

Construction of an Evaluation Model for
Free/Open Source Project Hosting Sites

A thesis submitted in fulfillment of the requirements for
the degree of Doctor of Philosophy

Haggen Hau Heng So
B.Eng., Grad.Cert.Trans.

School of Business Information Technology
Business Portfolio
RMIT University
September 2005

ii

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author

alone; the work has not been submitted previously, in whole or in part, to qualify for any other

academic award; the content of the thesis is the result of work which has been carried out since

the official commencement date of the approved research program; and, any editorial work,

paid or unpaid, carried out by a third party is acknowledged.

……………………………

Haggen So

9 September 2005

The current version of this document is 0.9. Some of the permissions to include figures and tables from external source are not

yet obtained. So do not be surprised if you see a big "X" in certain diagrams or tables. This document is regretfully created

using MS Word 2000. The reasons to use these tools were functionalities and communication with the establishments. On the

other hand, most of the diagrams in this thesis were drawn with OpenOffice Draw and I used PDFCreator 0.8.1 to convert the

document to PDF. I believe if I start my PhD now, probably I can use mostly Free/Open Source Software.

iii

Acknowledgements

Many people have offered assistance during this PhD programme and I cannot name all of them

here. A number of people come to mind when I look back…

I would like to sincerely thank my senior supervisor, Dr. Nigel Thomas, for guiding me through

the PhD programme as well as providing ample freedom so that I can develop the discipline of

becoming an independent researcher. My gratitude also goes to Mr. Hossein Zadeh on his effort

in providing technical support on the web server. The Faculty of Business provided funding for

the scholarship and conference to make this PhD programme possible. The staff in the

Research and Development Unit was very helpful. They even took up the task of appointing the

examiners. Dr. France Cheong also proofread this dissertation and his suggestions on the

grammatical mistakes and typos are taken. Last but definitely not the least, the companionship

and expertise of the students in the business research lab were absolutely indispensable in this

journey.

I would also like to thank the people who assisted during data collection. The participants of

the Delphi survey included Kasper Edwards, Frank Tobin and 30 other anonymous participants.

The online Delphi survey was tested by the system testing team, which was made up of Alpha

Lau, Boon Chew Tay, Chandana Unnithan, John Yu, Kin-Kee Sit and Tat Wai Ho. Furthermore,

Dr. Brett Scarlett and Professor Clive Morley gave invaluable comments on the design of the

Delphi survey methods. During the detailed investigation of external FOSPHost sites, Roger

Dingledine, Ryan Gordon, John Minnihan, Christian Reiniger and Chris Ryan gave useful and

interesting comments on the topic and ibiblio.org provided the hosting service required. By

releasing thesis to the public under the Creative Common

Attribution-NonCommercial-NoDerivs license (see Appendix B), I wish to express my

gratitude to above volunteers for their contributions to the common good.

iv

My family was also very supportive during the programme. I would like to express my heartfelt

gratitude my elder sister and brother in law with whom I lived with. They provided a warm

home and my brother in law read through my writings and gave useful comments. The PhD

programme is a journey of understanding phenomenon outside of myself as well as a journey

inwards of self-discovery. In retrospect, I would never reach the end if my parents have not

prepared me for this journey from the very beginning of my existence. The skills that I have,

the personality that I possess, and many other things that I take for granted – their existence is

not a coincidence, but the fruit of years of hard work and love. I can hardly find the right words

to express my gratitude.

This research project is an exploratory study, and I have to stop when there are still many

mysteries lying around. It has been said by Confucius (500 BC) that 'What you know, you know,

what you don't know, you don't know. This is knowledge.' Nevertheless, when loneliness

haunts, it is tempting to draw ungrounded conclusions for instant gratification. The friendship

with the ultimate mystery, the God incarnated that suffered, helped and is still helping me to

make friends with these mysteries. For the desire of conquering mysteries comes from fear, but

the friendship provides peace.

Last but not least, I would like to thank the reader of this dissertation - yes, that is YOU. Most

people would hardly care about this acknowledgements section, and your interest in this work is

very much appreciated.

If you find anything worthy of praise in this work, probably it is due to someone mentioned

above, and all the forerunners who kindly let me stand on their shoulders – their discoveries,

theories and wisdom. Nevertheless, if you find any fault, then the blame probably lies with me.

 H. So

v

Table of Content

Declaration ..ii

Acknowledgements ..iii

Table of Content..v

List of Figures ..xi

List of Tables ..xiv

Abbreviations ...xvi

Abstract ...2

Chapter I Introduction...3

1.1 Introduction ..3

1.2 Rationale of the Research ...6

1.3 Objectives of the Research ...7

1.4 Research Methods...8

1.5 Contribution of the Research..8

1.6 Structure of This Dissertation...8

Chapter II Literature Review.. 11

2.1 Introduction .. 11

2.2 Formal Definition of Free/Open Source Software ... 11

2.3 The Most Well-Known Model - The Cathedral and The Bazaar..............................13

2.4 Relevant Areas of Interest in the Topic of Free/Open Source Phenomenon16

2.5 Summary of Chapter Two...17

Chapter III Research Questions ...19

3.1 Introduction ..19

3.2 Free/Open Source Project Hosting Sites ..19

3.3 Developing the Research Questions ...21

3.4 Summary of Chapter Three ..23

vi

Chapter IV Development of Analytical Frameworks ...24

4.1 Introduction ..24

4.2 Background for Analytical Frameworks...24

4.2.1 Free/Open Source Community, a definition...25

4.2.2 A Framework on Computer-Supported Co-operative Work (CSCW) and

Analysis of an Free/Open Source Community...27

4.3 4C Model of a Free/Open Source Community...29

4.3.1 Communication ..29

4.3.2 Contributions ..30

4.3.3 Co-ordination..30

4.3.4 Culture ..33

4.4 A Model of Individual Participation to a Free/Open Source Community................34

4.5 Notes on the Construction of the Model of Individual Participation to a Free/Open

Source Community...37

4.6 Comparison Between the Bazaar Model and the Model of Individual Participation to

a Free/Open Source Community ..40

4.7 Comparison Between the Other Models and the Model of Individual Participation to

a Free/Open Source Community ..40

4.7.1 Software Development Based Models ...41

4.7.2 Comprehensive Models ..43

4.7.3 Comparison of the Models ...46

4.8 The Model of Individual Participation to a Free/Open Source Community and

FOSPHost Design and Deployment ...49

4.9 Summary to Chapter Four ..49

Chapter V Methodology ..51

5.1 Introduction ..51

vii

5.2 Overall Research Strategy ..51

5.3 Selection of Research Methodologies and Methods...55

5.3.1 Considerations in the Construction of the FOSPHost Evaluation Model 59

5.3.1.1 Introduction ..59

5.3.1.2 Software Evaluation During Development60

5.3.1.3 Software Product Evaluation..67

5.3.1.4 Software Evaluation and FOSPHost ..70

5.3.1.5 Presentations of Evaluation ..72

5.3.1.6 Users of Evaluation ..78

5.3.1.7 Summary...79

5.3.2 Delphi Survey...79

5.3.2.1 Administration of Instruments and Procedures81

5.3.2.2 Participants of Survey...81

5.3.2.3 Questionnaire Development for the Survey82

5.3.2.4 Implementation of Survey on the Web Server..................................85

5.3.2.5 Data Analysis..121

5.3.3 Detailed investigation on External Hosting Sites...................................123

5.4 Summary of Chapter Five...126

Chapter VI Results and Analysis of the Delphi Survey ..128

6.1 Introduction ..128

6.2 Results of the Delphi Survey..128

6.2.1 Invitations and Responses ..128

6.2.2 Agreed Answers..137

6.2.3 Controversial Answers..144

6.3 Analysis of the Results of the Delphi Survey...155

6.3.1 Delphi Survey Method ...155

viii

6.3.2 Responses and Validity...157

6.3.3 Possible Improvements in Delphi Survey Method.................................162

6.3.4 Data Analysis..164

6.3.5 Discussion of Results ...167

6.4 Summary of Chapter Six ..171

Chapter VII Detailed Investigation on External Hosting Sites173

7.1 Introduction ..173

7.2 Data Collection and Selection of Sites ...173

7.2.1 Infrastructure and Non-infrastructure sites...174

7.2.2 Introduction to Infrastructure Sites...175

7.2.3 Introduction to Non-infrastructure Sites...178

7.3 Comparison of External Hosting Sites ...179

7.3.1 General Information ...180

7.3.2 Project Tools - Tools for Public/Developers...183

7.3.3 Project Tools - Tools for Project Administrators194

7.3.4 Personal Tools for Developers..202

7.3.5 Community Tools ...206

7.3.6 Others ...215

7.4 Discussion of the Comparison..222

7.5 Summary of Chapter Seven..231

Chapter VIII Construction of the Evaluation Model ...232

8.1 Introduction ..232

8.2 Data Collected and Choice of Evaluation Presentation..232

8.3 Implementation of the Evaluation Presentations ..234

8.3.1 Tools Chosen for Implementation ..235

8.3.2 Evaluation Model Implemented with the Chosen Tools237

ix

8.4 Discussion of the Evaluation Model...251

8.5 Summary of Chapter Eight ...252

Chapter IX Discussion of Results ..254

9.1 Introduction ..254

9.2 Reflections and Limitations of this research ..254

9.3 Implications of the Findings – Free/Open Source as a Different Paradigm...........256

9.4 Summary of Chapter Nine..264

Chapter X Conclusion ..265

10.1 Introduction ..265

10.2 Summary of Findings ...265

10.2.1 The Model of Individual Participation to a Free/Open Source Community

and Software Evaluation Classification..266

10.2.2 Delphi Survey...267

10.2.3 Detailed investigation...267

10.2.4 Evaluation Model ...268

10.2.5 Contributions of the Findings...268

10.4 Further Research...269

10.4.1 Further Research on FOSPHost..269

10.4.2 Further Research on the Broader Context of the Free/Open Source

Phenomenon ...272

10.5 Possible Future of the Software Industry and the Potential Applications of the

Findings ..278

List of References..285

Appendix A Related Publications...305

Appendix B Licenses of Different Portions of the Dissertation and Other Copyright

Issues..306

x

Appendix C Content of Enclosed CD-ROM..310

Appendix D Jane Jacob's Systems of Survival.. 311

Appendix E Susceptibility of Average and Variance ..313

Appendix F Software Configuration System and Source Code Repository.........315

F.1 Historical Influences...315

F.2 A Closer Look at CVS...319

F.3 Limitations of CVS...322

F.4 Other Systems Used in the Free/Open Source Communities323

F.5 Conclusion..324

Appendix G Results of Free/Open Source Hosting (FOSPHost) Sites Delphi Survey

 ..325

Appendix H WakkaWiki Pages...326

Appendix I Source Code for Delphi Survey ...327

Appendix J Source Code for Evaluation Model...339

xi

List of Figures

Figure 2-1 Three areas of interest in Free/Open Source 16

Figure 4-1 Integrative Three Phase Model of Virtual Communities and Society (Romm, Pliskin

& Clarke 1997, p. 269) 26

Figure 4-2 A Framework on CSCW 28

Figure 4-3 4C Model of a Free/Open Source Community 29

Figure 4-4 A Model of the Social Structure of Free/Open Source Community (Lawrie, Arief &

Gacek , 2002, p. 77) modified by the authors (* denotes the modification) 31

Figure 4-5 Communication Pattern of GCC (Yamauchi et al. 2000, p. 7) 33

Figure 4-6 A Model on individual participation in an Open Source/Free Software Community

 35

Figure 4-7 Open source characteristics - common and variable (Gacek, Lawrie & Arief 2001, p.

79) 43

Figure 4-8 OSS Model (Sharma, Sugumaran & Rajagopalan 2002, p. 18) 44

Figure 5-1 Exploratory, Descriptive and Explanatory Research 52

Figure 5-2 The overall research strategy of this research 54

Figure 5-3 Quality of Use Measures Determined by the Context of Use (Bevan 1995) 66

Figure 5-4 Site Map of Major Elements for Delphi Survey 87

Figure 5-5 Register/Login Page 88

Figure 5-6 Participants Details 89

Figure 5-7 Information Centre 90

Figure 5-8 Round 1 Questionnaire Question Page 91

Figure 5-9 Round 1 Questionnaire Answer Page 92

Figure 5-10 Menu for Question 2 92

Figure 5-11 Adding a New Tool 93

Figure 5-12 Adding Name and Description 93

xii

Figure 5-13 Suggesting Features 94

Figure 5-14 Selecting Preset Usability Factors 94

Figure 5-15 User-defined Usability Factors 95

Figure 5-16 Summary of Responses 97

Figure 5-17 Verification Page 98

Figure 5-18 Additional Clarification 99

Figure 5-19 Results of Round 1 Sorted by Questions in Short Form 100

Figure 5-20 Results of Round 1 Sorted by Questions in Long Form 100

Figure 5-21 Participants Grouped by Self Rating 101

Figure 5-22 Results of Round 1 by Participants in Short Form 102

Figure 5-23 Results of Round 1 by Participants in Long Form 103

Figure 5-24 Round 2 Questionnaire Answer Page 104

Figure 5-25 Randomisation of Statement Order 105

Figure 5-26 Show Only Top Ten 106

Figure 5-27 Show Only Numerical Data 107

Figure 5-28 Show All Relevant Data (Sort by Rating) 108

Figure 5-29 Show All Relevant Data (Sort by Controversy) 109

Figure 5-30 Detail Chart of Distribution of Responses 110

Figure 5-31 Responses of a Participant 111

Figure 5-32 Detail Responses of a Participant 112

Figure 5-33 Round 3 Questionnaire Question Page 113

Figure 5-34 Round 3 Questionnaire Answer Page 114

Figure 5-35 Checking Glossary for Difficult Terms 115

Figure 5-36 Checking Qualitative Results from Last Round 116

Figure 5-37 Checking Quantitative Results from Last Round 117

Figure 5-38 Results of Round 3 118

xiii

Figure 5-39 Post-Delphi Survey 119

Figure 5-40 Post-Delphi Survey Results 120

Figure 6-1 No. of Invitation Sent in Round 3 133

Figure 6-2 Histogram of Average Ratings 137

Figure 6-3 Histogram of Variance of Ratings 144

Figure 7-1 Overview of Bugs 189

Figure 7-2 Details of a Bug Report 190

Figure 8-1 Site Map for Evaluation Model 238

Figure 8-2 Front Page of Wiki 239

Figure 8-3 What is a FOSPHost Site? 240

Figure 8-4 Preferred Attributes of a FOSPHost Site 241

Figure 8-5 Preferred Attributes - Utility 241

Figure 8-6 Preferred Attributes - Context 242

Figure 8-7 Controversial Issues of a FOSPHost Site 243

Figure 8-8 We love freedom, but how far can it go? 243

Figure 8-9 Opinions for Generating Customised Comparison Table 244

Figure 8-10 Example of Customised Comparison Table Generated (1) 245

Figure 8-11 Example of Customised Comparison Table Generated (2) 246

Figure 8-12 Step 1 of Weighed Checklist 247

Figure 8-13 Step 2 of Weighed Checklist 249

Figure 8-14 Step 3 of Weighed Checklist (1) 250

Figure 8-15 Step 3 of Weighed Checklist (2) 251

Figure F-1 Illustration of the operation of diff 317

Figure F-2 Typical CVS Operation 319

Figure F-3 The Tree Diagram for Branching and Merging for a Certain File 321

xiv

List of Tables

Table 4-1 Three Types of Free/Open Source Projects (Nakakoji et al. 2002) 41

Table 4-2 Comparison of the Four Models based on the Model on Individual Participation in an

Open Source/Free Software Community 46

Table 5-1 A Summary of Differences among the Three Approaches to Research (Neuman,

Bondy & Knight 2003, p. 91) 56

Table 5-2 An Example of Courseware Evaluation 74

Table 5-3 Sample evaluation matrix using scores and weighing 75

Table 5-4 Implications of Different Forms of Presentation 77

Table 5-5 Preset Usability Factors 97

Table 6-1 Numbers of Participants Involved in Each Question 129

Table 6-2 Breakdown of Participants based on Expertise and Participation 131

Table 6-3 Amount of Participation 131

Table 6-4 Numbers of People Invited for Each Round 131

Table 6-5 Statistics for Invitation 132

Table 6-6 'No Comment' Responses from Question Page 134

Table 6-7 'No Comment' Responses from Answer Pages 134

Table 6-8 Round 2 References to Results 135

Table 6-9 Round 3 References to Results 135

Table 6-10 Difference in Rating in Round 2 and 3 136

Table 6-11 Division of Important Statements 138

Table 6-12 The Most Important Statements from the Delphi Survey 142

Table 6-13 Division of Controversial Statements 145

Table 6-14 The Most Controversial Statements from the Delphi Survey 149

Table 6-15 Comparison of Number of Participants for Different Delphi Survey 159

Table 6-16 Number of Statement Selected in Each Question 165

xv

Table 7-1 Comparison of General Information of FOSPHost Sites 181

Table 7-2 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (1)

 185

Table 7-3 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (2)

 188

Table 7-4 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (3)

 193

Table 7-5 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (1)

 195

Table 7-6 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (2)

 198

Table 7-7 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (3)

 200

Table 7-8 Comparison of 'Personal Tools for Developers' 204

Table 7-9 Comparison of 'Community Tools' (1) 209

Table 7-10 Comparison of 'Community Tools' (2) 212

Table 7-11 Comparison of 'Community Tools' (3) 214

Table 7-12 Comparison of 'Others' (1) 216

Table 7-13 Comparison of 'Others' (2) 218

Table 7-14 Comparison of 'Others' (3) 220

Table 7-15 Comparison of 'Others' (4) 221

Table 7-16 Number of Features excluding 'General Information' and 'Others' 225

Table 7-17 Number of Features excluding 'General Information', 'Personal Tools for

Developers' and 'Others' 226

Table B-1 List of Trademarks Acknowledged 308

Table D-1 Commercial and Guardian Moral Syndromes (Jacobs 1993, pp. 23-4) 311

xvi

Abbreviations

BGI Barclays Global Investors

CGI Common Gateway Interface

CMM Capability Maturity Models

COTS Commercial-Off-The-Shelf (Software)

CSCW Computer-Supported Co-operative Work

CVS Concurrent Versions System

FOSPHost Free/Open Source Hosting (site)

FSF Free Software Foundation

FTP File Transfer Protocol

GNU GNU Not Unix

GPL General Public License

HCI Human-Computer Interaction

HP Hewlett-Packard

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBM International Business Machines

IDE Integrated Development Environment

IP Internet Protocol

IRC Internet Relay Chat

IT Information Technology

ITS Incompatible Time Sharing system

JSP JavaServer Pages

LUG Linux User Group

OSDN Open Source Development Network

OSS Open Source Software

PDF Portable Document Format

PHP PHP Hypertext Preprocessor

PSP Personal Software Process

SCP Secure Copy Protocol

SEUL Simple End-User Linux project

SFTP Secure File Transfer Protocol

SSH Secure Shell

xvii

SSI Server Side Include

SSL Secure Sockets Layer

TSP Team Software Process

WWW World Wide Web

(Some definitions are recursive by 'definition')

CONSTRUCTION OF AN
EVALUATION MODEL FOR

FREE/OPEN SOURCE
PROJECT HOSTING SITES

2

Abstract

Free/Open Source software is a kind of software whose source code is available for

comprehension, modification and re-distribution. This kind of software has increased in

popularity in recent years and becoming an interesting topic for research. Most Free/Open

Source software is produced through the facilitation of Free/Open Source Hosting (FOSPHost)

sites and investigations into these sites may yield results that have theoretical and practical

significance.

