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Abstract
PAS-1I, a computer program which represents a
generalized version of an automatic protocol system
(PAS-1) is described. PAS-IlI is a task-free, inter-
active, modular data analysis system for inferring
the information processes used by a human from his

verbal behavior while solving a problem. The output
of the program is a Problem Behavior Graph:
tion of the subject's changing knowledge state during
problem solving. As an example of system operation
the PAS-Il analysis of a short cryptarithmetic pro-
tocol is presented.

1. Introduction
Automatic protocol analysis is a joint effort
by man and machine to infer from the record of the

time course of a subject's behavior, the underlying
information processes. As developed (5), it usually
refers to the verbalizations of a subject solving
some problem under instructions to think out loud.
Protocol analysis designates the full range of activ-
ities engaged in by the psychologist when working
with protocols: description of the subject's
behavior according to an hypothesized model, induc-
tion of new rules, derivation of consequences from

a model in the context of specific data, and measure-
ment of adequacy of a model. The initial focus of
our work has been behavior description in terras of
information processes, given an hypothesized general
model (the so-called problem space in which the
subject operates).

The PAS-I system (14, 15) was our first attempt
at automatic protocol analysis. This is a fully
automatic, non-interactive, specialized system de-
signed to analyze cryptarithmetic protocols and pro-
duce as output a problem behavior graph (PBG)describ-
ing the subject's search through a posited problem
space. The protocol analysis is represented as a
sequence of processing stages that eventually trans-
form the raw protocol into a problem behavior graph.
At each stage rules are applied which effect a trans-
formation of the data. The organization of PAS-I is
shown in Figure 1.

PAS-1 has successfully analyzed protocols from
DONAUH-GERALDtROBERT and CROSS+ROADS=DANGER crypt-

arithmetic problems. The results obtained in the
DONALD+GERALD=ROBERT task for two of the subjects
have been discussed in detail (15) and demonstrate

that this approach to automatic protocol is

both feasible and rewarding.

analysis

Encouraged by the success of PAS-I we have
designed and built an improved version called PAS-II.
PAS-Il was designed with two major goals in mind: to
make it interactive and task free. By interactive
we mean that the user is permitted to take an active

part in the analysis: he can provide answers to sub-
problems the syetem is unable to solve, correct proc-
essing errors, and even maintain control over the

processing sequence. Clearly, real-time interaction

of this sort makes the system a more powerful tool
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for protocol analysis. By task free we mean that
the system is independent of any particular problem

domain. To make PAS-Il task free we partitioned the
system into two -parts: the problem dependent part
consisting of the processing rules or heuristics used
at each stage of the analysis, and the problem
independent part consisting of the general control
structure and command language. Thus, to apply the

system to a protocol in a new problem area the user
must first supply the system with processing rules
for that domain.* The design of PAS-Il also included
four subgoals: to make the system transparent,
modifiable, extendable, and open (see Figure 2).

Two important implementation issues were not
addressed in the design of PAS-II. 1). Improve system
performance in cryptarithmetic. This includes
expanding the deductive and Inductive inference

capabilities, and "fine tuning" the system by
optimizing the processing, heuristics to produce the
best possible analysis within the given framework.

2). Extend the scope of the analysis. For example,
extend the system back to handle the speech recog-
nition and segmentation problems inherent in producing
a transcription from the audio tape. Or extend the
system to handle the problem of inducing the problem
space from the protocol or inducing a production
system model from the problem behavior graph.

to make PAS-Il interactive and
task free, postponing the problems of increasing
power in a particular task or broadening the scope

of the analysis. This decision was Influenced by

the deBire to provide a working tool for protocol
analysis that could be used by participants at a
workshop on New Techniques in Cognitive Research held
at CMU in the summer of 1972 (7). The PAS-Il system
currently running in LISP at CMU on a PDP-10 and is
available to the CMU (and the ARPA Network) community.

It was decided

is

This paper is organized as follows. The task of
protocol analysis is discussed in Section 2. This is
followed in Section 3 by a brief description of the
structure of the program and in Section 4 by an
example of its use in analyzing a cryptarithmetic
protocol. Section 5 concludes with a discussion of
the general executive structure of the system and
its implication for Al data analysis programs.

2. Task of Protocol Analysis

Protocol analysis is a complex data processing
task requiring both deductive and Inductive inference
capabilities. Our current approach to protocol analy-
sis is based on a particular theory of human problem
solving. For a description of this theory and an
introduction to the task of protocol analysis see
Newell and Simon (5).

rules
be

Ultimately, a library containing processing
for a number of different problem domains will
available to the wuser.
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GOALS
Interactive; User and system exchange information during processing.
Task Free Syatem 1s independent of any perticuler problem domain.
SUBGDALS

Transparent: System is easy to use and understand by virtus of & clean
organization and the ability to explain iteelf.
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the interaction and accordingly gains ultimate control of
the processing sequence.

Figure 2. Design Consideracions for PAS-IT.
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Theoretical Substructure

Problem Space. We assume human problem solving
takes place by search in a problem space. The ele-
ments of this space are the possible states of knowl-
e dfe the subject can have about the task, where a
state of knowledge is simply an expression of what the
subject knows at some particular point in the space.
Besides knowledge states, the problem space also in-
cludes a set of operators. These define operations
the subject can perform on knowledge at a particular
state to yield new knowledge -- hence to move to a
new knowledge state. The operators are incremental,
that ia, they take as input a small portion of the
total knowledge state (a small set of knowledge ele-
ments) and produce as output new knowledge elements,

Problem Behavior Graph. The subject's search
through the problem space for a solution can be des-
cribed as a sequence of operator applications that cre-
ate a string of incrementally changing knowledge states.
The plot of this search is called the problem behavior
graph (FBG). Figure 8 (also used to illustrate the
output of the analysis given in Section 4) shows a
problem behavior graph for cryptarithmetic. The nodes
represent operator applications: the knowledge ele-
ments at the lower left of each node are the inputs,
those at the lower right are the outputs. PBG
branching results from the subject abandoning infor-
mation and returning to a prior knowledge state
(usually because of a discovered contradiction).
example, in Figure 8 the outputs of nodes 4 and 6
conflict: "R is 4" conflicts with "R is odd," and
leads to the abandonment of nodes 4, 5 and 6, Note
that the knowledge state at any point in the graph is
the conjunction of all output elements on the path from
the given point back to the beginning of the graph.

