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Abstract—Due to the emerging multimedia applications, cam-
era sensor network is getting more spotlight these days. The
visual sensors adopted to implement camera sensor network are
a kind of directional sensors, which are well-investigated in the
context of directional sensor network in the literature. However,
the design and implementation of camera sensor network pose
additional challenges due to unique properties of visual sensors.
In this paper, we consider an interesting sleep-wakeup scheduling
problem in camera sensor network, namely the maximum lifetime
effective-sensing partial target-coverage (ML-EPT) problem. Given
a set of targets and a set of camera sensors with non-uniform
remaining energy-level, the goal of ML-EPT is to compute a
schedule of the camera sensors such that the continuous time
duration, during which a partial coverage-level requirement over
the targets is met, is maximized. We propose a new heuristic
algorithm, namely the MEASURE-and-SLICE (MaS) algorithm,
which are based on two sub procedures, MEASURE and SLICE.
Our simulation result shows that MaS dominates its existing
alternative on average, and is close to optimal in some restricted
cases.

Index Terms—Camera sensor network, effective coverage,
coverage problem, sensor network scheduling.

I. INTRODUCTION

Recently, wireless sensor networks are being deployed for
a wide variety of surveillance and monitoring applications.
Many core applications of wireless sensor network such as
battlefield surveillance need full-coverage over an area of
interest by constantly monitoring the entire area in a real-
time fashion [1], [2], [3], [4]. On the other hand, there are a
number of applications of wireless sensor network which do
not require full-coverage. In case of forest fire monitoring, the
complete coverage of the forest is desirable only during dried
seasons, and it is required to monitor at least 80 percent of
the area during rainy seasons [5]. In the literature, the problem
of covering only a certain required percentage of an area is
referred as the partial-coverage problem [6].

Frequently, a wireless sensor network with directional sen-
sors is referred as a directional sensor network [7]. In par-
ticular, a directional sensor network with embedded camera
sensors is called as a camera sensor network. A directional
sensor node is distinguished from a conventional sensor node
by its sector-like sensing range (see Fig. 1). It is well-known
that an object inside a video or a picture has a better chance
to be recognized if it is taken from a specific angle [8]. For
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Fig. 1. This figure illustrates the basic concept of directional sensor node and
our corresponding notations. The sector with a solid line is the area covered
by a directional sensor si. Therefore, si is covering a target u. The beamwidth
θ is dependent on the sensor’s physical characteristics. d⃗(i,j) is a vector from
si to the center of the surface of the jth sector.

example, a person’s backhead in a picture taken by a camera is
not useful to recognize his/her identity [9]. Due to the reason,
the design and implementation of camera sensor networks pose
additional challenges on the top of the known complications
associated with directional sensors [10]. During the rest of this
paper, we assume that a target is recognized or effectively-
covered by a camera sensor if the facial view of the target is
observed by a camera sensor (see Fig. 3).

One important issue of wireless sensor network is energy-
efficiency, which is due to the fact that each node is battery-
operated and in many application scenarios, it is very difficult
or dangerous to replace or recharge the battery of the node
once it is deployed. To deal with this issue, redundancy, one
of the key features of wireless sensor network, is frequently
exploited; in many applications, wireless sensor nodes are
randomly deployed and a target of interest is likely covered
by more than one node. Therefore, we can extend the time to
monitor the target by having a sleep-wakeup schedule of the
sensors covering the same target [3], [11].

This paper considers a partial-coverage problem of targets in
camera sensor network. In detail, we assume each target has a
weight associated with its importance and investigate a sleep-
wakeup scheduling algorithm for a camera sensor network
which needs to provide partial coverage over targets such that
the total weight of the targets which are effectively-covered
at any moment while the sensor network is active is at least
a user-requested coverage-level. During the rest of this paper,



Fig. 2. In precision farming, it is generally enough to monitor sample crops
and areas using camera sensors to make important decisions such as irrigating.

we will refer this problem as the maximum lifetime effective-
sensing partial target-coverage (ML-EPT) problem. Precision
agriculture is a good application of such a camera sensor
network in which, it is enough to monitor sample crops and
areas using camera sensors to make important decisions such
as irrigating (see Fig. 2). We would like to emphasize that it
is not trivial to solve ML-EPT with existing results since (a)
existing partial-coverage algorithms cannot be applied to ML-
EPT directly due to the effective-sensing model in camera
sensor network, and (b) all of existing works in camera
sensor network assume either full-coverage or barrier-coverage
requirement.