The purpose of study selected was exploratory and a positivist approach was adopted as main

methodology. Literature was surveyed and suitable analytic frameworks were built. Based on

these frameworks, an online Delphi survey was conducted to collect expert opinion on

important issues of FOSPHost. A detailed investigation of ten FOSPHost sites was conducted.

The results from the two data collection processes was condensed and presented in an

evaluation format so that practitioners and researchers alike can gain more understanding in the

design and the deployment of FOSPHost sites.

Chapter 1

Introduction

1.1 Introduction

The Free/Open Source phenomenon is a surprise with a mystery. The market share of a popular

Free/Open Source web server, Apache, was 69% comparing to 23% for Microsoft servers in

January 2004 (Netcraft 2004). In the operating system market at the end of 2001, Linux server,

a Free/Open Source system, had 26% while Microsoft had 49% of the market share. Microsoft

was still the leader of the market, but 45% of all new servers shipped were predicted to be Linux

in the year of 2006 or 2007 (Wilcox & Shankland 2002). Another survey undertaken by a

magazine for IT managers using Microsoft servers showed that two out of five enterprises also

employed Linux. More than 800 enterprises were surveyed with an average number of servers

running in these companies of 400 (McKendrick 2003). Though a number of companies such

as IBM and HP now support Linux development as a strategy to combat Microsoft, the idea of

Linux is owned or controlled by neither of these companies defies common business logic.

Wilcox & Shankland (2002) claimed that Microsoft now take this opposition very seriously.

To explain simply, Free/Open Source software is a piece of software whose its source code is

made freely available. Source code is the original form of a computer program as written by the

programmer (Freedman 1998). A piece of software that is Free/Open Source ensures that any

Chapter 1 Introduction

4

person can readily understand how a piece of software works, modify it and redistribute it (Free

Software Foundation 2000). In the early history of software, most source code was shared

between companies and customers (Levy 1984). It was only later that the strategy of making

money by hoarding the source code of software became the standard practice of the software

industry.

Though Free/Open Source is very much about software and software development, its effect

can reach even further. A number of Free/Open Source communities participate and shape

political movement online (Free Software Foundation 2002; Raymond 2000c). Some people

also have been trying to apply the idea of Free/Open Source in other areas such as education

(Bull & Garofalo 2003) and even forestry management (Schweik & Semenov 2003). Therefore,

in order not to lead readers to focus only on software or software development, the author will

use a broader term 'the Free/Open Source phenomenon' to refer to what has happened so far in a

broader context.

The reader may wonder why the term 'Free/Open Source' is used to qualify software that the

source code is made freely available in this study, rather than the more commonly used term,

'Open Source'. 'Free/Open Source' is a combination of the terms 'Free Software' and 'Open

Source'. The term 'Free Software' is promoted by the Free Software Foundation, which

advocates Free Software as a social movement that non-Free Software is morally wrong (Free

Software Foundation 2002). On the other hand, the term 'Open Source' is promoted by the

Open Source Initiative, which advocates the practical benefit of Open Source software

development to the commercial world (Open Source Initiative 2003b). These two views are

both relevant and thus the term 'Free/Open Source' is used. The author here maintains a

political view that is neutral to both movements.

Chapter 1 Introduction

5

The Free/Open Source phenomenon has the potential to attract the attention of the academic

circle, as there are a number of issues that require explanations. First, it is hard to reconcile that

the cost of the development of some highly complex Free/Open Source projects can be so low.

For example, Red Hat Linux 7.1 was estimated to cost more than one billion US dollars to

develop using conventional software development approach (Wheeler 2002). Significant

monetary investment towards Linux is only a recent phenomenon and thus the estimation above

was huge discrepancy with the reality.

Second, it is also difficult to reconcile the assertion proposed by Raymond (2000b) that the

development process of this software was chaotic, which was a distinct diversion from the

traditional controlled and structured paradigm of software development. In Raymond's article

of the Cathedral and the Bazaar Raymond (2000b), he stated that for system with substantial

complexity, the traditional method of software development process would involve the hard

work of a small team of talented individuals (the Cathedral) at the start. He then explained that

the development of Linux showed us how a collective effort of co-developers over the Internet

(the Bazaar) could possibly produce quality software with better reliability and more useful

features in a shorter time (Raymond 2000b). Moreover, Raymond critiqued the validity of a

famous principle in software engineering, Brooks's law, in the light of the development of

Linux. Brooks's law (Brooks 1995) stated that as the number of developers increase in a

software project working on inter-related tasks, the communication cost will eventually become

larger than the benefit of the work produced by the extra labour added. Raymond argued that as

the number of developers contributing to Linux was large, Brooks's law could only be partly

true.

Given the lack of reconciliation of these issues, there should be more academic and industrial

investigations. Nevertheless, academic research on the topic has just began and in one of the

Chapter 1 Introduction

6

first academic books published on Free/Open Source, Feller & Fitzgerald (2002) suggested that

more research was required on the nature of Free/Open Source.

Within the topic of Free/Open Source, the area of Free/Open Source Project Hosting

(FOSPHost) sites was chosen as the focus of this study. A FOSPHost site is the infrastructure

that supports and co-ordinates the development of Free/Open Source software projects on the

Internet. In short, Free/Open Source developers collaborate through the FOSPHost sites to

produce Free/Open Source software.

1.2 Rationale of the Research

The area of FOSPHost was chosen as it is an important subject both in application and in theory.

On one of the most popular FOSPHost sites, SourceForge, 74,131 projects were hosted with

766,950 registered users on the day of 9 January 2004 (SourceForge 2004). These statistics

may suggest that many developers employ FOSPHost sites for facilitating projects in the

Free/Open Source communities.

Other than the Free/Open Source communities, the technology of FOSPHost also catches the

attention of the business world. Sun Microsystem employed Collab.Net to host six Open

Source projects externally such as OpenOffice and NetBeans (Collab.Net 2003a). These

projects were hosted using the flagship product of Collab.Net, SourceCast, which was a

collaborative software development environment inspired by FOSPHost with improvements

such as access permissions to fit corporate needs. Collab.Net and VA Software (which sells an

improved version of SourceForge) both had business alliances with major players in IT industry

such as IBM and Oracle (Collab.Net 2003d; VA Software 2003).

One may wonder why businesses were interested in FOSPHost technology. A number of

possible reasons could be found in the Yankee Group report on the employment of SourceCast

Chapter 1 Introduction

7

by a global financial firm, Barclays Global Investors (BGI) (Derome & Huang 2003). These

reasons included the decrease in time-to-market of software products and increase in customer

satisfaction due to improved communication between business units, technical units and

customers. Internal software development infrastructure was streamlined around SourceCast

and savings on administrations, personnel and hardware were obtained.

If Free/Open Source becomes more widely accepted, both in software and as a concept, the

significance of the topic of FOSPHost will also increase. If an evaluation model of FOSPHost

sites could be constructed, it could have the potential to become a useful tool for the

examination of the design and employment of these sites.

Other than the application of FOSPHost sites, the study of these sites may also advance

theoretical understanding of Free/Open software development process. This is simply because

FOSPHost sites are where Free/Open Source software development is facilitated. The

understanding of these sites can be a promising way to gain insights into the process.

1.3 Objectives of the Research

Though the concept of sharing source code was nearly as old as the invention of computers, at

the commencement of this study, research on Free/Open Source was scarce. There are many

unanswered questions in the Free/Open Source phenomenon. This study, therefore, aims at

discovering the areas relevant to the topic of FOSPHost and establishing the boundaries for data

collection. Analytical frameworks will be built from literature as a starting point for

investigation. Important issues in the design and employment of FOSPHost sites will then be

obtained. The findings will be presented in an evaluation format available on the Internet.

Chapter 1 Introduction

8

1.4 Research Methods

In order to achieve the objective stated, the purpose of research was chosen to be exploratory.

Another choice was that positivism was adopted as the main methodology of this study. For

exploratory studies, flexibility was required to in order to discover new knowledge. Though

positivism will be guiding methodology of this study, interpretivism may be employed at times

when appropriate.

The study will begin from literature review on topic of Free/Open Source and FOSPHost. An

online Delphi survey will then be conducted to collect expert opinion on the topic. A more

detailed investigation on the backgrounds, policies and features of FOSPHost sites will then be

conducted. The findings will then be presented as an evaluation model.

As the study is exploratory, one of the possible limitations is that there will be more emphasis

on collecting a broad range of data with less emphasis on the depth of each issue.

1.5 Contribution of the Research

One of the potential contributions of this research is that the results might be useful to

practitioners. Furthermore, academic investigations in the area of FOSPHost are rare and the

findings of the study could uncover important issues based on data to promote understanding of

the topic. Moreover, the theoretical frameworks built may also become useful analytical tools

for researchers.

1.6 Structure of This Dissertation

This dissertation consists of ten chapters. The first chapter is the current chapter, which

contains an overview of the study. Chapter two to four lay the foundation and define the

boundary for the research. Chapter five contains the methodology for data collection and the

Chapter 1 Introduction

9

discussion for evaluation approaches for FOSPHost. Chapter six to nine contain the result and

analysis of the data collected and the final chapter, chapter ten, is the conclusion.

The second chapter is the basic literature review. Literature on the Free/Open Source

phenomenon will be surveyed to lay the foundation for the rest of the study. Specific literature

of the topic of FOSPHost is presented in chapter three and the research question and

sub-questions are formulated. Two analytic frameworks are developed in the fourth chapter to

establish boundaries for the data collection on the topic of FOSPHost.

The fifth chapter covers methodology. Choices of methodologies and methods are explained.

Detail designs of methods for data collection are elaborated. Software evaluation methods are

also reviewed and a new software evaluation classification is built to suit the nature of

Free/Open Source software and FOSPHost.

Chapters six to nine present the results and analysis of research. Chapter six contains the results

and the analysis of the Delphi survey. Chapter seven contains the data collected from a detailed

investigation of ten FOSPHost sites. The construction of the final product of this study, an

evaluation model for FOSPHost sites, can be found in chapter eight. The overall quality of the

result obtained is discussed in chapter nine and the limitations of the study are identified. The

implications of the findings relating to other literature and the real world are elaborated.

Chapter ten is the final chapter when the study is concluded. Further research directions are

suggested and the possible areas of the application of the findings in the future are proposed.

This dissertation is also available in digital PDF format in the CD-ROM enclosed

(/eval_fosphost.pdf). The reader is encouraged to take advantage of the digital format by

Chapter 1 Introduction

10

employing extra functionalities such as searching and printing to complement the reading of

this hard copy. Please also refer to appendix B for the copyright issues.

Chapter 2

Literature Review

2.1 Introduction

The literature review chapter will begin with a more formal definition of Free/Open Source

Software. Eric Raymond's 'the Cathedral and the Bazaar' metaphor (Raymond 2000b) which

was introduced in the last chapter will be further explained and analysed. Since the Free/Open

Source phenomenon is relatively new, relevant literature may not contain obvious keywords

such as Free Software or Open Source on the title. Relevant areas will first be identified to

establish the boundaries for the research.

2.2 Formal Definition of Free/Open Source Software

To define Free/Open Source, the usual method was to start from software (Feller & Fitzgerald

2002; Open Source Initiative 2003a). A simple definition has already been given in the

introduction that a piece of software that is Free/Open Source is one that any person can readily

understand how it works, modify it and redistribute it (Free Software Foundation 2000). A

more comprehensive and formal definition can be found at the Open Source Initiative web site

(Open Source Initiative 2003a):

Chapter 2 Literature Review

12

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a component of an

aggregate software distribution containing programs from several different sources. The license shall not

require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code as well as compiled form.

Where some form of a product is not distributed with source code, there must be a well-publicized means of

obtaining the source code for no more than a reasonable reproduction cost–preferably, downloading via the

Internet without charge. The source code must be the preferred form in which a programmer would modify

the program. Deliberately obfuscated source code is not allowed. Intermediate forms such as the output of a

preprocessor or translator are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow them to be distributed under the

same terms as the license of the original software.

4. Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if the license allows the

distribution of 'patch files' with the source code for the purpose of modifying the program at build time. The

license must explicitly permit distribution of software built from modified source code. The license may

require derived works to carry a different name or version number from the original software.

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of endeavor. For

example, it may not restrict the program from being used in a business, or from being used for genetic

research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed without the need

for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of a particular software

distribution. If the program is extracted from that distribution and used or distributed within the terms of the

program's license, all parties to whom the program is redistributed should have the same rights as those that

are granted in conjunction with the original software distribution.

9. The License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with the licensed software.

For example, the license must not insist that all other programs distributed on the same medium must be

open-source software.

10. The License must be technology-neutral

No provision of the license may be predicated on any individual technology or style of interface.

(The Rationale section in the original text is deleted.)

Chapter 2 Literature Review

13

This definition is widely accepted; Feller and Fitzgerald (2002) argued that this definition

satisfied the necessary and sufficient conditions to characterize a piece of Free/Open Source

software.

Though the formal definition of Open Source quoted was suggested to cover the necessary and

sufficient conditions for Free/Open Source software, Gacek, Lawrie & Arief (2001) showed

that a definition just on software could not completely illustrate the many underlying meanings

of the Free/Open Source phenomenon. Thus, a number of explanations were devised (Feller &

Fitzgerald 2002; Lawrie, Arief & Gacek 2002; Nakakoji et al. 2002; Raymond 2000b; Sharma,

Sugumaran & Rajagopalan 2002; So, Thomas & Zadeh 2002) and they will be discussed in the

following sections.

2.3 The Most Well-Known Model - The Cathedral and T he Bazaar

The first model to be examined is Eric Raymond's 'the Cathedral and the Bazaar' metaphor

(Raymond 2000b), which is the most well-known model to explain the Free/Open software

development process. This was introduced in the previous chapter and it was one of the earliest

explanations of the how Free/Open Source software could evolve into such a complex system

like Linux. Indeed, the practice of making the source code freely available existed nearly as

long as the invention of the computer itself and turning source code into proprietary software

and distributing only the compiled binary is a relatively recent concept (Levy 1984). There

were also written accounts on the some of the most open systems in history, such as ITS, the

Incompatible Time-sharing System (Levy 1984; Turkle 1984), but the software development

process associated was seldom investigated in depth. Therefore, Raymond's metaphor then

became the most frequently used explanation for Free/Open Source software development

process. This metaphor even had an influential impact on the decision of Netscape to open up

Chapter 2 Literature Review

14

the source code of its browser product and started one of the most famous commercial Open

Source projects, Mozilla (Hamerly, Paquin & Walton 1999; Moody 2001).

In Raymond's article of the Cathedral and the Bazaar (Raymond 2000b), he used the metaphor

of Bazaar to explain the mechanism of Free/Open Source software development as a distinct

paradigm from conventional approaches. Moreover, he argued if a project like Linux, which

involve such large number of developers, could efficiently produce quality software with

substantial complexity, then Brooks's law could only be partly true. Other forces were at work

to increase efficiency. One of these other forces was egoless programming proposed by

Weinberg (1971). This theory described that if programmers share their source code among

their peers, errors in code can be discovered more readily. Other benefits included the

improvement in the readability of code, the increase of familiarity with the code by other team

members, and eventually, an improvement in efficiency. Raymond also suggested that as the

Internet became available to the public, the boundary of egoless programming could be

expanded even further to any interested parties globally. Linus Torvalds, the founder of Linux,

was among the first to utilise the potential of this situation. More understanding of the

Free/Open Source phenomenon is again required to further examine this argument. (A common

misconception is that Raymond proved Brooks's law wrong and Brooks's law is not applicable

anymore. In Raymond's own words, he claimed, "I don't consider Brooks' Law 'obsolete' any

more than Newtonian physics is obsolete; it's just incomplete. Just as you get non-Newtonian

effects at high energies and velocities, you get non-Brooksian effects when transaction costs go

low enough. Under sufficiently extreme conditions, these secondary effects dominate the

system -- you get nuclear explosions, or Linux." (Jones, P. 2000) As will be developed further

in this dissertation, Brooks's law still has a role to play.)

Chapter 2 Literature Review

15

Another important enabling factor suggested by Raymond (2000b) was the satisfaction in

gaining reputation in a community of developers as the motivation. Egoless programming was

suggested as one significant enabling factor in the Linux development, but this principle did not

explain the willingness to collaborate. Raymond's answer to this question was that ego

boosting among peers was the driving force.

Critics of the Bazaar metaphor suggested that the model provided 'too few data points' to

construct a picture of the approach (Eunice 1998b). Extended interpretations to fill the gaps in

the Cathedral metaphor can sometimes be found in literature. Examples of those are 'The

Cathedral represents a monolithic, highly planned, top-down style of software development'

(Eunice 1998a), 'All alternative models (considered to be one and called the "Cathedral

model")' (Bezroukov 1999a) and 'The paper essentially ignored contemporary techniques in

software engineering, using the Cathedral as a pseudonym for the waterfall lifecycle of the

1970s (Royce 1970)' (Johnson 1999). On the other hand, for the Bazaar metaphor, most

interpretations did not go beyond the boundaries of Raymond's article. A yearning for a more

detailed explanation is implied in the following quotes from literature, 'somehow results in high

quality software' (Pavlicek 2000, p. 11) and 'for some mysterious reason' (Bezroukov 1999a).

These authors were probably seeking a more substantial explanation of the exact mechanism of

the Free/Open Source software development process.

In order to have a comprehensive understanding of the Free/Open Source phenomenon, more

literature needs to be reviewed. Nevertheless, as the phenomenon is quite new, relevant

literature may not has an obvious 'Free Software' or 'Open Source' tag in the title or abstract.

Relevant areas of interest will be proposed instead in order to proceed.

Chapter 2 Literature Review

16

2.4 Relevant Areas of Interest in the Topic of Free /Open Source

Phenomenon

It can be proposed that there are three relevant areas of interest in Free/Open Source, namely the

contextual, technological and socio-economical aspects. The three aspects proposed are not

mutually exclusive and they all overlap with each other (Figure 2-1).

Figure 2-1 Three areas of interest in Free/Open Source

First of all, the Free/Open Source phenomenon emerged from its own historical context.

Though the term 'Open Source' was coined on the 3rd February, 1998 (Open Source Initiative

2000), the historical context of the movement includes the history of Unix operating system

(Hauben & Hauben 1997; Salus 1995), the Internet (Hauben & Hauben 1997; Licklider &

Taylor 1968), and the hacker culture (Levy 1984; Raymond 2000c; Turkle 1984). The Free

Software Foundation and the GNU project also played a very significant role (Feller &

Fitzgerald 2002; Levy 1984; Moody 2001). The contemporary context of Free/Open Source

includes business interest in Open Source (Apple Computer Inc. 2002; Hamerly, Paquin &

Walton 1999; IBM 2003; SGI 2003; Sun Microsystems Inc.) such as how Linux was employed

as a weapon against Microsoft and other competitors (Bezroukov 2002; Wladawsky-Berger

2001).