All nodes on the path from the last node back to the
beginning of the graph are called currently active
nodes. Their output elements define the current
knowledge state.

For

Data Analysis

The data being analyzed is the transcribed text
of a subject's verbal protocol. As the text is trans-
formed into a PBG it is subjected to four major types
of processing: linguistic, semantic, group, and PBG.
Figure 1 typifies such a processing sequence.

Linguistic Processing. The text is first
segmented into shorter strings called topic segments,'
each of which is expected to ultimately yield approxi-
mately one problem space element. Each segment is
then parsed using a grammar sensitive to the problem
domain under consideration. The result of parsing is
a set of semantic elements which represent the meaning
of the segment. For example, the segment "D is not
equal to 6" might yield the elements (NEC)EQ D 6) in
the cryptarithmetic task. Here (NEG) is called
an indicator element, (EQ D 6) a knowledge element.

Semantic Processing. The semantic elements
produced through parsing are first combined in very
elementary ways to produce new elements, i.e., (NEG)
and (EQ D 6) become (NEQ D 6). Next, new elements
reflecting relationships between elements from
adjacent segments are produced. Thus, (EQ D 5) from
one segment and (THEREFORE)EQ T 0) from the next
segment become (BECAUSEOF (EQ D 5)(EQ T 0)), e.g.,
"because D is 5, T is 0." Finally, these elements are
arranged into initial approximations of operator groups,
each containing an operator element and the surround-
ing knowledge and indicator elements. An operator
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group is defined to be an operator together with its
input and output knowledge elements.

Group Processing. The tentative operator groups
produced during semantic processing are now analyzed
to obtain a complete picture of what the subject knows
at each moment and what operators he applies. First,
variables in semantic elements are identified by com-
paring the elements to the current context as defined
by the PBG. Thus if (EQ D 5} were in the PBG then
when given the element (EQ <L> 5), where <L> stands
for a class of letters, we recognize that <L> in this
case is the letter D.

The second part of group processing consists of
finding, or hypothesizing, the origin of every knowl-
edge element in each tentative group. The origin of
a knowledge element is defined to be the operator
which produced it, plus the inputs to that operator,
plus the operators which produced those inputs, etc.
Thus the origin can be represented as a tree which
defines a collection of overlapping operator groups.

PBG Processing. The operator groups produced
during group processing are now incorporated into the
PBG. In general, each group becomes a node in the
PBG. In the simplest case the new node is just
attached to the last currently active node. However,
when contradictions occur (the output of one node
conflicts with the output of another) restructuring
occurs to eliminatethe conflict (see Figure 8).

3. Structure of the Program

PAS-Il takes as input a transcribed text of the
verbalization of a subject solving a problem and
produces as output a PBG. The processing rules for
the various stages, including the rules defining the
problem space, are given to the system. These rules
are supplied either by the system builder via a
library of rules for various problem domains or by
the user himself.

Modular Structure

PAS-Il is organized as a modular data analysis
system. The basic unit of organization is the mode:
a processing state which has associated with it a
buffer capable of holding rules or data. This buffer
can be modified by the editing functions available in
the command language. There are three types of modes:
run_modes, which hold the data being analyzed, rule
modes, which hold the processing rules, and auxiliary
modes, which hold task-free system-oriented rules.
Thus the information in the rule modes constitutes the
problem dependent part of the system.

The next level of organization ia the stage: a
unit consisting of one run mode and any number of
associated rule modes. Data processing is performed

in a stage by applying the rules from the rule modes
associated with that stage to the data present in the
run mode of the previous stage. The result of the
processing is then put into the run mode of the current
stage. Figure 3 illustrates the modular organization
of PAS-Il, with the arrows indicating data flow and
the lines indicating mode associations.

The highest level of organization is the
processor: a unit consisting of consecutive stages
in the control cycle. For example, in PAS-Il two
linguistic Btages form the Linguistic processor and
three semantic stages form the Semantic processor
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Modes.
Il are listed

The modes currently implemented in PAS-
in Table 1. Note that most run modes
have one or two rules modes associated with them.
This association is illustrated in Table 1 and also
in Figure 3, which shows the modular composition of
the various processors in PAS-Il. The arrows in the
figure define the data links existing between modes.
The mode at the tail of an arrow provides the data

that the mode at the head of the arrow processes. For
example, processing in the TOPIC mode involves apply-
ing the SEGMENTATION rules to the data in the TEXT

in the TOPIC mode.
it is deleted from

mode and then placing the result
As each line in TEXT is processed,

the TEXT buffer. However, a copy of these deleted
lines is stored elsewhere in TEXT and can be re-
trieved (see the process functions in Table 2). The
arrows in Figure 3 do not necessarily define the
control cycle, i.e., the order in which processing
occurs. The control flow is illustrated in Figure 4
(to be discusaed later).
MODES

RUN RULE AUXTILIARY
TRRT ASSOCTATION
TQRIC SEGMENTATION SAVE
LINGUISTICI EXTRACTION CONTROL
LINGUISTIC2 SPACE, GRAMMAR INFORMATION
SEMANTIC1 INTEGRATION
SEMANTIC2 NORMALIZATION
SEMANTIC3 GROUPING
GRAPHIC1 UNKNOWNS
GRAFHIC?2 ORIGIN
GRAPHIC3 CONFLICT, PBG
TRACEL
TRACE2 PS, MEMORY
TRACE3
TRAGES MATCH

Tahle 1. PAS-II Modes.