The main contributions of this paper are three-fold. First, we
propose a new partial target coverage problem in camera sen-
sor network, ML-EPT, which considers both network lifetime
maximization requirement and parietal coverage requirement
in camera sensor network at the same time. Second, we
design a new heuristic algorithm for ML-EPT, namely the
MEASURE-and-SLICE (MaS) algorithm. Third, we introduce
a way to reuse an existing scheduling algorithm for direc-
tional sensor network for ML-EPT and compare its average
performance with our MaS algorithm via simulation. Our
simulation result shows our algorithm outperforms the existing
alternative, and is close to optimal in some restricted cases.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work. We introduce some preliminaries
and the formal definition of our ML-EPT problem in Sec-
tion III. Our algorithm for ML-EPT, the MaS algorithm is
presented in Section IV. The simulation result is in Section V,
and we conclude this paper in Section VI.

II. RELATED WORK

Frequently, the problem of computing a sleep-wakeup
schedule of a wireless sensor network to maximize the contin-
uous monitoring time satisfying a certain coverage requirement
is referred as a coverage problem. In [12], Cardei and Du
tackled the a full-coverage problem by (a) organizing the
sensor nodes into a collection of disjoint sets, each of which
completely covers the area of interest and (b) activating the
nodes in each set one by one. Over years, various coverage
problems have been intensively investigated to overcome the
limitation of energy-restricted wireless sensor networks [13],
[14], [15], [16]. Apart from the efforts on the coverage prob-
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Fig. 3. In this figure, a target u is covered by two camera sensors s1
and s2. The inner angle between the viewing orientation of s1 and u’s facing
orientation, θ1, is smaller than that between the viewing orientation of s2 and
u’s facing orientation, θ2. As a result, s1 can capture a more recognizable
image of u than s2.

lems in wireless sensor network with omni-directional sensors,
significant amount of efforts have been made to deal with
the coverage problems in directional sensor networks [17],
[18], [19], [20], [21]. However, camera sensor network is a
special kind of directional sensor network with several unique
properties. Consequently, an algorithm working well for a
directional sensor network may not fit to or can be inefficient
for a camera sensor network.

In [10], Liu et al. defined the directional k-coverage problem
in camera sensor networks, whose goal is to find the minimum
number of camera sensors such that the area of interest is
effectively-k-covered, i.e. an object is effectively-k-covered
if this face direction is captured by k different cameras.
In [22], the concept of the full-view coverage is introduced,
in which a target is full-view covered by a camera sensor
network only if the target’s face is guaranteed to be captured
independent from its face direction. In our previous work [23],
we extend the result in [22] to deal with a full-view barrier
coverage problem in camera sensor network. However, none
of the existing work tackling the coverage problem in camera
sensor network considered the partial-coverage requirement.
In the literature, a sensor network is said to provide the
full-coverage of an area if it completely covers the area
constantly. In contrast, it provides the partial-coverage if
the sensor network covers at least a certain percentage of
the area while it operates. Over years, the partial-coverage
problem has been investigated under various alias such as ”α-
lifetime” [2], [24], “p-percentage coverage” [25], [26], [27],
“θ-coverage” [28], or “q-portion coverage” [29]. The common
goal of those problems is to find the maximum lifetime sleep-
wakeup schedule of a wireless sensor network such that at
least “p percent,” “θ percent,” “α portion,” or “q portion” of
an area of interest is covered. However, the existing results on
partial coverage problem is not directly applicable to ML-EPT
since they are considering sensor nodes with omni-directional
sensing area, and all of them focused on partial area coverage
instead of partial coverage.