Chapter 2 Literature Review

17

Free/Open Source communities also consist of a socio-economical aspect and relevant topics

includes virtual communities and virtual organizations (Crowston & Scozzi 2002; Dafermos

2001; Gallivan 2001; Kollock 1996; Markus, Manville & Agres 2000; Rheingold 1993; Romm,

Pliskin & Clarke 1997; Sharma, Sugumaran & Rajagopalan 2002; So, Thomas & Zadeh 2002;

Wellman & Gulia 1999), the current state of hacker culture (Moody 2001; Pavlicek 2000;

Raymond 2000b, 2000a), information economy (Clarke 1999; Ghosh 1998a; Kollock 1999;

Lancashire 2001; Lerner & Triole 2002) and the political influences of Free/Open Source

(Forge 2000; Free Software Foundation 2002; Newman 1999; The Associated Press 2000; Yee

1999).

Free/Open Source communities are mostly made up of members with technical background

(Lakhani et al. 2003) and thus technology is another indispensable aspect. Topics such as

architecture (such as the microkernel vs monolithic debate (DiBona, Ockman & Stone 1999))

and features (such as technical supremacy of Linux over Microsoft (The Unix vs NT

Organisation 2001)) of software were always important focuses in the communities.

From the elaboration of the three areas of interest above, some relevant literature is identified.

Nonetheless, the areas covered need to be further reduced to focus on FOSPHost and a structure

is required to categorise and present this volume of relevant literature.

2.5 Summary of Chapter Two

In this chapter, a formal definition of Free/Open Source Software was introduced. The most

well-known explanation to Free/Open Source phenomenon – the Cathedral and the Bazaar –

was examined and its short-comings was discussed. In search for a more comprehensive

explanation, three relevant areas of interest were identified, namely the contextual,

technological and socio-economical aspects.

Chapter 2 Literature Review

18

In the next chapter, the focus of this research, FOSPHost, will be explanation further and the

research question and sub-questions will be developed.

Chapter 3

Research Questions

3.1 Introduction

In the chapter, more details on Free/Open Source Project Hosting (FOSPHost) sites will be

explained. The overall research question and sub-questions will also be formulated.

3.2 Free/Open Source Project Hosting Sites

A FOSPHost site is an important tool within the communities and it is defined as the

infrastructure that supports and co-ordinates the development of Free/Open Source software

projects on the Internet.

Surveying one of the most popular FOSPHost sites online, SourceForge (SourceForge 2003), it

provides a dazzling array of services to manage a project, namely issue trackers, forums,

mailing list, announcement area, document manager, task manager, file release system and

concurrent versions system (CVS). It also provides a compile farm for porting software to

other platforms. Since SourceForge hosts a large number of projects, it also provides facilities

for inter-project communication. First of all, projects hosted are grouped into foundries to

encourage communication between similar projects. Software metrics are also calculated for

comparison and competition. There is also an area to call for contribution from other

developers.

Chapter 3 Research Questions

20

Not every FOSPHost site is required to be as extensive as SourceForge in order to be useful.

Some are as simple as having a mailing list for communication and an FTP server to download

the components of the project. Indeed, this was what Linus Torvalds employed for a substantial

amount of time to co-ordinate the development of the Linux kernel (Asklund & Bendix 2002)

before the deployment of a more sophisticated version control system called BitKeeper (Barr, J.

2002). Even after the introduction of BitKeeper to take the load of co-ordination, mailing lists

and FTP servers still remain as important components of the system. The information in the

Linux kernel mailing list is important enough that there is even a digest service on the content of

the list (Brown et al. 2003).

One can even trace back the history of FOSPHost to the historical ITS system. As mentioned in

sub-section 4.5, this system allowed any user to change any code on the system. Moreover,

users could actually switch to other users' terminal and did programming collaboratively. ITS

system thus was an infrastructure to support and co-ordinate software development and the

code developed is still freely available on the Internet (Alan 2001).

On the other hand, web sites that aggregate information about Free/Open Source projects for

queries such as Freshmeat (OSDN 2003b) are not regarded as FOSPHost. Popular geek

community web sites such as Slashdot (OSDN 2003a) or Advogato (Advogato 2003) are also

not classified as FOSPHost. These web sites are indeed very much related to Free/Open Source

projects but they did not provide co-ordination tools for software development.

FOSPHost sites can also be classified as external hosting and self-hosting. The distinction

between the two is the amount of control the users of the FOSPHost site have. For a

self-hosting site, the users can adjust the internal configurations of the services provided. On

Chapter 3 Research Questions

21

the other hand, for an external hosting site, a fixed set of services is provided with a common

configuration. SourceForge is one example of external hosting site. Examples of self-hosting

sites are sites that host the project of Linux, Mozilla and Apache. Regardless of the restrictions,

externally hosted sites such as SourceForge can be popular as the amount of effort to start host

is lower than self-hosting sites.

An impression that the above discussion may create is that all the required development tools

are grouped into one FOSPHost site. Having many commonly used tools centralised in a web

site is probably a common scenario, but services such as Internet Relay Chart (IRC) may not be

provided by a FOSPHost site. One may need to look up the service by other providers. Another

possibility can be some developers may also prefer to host some services themselves to increase

the amount of control that they can assert.

In this dissertation, sites are always referred as FOSPHost sites. When the word 'FOSPHost' is

not used together with the word 'site', it then means the general topic of FOSPHost.

Some readers may expect to find literature of software configuration management in this

section. Nevertheless, the approach of this research is exploratory (which will be explained in

the methodology section), and the importance of tools is also assumed to be unknown at the

start. Literature review on tools will be done after discovering which tools are important in later

sections.

3.3 Developing the Research Questions

As discussed above, both the Free/Open Source communities and the business world are

probably interested in obtaining benefits from FOSPHost sites. As explained in the rationale of

the research (sub-section 1.2), it is likely that the deployment of FOSPHost sites will increase.

Chapter 3 Research Questions

22

As the need for Free/Open Source software development and FOSPHost increase, it is

important to look into the design of FOSPHost and discover areas for improvement.

The approach taken in this research is to build an evaluation model for FOSPHost. To evaluate

is to 'assess or form an idea of the amount, quality or value of' the matter (Hornby & Crowther

1995, p. 394). By building this model, important issues in FOSPHost will hopefully be

discovered and the final model will hopefully be a useful tool to examine the design and

deployment of FOSPHost. Also by the examination on the topic of FOSPHost, we may gain

more understanding on the Free/Open Source phenomenon as a whole. The overall research

question for the study is thus formulated as:

'How to construct an evaluation model for a FOSPHost site?'

In order to answer this question, a divide-and-conquer approach is required. Sub-questions are

thus formulated to specify how the investigation is partitioned into smaller parts. From the

discussion the previous chapter, specific literature related to FOSPHost need to be identified

and a structure is required to categorise and present this literature. This task is summarise in the

first research sub-question:

1. What relevant analytical frameworks can be built to facilitate the investigation of the design

and deployment of FOSPHost?

After analytical frameworks are obtained, it is possible to collect data from a more focus area

relating to FOSPHost. This task is formulated in the second research sub-question:

2. What are the important factors in FOSPHost design and deployment from data collection?

Chapter 3 Research Questions

23

After the important factors are obtained, they need to be presented in some format as an

evaluation tool for FOSPHost sites. This task is formulated in the second research

sub-question:

3. How to build an evaluation model from these important factors in FOSPHost?

Refering to the objectives in the first chapter, the three sub-questions cover the area of research

specified.

3.4 Summary of Chapter Three

In this chapter, the topic of FOSPHost is further explained and more precisely defined. The

overall research question and sub-questions are then formulated. The overall research question

is:

'How to construct an evaluation model for a FOSPHost site?'

And the research sub-questions are:

1. What relevant analytical frameworks can be built to facilitate the investigation of the

design and deployment of FOSPHost?

2. What are the important factors in FOSPHost design and deployment from data collection?

3. How to build an evaluation model from these important factors in FOSPHost?

In the next chapter, the first sub-question will be tackled.

Chapter 4

Development of Analytical Frameworks

4.1 Introduction

In this chapter, the derivation of a new model for the analysis of the Free/Open Source

phenomenon will be presented. Other models of explaining the Free/Open Source phenomenon

will also be discussed and compared to the new model in order to gain more insight into this

phenomenon. The relevance of employing the newly derived models to investigate the topic of

FOSPHost will be discussed as well.

4.2 Background for Analytical Frameworks

Recalling the three relevant areas of interest, namely the contextual, technological and

socio-economical aspects, the new frameworks proposed in this study – the 4C model and a

model of individual participation to a Free/Open Source community - is an attempt to cover all

three areas. It is based upon theories on virtual communities and Computer-Supported

Co-operative Work (CSCW). The definition of CSCW is '[CSCW is] concerned with the ways

in which people work together and with the ways in which computer systems can be designed to

support the collaborative aspects of work.' (Rosenberg 1994, p. 1). Therefore, CSCW is related

to the technical and socio-psychological aspects of a system. Since software is developed in a

collaborative fashion by communication through computer systems in a Free/Open Source

community, theories in CSCW are relevant to the examination of Free/Open Source (Yamauchi

Chapter 4 Development of Analytical Frameworks

25

et al. 2000). With its bases in both virtual communities and CSCW, the model has the potential

to explain both the technical and socio-economical aspects of Free/Open Source. The

contextual aspect will also be considered but theories relating to this aspect are rare, so it will be

included in the content of the model, not its presuppositions.

4.2.1 Free/Open Source Community, a definition

Before the discussion of the details of the new frameworks, the definition for the term

'Free/Open Source community' need to be established. Nowadays, Free/Open Source projects

are usually co-ordinated on the Internet with a group of developers. Therefore, theories in

virtual communities could be relevant. The most common definition of virtual communities

was given by Rheingold (1993, p. 5): 'social aggregations that emerge from the Net when

enough people carry on those public discussions long enough, with sufficient human feeling, to

form webs of personal relationships in cyberspace.' A more elaborate model for virtual

communities was suggested by Romm, Pliskin and Clarke (Figure 4-1). Their criteria for

virtual communities were 'shared goal and ideals; some degree of stability; growth; and loyalty

and commitment by their members' (Romm, Pliskin & Clarke 1997, p. 262). Moreover, they

identified three important aspects of virtual communities, namely 'variables which affect

individuals' decision to join virtual communities', "variables which explain virtual

communities' effects on their immediate environment" and 'variables which describe how

virtual communities are transforming society' (Romm, Pliskin & Clarke 1997, p. 261).

Chapter 4 Development of Analytical Frameworks

26

Figure 4-1 Integrative Three Phase Model of Virtual Communities and Society (Romm, Pliskin & Clarke

1997, p. 269)

After surveying different definitions of the term 'virtual communities', we can consider the

situation of the Free/Open Source phenomenon and see how some these definitions can be

applicable. Within the Free/Open Source movements, there are different sub-cultures.

Raymond (2000a) stated that there are different ideologies within communities which support

the idea of Free/Open Source. Two most prominent factions are Open Source Initiative vs Free

Software Foundation. The difference between the two communities was nicely summarised by

(Kelty 2001, p. 312) as 'Whereas FSF would sell freedom if they could, opensource.org sells a

better mousetrap, or perhaps 'bug-trap' is the better metaphor.' While the Free Software

Foundation was hardline in taking Closed-Source software as morally wrong, Open Source

Chapter 4 Development of Analytical Frameworks

27

Initiative is marketing the Open Source software development process as the definite method

for software projects. It is not uncommon to find discussions on the differences and resolutions

of the two communities in popular Free/Open Source online forums such as Advogato

(Advogato 2000a, 2001b). Therefore, according to one of the four criteria stated on a virtual

community, 'shared goal and ideals' (Romm, Pliskin & Clarke 1997, p. 262), it is more

reasonable to say there are a number of communities within the Free/Open Source movements

with different ideals rather than looking at these communities as a monolithic group. A simple

definition of a Free/Open Source community can then be a group of developers collaborating

mostly through the Internet on similar or related projects attached to a similar culture.

4.2.2 A Framework on Computer-Supported Co-operativ e Work (CSCW)

and Analysis of an Free/Open Source Community

After defining what a Free/Open Source community is, in order to categorise and analyse what

happens inside a Free/Open Source community, a framework on CSCW is considered. The

framework is shown in Figure 4-2 (Dix 1994, p. 17). In the diagram, the circles with a 'P'

denotes a person involved and the circle with an 'A' denotes an artefact(s) involved in CSCW.

The persons involved can directly control the artefact and feedback is received from such

manoeuvre. It is also possible to obtain information about how another person is controlling the

artefact through the artefact itself. This event is called feedthrough and it is denote by a line

connecting the two persons via the artefact. In a CSCW system, the persons involved usually

are provided a communication media to exchange ideas. The line 'direct communication'

denotes this kind of communication. The dotted line deixis represented the content in the direct

communication that referred to the artefact. Moreover, the persons involved may also

communicate on concepts of a higher level such as the goal of the co-operation. The line

'understanding' denotes this kind of communication.

Chapter 4 Development of Analytical Frameworks

28

Figure 4-2 A Framework on CSCW

From this framework, important aspects of a Free/Open Source community can be identified.

First of all, a Free/Open Source community is based on a communication media. As most of the

important artefacts in a Free/Open Source community are information in digital format, these

artefacts can also be contained in the communication media. The next important aspect is the

artefacts, which are the contributions from the community members. An example of an artefact

can be source code. By reading and understanding the source code, one programmer can learn

what other programmers are trying to achieve. This is denoted by the feedthrough process. On

top of the artefacts, the communication on how to manage the artefacts is also very important.

The understanding of co-operation in CSCW is analogous to the culture of a Free/Open Source

community, which embodied understanding of high-level concepts such as the goal and the

identity of the community.

Chapter 4 Development of Analytical Frameworks

29

4.3 4C Model of a Free/Open Source Community

Based on the four important aspects identified in a Free/Open Source community, a model of a

Free/Open Source community is built and shown in Figure 4-3. The model is presented in a

four-layer (4C) model.

Figure 4-3 4C Model of a Free/Open Source Community

The four layers represented in the model in Figure 4-3 are communication, contributions,

co-ordination and culture respectively. The communication medium is the basic infrastructure

for any interaction. Contributions referred to the different pieces of assistance given by

individual developers via the communication media. Co-ordination is the process of organising

fragments of contributions into usable products and the culture of the community in turn

governs the rules in co-ordination. These four layers will be explained below in sub-sections

4.3.1 to 4.3.4.

4.3.1 Communication

An important enabling factor for Free/Open Source communities to exist is a medium for

communication. In most cases, the Internet is the most frequently used communication

medium for Free/Open Source communities. Many (Bezroukov 2000; Moon & Sproull 2000;

Chapter 4 Development of Analytical Frameworks

30

Raymond 2000b) recognized the Internet as an important precondition for the Linux project to

start. Kollock (1999) suggested that the Internet lowers the cost of collaboration. On the other

hand, Ghosh (1998a) used a cooking-pot as a metaphor to describe collaboration on the Internet.

In the case of a physical cooking-pot, when everyone put in some ingredients to boil a tasty

broth, one can only take a small portion of the broth, more or less the same amount as what one

has put in. In the case of the Internet, the digital cooking-pot, which is an efficient cloning

machine, everyone who contributes can also get complete copies what others have contributed.

4.3.2 Contributions

A Free/Open Source project is built upon contributions from individual developers. These

contributions included source code, suggested features (wish list), comments on project, bug

reports and also documentations. Source code is the basis of any program and thus any

software project. When a project starts, the existence of an executable program with source

code attracts more developers to participate (Fogel 1999; Raymond 2000b). After using the

program, developers or users may have suggestions on new features to add to the program.

Comments may also be made on the direction of the project as well as the details of the source

code. Zawinski (1999) pointed out that the contribution of quality comments could even worth

more than source code. Bug reports (sometimes with patches (source code)) are also welcomed

to improve the stability of the program. Finally, a program cannot be used and a project cannot

be maintained without documentations, and thus contributions to documentation are also

important. With a proper communication media, all these contributions can be collected.

4.3.3 Co-ordination

Co-ordination is required to package all these different contributions collected via the

communication media into a piece of stable software. A mechanism to accept or reject a piece

of contribution has to be established. This mechanism can be understood by studying the social

structure of Free/Open Source community for individual rights and responsibilities. This

structure can be summarised in a diagram suggested by Lawrie, Arief and Gacek (2002, p. 77)

Chapter 4 Development of Analytical Frameworks

31

and modified by the authors in Figure 4-4. The core developers are the most senior group and

they had the final say. In the benevolent dictator system (Fogel 1999; Raymond 2000a), a

maintainer is that the person who makes final judgements on decisions of the project. If an

autocratic system (Fogel 1999; Raymond 2000a) is adopted, a membership system has to be

setup to identify between developers and non-developers and it may also involve a voting

system for decision-making.

Figure 4-4 A Model of the Social Structure of Free/Open Source Community (Lawrie, Arief & Gacek , 2002,

p. 77) modified by the authors (* denotes the modification)

It seems that the core developers are the most powerful class in the structure but it can be argued

that all the classes of people in this social structure are inter-dependent and a stable balance of

power can be achieved. Users, who seem to be dependent on the developer community for bug

fix and implementation of new features, are actually very important to the developers. The

popularity of the software is itself a measure of the success of a project (Advogato 2002a)

because adoption of a piece of software itself is a compliment. Bugs will be more readily

Chapter 4 Development of Analytical Frameworks

32

discovered and the potential of recruiting developers with a larger user base. Therefore,

Raymond’s advice (2000b) on respecting users is sensible in this social structure.

Co-developers and core developers could be argued to be inter-dependent as well. On the one

hand, core developers would like contributions from other developers to share the load of

development. On the other hand, co-developers can have another parties to carry the burden of

co-ordination. If some of the core developers do not listen to the community, other members of

the community can take the source code away and run the project separately and this is called

forking (Fogel 1999; Raymond 2000a). Due to its disruptive nature, forking does not occur

very often but the knowledge of its possibility is yet another force to promote the balance of

power.

Further details of the exact sequence of how development is conducted under the social

structure outlined above are chosen not to be discussed here. The reason for this decision can

be showed firstly from considering the research by Yamauchi et al. (2000), where 552 messages

on GCC development mailing list are classified into four groups, namely question, response,

proposal and hand in. The probabilities of sequences of these classified messages are presented

in Figure 4-5. In the figure, the probabilities of one message type followed by another are stated

on the arrows connecting the two messages. Statistical significances of these probabilities are

stated below the probabilities (NS denoted Not Significant). The fraction of occurrence of a

certain kind of message over total 552 messages is showed inside the circle of the type of

message. This diagram illustrates that the actual development process of a Free/Open Source

project can be quite chaotic and there may be no exact sequence of processes for discussion.

This may suggest that order in a Free/Open Source project can only be found on a more abstract

level.

Chapter 4 Development of Analytical Frameworks

33

Figure 4-5 Communication Pattern of GCC (Yamauchi et al. 2000, p. 7)

4.3.4 Culture

The culture of a Free/Open Source community shapes the rules in the co-ordination of

Free/Open Source projects. Culture is defined as 'the collective programming of the mind

which distinguishes the members of one group or category of people from another' (Hofstede

1997, p. 5). The community of Free Software and Open Source movements can be argued to

have enough affinity to be called a culture. First of all, most of the members in the community

are technical people (Bentson 2000) that value hack (Levy 1984; Turkle 1984) (The word 'hack'

in this paper does not refer to breaking into computers. It refers to the ultimate standard of

Chapter 4 Development of Analytical Frameworks

34

technical virtuosity and aesthetic in a Free/Open Source community) and technical correctness

(Pavlicek 2000). A confessed mistake is more highly valued that a beautifully crafted lie

(Pavlicek 2000) as the technical correctness attitude requires admissions of fact. Also with

value of hack, Free/Open Source communities also bred humility (Raymond 2000a) as there

will always be another person with a brighter idea. Secondly, Linus Torvalds, the original

author of Linux, released the source code of the system on the USENET because the culture

encouraged sharing (Ghosh 1998b). Thirdly, Raymond (2000a) also observed cultural rules in

Free/Open Source communities in the transfers of maintainership and giving credits. Fourthly,

being formed mostly by volunteers, the culture endorses loose charter over complicated

legalisations when the community tries to put management rules in writing, as volunteers tend

to cooperate and reach consensus rather than exploiting the loopholes in the system (Fogel

1999). The above is a general view of the culture and each Free/Open Source community also

has its own variations.