Functions. The functions currently implemented
in PAS-Il are listed in Table 2. They constitute the
command language available to the user, and are
divided into four categories: basic, edit, flag, and
process functions. Note that a mode name is a

function that puts the user into that mode.

A function call consists of a function name
followed by its arguments. Any number of function
calls may occur together. If it is not clear which
names are the functions and which are the arguments,
parentheses can be used for disambiguation. In
ambiguous cases the system always assumes the name
is a function name rather than an argument. Thus
the user types HELP TOPIC DISPLAY 3 it could mean
either (HELP TOPIC): give me information about the
TOPIC mode, and (DISPLAY 3): display line 3 of the
current buffer; or (HELP): tell me how to get help,
(TOPIC): put me into the TOPIC mode, and (DISPLAY 3):
display line 3. The system would make the latter
interpretation.

if

Comparison with Figure 1 shows how PAS-II maps onto

PAS-I. Note that the scope of the analysis has
been extended to include a Trace processor (not
discussed in detail in this paper).
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Auxiliary Modes. There are four auxiliary
modes: save, controls association, and information.
The SAVE mode contains rules which specify which
mode buffers are to be saved on (or read into from)

a disk file when the WRITE (or READ) command la
executed. The CONTROL mode contains rules which
define the control cycle for the system. Initially
these ruleB define the control flow shown in Figures

3 and 4. The ASSOCIATION mode contains rules which
define the associations between run and rule modes.
The initial (or default) associations are those
shown in Figure 3, The CONTROL and ASSOCIATION modes,
together with the CREATE function, permit the sophis-
ticated user to create new modes, redefine mode
associations, and reorganize the control flow for

the entire system, One example of this is the use of
a reorganized PAS-Il to analyze a problem description
(problem text) in natural language in order to infer
from that text a tentative problem space, one that a
subject might use in representing the problem (2).

The INFORMATION mode is unique in containing
no buffer and recognizing none of the functions that
constitute the command language, Instead, this mode
responds to key words in the users input, which may
be in sentence form. The mode provides the user with

general information about PAS-II: its basic organi-
zation, purpose, and techniques of operation. This is
to be contrasted with the HELP function, which pro-

vides the user with specific, information

about the mode he is in.

on-the-spot

Control Structure

The control cycle for PAS-Il is shown in the
flow diagram of Figure 4. The solid arrows indicate
the stage that is entered once processing in the
current stage is finished. The broken arrows indicate
which stage to enter before processing is started.
Processing in LINGUISTIC1, SEMANTICS, and GRAPHIC2 is
incremental. In each of these modes only part of the
data from the previous mode is processed at one time.
This initial portion of the data is then carried
through the rest of the system, leading to the growth
of PBG nodes, before the rest of the data in the
previous mode is processed. This is done to establish
a semantic context (the PBG) as early as possible in
the processing sequence so it can provide feedback
needed for linguistic, semantic, and group processing.

Since the control organization of PAS-II is
quite flexible, the user is under no constraints to
process the data in the order shown in Figure 4. He

may skip or repeat stages within the existing control
framework, and may redefine the control cycle (via
the CONTROL mode). He may also have the system put
him into the next run mode In the control loop, or
even automatically step him through the run modes,
initiating the processing at each stage (see NEXT
and AUTOMATIC in Table 2).

Data Processing

Figures 3 and 4 show the processors which com-
prise the control cycle of PAS-II. In the Topic
processor transcribed text is segmented into phrases
containing only a single task topic.** Then in the
Linguistic processor an initial collection of these

At present the PBG provides feedback for group
processing only.

This is a slight extension: PAS-I|

mented text as input.

requires seg-



FUNCTIONS

DESCRIFTION

{mode name)

Puts uger into the mode named.

CREATE Creates a new mode.
DISPLAY Displeys the ceontents of M,
B ERASE Uncreates M (if it was formed using CREATE),
A EXIT Takes the user out of the system {to LISP).
5 HELP Providee system information pertinent to M.
1 MODE Tells the user what mode he 1s in.
C NEXT Puts the user into the next appropriate run mode of C.
RULE Puts the user into the rule mode associated with M.
RUN Purs the user into the run mode associated with M,
BREAX Bresks a line in M Iinto two or more smaller lines,
CONKRECT Comnects adjacent lineg in M to form a single line.
E DEFINE Fermits the user to define the contents of lines in M.
B DELETE Deletes lines in M,
I ED Enables the user to perform Intra-line editing in M,
T INSERT Inserts & line after A given line in M,
READ Raads data from a disk file into M.
RENUMBER Renumbers the lines In M.
WRITE Write the contents of M onto a disgk file.
AUTOMAT IC Steps the user through C, executing &0 1n each run mode.
BATCH Stops system queries during run mode processing.
COMMENT Permits comments to be digplayed when a line is displayed.
F FAST Spaeds up reading from the disk by eliminating format checking.
L HUSH Abbreviates error messages.
A NUMEERS Caupes disgk files to be written with buffer line numbers.
G PRINT Puts all the I/0 ac the terminal onto a disk file.
SEARCH Causes processing to be repeated unti] no rules are applicable.
SUPPRESS Suppresses printing of auxiliary information during processing.
TIME Causes procesaing time in M te be printed.
VERSION1 Causea the old verslon of grammar/parser to be uged.
VERSION2 Cavses the new fmproved version of grammar/parser to be used.
P AGALIN Puts the data in M inte P and fires GO.
R COPY Prints the copy of the data in M.
1] GO Processeg the datsa located in F and puts the result into M.
4 RECOPY Futs the copy of the data from M back into M,
E RESTART Pute the copy of the data from F back inte P and fires START,
5 START Deletes the data in M and fires GO,
-1