III. PRELIMINARIES AND PROBLEM DEFINITIONS

In this section, we first review the effective-sensing model in
camera sensor networks [10] and Identifiability Test in [30],
which is a procedure to test if a target is effectively-sensed
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Fig. 4. In this figure, a target tk is effectively-covered by a camera si.

by a camera sensor. Then, we finally introduce the formal
definition of the maximum lifetime effective-sensing partial
target-coverage (ML-EPT) problem.

A. Effective-sensing in Camera and Video Surveillance

As we mentioned earlier, this paper assumes that a target is
recognized or effectively-sensed (covered) by a camera sensor
if the facial view of the target is observed by a camera
sensor. More formal definition of the effective-sensing model
in camera sensor networks is as follow.

Definition 1 (Effective-sensing Model). Consider a target tk
located at (xk, yk) and a sensor si located at (xi, yi). tk is
effectively-sensed (covered) by si if tk is within the sensing
area of si and the internal angle between two vectors f⃗k and
v⃗(k,i) is no greater than ϕ, i.e. α(f⃗k, v⃗(k,i)) ≤ ϕ (see Fig. 4),
where vector f⃗k is the facing orientation of tk, v⃗(k,i) = (xk−
xi, yk − yi), and ϕ ∈ [0, π

2 ) is a predefined parameter called
the maximum viewing angle.

B. Identifiability Test

This paper considers a camera sensor network of n camera
sensors to monitor m targets. We assume each camera sensor
has the same beamwidth θ and therefore q = 2π/θ available
sectors. In this paper, we assume q is a non-zero integer. Each
target tk has a face direction represented by a vector f⃗k.
Under the effective-sensing model in Definition 1, we now
provide the conditions that have to be satisfied if a target tk is
effectively-covered by a camera sensor si with its jth sector
as below.

Definition 2 (Identifiability Test). A target tk is effectively-
covered by the jth sensing sector of a camera sensor si only
if it passes all of the following three sub-tests.
(a) Sub-test 1: check whether tk is in the sensing range of si,

i.e. check if ∥v⃗(k,i)∥ ≤ R is true, where R is the maximum
sensing range of si.

(b) Sub-test 2: check whether tk is within the jth sensing
sector of si, i.e. check if d⃗T(i,j) · v⃗(i,k) ≥ ∥v⃗(k,i)∥ · cos

θ
2 is

true.
(c) Sub-test 3: check whether tk is effectively-covered by the

jth sensing sector of si, i.e. check if f⃗T
k · v⃗(k,i) ≥ ∥v⃗(k,i)∥·

cos ϕ is true.

From now on, we will denote the set of targets effectively-
covered by the jth sensing sector of si by S(i,j). Note that all
S(i,j)s can be determined within a polynomial time.

C. Formal Definition of ML-EPT

Now, we introduce the formal definition of the maximum
lifetime effective-sensing partial target-coverage (ML-EPT)
problem. Note that we assume that the remaining battery level
of nodes is not uniform and each node is connected to the data
collector, also known as the sink, directly.

Definition 3 (ML-EPT). Given
(a) a set T of targets {a1, a2, · · · , am} to be covered and

their corresponding weights W = {w1, w2, · · · , wm},
(b) a set S of homogenous camera sensors {s1, s2, · · · , sn}

randomly deployed in a 2-D plane, each of which has
q available orientations, the same beamwidth θ, and
its own battery lifetime li (1 ≤ i ≤ n) such that
L = {l1, l2, · · · , ln},

(c) a collection F = {S(i,j)|1 ≤ i ≤ n, 1 ≤ j ≤ q} subsets
S(i,j)s ⊆ T computed by Identifiability Test, and

(d) the required coverage-level CL, which is specific to a
given mission, where

max
k∈{1,··· ,m}

wk ≤ CL ≤
∑

k∈{1,··· ,m}

wk,

ML-EPT is to schedule the active periods of each camera
sensor such that the sum of weights of all targets which are
effectively-covered is at least CL at any time and the network
lifetime is maximized.