4.4 A Model of Individual Participation to a Free/O pen Source

Community

After introducing a model to a Free/Open Source community, one can consider to represent the

relationship of individual participants to the community by a model. Individual participants,

who are probably one of the most influential groups on the assessment of FOSPHost, is chosen.

Other stakeholders such as user communities, commercial organizations, and the

non-commercial organizations that managed Free/Open Source projects (Feller & Fitzgerald

2002) are excluded to limit the scope of investigation.

The model built to explain this relationship is shown in Figure 4-6. The model includes the

mentioned 4C model, the motivations and barriers when a developer decides to join a

Free/Open Source community together with the positive and negative results after interaction

with a Free/Open Source community. The motivations and barriers are analogous to the

Chapter 4 Development of Analytical Frameworks

35

"variables which affect individuals' decision to join virtual communities" and the results

analogous to the effects from the three phase model on virtual communities (Romm, Pliskin &

Clarke 1997). Since the group of individual participants is chosen, all these four factors are

related just to them and a feedback loop is included as well.

Figure 4-6 A Model on individual participation in an Open Source/Free Software Community

There are a number of motivations for a user or a developer to join a Free/Open Source

Software community. An oftenly regarded motivation was stated in Raymond's 'the Cathedral

and the Bazaar' - 'Every good work of software starts by scratching a developer's personal itch.'

(Raymond 2000b) This essentially means that a developer needs a computer program to do a

task for him or her. However, this need does not necessarily lead to joining a Free/Open Source

community. For some developers, they may just obtain an executable binary of a piece of

software that meets their needs. The most common example is a developer needs a new PC to

work so this person installs a copy of Microsoft Windows. Alternatively, a developer may write

a piece of software to meet his or her need but the source code of the software may never be

shared. Therefore, when a developer joins a Free/Open Source community, he or she may be

Chapter 4 Development of Analytical Frameworks

36

motivated by other factors also, such as reciprocal behaviour (Kollock 1999; Wellman & Gulia

1999), reputation (Fogel 1999; Ghosh 1998a; Kollock 1999; Krishnamurthy 2002; Raymond

2000a) and attraction to community (Foster 1998; Kollock 1999). Availability of funding also

enables members of Free/Open Source community to work on project devotedly such as

support in BSD by DARPA (McKusick 1999) and Linux by University of Helsinki (Bezroukov

2000; Moody 2001). Lastly, altruism or idealism (Kollock 1999) may also motivate developers

to contribute.

Although there are a number of motivations for developers to join a Free/Open Source

community, barriers also exist to deter them, as in any virtual communities (Romm, Pliskin &

Clarke 1997). Technically, Free/Open Source communities only accept developers who attain a

high degree of competence (Raymond 2000b). The complexity of source code also created a

barrier for contribution (Zawinski 1999). On the other hand, software with poor design and

inadequate documentation may deter contribution (mettw 2000). Another barrier is that a

developer may not be willing to share his or her own code. Cultural barriers may also exist.

Firstly, language can be a barrier because people from certain backgrounds in some part of the

world may find it hard to join a Free/Open Source community using English as the common

language of communication (Fogel 1999). Cultural mysteries also exist and they have to be

solved before a member could be accepted by certain Free/Open Source communities

(Raymond 2000a). The last but obvious reason is that a developer cannot afford the time for

one's involvement in a Free/Open Source community (Bezroukov 1999a).

There are several positive outcomes as a result of joining a Free/Open Source community. A

developer may have one's own itch scratched (Raymond 2000b) and found that he or she

enjoyed programming in collaboration (Fogel 1999; Raymond 2000a). He or she may learn

Chapter 4 Development of Analytical Frameworks

37

more skills (Fogel, 1999) and build up one's own reputation in the community as well (Fogel

1999; Ghosh 1998a; Kollock 1999; Krishnamurthy 2002; Raymond 2000a).

Negative results from participation in a Free/Open Source community may include a lack of

interest on one's project (Fogel 1999; Raymond 2000b), rejection from others (Maclachlan

1999; Pennington), hurts in management issues (Hacker 1999; Raymond 2000a) and burn-out

(Bezroukov 1999a, 1999b).

An example of the model can be that a computer literate required a certain application to fulfil

her needs. She found a piece of Free/Open Source software (positive result) and added some

modifications to fulfil her needs more comprehensively. She then tried to contribute the code

back to the community but she found the code had to conform to the coding standard (barrier)

and the core members of the project were not too friendly (negative result). Later on, a new

version of the software was released with new features but not compatible with her

modifications. It was a nuisance that she would need to adjust the modifications for each

release. Then, she finally got her code to conform to the standard (motivation). Also, she was

no longer new to the community and knew the core members better. Her modification was

eventually accepted and it stayed in the code for the versions to come (positive result). The

burden of maintenance was therefore shared (positive result).

4.5 Notes on the Construction of the Model of Indiv idual

Participation to a Free/Open Source Community

The model of individual participation to a Free/Open Source community presented above was

first conceived in late 2000 when there were only a few explanations of the Free/Open Source

phenomenon. It was devised as a basis to investigate FOSPHost and the questions asked in the

Delphi survey conducted later were directly related to this model. Thus the model is kept as it

Chapter 4 Development of Analytical Frameworks

38

was without adding the latest academic findings. However, a comparison with other models

from recent publications will be presented in sub-section 4.7.

When this model was designed, it took a less prescriptive and more flexible approach in

modelling. Each aspect only has a general description. Moreover, the community's effect to the

intermediate environment and global society were also not included in the model. There are

evidences that a Free/Open Source community can cause changes in some of these areas. For

example, one of the changes to the immediate environment is the change in the use of language.

In the case of the Free/Open Source communities, the Jargon File (Raymond 2001), which is a

dictionary with a collection of 2321 entries on hacker vocabulary, is a good piece evidence on

this aspect. However, some of the impacts of the Free/Open Source communities, such as its

impact to the software industry and its contribution to the debate of information freedom, are

yet to be examined.

The 4C model had four layers with culture as the highest layer. This may present an impression

that culture is the most influential factor. Looking back in the history of hacker culture, by

considering the ITS System, a system regarded as the ultimate expression of hacker culture

(Levy 1984), one might find some insight into this matter. According to Levy (1984), ITS was

a multi-user system but did not has any passwords. Anyone can read and write anything on the

system. Users could actually switch to other users' terminal and did programming

collaboratively. Seemingly, there was one important factor that was minimised in this system –

barrier. Indeed, there was no barrier to stop anyone to program on any code in the system. All

source code written could be read and modified as well. This system was built by hackers in

Massachusetts Institute of Technology as a rivalry system to CTSS (Compatible Time Sharing

System), which was regarded to discourage hacking. This is indeed an example that supports

the viewpoint of the influence of culture layer over communication layer. Nevertheless,

Chapter 4 Development of Analytical Frameworks

39

McLuhan's famous statement, 'The Media is the Message' (McLuhan 1964, p. 7), is the opposite

of the argument above, claiming that the communication layer is more influential (the relevance

of the statement to FOSPHost was suggested by Dr. Jason Robbins on 21 Feb 2002 during a

visit to Collab.Net). A middle ground argument was proposed by Tuomi (2001) in an

examination of the evolution of Linux development that 'In the evolution of complex system of

resources and communities, social organization and tools co-evolve.' Therefore, further

research will be beneficial in this area.

One of the important advantages as well as a disadvantage with the model is its flexibility.

Arguably, the model is flexible enough even to include other non-Free/Open Source community.

For example, the model can be used to examine communities that choose to use a

Closed-Source license in a commercial environment. Moreover, by substituting contributions,

co-ordination and culture by information, channels of communication and pedagogy, the model

can be changed to analyse a virtual learning community. By looking at the model as the

descendent of the three phase model on virtual communities (Romm, Pliskin & Clarke 1997)

and the framework on CSCW (Dix 1994), it is not surprising that this model on Free/Open

Source community could be expanded to explain many different systems as its parent models

are general models on information systems. One obvious limitation is that there need to be

collective agreement on the philosophy of how information should be managed within the

system, which is called culture in the model, in order for the model to produce a useful analysis.

The advantage of this flexibility is that a Free/Open Source community can be compared with

other information systems by a similar framework under this model. The disadvantage is that

the model may disappoint those who want to pin down what Free/Open Source really is. Indeed,

this model was criticised on this aspect when it was first presented in the Open Source Software

Development Workshop at Newcastle upon Tyne, U.K. (So, Thomas & Zadeh 2002). However,

it seems that Free/Open Source actually includes a collection of different community structures

Chapter 4 Development of Analytical Frameworks

40

and practices (Gacek, Lawrie & Arief 2001; Nakakoji et al. 2002) rather than a few defined

methods.

4.6 Comparison Between the Bazaar Model and the Mod el of

Individual Participation to a Free/Open Source Comm unity

The model of individual participation to a Free/Open Source community presented above

covered technical and socio-economical aspects of Free/Open Source as well as context of the

community. On the other hand, Kelty (2000; 2001) pointed out that 'the Cathedral and Bazaar'

described the process of how to run a Free/Open Source project as a replica of Linux. This

focus unfortunately reduces the phenomenon of Free/Open Source into a series of technical

processes. This is, however, not to say that Raymond did not know about culture. On the

contrary, he was the compiler of 'The New Hacker's Dictionary' (Raymond 2001). Moreover, in

the 'Homesteading the Noosphere' (Raymond 2000a), the next essay after 'The Cathedral and

Bazaar', he mentioned various aspects of the different sub-cultures within Open Source.

Unfortunately, probably in the process of marketing Free Software and by de-politicisation and

renaming it to 'Open Source' (Kelty 2000), the complexity of the phenomenon was reduced to

technical processes. To conclude, the metaphor of the Cathedral and Bazaar is useful as an

introductory, first estimate to the phenomenon of Free/Open Source but more is needed to

explain the phenomenon. The model presented above is one of the many attempts to contribute

towards a more comprehensive and complex explanation, which covers contextual, technical

and socio-economical aspects.

4.7 Comparison Between the Other Models and the Mod el of

Individual Participation to a Free/Open Source Comm unity

Other than the models presented above, researchers around the world also devised different

explanations to describe and investigate the Free/Open Source phenomenon. The models to be

compared are 'Evolution patterns of Open-Source software systems and communities'

Chapter 4 Development of Analytical Frameworks

41

(Nakakoji et al. 2002), 'Open Source characteristics - common and variable' (Gacek, Lawrie &

Arief 2001), OSS (Open Source Software) Model (Sharma, Sugumaran & Rajagopalan 2002)

and 'A framework analysis of the Open Source software development paradigm' (Feller &

Fitzgerald 2002). The focus of the first two models was mainly on the software development

process and the latter two were attempts to develop a more comprehensive explanation.

4.7.1 Software Development Based Models

The first model to be introduced is 'Evolution patterns of Open-Source software systems and

communities' by Nakakoji et al. (2002). This model was developed after generalising from

case studies on four different Free/Open Source projects. The authors proposed that there was a

hierarchical community structure starting from passive users, readers, bug reporters, bug fixers,

peripheral developers, active developers, core members and project leader. Moreover, there are

three types of Free/Open projects, namely exploration-oriented, utility-oriented and

service-oriented and each type had different attributes (Table 4-1).

Table 4-1 Three Types of Free/Open Source Projects (Nakakoji et al. 2002)

Chapter 4 Development of Analytical Frameworks

42

The three types of Free/Open Source projects could also evolve into another type in different

development stages. When there are new ideas to be implemented, the project may evolve into

exploration-oriented type. When there were new needs to be satisfied, the project may evolve

into utility-oriented type. When the project become mature, it may evolve into service-oriented

type.

From the model, there is not just one approach in Free/Open Source software development but

three approaches. These approaches did not just affect the process of the development but also

the community structure. For example, Cathedral-like central control structure was found in

exploration-oriented type projects and Bazaar-like decentralized control in utility-oriented

projects. Comparing with the model of individual participation to a Free/Open Source

community, this model belongs to the co-ordination layer of the 4C model with brief mentions

of issues in culture and barriers. Indeed, this model has a more specific description over the

description in co-ordination layer above.

The next model to be introduced is 'Open source characteristics - common and variable' by

Gacek, Lawrie & Arief (2001) (Figure 4-7). They proposed that there were common attributes

among Free/Open Source projects such as Open Source Definition, community, motivation,

developers are users, process of accepting submissions, development improvement cycles and

modularity of code. There were also variable attributes that changed from project to project,

namely choice of work area, balance of centralisation and decentralisation, meritocratic culture,

business model, decision making process, submission information dissemination process,

project starting points, visibility of software architecture, documentation and testing, licensing,

operational support and size.

Chapter 4 Development of Analytical Frameworks

43

Figure 4-7 Open source characteristics - common and variable (Gacek, Lawrie & Arief 2001, p. 79)

Comparing with the model of individual participation to a Free/Open Source community, this

model mainly belongs to the co-ordination layer of the 4C model with brief mentions of issues

in communication, culture and motivation. Similar to last model, it has a more specific

description over the description in co-ordination layer.

4.7.2 Comprehensive Models

The first model in this sub-section to be introduced is the OSS Model by Sharma, Sugumaran &

Rajagopalan (2002). They needed to devise a model of the Free/Open Source phenomenon in

order to postulate how traditional software development environment could fuse with

Free/Open Source environment to create a hybrid-OSS community and obtain benefits from

both methodologies. The benefits that the authors hoped to obtain were reduction in

development time and time-to-market, improvement in quality, reduction of cost, gaining

developer loyalty and increase developer talent pool without additional head count and

Chapter 4 Development of Analytical Frameworks

44

overhead. Derived from organisational theory literature, the authors proposed that there were

three aspects in Free/Open Source phenomenon, namely structure, culture and process.

Moreover, these three aspects also interacted with each other (Figure 4-8).

Figure 4-8 OSS Model (Sharma, Sugumaran & Rajagopalan 2002, p. 18)

Comparing with the model of individual participation to a Free/Open Source community, the

OSS model covers co-ordination, culture and positive results. There were also brief mentions

of version control system, which belongs to the communication layer. Motivations of

developers and barriers in creating a hybrid community were also discussed. Nevertheless, the

authors seemed to take less care in handling the issue of flexibility. For example, for

motivations, the authors emphasized on altruism and ideology. According to the BCG survey

(Lakhani et al. 2003), these motivations were only one of the four types of important

motivations and a significant number of contributors in the survey were paid to program in

Free/Open Source software. Also, without mentioning negative results, the Free/Open Source

phenomenon portrayed was rosier than reality. For example, trust and loyalty were mentioned

Chapter 4 Development of Analytical Frameworks

45

without balancing the picture with hurts in management issues (Hacker 1999; Raymond 2000a)

and flame wars (jacobito 2001; Pennington).

The last model to be presented is an elaborate model, 'A framework analysis of the Open Source

software development paradigm' by Feller & Fitzgerald (2002). This framework was derived

from Zachman's IS (Information Systems) architecture framework (Sowa & Zachman 1992;

Zachman 1987) and Checkland's CATWOE (Clients, Actors, Transformation, Weltanschauung

(World-view), Owner, Environment) framework (Checkland 1981). Five aspects were

proposed, namely qualification, transformation, stakeholders and environment and world-view.

In the qualification aspect, the authors argued that Open Source Definition (Open Source

Initiative 2003a) was a necessary and sufficient definition. In the transformation aspect, which

means the process of Free/Open Source software development, the authors suggested that seven

characteristics that existed in most projects such as peer review and prompt feedback. Then the

authors commented on the taboos and norms of Free/Open Source communities. Lastly, the

lifecycle for Free/Open Source software development was included, which was mostly adopted

from a case study in FreeBSD (Jorgensen 2001). The stages in the lifecycle included code,

review, pre-commit test, development release, parallel debugging and production release. In the

stakeholders' aspect, four bodies were considered, including developer communities, user

communities, commercial organizations, and the non-commercial organizations that managed

Free/Open Source projects. Lastly, in the environment and world-view aspect, three categories

of motivation were considered, namely technological, economic and socio-political.

Comparing with the model of individual participation to a Free/Open Source community, this

model covers communication, co-ordination, culture, motivation and positive results. There

was also a brief mention on barriers such as promotion from 'Developers' statue to 'Additional

Contributors' required a test in CVS skills but negative factors were not the focus. Moreover, in

Chapter 4 Development of Analytical Frameworks

46

the explanation of the lifecycle for Free/Open Source software development, the FreeBSD

development lifecycle was taken as a prime example. FreeBSD was known to be one of the

more organised projects (Fuller 2004) and it will be beneficial to have other more chaotic

approaches mentioned. Taking Nakakoji et al. (2002) as an example, there could be as least

three types of projects and thus different approaches in development.

4.7.3 Comparison of the Models

After presenting the four models, the result of the comparison is tabulated in Table 4-2.

 Commu-

nication

Contri-

bution

Co-ordi-

nation

Culture Moti-

vation

Barriers Positive

Results

Negative

Results

Nakakoji et al.

2002
 � � �

Gacek, Lawrie

& Arief 2001
� � � �

Sharma,

Sugumaran &

Rajagopalan

2002

� � � � � �

Feller &

Fitzgerald 2002
� � � � � �

Table 4-2 Comparison of the Four Models based on the Model on Individual Participation in an Open

Source/Free Software Community

Most of the explanations from the four models are more elaborate than the model of individual

participation to a Free/Open Source community. For example, the motivation categories

proposed by Feller & Fitzgerald (2002) were far more sophisticated. There are also areas that

are not included in the model of individual participation to a Free/Open Source community

such as qualification by the Open Source Definition and stakeholders such as commercial

organizations. Nevertheless, the model of individual participation to a Free/Open Source

community is yet flexible enough to incorporate most of the materials in the four models (Table

Chapter 4 Development of Analytical Frameworks

47

4-2). Moreover, less discussed areas such as contributions, barriers and positive and negative

results are also included. Also, though most of the content in the four models were based on

actual facts, some of the facts might only reflect particulars of certain Free/Open Source

communities. In contrast, by being less prescriptive, the model of individual participation to a

Free/Open Source community may have the advantage of allowing its users to discover

alternatives.

Recalling the aim of creating the model of individual participation to a Free/Open Source

community is to identify important aspects in a FOSPHost site for further investigation. This

aim can be regarded as completed since the model of individual participation to a Free/Open

Source community includes most of the important aspects that the four models discussed.

Moreover, it also includes other significant issues that the four models have less emphasis on.

Furthermore, the omission of stakeholders other than developers is favourable as to narrow

down the scope of investigation to the most important group of stakeholders (this omission and

other limitations in the model were also documented in sub-section 4.5 above).