¥EY M: mode buffer of the mode the user is in
P: mode buffer prioxr to M in €
C: contrel cycle

Table 2. Description of PAS-II Functions
{Flag degcriptions are for the condition flag = T)
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segments is parsed yielding sets of semantic elements.
These elements are processed and refined in the
Semantic processor to produce groups composed of one
operator element and Its associated input and output
knowledge elements. In the PBG processor these groups
are incorporated into the PBG. The Trace processor

is then used to compare this PBG with the trace
produced by a given production system model of the
subject.

Topic Processor. The Topic processor contains
two run modes: TEXT and TOPIC. TEXT is an initiali-
zation mode; it holds the data for TOPIC to process.
Thus no real processing takes place in it. The
TOPIC mode uses the SEGMENTATION rules to segment all
the text in the TEXT mode. These rules have the
general form: .string, / string, , where a string is
any sequence of words, punctuation marks, or word
classes (as defined in the GRAVMMAR mode), including
the null sequence. The slash (/) indicates where the
text is to be broken, i.e., after every occurrence
of string, that is immediately followed by an occur-
rence of string-. Figure 6 show SEGMENTATION rules
for cryptarithmetic (to be used in the example in
Section 4) .

Linguistic Processor. The Linguistic processor
contains two run modes: LINGUISTICI and LINGUISTIC2.
In LINGUISTICI the EXTRACTION rules are used to select
a consecutive set of segments from TOPIC, representing
an initial guess as to the minimum number of segments
from which a group can be Inferred. Processing con-
sists only of transferring these segments from the
TOPIC mode to the LINGUISTICI mode. At present, the
EXTRACTION rules are simply a single integer speci-
fying how many segments to transfer.

Processing in the LINGUISTIC2 mode consists of
applying the SPACE and GRAMMAR rules to all the topic
segments in LINGUISTICI. The parsing operation pro-
duces, for each segment, a set of semantic elements
representing the meaning of the segment. The rules
in the SPACE mode define the problem space and have
the form: (semantic-element) type, where a semantic
element is either an operator, knowledge, or indicator
element, and the type is either OP, KN, or IND. The
GRAVIVAR rules define a key-word grammar and have the
form: <clas6> = (itemqq item, .,.) (item,, item

) , where an item is either a class

(denoted by angle brackets) or a literal (such as a
word, letter, or character). An asterisk (*) can be
used between any two items to indicate a match with
any string of text, and any GRAVMAR rule which is a
disjunction of single literals can be written without
parentheses. Figure 6 shows SPACE and GRAVMAR rules
for cryptarithmetic.

SPACE rule 8 in Figure 6 is an exception. It
defines a set named <V> containing two members,
the class <LETTER> and the class <EARRY>.

Two parsers are available, a simple top down
parser and a more sophisticated parser written
by M. Rychener.
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Semantic Processor. The Semantic processor
contains three run modes: SEMANTICI, SEMANTIC2, and
SEMANTIC3. In SEMANTICI the INTEGRATION rules produce
new elements by combining semantic elements generated
from the same or adjacent segments. In SEMANTIC2 the
NORMALIZATION rules map knowledge and indicator ele-
ments into single elements reflecting the relationships
existing between two or more knowledge elements. In
SEMANTIC3 a tentative operator group (protogroup) is
formed. The INTEGRATION AND NORMALIZATION rules are*
replacement rules of the type A => B, i.e., replace
A with B. Both A and B can be lists of semantic
elements. A slash (/) indicates that the next
elements of the list occur on the next line of the
mode buffer. Class names and X's are used as vari-
ables, and in the NORMALIZATION rules A's are vari-
ables which stand for knowledge elements on adjacent
lines connected by the AND indicator. Typical
INTEGRATION and NORMALIZATION rules for crypt-
arithmetic are shown in Figure 6. GROUPING rules are
not shown.* They define a protogroup to be the
largest consecutive sequence of elements containing
no more than one operator element.

Group Processor. There are two run modes in the
Group processor: GRAPHIC1, and GRAPHIC2. GRAPHIC1
processing fills in the values of variables in the
semantic elements by comparing the element containing
variables with all the elements currently active in
the PBG, i.e., the current context. When a match is
found the appropriate values are filled in. Currently
the UNKNOWNS rules are not accessible to the user.

Processing in GRAPHIC2 is a joint man-machine
effort.** The goal is to hypothesize for each knowl-
edge element its origin, l.e., the operator and its
inputs (and the operators that produced those inputs,
etc.) that produced that knowledge element as output.
The system queries the user asking for possible
operators and inputs that could have produced the
element whose origin is being sought. From this
information the system constructs an origin tree,
and hypothesizes which path through the tree repre-
sents the actual origin of the element. The path is
picked on the basis of the agreement between the
hypothesized inputs and the actual context defined by
the current PBG. The ORIGIN rules, like the GROUPING
and UNKNOMNS rules, are currently not accessible.

PBG Processor. The PBG processor contains one
run mode: GRAPHIC3. In the GRAPHIC3 mode, processing
consists of taking the operator groups produced in
GRAPHIC2 and incorporating them into the problem
behavior graph. The CONFLICT rules are used to deter-
mine whether or not any knowledge elements in the
operator groups conflict with knowledge already in the
PBG. If such a conflict occurs, the PBG rules are
used to restructure the PBG so the conflict is
eliminated.