Largely, ML-EPT consists of the following two sub prob-
lems, determining the direction (active sector) of each node
and assigning the sleep-wakeup schedule to it. After the
schedule is determined, we will eventually obtain a collection
of the disjoint subsets of camera sensors and use each subset
one by one. During the rest of this paper, we will refer each
of the subsets as a covering-set. Note that the possible active
time of each covering-set is dominated by the node in the
set with least amount of remaining energy. Based on this
observation, we can restate the objective of ML-EPT as “to
seek a collection of the disjoint subsets of S such that (a) the
total weight of targets which are effectively-covered by each
subset is at least CL, and (b) the total working time of these
subsets is maximized.”

IV. A NEW HEURISTIC ALGORITHM FOR ML-EPT
In this section, we propose a new heuristic algorithm for

ML-EPT, namely the MEASURE-and-SLICE (MaS) algorithm.
The core strategy of our MaS is to maximize the total
lifetime of disjoint subsets each of which meets the minimum
coverage-level requirement CL. While this strategy is usual in
many existing coverage problems in wireless sensor networks,
ML-EPT poses unique challenges since (a) camera sensor net-
work is differ in effective-sensing model, (b) ML-EPT is about
partial-coverage, and (c) we assume the remaining energy-
level of each node is not equal. As a result, it is important
for us to build each covering-set in a way that the remaining
energy level of the nodes in the covering-set is consumed
as equal as possible (e.g. if there exists unbalanced energy
consumption among the nodes, after using a covering-set for



Algorithm 1 SLICE (F∗, CL, T,W,UC,L, LR)

1: Sort F∗ in non-decreasing order based on li−lRi
weightUC(S(i,j))

,
where weightUC(S(i,j)) =

∑
ak∈S(i,j)∩UC wk.

2: C ← ∅, fi ← ∅, for 1 ≤ i ≤ n.
3: repeat
4: Put the first sector S(i0,j0) of F∗ into C (C ←

C
∪
{S(i0,j0)}). Update fi0 ← {S(i,j)|S(i,j) ∈ F∗ and

i = i0} and F∗ ← F∗\fi0 .
5: until GETCOVERAGELEVEL (C, T,W ) ≥ CL
6: Return IMPROVECS (F∗, CL, T , W , C, {fi|∀Sij ∈ C}).
7: procedure GETCOVERAGELEVEL (C, T,W )
8: CLC ← 0 and flagk ← 0 for each ak ∈ T .
9: for each S(i,j) ∈ C do

10: For each ak ∈ S(i,j), if flagk is 0, then CLC ←
CLC + wk and flagk ← 1.

11: end for
12: Return CLC .
13: end procedure
14: procedure IMPROVECS (F∗, CL, T,W,C, {fi|∀S(i,j) ∈

C})
15: C ′ ← C and CLC′ ← 0.
16: for sn = 1 to |C ′| do
17: C ′ ← C ′\{S′

(i,j)}, where S′
(i,j) is the snth ele-

ment of C ′.
18: CLC′ ← GETCOVERAGELEVEL (C ′, T , W ).
19: If CLC′ ≥ CL, then F∗ ← F∗ ∪

fi′ . Otherwise,
reverse Line 17.

20: end for
21: Return ⟨C ′,F∗⟩.
22: end procedure

t time units, some nodes might be exhausted, while some
others still have lots of energy) while the subset (covering-set)
satisfies the the minimum coverage-level requirement. Note
that this also involves the problem of determining the active
sector of each camera sensor in the covering-set, which makes
the problem even more complicated. In the following, we
give the detail of MaS, an iterative algorithm which consists
of the following two sub procedures, (a) SLICE: computing
a slice (subset) of S forming a minimum covering-set and
(b) MEASURE: measuring the maximum coverage capacity
(level) of each sensor (the maximum total weights of the
targets effectively covered by each sensor), to tackle the
daunting complexity of the ML-EPT.

A. SLICE: Greedy Computation of a Smaller Size Covering-
set

In this subsection, we propose a greedy algorithm to select a
smaller size covering-set from a given collection of F∗ ⊆ F .
The inputs of this algorithm are (a) F∗, the sub collection
of S(i,j)s such that si is not included in any covering-set so
far, (b) CL, a given mission critical coverage level, (c) T ,
the set of targets, (d) W , the weight of the targets, (e) UC,
the set of uncovered targets so far, (f) L, the initial lifetime

of sensors, and (g) LR, the remaining lifetime of sensors.
SLICE is basically a greedy algorithm. Algorithm 1 is the
formal description of the SLICE algorithm, which is to find a
subcollection C ⊆ F∗ with the smaller size such that at most
one sector can be selected for each available sensor and C
satisfies the minimum coverage-level requirement CL.