After the comparing the advantages and disadvantages of the four models and the model of

individual participation to a Free/Open Source community and reviewing how suitable it is for

the investigation, other observations can be discussed. From the analysis above, for

comprehensive models, social theories are employed as a basis to derive explanations. Even for

software development based models, discussions on social issues on Free/Open Source are

included. This probably suggests the importance of the social aspect the discussion of the

Free/Open Source phenomenon.

According to Table 4-2, contributions is one of the least discussed topic within the 4Cs. The

obvious reason is that many regards contributions to be coding for Free/Open Source software.

Chapter 4 Development of Analytical Frameworks

48

Indeed, the 'show me the code' culture was strong (Raymond 2000b; Yamauchi et al. 2000).

Nevertheless, Lakhani & Hippel (2003) found user-support as a significant type of

contributions and thus conducted a study in Apache mailing-list on the responds of request for

user assistance. Gabriel (2002) suggested that other contributions such as marketing and

standards development were also notable. He further commented that hierarchical analysis of

Free/Open Source communities based on authority on code (such as Figure 4-4) could be

misleading. The code development community is just one of the many communities within the

Free/Open Source phenomenon and the boundary of a community should be defined by these

different kinds of contributions or interests in order to represent their significance.

Feller & Fitzgerald (2002) suggested that 'Is OSS truly successful?' is a question yet to be

answered. It is then not surprising that the effects of Free/Open Source are less discussed in the

models mentioned. In the model of individual participation to a Free/Open Source community,

only the effects affecting individuals are mentioned. Also, negative factors such as barriers and

negative effects of Free/Open Source are less discussed. Therefore, research in these areas will

yield new knowledge.

From the models presented above, Nakakoji et al. (2002) pointed out that Free/Open Source

projects with different co-ordination models possessed a number of different attributes. Gacek,

Lawrie & Arief (2001) also showed that there were variables between different projects.

Moreover, Feller & Fitzgerald (2002) also claimed that there were different practices in

different organizations and developers. Indeed, flexibility was also an important consideration

in the design of the model of individual participation to a Free/Open Source community. May

be this collection of differences and variables are where the chaos of Free/Open Source lies.

Therefore, further research on these variables will be profitable.

Chapter 4 Development of Analytical Frameworks

49

To conclude, after comparing the model of individual participation to a Free/Open Source

community with four other models, the quality of the model is acceptable as the basis for this

research.

4.8 The Model of Individual Participation to a Free /Open Source

Community and FOSPHost Design and Deployment

After the development of the analytical frameworks, namely the 4C model and the model of

individual participation in a Free/Open Source community, how do these models relate to the

investigation of FOSPHost?

Recalling that 4C model of a Free/Open Source community consisted of communication,

contributions, co-ordination and culture (Figure 4-3), a FOSPHost site is the communication

tool that holds the contributions of the community. A FOSPHost site indeed creates a basis for

the existent of a community. Moreover, the model of individual participation in a Free/Open

Source community suggests that the important issues in improving a FOSPHost site are how

well does a FOSPHost site support collection of contributions, co-ordinations of project(s) and

cultivate a constructive culture for community. Other important issues include how the design

of FOSPHost motivates users to participate and maximises positive results. On the other hand,

barriers of participation should be lowered and negative results should also be minimised.

From the derivation above, the models thus suggested distinct focuses on how the study should

proceed. The issues obtained above will be the starting point for the data collection stage.

4.9 Summary to Chapter Four

In this chapter, models for the analysis of the Free/Open Source phenomenon are examined and

the model of individual participation to a Free/Open Source community is chosen as the

Chapter 4 Development of Analytical Frameworks

50

theoretical basis for the investigation of FOSPHost. Though this model is less specific than

other models, it is comprehensive and flexible enough for the purpose of this research.

In the next chapter, methodologies and methods for collecting data from experts and the

Free/Open Source communities will be presented and the basis for the construction an

evaluation model for FOSPHost sites will be explained as well.

Chapter 5

Methodology

5.1 Introduction

In this chapter, the overall research strategy and research plan will be introduced. The rationale

behind the selection of methodologies will also be presented. Literature on evaluation will be

reviewed and a suitable classification for software evaluation will be devised to suit the nature

Free/Open Source software. In terms of data collection and procedures, methods on conducting

a Delphi survey on FOSPHost sites and a detailed investigation in external hosting sites will be

discussed.

5.2 Overall Research Strategy

The overall research strategy consists of a Delphi survey, a detailed investigation in external

hosting sites and finally the construction of an evaluation model for FOSPHost. An exploratory

approach was taken in this research. Moreover, the conclusion of this research will be

constructed from the empirical data collected, and thus an inductive approach was also adopted.

One way to classify social research is by the purpose of study. There are mainly three types of

purposes, namely exploration, description and explanation (Babbie 2002; Neuman, Bondy &

Knight 2003). Exploratory studies are conducted to learn more about topics that are little

known to construct mental pictures based on basic facts and stakeholders. Descriptive studies

Chapter 5 Methodology

52

are conducted to observe and describe details of social phenomena. Explanation studies are

conducted to verify certain theory on the relationships of different variables in a system.

Figure 5-1 Exploratory, Descriptive and Explanatory Research

Chapter 5 Methodology

53

Neuman, Bondy & Knight (2003) suggested that when a new topic is studied, the sequence for

three types of study to be executed would be exploration, description and finally explanation.

In Figure 5-1 this concept is illustrated. The knowledge that is unknown is denoted as a cube in

blue (grey in print), the area where it is known is denoted by white. For exploratory research, it

is like increasing the white area of known knowledge on the surface of the cube. In descriptive

research, it is to increase the depth of known knowledge, based on the results from previous

exploratory research. Explanation studies are done last as substantial understanding of the topic

was required before formulating theories about the topic. This illustration in one sense is not

totally accurate as the results from each type of study are probably not mutually exclusive. For

example, during an exploratory research, the result probably will have some depth. Casual

relationships of elements within the topic may already be partly confirmed. Moreover, there is

always more to discover even on a well-known topic, so using the idea of using white to denote

known knowledge in a certain area can be misleading. Nevertheless, it may help to understand

the underlying principle of purposes of research.

As mentioned above, when this research began in 2000, the amount of literature on the

Free/Open Source phenomenon was not sufficient to form a comprehensive explanation.

Therefore, an exploratory approach was adopted. In exploratory research, Neuman, Bondy &

Knight (2003, p. 30) suggested that the researcher 'must be creative, open minded, and flexible;

adopt an investigative stance; and explore all sources of information.' The disadvantages of

exploration studies are the conclusion yielded may not be definitive and the representativeness

of result may be weaker (Babbie 2002).

Chapter 5 Methodology

54

Figure 5-2 The overall research strategy of this research

Chapter 5 Methodology

55

Another choice of the research strategy in this study was between deductive and inductive

approach. In a deductive approach, a hypothesis is formulated from pre-existing theoretical

framework and empirical data is collected to prove or disprove this hypothesis. In an inductive

approach, empirical data is collected to build a theoretical framework based on a few initial

concepts (Neuman, Bondy & Knight 2003). Inductive approach was the obvious choice

because the amount of pre-existing theoretical framework was not sufficient.

The overall research strategy is illustrated in Figure 5-2, including the relationships between

literature and data collections. The initial Delphi survey employed the model of individual

participation to a Free/Open Source community as the theoretical basis for the initial questions

in the first round of the survey. After the survey, a detailed investigation was done to further

collect data on different FOSPHost sites. The literature of methodology and evaluation was

referred to in each of the three steps of sub-projects to ensure consistence.

5.3 Selection of Research Methodologies and Methods

In this section, the rationale for choosing an appropriate methodology will be presented and

then the choice of research method for each phase of the research will be explained. The word

'method' of research is defined as 'the actual techniques or procedures used to gather and

analyse data related to some research question or hypothesis.' (Blaikie 1993, p. 7) In contrast,

methodology is a more philosophical 'analysis of how research should or does proceed' (Blaikie

1993, p. 7).

Chapter 5 Methodology

56

Table 5-1 A Summary of Differences among the Three Approaches to Research (Neuman, Bondy & Knight

2003, p. 91)

Neuman, Bondy & Knight (2003) proposed that there were three major methodologies and they

are compared in Table 5-1. (Feminist and postmodern research methodologies were also

mentioned in Neuman, Bondy & Knight (2003) but they were regarded as embryonic.

Therefore they are omitted here.) All these three methodologies can be relevant to research in

Chapter 5 Methodology

57

the Free/Open Source phenomenon. As the Free/Open Source phenomenon is related to

software engineering, and software engineering has its roots in mathematics and science and

thus positivism is actually a pre-dominant methodology in Free/Open Source research.

Examples of researches employing positivism are surveys on source code (Dempsey et al. 2002;

Koch & Schneider 2002; Stamelos et al. 2002) and analysis of statistics from FOSPHost sites

(Hunt & Johnson 2002; Kienzle 2001; Krishnamurthy 2002). On the other hand, some

researchers hoped that interpretive approach could provide a more meaningful description to

the chaotic Free/Open Source phenomenon. A discussion in the workshop on 'Advancing the

Research Agenda on Free / Open Source Software' (Ghosh 2002) suggested that one of the

methodological directions could be anthropological or even ethnographic in order to gain more

insight in the organization of Free/Open Source software development. Ethnographic studies

exist but the numbers are few (Arief et al. 2002; Scacchi 2002). Lastly, though there are very

few researches employing the critical social science approach, it will be interesting to see what

insight can a theory of classifying society by the degree of software freedom each class

possesses and how the oppressed can be empowered by Free Software.

As argued above, all three major methodologies could probably yield interesting results. In this

research, however, positivism is chosen, as it is the methodology that the majority of the

audience is familiar with. The ontology (or world view) of positivism is that general laws,

which are the fundamental operating principles of the world, exist and they are objectively

observable (Neuman, Bondy & Knight 2003). Though each observation of the world is atomic,

they are discrete and independent of each other. Conclusions can be drawn from them to

discover the basic principle of the world (Blaikie 1993). Truth can thus be found on

observations, not unexamined belief or metaphysics (Britannica.com 2000). This methodology

is also consistent with the inductive strategy that is employed in this research (Blaikie 1993).

Chapter 5 Methodology

58

One interesting aspect of positivism is that if each observation of the outside world by a

subjective human being is regarded as subjective, then how can an objective conclusion be

drawn? Objective results can be obtained by drawing conclusions on common patterns from

subjective observations collected in a scientific manner (Babbie 2002), and this is the main

methodological philosophy of this research. Obviously, the validity in seeking the truth by

employing this view of objectivity can be critiqued (Babbie 2002; Blaikie 1993; Neuman,

Bondy & Knight 2003), but an in-depth debate is beyond the scope of this research.

Though it is not the author's intention to go into methodological debates, but one of the

objections to positivism is important enough to be discussed here - relevancy. Neuman, Bondy

& Knight (2003, p. 71) claimed that there could a danger that 'positivism reduces people to

numbers and that its concerns with abstract laws or formulas are not relevant to the actual lives

of real people.' As the author would like the final evaluation model to be relevant and useful to

the general public, a more lenient approach from the orthodox positivism worldview will be

taken when required. Lee (1991) suggested that though positivist and interpretive approaches

were usually views as irreconcilable and incompatible approaches, it was possible to integrate

them and reaped the benefits from both methodologies. As mentioned above that exploratory

research required flexibility to construct a richer picture of the situation, interpretive approach

will be used when needed to construct meaning to increase relevancy.

Before presenting the methods used in this research, the definition of evaluation and different

evaluation approaches will be introduced first.

Chapter 5 Methodology

59

5.3.1 Considerations in the Construction of the FOS PHost Evaluation

Model

5.3.1.1 Introduction

Different issues are required to be taken into account when building an evaluation model and

they will be presented in this sub-section. A unified classification on software evaluation will

be developed and its possible contributions to the evaluation of Free/Open Source software will

be reasoned. Principles of choosing a suitable format for the evaluation model will also be

discussed. Finally, the expectations of the users of the evaluation model are proposed and

strategies to meet their expectations are discussed.

In terms of software evaluation methods, they can be classified by the stage in which the

evaluation is performed. One category of evaluations is applied during the development of the

software and the other category of evaluations is applied after the completion of the software

products. The aim for the evaluations during development are usually for improvement of the

software to meet the requirement laid with the developers (or commonly known as formative

evaluation (Wadsworth 1997)). The aim for evaluations of finished software products (e.g.

Commercial-Off-The-Shelf (COTS) software) is usually to inform a decision of purchase by

the users (or commonly known as summative evaluation (Wadsworth 1997)). Details of

evaluation methods in these two categories will be discussed below and the reader can probably

see the difference in emphasis in these two methods as they are usually employed by two

different groups of people.

An alternative software evaluation classification can be proposed. This classification consists

of four categories based on different areas of concern, namely, intrinsic, utility, usability and

context. Intrinsic software evaluation methods are examinations on software engineering

process and code quality. Utility evaluation methods are assessments on functionalities of the

Chapter 5 Methodology

60

software (Grudin 1992). Usability is the quality of the interface design that affects learnability,

efficiency, memorability, error rate, error severity and satisfaction of the software from the

users' viewpoint (Nielsen 1993). This is a relatively narrow definition of usability (Bevan 1995)

and the wider issues in the environment of the usage of the software is classified under the

category of context. As proposed by Bevan (1995), it is important not just to investigate the

quality of the interface but whether the software fit the quality of use in its own context. This

context may include specifics of users, tasks and socio-organisational environments. The

presentation of four categories above are arranged according to the distance of each category

from software development team, with intrinsic the closest and context the furthest.

5.3.1.2 Software Evaluation During Development

Within the category of evaluation during development, it is common to find three out of the four

areas of software evaluation, namely, intrinsic, utility and usability. Utility and usability

evaluation will be explained first and then intrinsic due the familiarity of the former two.

Context evaluation will be explained last.

Utility evaluation during development is usually found in the activity of verification and

validation. Verification and validation are actually two different but related processes to

evaluate the quality, performance and reliability of software systems (Lewis 1992). The

objectives of verification and validation were given in IEEE standard 1012-1998 (Software

Engineering Standards Committee of the IEEE Computer Society 1998a, p. 2) as:

The verification process provides supporting evidence that the software and its associated products

1) Comply with requirements (e.g., for correctness, completeness, consistency, accuracy) for all

life cycle activities during each life cycle process (acquisition, supply, development, operation,

and maintenance);

2) Satisfy standards, practices, and conventions during life cycle processes; and

Chapter 5 Methodology

61

3) Establish a basis for assessing the completion of each life cycle activity and for initiating other

life cycle activities.

The validation process provides supporting evidence that the software satisfies system

requirements allocated to software, and solves the right problem (e.g., correctly models physical

laws, or implements system business rules).

Moreover, verification and validation can be carried out internally or externally by an

independent body outside of the development team. For early computer systems, to perform to

the required standard was one of the main concerns and the techniques of verification and

validation were developed early on. In early 1970s, the U.S. Army already employed external,

independent verification and validation on critical military systems (Lewis 1992).

A typical verification and validation may include processes such as requirement verification,

design verification, code verification and validation, which correspond to different stages in

software development (Lewis 1992). Obviously, many techniques are involved in all these

procedures and it is beyond the scope of this dissertation to explain them in details, but some of

the most commonly used techniques are whitebox and blackbox testing during the code

verification. Whitebox testing means that the tester can see and use the control structure coded

in the software for testing. Examples of techniques include testing of data flow and control

structures such as loops and conditions (Pressman 1997). On the other hand, test cases of

blackbox testing are derived from the functional requirement, rather than the knowledge of the

inside working of the software. Another dimension of testing is the size of the software tested.

For large systems, unit tests are done to each module (Pressman 1997). Integration test will

then be performed during each level of integration of these modules (Pressman 1997) (Both

unit test and integration test is a part of verification). After the software has been successfully

assembled, validation test will be conducted. It is basically a number of blackbox tests to

Chapter 5 Methodology

62

validate the behaviour of the system against the requirement. The focus of verification and

validation is mainly on utility of the system. In recent literature on verification and validation,

usability is also included explicitly, but with less focus (for example, in Schulmeyer (2000), a

book on verification and validation, only one chapter out of sixteen chapters was devoted to

usability). After the process of verification and validation, there is usually another test called

the system test, which includes testing the software when connected to other systems in order to

examine the quality of the overall system. Due to the limit on the length and the distance of this

topic from the central theme of this dissertation, this topic will not be discussed here.

Another category of evaluation during development is usability evaluation. Lindgaard (1994)

indicated that in the early days of computing, operators of computers were usually a part of the

technical team and computers were much less interactive. Getting computers to complete the

tasks were the main concern. Nevertheless, as the use of computer became more widespread

and less technical personnel were recruited as computer operators, human-computer interaction

(HCI), which is a related subject to usability, became a concern. Grudin (1992) also pointed out

that there were two different emphasis on software quality developed from two different

development situations. In the situation of in-house software development in corporations,

users of computer systems were usually operators and engineers using batch-mode processing.

Utility, or what tasks could the system perform, was the measure of the quality. On the other

hand, in the situation of COTS software development, users of the systems were assumed to

have no formal training and the emphasis of the products was on the usability of the system.

As mentioned above, usability concerns arise from the need of less technical users and this

discipline was developed later than techniques on verification and validation of the utility of

software. As suggested by Lindgaard (1994), concerns for usability can also be found in nearly

all phases of a development cycle for software, namely feasibility, research, development and

Chapter 5 Methodology

63

operation phase. (Research phase is usually known as requirement gathering, in which the

author introduced a number of research methodologies to discover the need of the users and

tasks in context.) As for the concern of usability evaluation, the benchmark for usability is set

from the result from the research phase. Guidelines and heuristic analysis are introduced at the

development phase. Empirical testings are also conducted during different iterations of the

development to evaluate the product against the benchmark (Nielsen 1993).

Two common usability testing methods, heuristics evaluation and 'laboratory' testing will be

presented as an introduction to the actual methods of evaluation. Heuristics evaluation is

probably one of the quickest ways to assess usability (Lindgaard 1994; Nielsen 1993). It may

involve a small number of evaluators giving subjective and informal comments on the interface.

Areas to assess suggested by Nielsen (1993) were simple and natural dialogue, speak the users'

language, minimize user memory load, consistency, feedback, clearly marked exits, shortcuts,

good error messages, prevent errors and help and documentation. The disadvantage of this

method is the result may be coarse and the reliability and validity of the result can be

significantly influenced by the limitations of the evaluators (Lindgaard 1994; Nielsen 1993).

Another common usability testing method involves putting users in a 'laboratory' environment

and collect quantitative measurements on how tasks were done (Dumas & Redish 1999;

Lindgaard 1994; Nielsen 1993; Rubin 1994). The 'laboratory' or test room usually contains a

bench and the test computer for the participating user to perform the prescribed tasks. Other

personnel such as a test monitor and observers may be also involved. They may be in the same

room as the participant or in another room observing using different techniques. Quantitative

measurements such as time and number of errors made were recorded (Rubin 1994). The

advantage of the test is empirical data can be obtained for comparison (Nielsen 1993). The

disadvantage of this exercise is that the test environment is not the real environment that the

Chapter 5 Methodology

64

software will situate in (Rubin 1994) and the test may not discover 'unexpected' usability

defects as the scope is fixed (Nielsen 1993).