At the current stage of development the Grouping
rules have not been made accessible to the user.

This is the major place where we have not regained
in PAS-Il the power for automatic processing
available in PAS-I.



Both the CONFLICT and PBG rules are ordered
production rules of the form S -* A, i.e., in situation
S take action A (12, 13). A situation is defined by
a list of values of certain variables, called the
state vector, SV. The left side of each production
rule has the form (V. V, V ), where V repre-
sents a permissible value for the nth statl vector
variable. The right side has the form (A. A A ...),
where the A'g represent actions to be taken. The cur-
rent values of the state vector variables are compared
with the left side of each production rule. The first
match, from top to bottom, determines the actions to
be taken

Figure 6 shows CONFLICT and PBG rules for
cryptarithmetic. The CONFLICT rules determine
whether or not two given knowledge elements conflict.
The example CONFLICT state vector contains: (SAME 2),
which is true (T) if the second items of both the
elements are identical and false (F) otherwise;
(ITEM 1 1), which returns as a value the first item
of the first element (the element in the PBG); and
(ITEM 12), which returns as a value the first item
of the second element (the element in the group).
Thus if the two elements being compared were (ODD R)
and (NEQ R 5) CONFLICT rule 3 would match the state
vector and the decision would be that no conflict
exists.

The PBG rules determine the type of restruc-
turing that occurs once a conflict is detected. The
PBG state vector in Figure 6 has 2 variables: TYPE,
which has the value CON if restructuring is based on
conflict and SIM if it is based on similarity; and
(ITEM 1 2), which is defined above. The actions shown
in Figure 6 are BLOCKREJ, a type of restructuring
where blocks of adjacent nodes are abandoned, and
COPY, a. specification that the group causing the
restructuring should remain in the active portion of
the PBG after restructuring. The state vectors for
CONFLICT and PBG may contain variables and actions
other than the ones shown in Figure 6. For a complete
description of these rules see the PAS-Il reference
manual (16).

Trace Processor. The Topic, Linguistic,
Semantic, Group and PBG processors comprise the major
portion of PAS-II. It is thiB portion which repre-
sents a generalized version of PAS-I. The Trace
processor ie a new extension to the system and has no
analogue in PAS-I. Some parts of it, like the MATCH
mode, are still under development. The Trace proc-
essor enables the user to write a production system
model of the subject (6), and then compare the trace
obtained by running the production system model with

the PBG obtained by analyzing the protocol. The
details are described elsewhere (16).
4. Example of Program Operation
To illustrate the use of PAS-IlI, we present a

listing of the actual user-machine interaction in-
volved in the on-line analysis of a short crypt-
arithmetic protocol. The cryptarithmetic task is
given in Figure 5. Both the protocol and the crypt-
arithmetic rules used for this example are shown in
Figure 6. The protocol is stored in the TEXT mode
and the cryptarithmetic rules in the eight rules modes
shown. These rules approximate the minimal set needed

The PBG rules are also used for restructuring when
similarities (identical nodes) are detected, as
discussed in an earlier paper on PAS-I (15).
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(an asterisk is considered to match any value).

to analyze the given protocol, &nd are for expoeitory
purposes only.

The annotated listing is shown below. The user
input ig 1n lower case and the system cutput in upper
case. The aystem prompts the user by typing either
an asterisk (*) or a question followed by a question
mark (7).

wexi digplay
TEXT NOPE
l. O I8 6 ) THEREFORE T 1S @ . RSSUNE R FQUALS & . SINCE YOU
CARRY | , R IS ODD . ASSUME R 13 7 , NOT 5 .
wmerl go

TOPIC MODE

L. D I8 G,
THEREFORE T I8 & .
ASSUNE R EOUM.S 4 .
SINCE YOU CRRRY 1 ,
®r IS DOD .
RESUNE R 15 7 ,
HOT 5 .

OK? yax

TOPIC HODE FINISHED

maxi go

LINGUISTICL MODE
1.D 155
&. THEREFORE T 15 & ,
3. ASSUME R EQUALS 4 .
4. STNCE YOU CPARRY 1 ,
5. R 15 0DO ,
6. RSSUNE R 15 7 ,
7. NOT 5 .
OE? yes
anast g

DONALD
+GERALD

D=5

ROBERT

The above expression is & simple arithmetic sum in
disguise. E&ch letter represents a digit, that is,
0, L, 2, ..., 9. Emch letter ip a distinct digit.
You are given that [ represents the digit 5; thus,
no other letter msy be 5,

What digits should be assigned to the letters such
that when the letters are replaced by their corres-
ponding digits the sbove expression ls a true
arithmetic sum?

Figure 5, Cryptarithmetic Task

The user first entered the TEXT mode and dis-
played its contents. He then entered the next mode
in the control cycle, TOPIC, and started processing
by typing GO. This caused the SEGMENTATION rules to
be applied to the data in TEXT. The system indicated
that the data in line 1 of the previous mode had been
transformed into the seven lines shown above, and
asked if this transformation was satisfactory (OK?).
At this point the user typed yes, telling the system
to actually put those seven lines into the next seven

At least four times as many rules would be needed
for a complete set (15).
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TEXT MDDE

.D135 ; THEREFORE T IS 0 . ASSUME R EQUALS 4 . SINCE YOU

CARRY | ,R 5 QDD ASSUME RIS 7 ,NOT &,
SPACE RILES

. [NEG) IND

{ODD <V>} KN

- (EQ <V CDIGIT>) KN

+ {THEREFORE) IND

. [BECAUSE) IND

. (ASSUME) INC

. (DIGIT <DIGIT>) KN

- (V> CLETTER> <CARRY:) SPASET

GRAMMAR RULES

. <EQ> = {<CARRYEQ>) (KLETTER> » <EQUAL> % <DIGIT>)
. <CARRYEQ: = (<CARRY> * <DIGIT>) [<CARRY>)
. <00D> = [<LETTER> = <EQUAL> » DDD}