Let us define the weight of each sector S(i,j) in F∗ as
weight(S(i,j)) =

∑
ak∈S(i,j)

wk, which indicates the sector’s
coverage capability. SLICE first sorts the elements in F∗ in
non-decreasing order of li−lRi

weightUC(S(i,j))
for each S(i,j) ∈ F∗,

where (a) li − lRi denotes the difference of the initial energy
and the residual energy of sensor si, i.e. the consumed energy
of si, (b) UC is the set of uncovered targets so far, and
(c) weightUC(S(i,j)) =

∑
ak∈S(i,j)∩UC wk, which stands

for the sector’s (S(i,j)’s) current coverage capacity, i.e. the
sum of the weights of the uncovered targets but can be
covered by S(i,j) (∀ak ∈ S(i,j) ∩ UC) at the current state.
This step is included to give higher priority to those nodes
with higher coverage capability per remaining energy level.
Next, we greedily select one working sector of each available
sensors with highest priority, add it to C, and update F∗.
This is repeated until C can meet the minimum coverage-level
requirement. The current coverage-level of C can be computed
by the procedure GETCOVERAGELEVEL. Note that since we
used a greedy strategy, C can be redundant. Therefore, finally,
we improve this sub collection by the procedure IMPROVECS
which removes the redundant sectors from C. Specifically, this
is done by checking if the constructed covering-set still can
meet the minimum coverage requirement without some nodes
(Lines 16-20).

B. MEASURE: Evaluation of Coverage Capacity of Sensors

The goal of our next sub procedure, MEASURE, is to
measure the maximal coverage capacity of each node and
use this as a guideline to split the remaining energy-level of
the node over multiple coverage-sets in which the node will
be included later. For this purpose, we construct a maximal
collection of disjoint covering-sets, each of which is composed
of working sectors and can meet the required coverage-level.
When we select a covering set to be added into the collection,
we do not pick those sectors of sensors whose another sectors
have considered already in the constructed covering-sets (so
far). In this way, we can obtain the sample collection of
covering-sets. Note that the collection of the covering-sets,
constructed without the consideration of the energy-level of
each node, are not our final output, but only will be used as
a guideline in our final algorithm which will be introduced in
the following subsection.

We construct a collection of available covering-sets by
iteration: in each iteration, we construct a batch of covering-
sets based on F and eliminate all sectors in the batch of
covering-sets from F . We repeat the process until the current
F cannot afford CL-coverage of the target set. It is important
that the construction of a batch of covering-sets in each
loop is according to the criterion mentioned above, which is



Algorithm 2 MEASURE (F , CL, T,W )

1: p′ ← 1, F ′ ← ∅, A ← ∅, and Cp′ ← ∅.
2: while GETCOVERAGELEVEL (F , T,W ) ≥ CL do
3: F ′ ← F and newRound← true.
4: while GETCOVERAGELEVEL (F , T,W ) ≥ CL do
5: ⟨Cp′ ,F ′⟩ ← PREPARE-SLICE (F ′, CL, T,W ).
6: If Cp′ = ∅ and newRound = true, then go

to Line 10. Otherwise, set newRound ← false, A ←
A
∪
{Cp′}, and p′ ← p′ + 1.

7: end while
8: F ← F \

∪p′

po=1 Cpo .
9: end while

10: For each sensor si ∈ S, fi ←
∑q

j=1 f(S(i,j)), where
f(S(i,j))←

∣∣{Cp′ |S(i,j) ∈ Cp′ ,∀Cp′ ∈ A}
∣∣.