After the discussion of utility and usability, intrinsic, which is the nearest evaluation to the

development team, will be presented. As mentioned above, intrinsic evaluation is about

software engineering process and code quality. An example of the evaluation of software

engineering process is the Capability Maturity Models (CMM) (Software Engineering Institute

2003a). This standard was sponsored by the US Department of Defense the Office of the Under

Secretary of Defense for Acquisition, Technology, and Logistics. Three dimensions were

recognized, namely, process, technology and people, which would affect quality. Process, or

system engineering, was chosen to be the key dimension (Bate et al. 1995). Examples of areas

covered by the model are systems engineering (SE-CMM), software acquisition (SA-CMM),

integrated product development (IPD-CMM), people management such as staffing, training, etc.

(P-CMM), team software process (TSP) and personal software process (PSP) (Software

Engineering Institute 2003a). For each of the areas, five levels of capabilities were defined.

Level 1 was named 'Initial', where there was no management at all. Level 2 was named

'Repeatable', where there was basic management and successes could be repeated. Level 3 was

named 'Defined', where management and software processes were documented and

standardised. Level 4 was 'Managed', where performance was measured and controlled. Level

5 was named 'Optimizing' where processes within the organization were constantly improving

based on the measured performance and innovation (Software Engineering Institute 2003b).

Appropriate practices were suggested for each level for each of these areas and corresponding

benchmarks were established.

Other than the process of the production of software, the quality of the source code itself can be

measured. It is possible for a piece of software to satisfy the requirement but difficult to

Chapter 5 Methodology

65

maintain. Fenton & Pfleeger (1997) suggested that reusability, maintainability, portability and

testability are important factors in during software revision. One way to obtain indicators on

these factors is by measurement. For example, for testability, the tester needs to understand the

logic within the source code and documentation and comments are necessary. An indictor to

this situation is comment density, which can be obtained by dividing the number of lines of

comments by the total number of lines of code (Fenton & Pfleeger 1997). Another example for

indictors for maintainability is the complexity for the control-flow structure of modules. One

common measurement is cyclomatic complexity measure, which is calculated by the number of

independent arcs and nodes (McCabe 1976). Other than quantitative indicators, method such as

code inspection (Pressman 1997) can also help to estimate the quality of source code.

After the discussion of intrinsic evaluation, the last category - context – will be presented.

According to Bevan (1995), it is not enough to just consider the quality of the interface of a

program because it will be used by different users on different tasks in different situations. The

specifics of users, tasks and social organisational environments may also be determining factors

on the success of the program (Figure 5-3). In other words, utility is about what a program can

do, usability is about quality of the interface, and context is about the quality of use when the

software is situated in its own environment. The importance of context is also echoed by

Lindgaard (1994) and Nielsen (1993) that user profiles and task profiles need to be established

for usability evaluation. Bevan (1995) suggested that the definition of usability should be

expanded to include these factors, but here a separate category is defined to highlight its

significance.

Chapter 5 Methodology

66

Figure 5-3 Quality of Use Measures Determined by the Context of Use (Bevan 1995)

The context category is proposed to be the most distant category from developers. Cooper

(1999) explained that programmers usually have a different mentality and culture than

designers (of software) and users. One of the differences is the focus on technical issues and it

is difficult for programmers to see issues from the viewpoints of other parties. On the other

hand, the complexity of the situation of the environment of deployment also institutes barriers

for the developers. Therefore, the context category is proposed as the furthest from the

Chapter 5 Methodology

67

developers. The fact that there is not much literature on context evaluation during development

also supports the proposal above and it can be observed that context evaluation is the least

disciplined category of evaluation. Nevertheless, as we will see in the discussion of product

evaluation, more contextual concerns can be discovered from literature from the users'

perspective.

5.3.1.3 Software Product Evaluation

After the introduction of evaluation during development, evaluation of software product will

also be discussed. Unlike evaluation during development, product evaluation usually bases on

the viewpoint of the users. As explained above, intrinsic concerns are closer to developers and

contextual concerns are closer to users. There is a possibility that in product evaluation that

more contextual concerns can be discover. There may be also a lesser emphasis on intrinsic

concerns.

Literature on product evaluation is collected and reviewed. It includes general software

acquisition (Le Cornu 1996; Software Engineering Standards Committee of the IEEE

Computer Society 1998b), library related procurement (Bosch, Promis & Sugnet 1994; Fraser

& Goodacre 1993; Lee, S. D. 2002), accounting software selection (Australian Society of

Certified Practising Accountants' Information Technology Centre of Excellence 1995) and

education software evaluation (Squires & McDougall 1994). This collection is considerably

more scattered than the literature on evaluation during evaluation and many of the literature

only focus on a narrow domain. Most references mentioned above promote more or less one

coherent method in evaluation, except for Squires and McDougall (1994), in which ten

evaluation methods on education software were included and discussed, together with another

method that is different from these ten methods. The authors devised this novel method partly

from the reflection of these other methods.

Chapter 5 Methodology

68

From the survey of the mentioned literature, the focuses of most of product evaluations are on

utility, usability and context. There are only a few include concerns in the intrinsic area.

Considering the evaluation checklist provided in Lee (2002) for assessing electronic dataset for

library (such as e-journals), a number of concerns on the functionalities and content of the

dataset are listed. Quality of interface and ease of use are also included. Another example can

be taken from IEEE Recommended Practice for Software Acquisition (Software Engineering

Standards Committee of the IEEE Computer Society 1998b, pp. 31-2) "Software Evaluation"

checklist. It includes concerns such as functionality, performance, ease of use and adequacy of

documentation. Contextual concerns such as cost to acquire and use are also included. Intrinsic

concerns are also found in this evaluation – availability of source code and its quality.

From the above analysis, though all the four categories are identified, utility seems to be the

most prominent concerns. On the other hand, intrinsic concerns are relatively rare with the

exception of the evaluation by IEEE. Most of the evaluation literature only mentions issues

such as reputation of suppliers and support provided by suppliers. Though these issues are

related to the suppliers, they are not related to software development process or quality of

source code and thus cannot be categorised into intrinsic concern. Furthermore, they do not fit

the other three concerns either. The approach chosen to resolve this situation in this study is to

extend the definition of intrinsic concerns to include issues that relate to the developers or

suppliers of the software.

Reasons can be proposed on why intrinsic concerns can be difficult for product evaluators.

From the IEEE Recommended Practice for Software Acquisition (Software Engineering

Standards Committee of the IEEE Computer Society 1998b, pp. 31-2) "Software Evaluation"

checklist, intrinsic concerns such as availability of source code and its quality were included.

Nevertheless, this type of evaluation can be technical and it may be only feasible for a company

Chapter 5 Methodology

69

with an IT department or IT experts. Another suggestion that falls into the category of intrinsic

from this IEEE evaluation is to obtain opinions from other users of the suppliers. This can also

be difficult due to lack of information, as suppliers are not obliged to provide a list of

unsatisfied customers.

A number of contextual concerns are also raised. One of the most common contextual concerns

is the amount of money available, or in short, budget (Lee, S. D. 2002; Nielsen 1993). Another

contextual concern can be found during an evaluation of accounting software that a review of

the organization, process, information flow, staff required and their attitude is recommended.

The review is useful to the discovery of opportunities of re-engineering so that the

re-engineering process can be introduced together with the employing of an accounting

software (Australian Society of Certified Practising Accountants' Information Technology

Centre of Excellence 1995). On the other hand, Squires and McDougall (1994; 1996) proposed

the perspectives interactions paradigm in which evaluations needed to be performed in the

situation of learning. Three major actors were considered, namely designer (of the software),

teacher and student. Three perspectives were thus proposed: teacher and student, designer and

student and designer and teacher. Taking the teacher and student perspectives as an example,

the teacher of a class may adopt different roles such as resource provider, manager, coach,

researcher or facilitator to implement certain pedagogical approach. Students may also be

arranged to work in groups or have one-to-one access to computers. Moreover, the computer

may also play a major or a minor role in the process of teaching and learning. The software was

then evaluated on its quality in supporting teaching and learning with this known set of

parameters inside a classroom. From the example in the literature above, it can be illustrated

that contextual concerns can be very domain specific and complex.

Chapter 5 Methodology

70

Though a diversity of contextual factors is found in the literature, one observation is that most

of the factors mentioned are practical factors such as cost, installation and maintenance.

Socio-organisational implications of the introduction of the software to the whole system are

less frequently asked. Examples of such questions are how well is the software integrated with

the current system (Australian Society of Certified Practising Accountants' Information

Technology Centre of Excellence 1995) or how does the perception of the designer of an

educational software on the 'philosophy' of learning (such as learning means spoon-feeding

information to student or a process to explore, experience and assimilate) affects teaching in

classroom when that particular software is used (Squires & McDougall 1994). These concerns

require substantial understanding of the current system by the evaluator and may even require

simulation and imagination in the evaluator's mind. It may prove to be difficult for some

evaluators, who are normal users. Nevertheless, if these factors are difficult for the users to

foresee, they will be even harder for developers to even imagine. This may be one of the major

difficulties for software to perform as expected in production environment.

5.3.1.4 Software Evaluation and FOSPHost

From the discussion above, one can see that the four evaluation categories proposed could

effectively classify most of the evaluation concerns from both evaluation during development

and product evaluation. One may ask why there is a need for a combined framework. The

reason lies in the nature of Free/Open Source software. In Free/Open Source software, source

code is available for evaluation. Examples can be seen from Schach (2002) and Stamelos et al.

(2002) in which software metrics were employed to evaluate the maintainability and code

quality of Linux kernel. As argued above, evaluation of source code can be too technical for

most product evaluators who are just users. Nevertheless, other than the source code,

information on the development process and the community built around the software are

accessible as well to the evaluators. It has been suggested by Kenwood (2001) that when

evaluating Free/Open Source software, factors such as amount of talents captured in the

Chapter 5 Methodology

71

development community, leadership reputation and structure, development speed, maturity of

project and popularity can be considered. Some of these factors can be evaluated with less

technical technology and the feasibility for intrinsic evaluation from product evaluators can

probably increase in the situation of Free/Open Source.

On the other hand, the developers of Free/Open Source software may be users themselves

(recalling one of the motivation for developers is to "scratch ones' own itch" (Raymond 2000b)).

There may be a possibility that the distance from the developers to contextual factors can be

decreased. To conclude, in the situation of Free/Open Source, it is possible that methods in

evaluation during development and product evaluation are both applicable. A combined

framework will hopefully form a basis for a more comprehensive analysis of the Free/Open

Source phenomenon.

After the discussion of the advantage of the proposed classification, a few other observations

can be explored also. The classification proposed is not perfect and overlapping does exist. An

example is bugs in software. Bugs can be classified as defects in utility. The frequency of bugs

can also be classified as a usability problem that affects the satisfaction of the users. This

example shows that a particular factor (bug) can be classified into two different categories

(utility and usability). Therefore, when there is an evaluation concerning bugs, it is related to

both categories. Another example is that the availability of hardware and network can be a

technical problem of what hardware the software can support but also a political problem of

distribution of resources in the organization. Nevertheless, in most classification systems,

several items that are difficult to categorise usually exist and ambiguities may sometimes be

found. The classification proposed here probably achieve to form a conceptual framework for

considering software evaluation as a whole, without the separation of evaluation during

development and product evaluation.

Chapter 5 Methodology

72

Another possible shortcoming of employing this evaluation software approach on FOSPHost is

that FOSPHost sites can be regarded as services to community(s). FOSPHost is indeed very

much related to software but FOSPHost is not all about software as there is a service aspect. It

is possible that software evaluation may not cover some areas of FOSPHost. Then evaluation

methods in general program (such as some social welfare programs to aid the poor to get

educated and leave poverty) can relevant (Breakwell & Millward 1995; Owen & Rogers 1999;

Rossi, Freeman & Rosenbaum 1982). Nonetheless, effective and sophisticated assessments of

web sites using just the concept of usability (Nielsen 2000; Travis 2003) have been done and the

evaluation approach suggested above covers areas more than these usability assessments.

Moreover, literature on applying social evaluation methods on web sites are also few, and

software evaluation methods are probably the closest evaluation methods for FOSPHost. Also,

by the adjustment of intrinsic concerns, service related aspects such as quality of support could

also be accounted for. Finally, with the small amount of the understanding we have on

FOSPHost, it is difficult to judge what extra changes will be required. Aligning with the spirit

of an exploratory study, the evaluation approach suggested will be employed first and its

appropriateness will be discussed afterwards.

5.3.1.5 Presentations of Evaluation

After the introduction of the evaluation classification, the different formats of the presentation

of evaluation need to be discussed. From data collection, important issues about FOSPHost are

expected to be discovered. The final evaluation model then will be built on these issues and

certain presentation formats will be adopted. Therefore, it will be beneficial to discuss common

evaluation presentation formats and their characteristics. From the literature of evaluation

during development and product evaluation, the checklist format with specific items seems to

be the most common presentation. Another possible format is a variation of the checklist

format called the framework format (Squires & McDougall 1994). Different categories of

Chapter 5 Methodology

73

software with different corresponding sub-checklists were proposed in the framework formats.

For example, education software can be classified by application type, education role or

education rationale. An example of framework based on application type may propose a

different sub-checklist for tutorial and drill and practice program, arcade-type games,

simulation games, laboratory simulations and content-free tools (Blease 1986). Lastly, there is

also another type of evaluation that based on only a few broad topics, such as the perspectives

interactions paradigm mentioned above (Squires & McDougall 1994, 1996).

As checklist is the most common presentation, it will be beneficial to have further examination.

Generally, a checklist comprises of statements on particular characteristics of the software

being evaluated. The evaluator usually will be asked to respond to the statement in one of the

several forms, namely binary (Yes/No), subjective scale, weighed scale, measured results and

qualitative answer.

A binary response requires the evaluator to choose one response out of two and the common

form is a yes or no answer. An example of binary response is showed below (Software

Engineering Standards Committee of the IEEE Computer Society 1998b, p. 32):

1) Will the software be easy to use? Yes � No �

2) Is it designed for straightforward operation with a well-documented

 operating procedure? Yes � No �

A subjective scale provides the evaluator a scale with different values in order to describe the

degree of the specific characteristic prescribed. An example of subjective scale is taken from an

education software evaluation model:

Chapter 5 Methodology

74

Table 5-2 An Example of Courseware Evaluation

A subjective scale can be qualitative (as in the example) or quantitative (for example, a scale

from 1 to 5 where 5 denotes 'strongly agree' and 1 denotes 'totally disagree'). The results

obtained from a quantitative scale may be processed using statistical means afterwards.

Weighed scale is a variation of quantitative subjective scale. The evaluator still needs to

respond to a quantitative scale for an item. Additionally, in order to distinguish between the

different significance of each item, a weight will be given to each item. The final score for a

subject under evaluation can be obtained by summing the product of the subjective scale and

the weight. In the example quoted below, the weight is assigned subjectively. Weights can also

be adjusted so that the maximum total is exactly 100.

 Rating

SA–Strongly agree

A –Agree

D –Disagree

SD–Strongly disagree

NA–Not Applicable

Usability SA A D SD NA 1. The layout of the program is consistent.

 SA A D SD NA 2. It is easy to nagivate around the program.

Chapter 5 Methodology

75

Table 5-3 Sample evaluation matrix using scores and weighing

Checklist with measured results is different from quantitative subjective scale on the fact that

the results are measured. They can usually be found in usability laboratory test and software

metrics measures. Though the results of subjective scale and measurement can both be

quantitative, measurements usually give the impression of less subjectiveness. One list

compiled by Stamelos et al. (2002) comprises of the following metrics in assessing components

(functions in C language). Preferred ranges for each metric are given in square brackets:

1. number of statements [1-50]

2. cyclomatic complexity [1-15]

3. maximum levels [1-5]

4. number of paths [1-80]

5. unconditional jumps [0]

6. comment frequency [0.2-1]

7. vocabulary frequency [1-4]

Criteria

Weight Web Browser 1 Web Browser 2

Functionalities 3 9 x 3=27 6 x 3=18

(Remark: Most of the new
features are copied from
Browser 1)

Usability 3 8 x 3=24 6 x 3=18

Extensions 1 9 x 1=9 4 x 1=4

Popularity 1 1 x 1=1 9 x 1=9

Support 2 8 x 2=16 6 x 2=12

Total 77 61

Chapter 5 Methodology

76

8. program length [3-350]

9. average size [3-7]

10. number of inputs/outputs [2]

(Detail explanation for each metric is omitted.)

The last type of response form is qualitative, which means that answers are given in the form of

paragraph(s) of text. An example is taken from the 'Systems Engineering Capability Maturity

Model' under the section of 'Verify and Validate System' (Bate et al. 1995, pp. 4-66):

Base practices list

The following list contains the base practices that are essential elements of good systems

engineering:

BP.07.01 Establish plans for verification and validation that identify the overall requirements,

objectives, resources, facilities, special equipment, and schedule applicable to the system

development.

BP.07.02 Define the methods, process, reviews, inspections, and tests by which incremental

products that were verified against established criteria or requirements that were established in a

previous phase.

BP.07.03 Define the methods, process, and evaluation criteria by which the system or product is

verified against the system or product requirements.

BP.07.04 Define the methods, process, and evaluation criteria by which the system or product will

be validated against the customer’s needs and expectations.

BP.07.05 Perform the verification and validation activities that are specified by the verification and

validation plans and procedures, and capture the results.

BP.07.06 Compare the collected test, inspection, or review results with established evaluation

criteria to assess the degree of success.

Chapter 5 Methodology

77

The response to this list will probably be in a report format documenting the software

development process of the subject evaluated in the area of 'Verify and Validate System'.

The implication of employing different forms of presentation can be showed by Table 5-4.

Table 5-4 Implications of Different Forms of Presentation

From the table, several limitations when employing different checklists can be explained. One

limitation with quantitative response can be that the scope of evaluation is restricted to the

specific statements in the list. For non-weighed checklist, each statement might seem to have

the same importance (Squires & McDougall 1994). If calculation is involved, then there will be

an assumption that the distance between each item in the subjective scale is equal, which may

not be accurate (For example, in a 1-5 scale where 1 is the worst and 5 is the best, the distance

between 3 to 4 may be shorter than 4 to 5 for a perfectionist).

On the other hand, one of the biggest limitations for broad topics is that more effort is required

to learn to use the evaluation tool and also during evaluation. Taking the example of the

perspectives interactions paradigm (Squires & McDougall 1994, 1996), three perspectives,

teacher and student, designer and student and designer and teacher, were used for evaluation.

Checklist / Framework Broad Topics

Binary Subjective

Scale

Weighed

Scale

Measured

Results

Qualitative Answer

Specific Broad

Least Mental Effort Most Mental Effort

Restrictive Discovery

Chapter 5 Methodology

78

For each perspective, further details are provided, but much less specific comparing with 'Does

feature X exist?' Evaluators who want quick result will probably not employ such evaluation

presentation. Checklists with quantitative scoring also seem to be more objective.

It can then be concluded that each format has it own shortcomings. Definite guideline in what

presentation format to choose may not exist but these considerations will be taken into account

the construction of evaluation model in this research.

5.3.1.6 Users of Evaluation

In this last section on evaluation literature review, one of the determining factors on the

presentation format of an evaluation is the users and audiences of the evaluation. The

prospective users of the evaluation model of FOSPHost sites can be literally anyone who takes

an interest on the topic. This is because the model will be available to the public through the

World Wide Web. This decision is made to conform to the culture of Free/Open Source.