. <EQUAL> = IS EQUAL EQUALS BE WAS ARE

. CNEG> = CANNQT NOT NO N'T

. CTHEREFQRE> » THEREFORE IMPLIES
 ASSUME> » ASSUME ASSUMING

. CBECAUSE> = BECAUSE SINCE

. <CARRY> « CARRY CARRYING CARRIED
SLETTER»» ABDEGLNORT
KDIGIT> D 1 23456789

SEGMENTATION RULES
-

il
L KDIGITS |
. (LETTER> , /

EXTRACTION RULES

.12

INTEGRATION RULES

. (X1 CARRY X2) = {X] <C> X2}

- (EQ X1 X2) / (DIGIT X3) » (EQ X} X2} / {EQ XI X3)

. (NEG} (EQ <LETTER> <DIGITy) => (NEQ <LETTER> <DIGIT>)

- (ASSUME) (EQ <LETTER> <DIGIT>} = (AEQ <LETTER> <DIGITS)

NORMALIZATION RULES

. Al / {THEREFORE) A2 = (BECAUSEQF Al A2)
. (BECAUSE) Al f A2 = (BECAUSEOF Al A2)

CONFLICT RULES

.5V = ({SAME 2} {{iTEM ] 1) UTEL 1 2}}
. {F % x} => NO~CON

- ( ODD NEQ) »> NO-CON

. {% & %) o> ASK-IF-CON

FBG RULES

- SV = (TYPE (ITEM 1 2)}

. {CON NEQ} => BLOCKREJ

. (CON #*) => (BLOCKREJ COPY)
. (% %) => BLOCKREJ :

Figure 6. Cryptarithmetlc Rules.
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lines of the TOPIC buffer. If the processing had
been unsatisfactory, the user could have jumped to
the SEGMENTATION mode, changed the rules, jumped

back to TOPIC, and reprocessed the data using the new
rules before proceeding with the next processing step.

The user then entered the next mode, LINGUISTICI
and started processing. The EXTRACTION rules were
applied to the seven lines of data in TOPIC and the
system indicated that the processing should consist of
placing these lines in LINGUISTICI unchanged. Note
that the system indicated that line 1 from TOPIC was
transformed into a single line in LINGUISTICI, etc.,
as opposed to the previous step where one line in TEXT
was transformed into seven lines in TOPIC.

LINGDISTICZ NOQE
<Ef» <LETTER» D

<EQURL> 75

<0IGITs &

L. (EQ O &7

FROM D IS5,
JK? yes batch suppress
BATCH=T
SUPPRESS=T

2. (EQ T B} (THEREFORE)

FROM THEREFORE T I3 ¥ .
{EQ'R &) (ASSUNE}
FRON ASSUNE R EQURLS & .
(EQ CARRY 1} (BECRUSE?
FROM 1 SINCE YOU CARRY 1
wouc Rl
FROM = R[5 0DD .
{EQ R 77 [(ASSUME)
FROM 1 ASSUME R IS5 7 ,
INEG) DIGIT %)
FROH 1 NOT 5 .
LINGUISTICZ KODE FINISHED
wlpatch ) (suppress §) sutematic
BATCH=F
SUPPRESS=F
AUTAORATICWT
uxt go

a.

.

7

Processing in LINGUISTIC2 consisted of applying
the SPACE and GRAMMAR rules to the data in LINGUISTICI
to produce a parse. In step 1 the parse tree was
printed and the user set the flag BATCH true to
eliminate the OK? question (the system then assumes
the answer is always yes) and the flag SUPPRESS true
to eliminate further printing of the parse trees.
Then, before going to the next mode in the control
cycle, the user set the flag AUTOMATIC true so the

system would automatically step through the appropriate

run modes executing GO. At this point the LINGUISTIC2
buffer held the seven sets of semantic elements shown
above.

SEMANTIC1 RODE

RULES APPLIED i
1. QD S
2, {EQ0 T &) (THEREFORE)

(RED R &)

(BECRUSE) (EQ «L» 1D

(0DD R»

REQ R 7}

. {NEQ R 5}

OK? yas

SERANTICL NODOE FIMISHED

4 1 2 4 3

~ 3@ e
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SEHANTICY WODE

RULES APPLIED ¢+ 1 7

1-7. (BECRUSEQF C((EQ B 5)) ((EQ T @I
(REQ Rk &)
(BECAUSECF ((EQ «Cx 1)) CCBDO RN -
(REQ R 7}
INEQ R B

DK? yes

SERANTICZ NODE FINISHED

SENANTEIC3 MODE
1. (BECAWSEQF ((EQ D 5)) (CEQ T @)
2. (PEQ R &)
3. (BECAUSECF [(EQ «C» 1} ((DOD R1D)
4. AEA R T
5, (NEQ R B

OK? yam

Processing in SEMANTIC1 consisted of applying the
INTEGRATION rules to the semantic elements in
LINGUISTIC2. As indicated above there were five
applications of the rules. Processing in SEMANTIC2
consisted of applying the NORMALIZATION rules to the
seven sets of elements In SEMANTIC1, There were two
applications of the rules, and five sets of elements
were left in SEMANTIC2. Processing in SEMANTIC3 con-
isisted of applying the GROUPING rules, which are not
explicit. These rules simply attempted to pull from
SEMANTIC2 one operator element and its associated
knowledge elements. Since no operator elements were
present, it pulled all the elements from SEMANTIC2.