11: Return {fi|∀si ∈ S}.
12: procedure PREPARE-SLICE (F∗, CL, T,W )
13: Sort F∗ in non-increasing order based on the weight

of the sector, which is defined as (take sector S(i,j) as an
example) weight(S(i,j)) =

∑
ak∈S(i,j)

wk.
14: C ← ∅, fi ← ∅, for 1 ≤ i ≤ n.
15: while GETCOVERAGELEVEL (C, T,W ) < CL and
F∗ ̸= ∅ do

16: put the first sector S(i0,j0) of F∗ into C (C ←
C
∪
{S(i0,j0)}), and fi0 ← {S(i,j)|S(i,j) ∈ F∗ and i =

i0}, F∗ ← F∗\fi0 .
17: end while
18: if GETCOVERAGELEVEL (C, T,W ) < CL then
19: Return ∅.
20: else
21: Return IMPROVECS(F∗, CL, T,W,C, {fi|∀S(i,j) ∈

C}).
22: end if
23: end procedure

implemented by repeating Steps 3-8 of Algorithm 2 and based
on the procedure PREPARE-SLICE (F∗, CL, T , W ).

C. MEASURE-and-SLICE (MaS): A New Heuristic Algorithm
for ML-EPT

Now, we introduce a new heuristic algorithm for ML-EPT,
namely MaS, based on Algorithms 1 (SLICE) and Algorithm
2 (MEASURE). MaS first prepares the guideline to assign
an active period of each available sector in each covering-set
according to the result of coverage capacity evaluation done
by MEASURE. Using SLICE, MaS iteratively constructs a
collection of covering-sets and assign the battery lifetime of
each sector to be consumed in the scheduled covering-set.
Algorithm 3 is the formal definition of MaS. Now, we analysis
the running time of MaS.

Theorem 1. The time complexity of Algorithm 3 for ML-EPT
is O

(
(nq)3 log(nq)

)
, where n is the number of the camera

sensors and q is the number of available orientations per
sensor.

Algorithm 3 MEASURE-and-SLICE (S, T, CL,L,W )

1: F ← ∅, S(i,j) ← ∅, for 1 ≤ i ≤ n, 1 ≤ j ≤ q.
2: For each pair (i, j), run the Identifiability Test on (i, j)

and obtain S(i,j). Set F ← {S(i,j)|1 ≤ i ≤ n, 1 ≤ j ≤ q}.
3: Compute {fi|1 ≤ i ≤ n} = MEASURE (F , CL, T , W ).
4: For ∀si ∈ S, lRi ← li. Let LR ← {lRi |1 ≤ i ≤ n}.
5: Z ← ∅, F ′ ← ∅, p← 1, Cp ← ∅, Lp ← 0, LT ← 0.
6: while LR ̸= ∅ and GETCOVERAGELEVEL (F , T , W )≥

CL do
7: F ′ ← F , Tp ← ∅, and newRound← true.
8: while GETCOVERAGELEVEL (F ′, T , W )≥ CL do
9: For each si ∈ S, if lRi < li

fi
, then lpi ← lRi .

Otherwise, lpi ←
li
fi

.
10: if T \ Tp = ∅ then
11: go to Line 25. /* quit inner loop */
12: end if
13: ⟨Cp,F ′⟩ ←SLICE(F ′, CL, T , W , T \Tp, L, LR).
14: if Cp = ∅ then
15: If newRound = true, then go to Line 27. /*

quit outer loop */
16: else
17: Lp ← mini∈{i′|Si′j′∈Cp} l

p
i , LT ← LT + Lp,

Z ← Z
∪
{Cp}, Tp ← Tp

∪
{Sij |Sij ∈ Cp}, and F ′ ←

F ′\
∪

Sij∈Cp
{Si′j′ |Si′j′ ∈ F ′ and i′ = i}.

18: for each sector Sij ∈ Cp do
19: lRi ← lRi − Lp.
20: If lRi = 0, then LR ← LR\{lRi }.
21: end for
22: p← p+ 1.
23: end if
24: end while
25: F ← F\

∪p
po=1 Cpo

.
26: end while
27: Return ⟨Z, LT ⟩.