Under this circumstance, two different types of people may become the users of the

evaluation – Free/Open Source developers and new comers. Free/Open Source developers are

people who are already developing Free/Open Source software and probably using a FOSPHost

site. They may want to know more about the topic and make improvement on their current

practices. As suggested by Pavlicek (2000) on the general culture of Free/Open Source, this

group of people usually focus on technical details and accuracy. Another type of people are the

new comers. They may want to investigate the possibility of using a FOSPHost site and

probably need more introductory and understandable information.

To satisfy the expectation from these two groups, one strategy may be to emphasize on utility.

Discussing features of a FOSPHost site can fulfil the expectation of Free/Open Source

developers on technical details of the site. With introductory information, new comers can also

Chapter 5 Methodology

79

form preliminary ideas on what a FOSPHost site. On the other hand, there should also be links

between features to factors in other categories such as context so that a comprehensive picture

on the topic of FOSPHost can be portrayed. These factors will be considered in the

construction of the evaluation model.

5.3.1.7 Summary

In the above discussion, four categories of software evaluation are presented together with

rationale on their relevancy to the evaluation of FOSPHost. Different evaluation presentation

formats and users considerations are also discussed.

5.3.2 Delphi Survey

After the survey of different software evaluation methods, a researcher can just choose one of

methods mentioned and apply it to FOSPHost. Nonetheless, the question will then be which

methods will be promising to yield results that will reveal the nature of FOSPHost as well as the

Free/Open Source phenomenon. In order to answer this question, we need to know which

aspects of a FOSPHost site are more important. Thus, Delphi survey technique (Linstone &

Murray 1975) was chosen to collect expert opinions to what are the important aspects to a

FOSPHost site. The Delphi method is a structured group interaction process that is directed in

'rounds' of opinion collection and feedback (Turoff & Hiltz 1996). The name Delphi comes

from the Greek mythology that future events could be foretold in the Oracle at Delphi, a Greek

ancient city. The method was developed by Olaf Helmer and Norman Dalkey at the RAND

corporation in 1953 for forecasting purposes (Helmer 1975; Lang). Nowadays, it has been used

a variety of topics to collect expert judgements (Linstone & Murray 1975). Possible rationales

for chosen this method is provided by Linstone & Murray (1975, p. 4):

• The problem does not lend itself to precise analytical techniques but can benefit from

subjective judgments on a collective basis

Chapter 5 Methodology

80

• The individuals needed to contribute to the examination of a broad or complex problem

have no history of adequate communication and may represent diverse backgrounds with

respect to experience or expertise

• More individuals are needed than can effectively interact in a face-to-face exchange

• Time and cost make frequent group meetings infeasible

• The efficiency of face-to-face meetings can be increased by a supplemental group

communication process

• Disagreements among individuals are so severe or politically unpalatable that the

communication process must be refereed and/or anonymity assured

• The heterogeneity of the participants must be preserved to assure validity of the results,

i.e., avoidance of domination by quantity or by strength of personality ("bandwagon

effect").

At the time when the Delphi survey was designed and conducted, the literature on FOSPHost

was few and the Free/Open Source phenomenon as argued in chapter 4 was diverse and

complex. Therefore, employing Delphi survey is suitable (Linstone & Murray 1975; Twining

1999; Ziglio 1996). Moreover, a number of stakeholders from diverse backgrounds could also

contribute to the survey and exchange ideas (Linstone & Murray 1975) and hopefully to obtain

a more comprehensive set of data on the topic. This survey can also be done on the World Wide

Web to collect data globally with a low cost. Detail execution of the surveys will be explained

in the next sub-section.

The argument above presented the appropriateness of the application of the Delphi survey

technique, but whether it conforms to the positivist philosophy is yet to be examined. Mitroff &

Turoff (1975) showed that Delphi survey technique supported the Lockean inquiring system

and this system is compatible with positivism. An inquiring system is a model concerning how

Chapter 5 Methodology

81

to transform a 'raw data set' found in the existing world into some kind of conclusion (Mitroff &

Turoff 1975). Moreover, the Lockean inquiring system asserted that truth was based on

empirical content, not pre-assumption. Delphi survey technique supported this inquiring

system because the conclusion drawn was based in judgements that were experientially

collected. This inquiring system is arguably similar to positivism in its understanding of

drawing conclusion from a number of subjective observations to obtain an objective result.

Therefore, Delphi survey technique is compatible with the positivist worldview and is suitable

for this research. This is also compatible with the inductive strategy of this research as it based

on few initial, broad questions and the result is based on empirical data collected.

5.3.2.1 Administration of Instruments and Procedure s

The Delphi survey was designed to have three rounds. The first round would be qualitative and

the questionnaire for the first round was derived from the model of individual participation in a

Free/Open Source community. In rounds 2 and 3, participants would be asked to rate the

importance of the different statements from the results from round 1. A survey on the design

and execution of the Delphi survey would be conducted afterwards to collect opinion on the

quality of the survey itself. Participants would be given a chance to give comment on any

aspect of the whole process. Before the execution of the actual survey, a pilot survey will be

executed.

5.3.2.2 Participants of Survey

Three groups of people were invited to participate in the Delphi survey, namely, expert

Free/Open Source developers, FOSPHost administrators and academics in the area of

Free/Open Source. In a positivist viewpoint, academics were believed to understand the

objective knowledge of Free/Open Source so that the opinion obtained will be composed of

participants of Free/Open Source communities as well as observers.

Chapter 5 Methodology

82

Further definitions of the three groups were developed for recruitment. For expert Free/Open

Source developers, their names were found from two popular sites, Advogato (Advogato 2003)

and SourceForge (SourceForge 2003), where Free/Open Source programmers met and ranked

each other. For Advogato, those who achieved a Master status were chosen; for SourceForge,

those who had been rated the top ten highest ranked users were chosen. A FOSPHost

administrator was defined as a maintainer of any FOSPHost site, independent of whether the

person also takes care of the server at the operating system level. Lastly, for academics, any

person who has published any article on the topic of Free/Open Source can be invited.

The World Wide Web became the primary tool to build the invitation list. Names of potential

participants could be found on Advogato or Free/Open Source project web sites pages. Then,

their names would be searched using search engines to discover other relevant information.

Since names are not a definite unique identification of people, the information found by the

search engines had to contain convincing material about the projects that the potential

participants were believed to be involved.

In terms of number of participants required, as Delphi Survey aims at expert opinion rather than

a sample from a general population, a panel of 10-15 experts in each group can already generate

quality results for a homogenous group (Delbecq, Van de Ven & Gustafson 1975; Ziglio 1996).

As there is no explicit guideline the minimum number for a heterogenous group, it is assumed

that each group should have at least 10 experts.

5.3.2.3 Questionnaire Development for the Survey

One important aspect in most survey is what questions to include. According to the model of

individual participation to a Free/Open Source community, the important aspects for a

FOSPHost site contain 4C (Communication, Contributions, Co-ordination and Culture) and

community participants related factors (Motivations and Barriers to join community, Positive

Chapter 5 Methodology

83

and Negative effect). By referring to this model, 12 questions were devised as the initial

questionnaire for the Delphi survey. (The original acronym for FOSPHost was IFHOSP, which

stood for Infrastructure For Hosting Open Source Project. This acronym was not well received

from the responses of the participants and thus the author changed the acronym into

FOSPHost.)

1. What are the objectives of an IFHOSP site?

2. What tools can be employed on an IFHOSP site and what are the important features and

usability factors for each of them?

2.1.1 What is the name of the tool that can be employed?

2.1.2 What are the important features of this tools?

2.1.3 What are the important usability factors of this tools?

3. What work practices and culture should be promoted?

4. What are factors that motivate users to use an IFHOSP site?

5. What are barriers that prevent users from using an IFHOSP site?

6. What are the positive results for users in using an IFHOSP site?

7. What are the negative results for users in using an IFHOSP site?

8. What are factors that motivate administrators to setup or maintain an IFHOSP site?

9. What are barriers that prevent administrators from setting up or maintaining an IFHOSP

site?

10. What are the positive results for administrators in setting up or maintaining an IFHOSP

site?

11. What are the negative results for administrators in setting up or maintaining an IFHOSP

site?

12. What are other important issues in IFHOSP?

Chapter 5 Methodology

84

Most of the 12 questions were deduced from the model, with the exception of question 1 and 12.

Question 1 was aimed at collecting overall opinion on what a FOSPHost should do and question

12 was included to collect any additional opinion that did not fit the pre-set questions.

Question 2, 'What tools can be employed on an IFHOSP site and what are the important features

and usability factors for each of them?', aimed at collecting opinion on the communication layer.

Three sub-questions on utility and usability would be asked after participants suggested a new

tool. Information on the contribution layer could be reflected from this question too.

For co-ordination and culture layer, as it is difficult to explain the exact difference between the

two within one sentence, one question aimed at collecting opinion in both of these layers were

devised: 'What work practices and culture should be promoted?'

As there were three groups of participants and two of them, namely, users and administrators,

had direct experience with FOSPHost, two sets of motivations, barriers, positive and negative

results questions were setup to collect opinion from each of these groups.

Analysing the questions using the software evaluation classification, explicit questions on

utility, usability and context were presented. As the model of individual participation to a

Free/Open Source community was developed from the viewpoint of a participant, questions for

administrators were added to obtain intrinsic concerns.

For rounds 2 and 3, questions for the survey would be the summarised statements from the

results of round 1. The data collected would then be the importance of these statements. Two

methods were available, rating and ranking. Rating means to put a score on a statement out of a

scale, while ranking is to re-arrange the statements in order of them importance. Statement

Chapter 5 Methodology

85

ranking is actually the method recommended by a number of researchers (Delbecq, Van de Ven

& Gustafson 1975; Schmidt 1997; Turoff & Hiltz 1996). This method, however, does have its

constraints. Firstly, the number of statements to be discerned cannot be too many, typically less

than 20. Moreover, it was less flexible than rating. For example, in a Delphi survey on the

United States drug abuse policies (Jillson 1975), opinion was collected by rating on both

feasibility and desirability, which meant a participant had to select two numbers from a 1-5

scale for each statement. It would be more cumbersome to collect similar data using ranking,

which could mean two separate pages with the same statements but ranked for a different factor.

A number of Delphi surveys also employed rating (Enzer 1975; Goldstein 1975; Ludlow 1975).

In this survey, rating was also chosen, as the number of statements will not need to be less than

20. A 1-7 scale was also chosen to give a larger differentiation of opinion.

5.3.2.4 Implementation of Survey on the Web Server

Turoff & Hiltz (1996) suggested that Delphi surveys could be conducted using electronic means

and collected opinions that were not available to surveys using pen and paper. One of the

unfortunate facts was that global communication via the World Wide Web was not yet very

common by the time the paper Turoff & Hiltz (1996) was written. On the other hand, at the

time the Delphi survey on FOSPHost was designed, the World Wide Web was an essential tool

for participants in Free/Open Source communities and academia. Moreover, using the World

Wide Web as a medium also save cost and time in mailing. The responses from participants

would also go directly into a database for analysis. The author also had previous experience in

implementing dynamic web sites. Therefore the method of implementing the survey using the

World Wide Web was chosen.

Turoff & Hiltz (1996) suggested that Delphi survey was an asynchronous interaction.

Participants could have the freedom to choose when and which questions to respond to.

Chapter 5 Methodology

86

Participants should also be provided the chance to return to the survey as many times as one

would like before the closing of the survey.

Anonymity was another characteristics of Delphi survey. In most cases, participants will not be

given any information about the identities of others. In such a setting, participants would be

encouraged to express their opinion without the hindrance of their status (Linstone & Murray

1975; Ziglio 1996). Turoff & Hiltz (1996) took this point further to suggest that each

participant could be given a pseudonym. The responses of a participant can then be known by a

name without disclosing his or her identities. This could give participants chances to form

richer pictures of characteristics other participants that agree or disagree with them.

The technical details of the survey will be presented below. As Delphi survey requires the

feedback of previous results to the participants, the presentation of the results using web pages

will also be explained. The analysis of the results, however, will be presented later in a separate

chapter.

Chapter 5 Methodology

87

Figure 5-4 Site Map of Major Elements for Delphi Survey

The system developed was implemented on a Red Hat 7.0 Linux with Apache 1.3.27 web server,

PHP 4.1.2 and PostgreSQL 7.0.2. The site map of the system was shown in Figure 5-4.

Users of the web site were expected to enter from the 'First' page or the 'Invited' page where the

invitation email referred. Further explanation of the details of the survey was elaborated in the

'Explain' pages. Topics explained included 'What is Infrastructure For Hosting Open Source

Chapter 5 Methodology

88

Project (IFHOSP)?', 'What is a Delphi Survey?', 'Who is invited to participate in the Survey?',

'What is Required from the Participants?', 'Detail Procedure of Delphi Survey', 'What Results

do we expect?' and 'Guideline for Participants'. There were also 'Point Form Summary' and

'Frequently Asked Questions' for users to find quick answers.

Figure 5-5 Register/Login Page

Users could then go to the 'Register/Login' page (Figure 5-5) by following the links. There was

a sample page for those who were still not sure about the survey. In the invitation email, each

participant was given a username in the form of rXXXX (where X is a digit from 0-9) and a

password made up of alphanumeric characters. Only those who had a username and a

corresponding password can go into the secured area and each participant can only access his or

her own survey.

Chapter 5 Methodology

89

Figure 5-6 Participants Details

Chapter 5 Methodology

90

Figure 5-7 Information Centre

After passing the verification process at the 'Register/Login' page, for whose who register for

the first time, they would be asked to fill in information about themselves, namely 'change

password', 'choose nickname from a list' (with both male and female names), 'change contact

email' and identifying expertise from the three categories (Figure 5-6). For those who filled in

the personal details before, they would be directed to the information centre of the survey

(Figure 5-7). This centre contained the latest news of the survey as well as links to current

survey, 'Explain' pages, 'change personal details', the archive of email sent to the participants

and a procedure to have their name listed in the credit list.

Chapter 5 Methodology

91

Figure 5-8 Round 1 Questionnaire Question Page

For each round of survey, there was an introduction page, which then led to the question where

the participant could choose to give answers to any of the twelve questions asked (Figure 5-8).

As required by the Delphi survey method that the participants could choose which questions to

response to, 'no comment' check boxes were provided to obtain a more definite reply on their

desire on not to respond to certain questions.

Chapter 5 Methodology

92

Figure 5-9 Round 1 Questionnaire Answer Page

Then the participant could choose one of the questions. In round 1, it would lead to the answer

page where one could provide up to twenty answers to any questions (Figure 5-9).

Figure 5-10 Menu for Question 2

For question 2, 'What tools can be employed on an IFHOSP site and what are the important

features and usability factors for each of them?', a special structure was needed to capture the

answers (Figure 5-10). This structure allowed the participants to suggest, edit and delete tools

that they liked to comment on (the system can accommodate up to 999 tools).

Chapter 5 Methodology

93

Figure 5-11 Adding a New Tool

When the participant selected the "Suggest a Tool and Give Opinion' link, a page was displayed

to give the participant further instruction to comment on the tool (Figure 5-11).

Figure 5-12 Adding Name and Description

The first step in commenting a tool was to give the name and a brief description of the tool

(Figure 5-12).

Chapter 5 Methodology

94

Figure 5-13 Suggesting Features

Then the participant could suggest the important features of the tool (Figure 5-13).

Figure 5-14 Selecting Preset Usability Factors

Chapter 5 Methodology

95

Figure 5-15 User-defined Usability Factors

When the participant commented on the important usability factors, one could select the preset

usability factors or define one's own factors (Figure 5-13 and Figure 5-14). The preset usability

factors were obtained from the literature review of a number of articles and books. A major

proportion of the review was done before this PhD programme (Catella & Exploris Museum

1999; CIDOC Multimedia Working Group 1997; Ciolek 1997; Everhart 1996; Grassian 1998;

Harris 1997; Henderson 1999; Hinchliffe 1997; Huang, Lee & Wang 1999; Jacobson & Cohen

1996; Jones, C. M. 1998; Kirk 1999; McIntyre Library 1998; O'Brien 1997; Ormondroyd,

Engle & Cosgrave 1999; Purdue University Libraries 1999; Sarapuu & Adojaan 1998; Schrock

1999; Smith 1997, 1998; Strong, Lee & Wany 1997; Susan 1997; Wilkinson, Bennett & Oliver

1997) and other was done within this programme (Alexander & Tate 1999; Nielsen 1993, 2000).

These usability factors are listed below.

Usability Factor Brief Description

Accuracy The information processed and presented can be relied upon to be

correct

Updated Frequently The site is frequently updated with latest information

Coherence The information is presented logically and without contradiction

Completeness All relevant materials are presented

Objectivity The site is managed in an impartial manner without stereotyping

or bias, such as gender and cultural prejudice

Chapter 5 Methodology

96

Usability Factor Brief Description

Origin of Material The origins of the material used on site are clearly stated

Quality of Expression Writing material on site follows common language usage which is

easy to understand

Uniqueness The site consists of material that cannot be found elsewhere

Ease of Navigation The information is in a structure that is easy to navigate

Easy to find from

Outside

The site can be easily found by search engines, resource lists or

from other advertisements outside the site

International Interface The site is designed for international audience

Links The site contains useful links to relevant sites

Metaphor The site employ metaphors to convey ideas

Printable The web pages on site are designed to handle printing

Searchable The content within the site can be accessed by a search

mechanism on site

URL The URL of the site is easy to remember and type

Use of Multimedia Appropriate use of non-text elements to convey ideas

Accessibility The site is accessible to users with disabilities

Connectivity The connection to the site is fast

Security The site is secure

Clearly marked exits Exits are available when users want to abort a certain operation

Efficiency The users can achieve a level of high productivity when using the

site

Feedback The site gives informative feedback to users within reasonable

response time

Few Errors There are very few number of operational errors on site

Good error messages Well written error messages that exactly indicates the problem

and suggests solution(s).

Help and documentation Useful documents and help messages are presented to assist users

in using the site

Learnability It is easy and intuitive to learn how to operate the site

Memorability It is easy to remember how to operate the site

Prevent errors The site is designed to prevent possible error like spelling mistake

from users

Satisfaction Users are subjectively satisfied when using the site

Chapter 5 Methodology

97

Usability Factor Brief Description

Shortcuts Shortcuts are available to expert users to speed up increase

efficiency

Simple and natural

dialogue

Interaction between computer and users is as simple as possible

and information in the interaction is presented in natural and

logical fashion

Speak the users'

language

During the interaction between computer and users, terms and

concepts that are familiar to users are used rather than

system-oriented terms

Table 5-5 Preset Usability Factors

The participants were supplied with both the name of the factors and their respective

descriptions to assist them in making an informed decision. They can also define any other

usability factors if needed (Figure 5-15).

Figure 5-16 Summary of Responses

Chapter 5 Methodology

98

After the participants finished the questionnaire, one could also generate a summary page to

review the answer given on the summary page. There were direct links from the summary page

to individual questions so that participants could update their responses conveniently (Figure

5-16).

Figure 5-17 Verification Page

After collecting responses in round 1, the qualitative data would be summarised and turned into

questions of round 2. Moreover, to increase the validity of the survey, a verification procedure

was added before round 2 to receive feedback from participants on the quality of the summary

(Schmidt 1997).

Chapter 5 Methodology

99

In Figure 5-17, a verification page is shown. Each verification page was first generated from

processed data based on the responses and then customised to each individual participant. Each

participant received a unique email pointing to his or her page. One could then comment on the

summarised concepts on the page and then sent it back through the web server.

Figure 5-18 Additional Clarification

Moreover, when the meanings of some of the responses were not immediately clear to the

researcher, the researcher also took the chance of verification to have these responses clarified

(Figure 5-18).