GRAPHICL MODE
1. {BECAUSEOF ((EQ P %)) ((EQ T &)1}

FRON & (RPECRUSEDF ({EQ [ 51) ({EU T @)}
DET yer
2. CREQ R &)
FROM . (REQ R &)
o7 yas
3. (BECAUSEDF ({EQ <C» 1}} (4DDD RI¥))

FRON (BECAUSEOF ({EQ «C> 1)) CCODD RYID}

OK? yes batch supprass r: (becaussod (leg c2 11) tledd r1)}
BATCHaT
00 YOU REALLY WANT BOTH RUTONATICT AND BATCH=T 7 yes
SUPPRESSeT

4. (AEQ R 7}
FRam
{NEQ R §)
FROM INEQ R &}
GRRAPHICI HODE FINISHED

AEQ R )
5.

Processing in GRAPHICI consisted of applying the
UNKNOMWNS rules, which are not explicit. These rules
involve searching the existing PBG for elements that
match the elements containing unknowns. In this
simple example no matches were found because the PBG
had not yet been grown. Thus, in step 3 when the
unknown carry <C> was not found, the user told the
system to replace its processing result with
(BECAUSEOF (( EQ C2 1)) ((ODD R)) ). This was put
into line 3 of the GRAPHICI buffer, rather than the
result containing <E>. In effect the user told the
system that the value of <C> was C2, i.e., that the
unknown carry was the carry into the second column
(the L+LsR column).

Processing In GRAPHIC2 and GRAPHIC3 occurred as
follows: GRAPHIC2 was entered and the elements from
line 1 of GRAPHICI were processed interactively to
determine their operator groups. GRAPHIC3 was then
entered and these groups were grown as new nodes in the
PBG, Next GRAPHIC2 was reentered and the elements



from line 2 of GRAPHIC1 processed. This graphic2-
graphic3 loop was repeated for each line in GRAPHIC1.
Below is shown only one of these loops : processing
and growing the elements from line 3 of GRAPHIC1.

CRAPHIC2 PODE _
FOR (BECAUSEDF ((EQ C2 1)) (<000 RII) 1
QF = (pe 2)

OUTPUTS = (owd r)

INPUTS = fug €2 1}

FOR (EQ €2 L)

OP « (av ¢2)

INPUTS =

GTHER ORIGINS FOR (EQ C2 1) 7 yes

FOR (EQ C2 1y 9

oF e [pe 1} i

INPUTS & {aq ¢ 5)iag el B

(EQ D §) FOUND IN PRE

(EQ C1 W) FOUND IN PEG

OFYHEN DRIGINS FOR fEQ C2 1) 7 no
ORIGEN TREE :
(DD R (P 2} Y £2)
LI

(E@ €2 1}
(EQ O 5}
(EQ CL &
3. (PC 1) UIEQ D 5 (EQ €I &) (EQ £2 1)
B 20 tEQ £2 1)) DO M
FROM : (BECAUSEDF (CEQ €2 1) (OO0 ®2))

GRRPHIC2 MODE
1. GROW (EQ 2 1}
FRON . PC 1) C(EQ O 5 (EA C1 B} (EQ £2 1}
DO (REQ R 4) AWD (QOD RY CONFLICT 7 ye=
2. CONFLICT: Wi (AEQ R 43 AND (00D R} WiTH (BLDEKRES COPYI
FRON tPC 2) (MEQ €2 1)) (0D W)
GRAPHIC3 MODE FIWISWED

In GRAPHIC2 the system queried the user to deter-
mine possible origins (operators and their inputs) for
the elements in question. This information was

represented as an origin tree as shown above. This
tree is displayed below in a more conventional style.
output: (00D R)
operators: (Pﬂl 2)
input foutput: (EQ C2 1}
\
operators: (AV C2) (PC 1)
—/ ~.
input: (EQ D 5} (EQ €1 0)
Figure 7. Origin Tree

The system analyzes the tree and decides which path
represents the best origin for the top element, in
this case (ODD R). Here there are only two alter-
natives: the path with the operator: assign a value
to the carry into column 2, (AV C2), and the path
with the operator: process column1, (PC 1). The
system chooses the latter, based on implicit ORIGIN
rules which tell it to choose between operators by
rating them according to their inputs. The decision
function currently in use is:

Choose to maximise: (3 x used-inputs) -

(unused-inputs)

Space limitations prevent us from including the
entire listing.

where an input is "used" if it occurs in the PBG.
Thus (AV C2) has a rating of 0 while (PC 1) has a
rating of (3x2)-0 or 6. The format of the operator
groups produced in GRAPHIC2 is: operator (input
list) output.

In GRAPHICS the two groups from GRAPHIC2 were
incorporated into the PBG. The second group, with
(ODD R) as the output, conflicted with an existing
group in the PBG and led to restructuring of the PBG
to resolve the conflict. Conflicts were defined by
the CONFLICT rules, the type of restructuring by
the PBG rules.

sgraphicl digplay

ERRPHICT RODE
L1} § OPF (RECALL £) OQUT (EQD &)
N2 OP SRECRALL CL' OQUT (FQCL B
N3 pP tpC 3> IN (EUD %) (EQCL O OUT {EQT M
N# OF AV W) DUT (REG R &)
NS DP (PC 13 IN (EQ D §) (EG Ui ® OUT (ERC2 1)
NG oP IPC 2y B4 (EQC2 1 QYT (OO0 R) ]
N7 3 DPPC LY TN (EADE) (EQCL® OUT (EDCZ 1
L1 OF PC 2) M (EQ €2 1} OUT W00 R
ne 0P (AY RY OUT tREQ R 7}
MiB OP ITD R B} IN (EQ O 5% DUT (NEG R BJ

After all the data from GRAPHICI was processed
in GRAPHIC2 and GRAPHIC3 the contents of GRAPHIC3
were displayed. Each line in the display represents
a node in the PBG. Node 10 contains the operator:
test to see if R can have the digit 5 as a value,
(TD R 5). Figure 8 shows this PBG in the conven-
tional representation. Note that the conflict between
(AEQ R 4) and (ODD R) led to a back-up that abandoned
nodes 4, 5 and 6. Thus the currently active nodes,
the ones that define the current context, are those
joined by the heavy lines in Figure 8.