Proof: The analysis of the time complexity of Algorithm
3 partly depends on that of Algorithm 1. Thus let us consider
Algorithm 1 first. The time complexity of Algorithm 1 is
O(nq log(nq)). For the while loop from Lines 8 to 24 in
Algorithm 3, there are at most n2q · maxsi∈S li iterations,
where maxsi∈S li is the maximum battery lifetime among all
the camera sensors. Thus, the while loop has time complexity
with O

(
n3q2 log(nq)(maxsi∈S li)

)
. Next, we consider the

procedure of coverage capacity evaluation in Line 3. Since
there are at most (nq)2 iterations in the nested while loop
in Algorithm 2 and the time complexity of sub-procedure
PREPARE-SLICE is O(nq log(nq)), Algorithm 2’s time com-
plexity is O

(
(nq)3 log(nq)

)
where n is the number of the

camera sensors and q is the number of available orientations
per sensor. Based on the above analysis, the time complexity
of Algorithm 3 is O

(
(nq)3 log(nq)

)
, where n is the number

of the camera sensors and q is the number of available
orientations per sensor. The proof is completed.



V. SIMULATION RESULTS AND ANALYSIS

In [19], the authors proposed the multiple directional cover
sets (MDCS) problem, whose goal is to organize a given
set of directional sensors into a collection of non-disjoint
cover sets to prolong the network lifetime, is formulated
using a mixed integer programming (MIP) problem. Then,
the authors introduced three heuristic algorithms for the linear
programming relaxation of the MIP problem. Among the three
algorithms, the feedback algorithm (FB) is shown to be the
best on average via simulation. The feedback algorithm solves
the linear programming relaxation by iteratively executing two
internal processes, namely conflicting direction elimination
process and direction selection process. In each iteration,
one covering-set is determined from the linear programming
relaxation, and the constraints which indicate this covering-
set can satisfy the coverage requirement (full-coverage in
MDCS, but partial-coverage in our problem) are added to
the the linear programming relaxation for the next iteration.
Then, the updated linear programming relaxation is solved
again to obtain the next covering-set. Due to the reason, we
can easily modify FB to solve ML-EPT by adopting our
subprocedure GetCoverageLevel in Algorithm 1 to check if
our partial coverage requirement is met. We would like to
emphasize that the FB algorithm modified in this way is
the best existing alternative to solve ML-EPT, and thus we
compare our algorithm against this modified FB. Note that
according to the time complexity analysis in [19], the running
time of this variation is O

(
(nq)3P 4

)
.

Now, we present our simulation results to evaluate the
performance of the MaS algorithm with the variation of FB
for ML-EPT in terms of network lifetime and the number of
the total covering-sets. In this simulation, we randomly deploy
n camera sensors and m targets in a 10×10 2-D virtual space.
Each camera sensor has the maximum sensing radius R and q
available directions. The facing direction vector of each target
is also randomly assigned. The maximum viewing angle ϕ is
set to be π

4 . The battery lifetime of each sensor is a random
real number between 1.0 and 5.0 time units and the weight of
each target is a random integer between 0 and 10 units. We
denote the coverage requirement as CL. For each parameter
setting, we run 50 instances and compute their average for
evaluation.
MaS vs. FB (modified). We first study how network lifetime
is affected by the number of camera sensors n, the maximum
sensing radius of each camera sensor R, the number of
available directions per camera sensor q, and the number of
targets m when the coverage requirement CL is 20 or 30.
Fig. 5 shows the relationship between the network lifetime
and the number of sensors. In Fig. 5(a), we set R = 5, q = 4,
m = 10, CL = 20 and vary n from 20 to 40 with an increment
of 5. In this figure, the network lifetime of both of MaS and
FB increases smoothly when the number of sensors increases
from 20 to 30. This trend becomes more prominent as the
number of sensors increases from 30 to 40. When the number
of sensors is 30, the average network lifetime of MaS is 2.970
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Fig. 5. Effect of n over network lifetime (m = 10, R = 5, q = 4).

time units, while it is 2.251 time units for FB. In Fig 5(b),
we set CL = 30, and repeat the same simulation. Now, the
performance gap between MaS and FB is even greater. Based
on the figures, we can conclude that MaS is getter better
than FB as the size of network increases. The relationship
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Fig. 6. Effect of R over network lifetime (m = 10, n = 30, q = 4).

between network lifetime and the maximum sensing radius of
each camera sensor is given in Fig. 6. Fig. 6(a) and Fig. 6(a)
show as R increases, MaS is getting better than FB. From
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Fig. 7. Effect of q over network lifetime (m = 10, R = 5, n = 30).

