hypothesis exists, it selects several of the highest-rated partial
phrase hypotheses as the "result". (This set of fragments is
interpreted by the semantic interpretation program [Fox77Ma]
which interfaces to the Hearsay-II system.)

REFERENCES

Bau76As Baudet, G. M. Asynchronous iterative methods for multiprocessors
Tech. Rep., Dept, of Computer Science, Carnegie-Mellon Univ., Pittsburgh,
Pa, Nov., 1976

Bar76Sc Barrow, H. G. and Tennenbaum, J M MSYS A system for reasoning
about scenes Tach Rep 121, AI Canter, SRI, Menlo Park, Ca, Apr.,
1976

CMU76W4 CMU Computer Science Speech Group Working papers in speech
recognition IV: The Hearsay-II system Tech Rep, CMU, Feb, 1976

CMU77Su CMU Computer Science Speech Group Summary of the CMU Five-
year ARPA ef for t in speech understanding research. Tech Rep, CMU,
1977

Cro76Wo Cronk, R and Erman, L D. Word verification in the Hearsay-II
speech understanding system. Tech Rop, CMU, 1976

Eng77Kn Engetmore, R S and Nu, H P. A knowledge-based system for the
interpretation of protein x-ray crystallogrnphic data. Tach. Rep Stan-
CS-77-589, Stanford Univ, Stanford, CA Feb., 1977.

Erm7AEn Erman, L. D. An environment and system for machine understanding
of connected speech Tech Rep, CMU, 1974 (PhD Dissertation, Comp
Sei Dept, Stanford Univ.)

Erm75Mu Erman, I D and Lessor, V R A multi-level organization for problem
solving using mony diveruo cooporating sources of knowledge. Proc 4th
Inter, Joint Conf. on Artificial Intelligence, Tbilisi, USSR, 1975, 483-490.

Fen75Mu Fennoll, R D Multiprocess software architecture for Al problem
solving Tech Rep, CMU, 1975 PhD Dissertation

Fen77Pa Fennell, R D and Leccor, V. R Parallelism in AI problem solving a
case study of Hearsay-II IEEE Trons, on Computers. C-26 (Feb., 1977),
98-111

Fox77Ma Fox, M S and Mostow, D J Maximal Consistent Interpretations of
Errorful Data in Hierarchically Modelled Domains Tech Rep, CMU, 1977.

Gol76Se Goldberg, H G Segmentation and labeling of connected speech
Appeared in [CM76W4)

Hay76Hy Hayes-Roth, F, Erman, L D and Lesser, V R Hypothesis validity
ratings in the Hearsay-II speech understanding system Appeared in
(CM76W4]

Hey76Sy Hayes-Roth, F and Mostow, D J Syntax and semantics in a
distributed speech understanding system Proc IEEE Inter Conf on
Acoustics, Speech and Sip.nal Processing Philadelphia, PA, 1976, 4 2 1 -
424 Also appeared in [CMU76W4]

Hay77Fo Hayes-Roth, F and Lesser, R Focus of attention in the Hearsay-
II system Tech Rep, CMU, 1977.

Hey77Po Hayes-Roth, F., Lesser, V R, Mostow, D J. and Erman, L. D. Policies
for rating hypotheses, halting, and selecting a solution in Hearsay-II
Appeared in [CMU77Su].

Hay77Ro Hayes-Roth, F The Role of Partial and Best Motchcs in Knowledge
Systems The Rand Paper Series, P-5802, The Rand Corp, Santa Monica,
Ca ,Jan , 1977

Hay77Sy Hayes-Roth, F., Erman, L D, Fox, M and Mostow, D J Syntactic
processing in Hearsay-II Appeared in [CMU77Su],

Hen75Ex Hendrix, G G Expanding the Utility of Semantic Networks Through
Partitioning Prpc 4th IJCAI, Tbilisi, USSR, 1975, 115-121.