5. Discussion

The initial program, PAS-I, is an artificial
intelligence program by any reasonable criteria. The
task it attempts, the inference from verbal behavior
to Problem Behavior Graph, is a task requiring intel-
ligence when done by humans. The mechanisms used are
those common to other artificial intelligence
programs that tackle somewhat similar tasks: grammars
to deal with the surface structure of natural language,
representation of knowledge, matching, and heuristic
search to infer information not directly expressed in
the utterances.

PAS-Il is a program that accomplishes the same
cask as PAS-I. Hence, it too Is an artificial intel-
ligence program. But when looked at structurally it
more closely resembles a data processing framework
or, possibly, a language. Something has happened in
going from PAS-I to PAS-II, something worth identi-
fying and discussing.

**

Let us start with Planner (3) and QM (8).

These systems are languages for writing programs to

perform a class of artificial intelligence tasks. The

Conflict and PBG rules ere described
an earlier paper (15).

in detail in

There are other representatives of this class,
e.g., POPHER (1) and Conniver (10, 11).



g#d

S

a

{4

uoip 1531 ai

anjea ubisse AY {enba jou +
uwnjed s$e00ud ad jenbe ubisse - AT
uuae jjedal TIVO3Y [enba =
saasady abpamouy

BWIYHIRIdAIY 104 ydeiy JOLG Wagold °] aunbi4

0-1D
ppe Y =23 L=22 S=Q

443



exact boundaries of these tasks are obscure but their
central core is clear and includes a large fraction of
the tasks for which heuristic programshave been built
-- theorem proving, robot planning, symbolic manipu-
lation, etc. These systems were formed, essentially,
by taking a list processing framework and embedding
within it some of the ad hoc mechanisms developed

for particular heuristic programs. They include back-
tracking, a generalized matching facility, a global
data base (accessed by pattern matching) and multi-
processing control. Embedding these mechanisms with-
in & language makes possible their use in novel com-
binations (and in interaction with the other mecha-
nisms available in higher languages).

This same embedding of mechanisms into a language
system has occurred in the transition from PAS-l to
FAS-II. PAS-IlI provides a framework within which a
class of Al programs can be easily constructed. This
class is not the same as that of the Planner/QA4
type system, which is more "mainline" artificial
intelligence. Rather, it appears to be characterized
as linguistic data processing, the essential feature
being the processing of long sequences of data
(rather than just a sentence at a time). This class
includes, of course, protocol analysis. It also
includes a number of other tasks: content analysis
of more classical varieties (9), problem space con-
struction (2), test grading, and what is coming to be
called semantic filtering.

The embodiment of mechanisms Into a language
framework has occurred at two levels in PAS-II, one
corresponding roughly to that of Planner/QA4 and the
other more specialized. The first level is repre-
sented by the PAS-II framework of run modes, rule
modes, common command language, editing system, and
control structure. This includes a set of mecha-
nisms for the data base (the run modes), a matching
facility (the common mechanism for how the rules work
on data), and a backtrack facility (the saving of
buffers so that processing can be undone). Added to
this is the explicit control structure for processing
within a stage and passing through the stages, which
corresponds to a weak method (4) in the same sense
as GPS'B basic methods or the basic methods built into
the goal construct in Planner/QA4. These provide a
schema of operation which, though almost content free,
is still a rational procedure for achieving the
overall goal. The mechanisms adopted in PAS-II are
somewhat more shaped than their correspondents in
Planner/QA4, e.g., there is not a single global data
base or one stratified by a general context mechanism,
rather the data is organized into homogeneous groups
(the modes) along structural lines.

The second level is the specialization of the
various modes to specific subtasks inherent in tasks
of the class: segmentation, parsing, normalization,
etc. The specialized rule systems contain the knowl-
edge about the processing. Thus writing any sort of
legal rules within a given rule system generates proc-
essing of the right sort (though it may not do the
right task)m In this respect providing a single gener-
alized rule system or scheme for pattern matching and
pattern evoked actions (in the manner of Planner/QA4)
would move more of the knowledge required back across
the boundary from the language system (PAS-ID to the
coding within the system (the user program in PAS-II,
which is the set of actual rules in the rule nodes).

As one moves PAS-Il in the direction of a
generalized system for a wider class of problems, one
can expect the collection of rule modes to increase,

becoming eventually, a library in the classic sub-
routine library sense. The system designer is then
faced with the problem of providing these modes with
the rules needed to define processing in the various
problem domains. However, one advantage of spec-
ialized rule systems is that when their structure

is highly constrained it becomes easy to predict the
effect of modifying rules in the system (as compared
to predicting the effect of modifying statements in
a general programming language). This sets the stage
for the development of self-modifying systems which
rewrite their own rules or, in effect, learn to
improve their performance in some data processing
task (12, 13). Such a capability in an interactive
PAS-II-like system would enable the system to build
or modify its own rules for a particular problem
domain, using feedback from the user to direct the
search for good sets of rules.

The evolution from PAS-I to PAS-IlI in analogy
to the more general evolution going on toward
planner-like language systems should add to the
awareness that embedding mechanisms in language
remains a potent scheme for making advances in
artificial intelligence.
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