Fig. 7(a) and Fig. 7(b), we can observe that as the number
of available directions per camera sensor increases, network
lifetime decreases. This result is natural since as we have larger
q, each sector has less chance to effectively cover more targets.
As a result, to meet a given CL requirement, we need more
nodes in a covering-set, which will results in faster energy-
depletion of the sensor network. Overall, this result shows
MaS is better than FB. Fig. 8 shows that network lifetime
increases as the number of targets increases. This is easy to
understand since as we have more nodes, we may need to
operate less number of nodes to meet a given CL requirement.
Both of Fig. 8(a) and Fig. 8(b) also well support our claim that
MaS outperforms FB. Fig. 9 shows the relationship between
network lifetime and CL. In general, this result shows as CL
increases, we need to operate more number of camera sensors
to form a valid covering-set. As a result, network lifetime is
shortened. This result also shows that MaS outperforms FB.
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Fig. 8. Effect of m over network lifetime (n = 30, R = 5, q = 4).
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Fig. 9. Effect of CL over network lifetime (m = 10, R = 5, q = 4).

MaS vs. Optimum. Now, we compare the performance of
MaS algorithm for ML-EPT against an optimal solution. Note
that ML-EPT is NP-hard and thus it is extremely difficult
and time-consuming to obtain optimal solutions in general
cases. Therefore, we only focus on restricted cases in which
exhaustive search for optimal solutions is possible. In detail,
we prepare a 7 by 7 grid space with the side length of one
unit and randomly deploy 6 sensors s1, s2, s3, s4, s5, s6, and
5 targets t1, t2, t3, t4, t5 on some grid points in the space as
shown in Fig. 10. Each sensor has the maximum sensing
radius of 1 and four available directions, whose vectors are
(
√
2
2 ,

√
2
2 ), (−

√
2
2 ,

√
2
2 ), (−

√
2
2 ,−

√
2
2 ), and (

√
2
2 ,−

√
2
2 ). And

each target’s facing direction vectors will be chose in the range
of {(1, 0), (0, 1), (−1, 0), (0,−1)}. The maximum viewing
angle ϕ is set to be π

4 . The battery lifetime of each sensor
bi is i time units (for i ∈ {1, 2, 3, 4, 5, 6}) and the weight
of each target wj is j units (for j ∈ {1, 2, 3, 4, 5}). We
set CL to either 6 or 8. Then, we exhaustively search the
optimal solution, and compare them with MaS. Note that the
working time of each sensor can only be an integer. After 50
random combinations of targets’ facing directions (e.g. it is
a combination that the facing directions of t1, t2, t3, t4, t5 are
(−1, 0), (0, 1), (1, 0), (1, 0), (0,−1) respectively), we compute
the average and Fig. 11 shows the results of this simulation. In
this figure, the first group shows the result when CL = 6 and
the second group indicates the case of CL = 8. We can find
the average network lifetime of optimal solution is 2.5 and the
average network lifetime by MaS is 2.083 when CL = 6, and
the two values are 3 and 2.833 respectively when CL = 8.
Our simulation result in Fig. 11 indicates that the average
(experimental) performance ratio of MaS is nearly 1.

VI. CONCLUSION

This paper studies a partial target-coverage problem in
camera sensor network. While many efforts are made to study
various coverage problems in both wireless sensor network

Fig. 10. A grid network instance.

Fig. 11. The performance comparison of MaS against optimal solutions in
a grid network instance.

and directional sensor network, our problem is still very
challenging due to the unique properties of camera sensors.
We formally define our problem as the maximum lifetime
effective-sensing partial target-coverage (ML-EPT) problem,
and propose a heuristic algorithm for ML-EPT, namely the
MEASURE-and-SLICE (MaS) algorithm. Our simulation re-
sults show that MaS outperforms an existing alterative solution
for ML-EPT as well as performs very closely to optimal
solutions at least in some restricted circumstances.
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