Hew72De Hewitt, C Description and theoretical analysis (using schemata) of
Planner; A language for proving theorems and manipulating models in a
robot AI Memo No 251 , MIT Project MAC, 1972

Les750r Lesser, V R, Fennell, R D, Erman, L D and Reddy, D. R Organization
of the Hearsay-II speech understanding system IEEE Trans, on ASSP
2.3 (Jan, 1975) 11-23

Lea75Pa Lesser, V R. Parallel processing in spoech understanding systems: a
survey of design problems. In Spench Recognition Invited Papers of
the IEEE Svmp (Reddy, D R, Ed) Academic Press, 1975, 481 -499

Les77Se Lesser, V. R, Hayes-Roth, F, Birnbaum, M and Cronk, R Selection of
word islands in the Hoarsay-II speech understanding system. Proc,
1977 IEEE Inter Conf on ASSP, Hartford, CT, 1977

Low76Ho Lowerre, B T Tho Harpy spoech recognition system Toch. Rep,
CMU, 1976 PhD D.ssortation

McK77Wo McKeown, D M. Word verification in the Hearsay-II cpesch
understanding system Proc 1977 IFEE Inter Conf. on ASSP, Hartford,
Ct

Min74Fr Minsky, M A framework for representing knowledge. AI memo No.
306, MIT, June, 1974

Mos77Ha Mostow, D J A halting condition and related pruning houristic for
combinatorial search Tech Rep, CMU, 1977

New73Sp Newell, A, Bamett, J, Forgio, J, Groon, C, Klntt, D., Licklider, J. C. R.,
Munson, J., Reddy, R and Woods, W. Speech Understanding Systemr
Final Report of a Study Group North-Holland, 1973 (Originally
appoared in 1971)

Nii77Ru Nn, H P and Fcigonbaum. E A Rulo-b.isod understanding of signals.
Conf on Pattorn-Directed Inference Sygtomu, Hawaii, 1977.

Pra77So Prager, J, Nngin, P., Kohler, R, Hancen, A and Riseman, E. Sementation
processos in tho VISIONS system IJCAI-77, Cambridge, Mass., 1977.

Red73Mo Reddy, D R, Erman, L D and Nroly, R B A model and a system for
machine recognition of speech IEEE Trnns, on Audio and
Electrocoustics, AU-21, 1973, 229-238.

Red73Hx Reddy, D R, Erman, L D., Fennoll, R D and Neely, R B The Hearsay
speech understanding system an example of the recognition process.
Proc 3rd IJCAI. Stanford, CA, 1973, 185-193

Rei76SA Reiser, J F SAIL Stanford Artificial Intelligence Laboratory, Memo
AIM-289, 1976

Ros76Sc Rosenfeld, A, Hummel, R A and Zucker, S W Scene labeling by
relaxation operations IEEE Trans Systems. Man and Cybernetics. SMC-
6, 420-433, 1976

Rub77Lo Rubin, S M and Reddy, D R The LOCUS model of search and its use
in image interpretation Proc 5th IJCAI. Cambridge, MA, 1977.

Rul73Qa Rulifson, J F, et al QA4 A procedural calculus for intuitive
reasoning Tech Note 73, AI Center, SRI, Menlo Park, Ca, 1973.

Rum76To Rumelhert, D E. Toward an interactive model of reading Tech. Rep.
56, Center for Human Information Processing, Univ. of Cal. at San Diego,
La Jolla, CA

Sho76Ph Shockey, L and Adam, C The phonetic component of the Hearsay-II
speech understanding system In CM76W4.

Smi76Wo Smith, A R Word hypothesiration in the Hearsay-II speech system.
Proc IEEE Int Conf on ASSP. Philadelphia, PA, 1976.

Sol77Kn Soloway, E M and Riseman, E M Knowledge-directed learning. Conf.
on Pattern-Directed Inference Systems, Hawaii, 19Z7.

Wal770v Walker, D et al An overview of speoch understanding research at
SRI Proc 5th IJCAI. Cambridge, MA, 1977.

Woo76Fi Woods, W A et al Speech understanding systems, Final report,
Nov 74 - Oct 76 BBN report 3438, Bolt Beranek and Newman, Inc.,
Cambridge, MA, 1976.

S p e c i a l i z e d Sys tens -2 : Lesser
800