After the above process, the data collected was summarised and the results of round 1 was

presented using HTML on the web (available not just to the participant, but the general public,

in the spirit of Free/Open Source). It was presented in two sorting order, namely questions and

participants.

Chapter 5 Methodology

100

Figure 5-19 Results of Round 1 Sorted by Questions in Short Form

Figure 5-20 Results of Round 1 Sorted by Questions in Long Form

Chapter 5 Methodology

101

In the presentation sorted by questions, the reader of the results could choose to examine the

results in short or long form. In short form, only the summarised statement of the data were

shown (Figure 5-19). Alternatively, the related opinions from the participants were also shown

in long form (Figure 5-20).

Figure 5-21 Participants Grouped by Self Rating

In the presentation sorted by participants, they were grouped by their self-ratings (Figure 5-21).

Nicknames were used to ensure anonymity while responses from any particular person can be

grouped and identified (Turoff & Hiltz 1996).

Chapter 5 Methodology

102

Figure 5-22 Results of Round 1 by Participants in Short Form

Chapter 5 Methodology

103

Figure 5-23 Results of Round 1 by Participants in Long Form

In the presentation sorted by participants, the reader could choose to examine the results in two

forms. While in short form, only the opinion of the participant was shown (Figure 5-22), in

long form, the related summarised statements were also shown (Figure 5-23).

The long form presentation also took advantage of hyperlinks. For example, in the long form,

answer sorted by participants page (Figure 5-23), if the reader clicked the summarised

statement 'To support concurrent and collaborative software development' under response 1.2,

this would lead to the corresponding statement in answer sorted by questions page (Figure

5-20). The reader could then find out who were the participants that made similar comments.

This hyperlink action could also work in the reverse direction. If the reader selected the opinion

of participant 'Mark' (Figure 5-20), for example 'to facilitate shared, concurrent,

version-controlled development of source code and documentation by multiple developers', this

Chapter 5 Methodology

104

would lead to the corresponding opinion in answer sorted by participants page (Figure 5-23).

The nicknames were also hyperlinked to the corresponding participants' page. This design was

implemented to give the reader a more thorough understanding of the data. As the participants

were all potential readers of these results, these results were also designed to maximise their

understanding of the subject under investigation as well as understanding other participants'

point of views.

Figure 5-24 Round 2 Questionnaire Answer Page

In round 2 of the survey, the main task for the participants was to rate the summarised statement

quantitatively so that the importance of the statements could be obtained. Participants could

also give qualitative comments for any statements (Figure 5-24).

Chapter 5 Methodology

105

Figure 5-25 Randomisation of Statement Order

Figure 5-25 was the page generated for a different participant. The order of the statements for

each participant was different as any arrangements of statements may cause bias to the results.

A randomisation mechanism was thus implemented in the hope to minimise this bias.

In the presentation of the results of round 2, more sorting orders were provided than round 1.

First, in the sorting by questions category, there were four different arrangements, namely 'Only

Top Ten' (Figure 5-26), 'Only Numerical Data' (Figure 5-27), 'All Relevant Data (Sort by

Rating)' (Figure 5-28) and 'All Relevant Data (Sort by Controversy)' (Figure 5-29).

Chapter 5 Methodology

106

Figure 5-26 Show Only Top Ten

Chapter 5 Methodology

107

Figure 5-27 Show Only Numerical Data

The differences of 'Only Top Ten' and 'Only Numerical Data' were that all statements were

presented in 'Only Numerical Data' and the reader could select 'Details' on the right of the

miniature distribution graph to find out the particulars.

Chapter 5 Methodology

108

Figure 5-28 Show All Relevant Data (Sort by Rating)

Chapter 5 Methodology

109

Figure 5-29 Show All Relevant Data (Sort by Controversy)

Qualitative data such as comments in round 1 and 2 were shown in two 'All Relevant Data'

presentation style. Similar to round 1, comments and nicknames were hyperlinked. The sorting

order of '(Sort by Rating)' was by average rating of each statements and '(Sort by Controversy)'

was by the variance of the rating each statements.

Chapter 5 Methodology

110

Figure 5-30 Detail Chart of Distribution of Responses

The reader could select 'Details' on the right of the miniature distribution graph to find out the

particulars (Figure 5-30). Each group of experts was given a colour in the distribution graph

Chapter 5 Methodology

111

and thus the distribution of opinions of different groups could be observed. Responses and

comments from round 2 from individual participants were also listed and nicknames were

hyperlinks for the reader to discover the participants' other responses.

Figure 5-31 Responses of a Participant

In the sorting by participant presentation style, the answers of each participant were divided

into the corresponding twelve questions. Asterisks were placed at the questions that the

participant chose to respond (Figure 5-31).

Chapter 5 Methodology

112

Figure 5-32 Detail Responses of a Participant

Within each question, quantitative data as well as qualitative were presented (Figure 5-32). The

statement numbers were hyperlinked to encourage the reader of the results to explore responses

from other participants.

Round 3 of the Survey was very similar to round 2 except that the results of round 2 was

feedback to the participant. In order to enhance this feedback mechanism, there were several

changes to the web interface.

Chapter 5 Methodology

113

Figure 5-33 Round 3 Questionnaire Question Page

At the question page, the question numbers of the questions that the participant responded in

round 2 were given a different colour and an increase in font size (for those who have colour

blindness) (Figure 5-33).

Chapter 5 Methodology

114

Figure 5-34 Round 3 Questionnaire Answer Page

In the answer page, the ratings of the participants' previous answer were also given a different

colour and an increase in font size (Figure 5-34). Summary of responses from round 2 were

shown. The participants could also explore further into the glossary and the results from

previous rounds (Figure 5-35, Figure 5-36 & Figure 5-37).

Chapter 5 Methodology

115

Figure 5-35 Checking Glossary for Difficult Terms

Chapter 5 Methodology

116

Figure 5-36 Checking Qualitative Results from Last Round

Chapter 5 Methodology

117

Figure 5-37 Checking Quantitative Results from Last Round

For the presentation of the results of round 3, it was again similar to round 2, except the excerpt

of the results in round 2 were also shown (Figure 5-38).

Chapter 5 Methodology

118

Figure 5-38 Results of Round 3

Chapter 5 Methodology

119

Figure 5-39 Post-Delphi Survey

Chapter 5 Methodology

120

The Post-Delphi survey was a simple survey to gain understanding of the quality of the web

Delphi survey method (Figure 5-39). Six simple questions were asked:

1. How has the Delphi process facilitated (or not facilitated) communication between

participants?

2. Do you find participation in this survey a worthwhile experience?

3. What can be improved in the process of the survey?

4. What can be improved in the web interface of the survey?

5. What can be improved in the questions posed in the survey?

6. Other Comments

Figure 5-40 Post-Delphi Survey Results

The presentation of the results of the Post-Delphi survey was also very straightforward. It was

just a page with all the comments with the nicknames of the participants on the left hand side

(Figure 5-40).

Chapter 5 Methodology

121

The Delphi survey was completed after the Post-Delphi survey and the analysis of the results

will be presented later in chapter 6. The actually results can be found on the CD-ROM enclosed

(/Delphi/result/index.html) and the reader can browse through it to gain a better understanding

of the description above.

5.3.2.5 Data Analysis

Several data analysis techniques can be employed in a Delphi survey. The first technique was

to summarise the results from round 1 and express the concepts in the results into statements.

The next technique was to process the quantitative data from the rating of the statements in

round 2 and 3.

The summarising process that was adopted for round 1 was qualitative. Firstly, responses were

broken into unit concepts. Then, every concept was related to the corresponding response(s)

and vice versa using hyperlink(s) on the round 1 results pages. This ensured that every concept

originated from at least one of the responses and every response was summarised. The

researcher tried to make every unit concept self-contained and mutually exclusive to other

concepts, but this could not be achievable with every concepts. After the summary process, it

was verified and clarified by the participants.

In rounds 2 and 3, both quantitative and qualitative data was collected. On the quantitative side,

ratings out of a 1-7 scale were obtained. The average and variance rating for each statement

were computed. Variance was chosen over standard deviation because the built-in the standard

deviation routine was not yet implemented in PostgreSQL 7.0.2 and thus calculating variance

from 22 xx − explicitly was the easiest method for comparison purposes. As stated in

sub-section 5.3.1.5, the calculation for a scale implied that the distance between each subjective

scale is equal. Though it may not be proven, the benefits of the statistics obtained will be

substantially higher than not to have the calculation process at all.

Chapter 5 Methodology

122

Different methods were proposed to select statements as the conclusion of the survey, namely

ranking, first interquartile and standard deviation. The ranking method first arranged the

statements in the order of their average ratings and took an arbitrary number of statements from

the top, for example top 10 statements (Jillson 1975). The interquartile method also first

arranged the statements in the order of their average ratings. Then they were broken into four

quarters according to their average ratings. The statements in the quarter with the top ratings

were taken (Jones, C. G. 1975; Ludlow 1975). The standard deviation method assumed that the

ratings formed a normal distribution and the top statements beyond one standard deviation from

the average of all average ratings were important (Scarlett 2001). It could be argued that

interquartile method and standard deviation method were similar, as for normal distribution,

68% of the ratings would fall between the distances of plus or minus one deviation. Therefore

the important statements were the top 16% of all the statements. The difference for the

interquartile method was that the top 25% was taken.

To choose from the above methods, recall that the Delphi survey was conducted as an

exploratory study, and one of the aims was to construct a mental picture of the situation

(Neuman, Bondy & Knight 2003). A more lenient 33% top statements criterion, or first third of

the statements, was chosen to include more statements in order to achieve the objective.

On the other hand, the variances of the ratings were computed to discover the polarisation of the

opinions. This method was employed in several surveys before (for example (Ludlow 1975)).

Again the top 33% controversial statements would be selected.

For the qualitative part of the data from rounds 2 and 3, the comments would be grouped and

interpreted according to the content. This interpretation exercise again was aimed at

Chapter 5 Methodology

123

constructing a mental picture of the situation (Neuman, Bondy & Knight 2003). On the other

hand, as the guiding methodology of the study was positivism, the researcher would balance the

need for objectiveness and the potential for the discovery of new knowledge from further

interpretation of the data.

Other additional data such as 'No Comment' and the results from the Post-Delphi survey will

also be collected and discussed to assess the quality of the survey conducted.

5.3.3 Detailed investigation on External Hosting Si tes

After the data collection in Delphi survey, one of the analyses was done by categorising the

concluding statements into the four classes of software evaluation, namely intrinsic, utility,

usability and context. The amount of data collected on the class of utility was not substantial

enough. Recalling that the users of the evaluation model may be Free/Open developers and

new comers, an emphasis on the category of utility was suggested to meet their expectations. A

further investigation into the features of the different tools available on a FOSPHost was thus

conducted.

As resources were limited, the area for detailed investigation needed to be designated to the

most appropriate topics. As explained in sub-section 3.2, FOSPHost sites can be classified as

external hosting and self-hosting. External hosting sites were chosen because a number of them

actively promote the FOSPHost aspect of the site. For example, the free version of

SourceForge can be seen as a demonstration and an advertisement to the commercial world for

the improved Enterprise version of SourceForge as well as the concept of FOSPHost. For

self-hosting site such as the FOSPHost site for Linux (Kernel.Org), the main focus is on Linux

and the FOSPHost site is probably just to get the project co-ordinated. Therefore, external

hosting sites probably are better known and users of the evaluation model may identify the

concept of FOSPHost with them more readily. One may argue that the obvious may not be the

Chapter 5 Methodology

124

necessary condition for direction in research, but the counter argument is to explore what is

familiar first and the chance of finding promising research area will increase. An understanding

of the basic facts could build a solid foundation for the next stage of research.

The method employed for this part of the research was similar to the preliminary stage of case

study method (Yin 1994). Usually case study is applicable in 'how' and 'why' questions on

contemporary events. The researcher also does not need to have control over the behaviour of

the events. Though 'how' and 'why' questions are the focus of case study method, 'what'

questions are usually asked at the preliminary stage so that relevant data was collected to

construct answers for the 'how' and 'why' questions. Under the limitation of this research, the

'what' questions, which the basic facts on the topics, were the focus. Some attempts to answer

the 'how' and 'why' questions were made, but it was regarded as secondary.

In the design of a case study, Yin (1994, p. 20) commented that 'what questions to study, what

data are relevant, what data to collect, and how to analyse the results' were the relevant areas.

The detail description on the process of the method below will be adopted these four areas as a

framework of discussion. The method for the investigation on external FOSPHost sites will be

presented first.

Recalling that the focus of the investigation on external FOSPHost sites should be on the utility

of the sites. The aspects for investigation posed are:

• What sites are relevant to the investigation?

• What features are offered on the sites investigated?

• What categories could be given to the sites and the features?

• What features do each site offered?

• What are the background of the sites and policies do they adopted?

Chapter 5 Methodology

125

• How do the facts collected relate to the Delphi survey results?

The criteria for the selection of external FOSPHost sites for investigation were based on the

definition of FOSPHost. Recalling that a FOSPHost site is the infrastructure that supports and

co-ordinates the development of Free/Open Source software projects on the Internet, the first

criterion is Free/Open Source projects are hosted on site. The next criterion is that the site

welcomes the hosting of Free/Open Source projects from other parties. This then fulfils the

condition of an external FOSPHost site. The next criterion is that it supports and co-ordinates

the development of projects hosted. From the Delphi survey, the most important tool for a

FOSPHost site was a source code repository. The criterion is then devised that the site should

as least include a source code repository with basic version control capability. The criterion of

version control capability is added so FTP sites are not included. The scope of the study can

thus be narrowed down to a manageable size. On the other hand, this criterion is also broad

enough to fulfil the purpose of an exploratory study.

Data related to the aspects of investigation were collected by visiting the FOSPHost sites via the

Internet, reading documents and source code of the sites. If possible, administrators of the sites

would be asked to clarify issues that could not be understood by the methods stated above. The

data collected was tabulated in a comparison table and comments was obtained from authors

and administrators of the software investigated. This method did not involve interview and it

was less involved than employing a full-scale case study method. It was chosen, as the

objective of the research was exploratory. By employing this method, a broad range of data

could be collected with less effort, but of course the depth was less.

Since the importance on answering 'how' and 'why' questions were lower, the effort spent on the

analysis of the data could be less. Simpler methods were employed and analysis method such

Chapter 5 Methodology

126

as pattern-matching was not required. As mentioned above, the data collected would be

tabulated in a comparison table. Relationships between the data and the Delphi survey would

also be explored.

The choice of method could be argued to be compatible with the positivism methodology and

inductive strategy of this research. The method described here is based on observations and

discussions of objective facts and thus matches the spirit of positivism. The results obtained are

also based on empirical data collected with few presumptions. This hence qualifies the method

as inductive.

The validity of this method can be argued as similar to case study as it is based on observations,

documentations and source code which is regarded as reliable in case studies. Though

interviews were not conducted, sites administrators were asked to check for discrepancies on

the investigation. Permissions were asked and obtained to make their feedback public as well.

As the evaluation model was available to the public as well, there may also be a peer review

mechanism to strengthen the validity of the research.

5.4 Summary of Chapter Five

In this chapter, the plan for the research was described in details and the rationale behind the

different choices was also explained. The purpose of the research was chosen to be exploratory

and the main methodology was positivism. A classification of software qualities for evaluation

of Free/Open Source software was built to suit the nature of FOSPHost sites. Different

evaluation presentations were also reviewed as potential candidates for the final

implementation of the evaluation model. Two data collection methods were also chosen,

namely Delphi survey and detailed investigation. Detail execution and data analysis

procedures for Delphi survey were explained and the method for the execution of detailed

investigation was also described.

Chapter 5 Methodology

127

In the next chapter, the results of the Delphi survey will be presented and analysed.

Chapter 6

Results and Analysis of the Delphi Survey

6.1 Introduction

In this chapter, the results of the Delphi survey will be presented. The method of data collection,

validity and content of the data collected will then be discussed.

6.2 Results of the Delphi Survey

In this section, the procedure on invitations, the survey results and various types of auxiliary

data collected will be provided. Quantitative and qualitative presentation of agreed and

controversial answers will then be given.

6.2.1 Invitations and Responses

In this sub-section, data that relate to the quality of responses will be presented. These include

the invitation process, the number of responses, 'No Comment' responses, feedback mechanism

and the results from Post-Delphi survey.

Recalling from previous discussion, to reach acceptable validity, each group should have at

least 10 experts giving opinion. About 40 experts were short-listed for each group. Before the

start of the survey, a pilot run was conducted in early June, 2001. 12 experts were invited to

participate, 4 from each group. Unfortunately, all of them were too busy to make substantial

comment.

Chapter 6 Result and Analysis of the Delphi Survey

129

After three rounds, the numbers of participants involved in each question are listed (Table 6-1):

Questions Expert Users Administrators Academics

1 18 9 17

2 11 5 9

2.1.2 4 2 3

2.1.3 4 2 3

2.2.2 5 3 4

2.2.3 5 3 4

2.4.2 5 3 4

2.4.3 5 3 4

2.8.2 5 3 3

2.10.2 5 3 4

2.10.3 5 3 4

3 11 5 12

4 10 4 10

5 10 4 11

6 10 2 8

7 10 2 7

8 6 3 4

9 5 1 3

10 6 2 3

11 5 3 4

12 10 3 9

Table 6-1 Numbers of Participants Involved in Each Question

From the table, ten or more expert users responded to question 1 to 7 and 12 and thus reached

the requirement for acceptable validity for the group of expert users. Further implications of

these figures to the validity of the survey will be discussed in the next sub-section. Further

Chapter 6 Result and Analysis of the Delphi Survey

130

breakdown of participants based on expertise and participation in each round are listed (Table

6-2):

Participants Expertise Round 1 Round 2 Round 3

Alvin Expert User � � �

Anthony Not Expert �

Austin Expert User �

Brendan Expert User Administrator Academic � � �

Brent Expert User Academic �

Chris Expert User �

Dave Not Expert �

Eugene Expert User Administrator Academic �

Gabriel Academic � � �

Garrett Expert User � � �

Gary Academic �

Jacob Not Expert �

Jason Expert User Administrator �

Jessica Academic �

Joanne Academic �

John Expert User Administrator � �

Joseph Academic � � �

Leslie Administrator �

Luke Expert User �

Mark Expert User � � �

Matthew Expert User Administrator �

Michael Expert User �

Neil Expert User Administrator �

Noah Expert User Academic � �

Patrick Academic �

Peter Expert User Administrator �

Phil Academic � � �

Schulhoff Academic � �

Chapter 6 Result and Analysis of the Delphi Survey

131

Participants Expertise Round 1 Round 2 Round 3

Steven Academic �

Terence Expert User Academic � �

Troy Expert User Administrator �

William Expert User �

Total Number of Participants:

32 19 9 14 22 12 16

Table 6-2 Breakdown of Participants based on Expertise and Participation

From the table, most participants had expertise in more than one area. A few were quite humble

not to claim any expertise but most regarded themselves to have some knowledge in at least one

area. Many of the participants did not contribute in all three rounds, and this can be shown

below (Table 6-3):

Total Round(s) Participated Number of Participants Overall Percentage

1 21 66%

2 4 13%

3 7 22%

Table 6-3 Amount of Participation

66% of the participants only contributed in one round and 22% participated in all three. The

numbers of people invited for each round are listed (Table 6-4):

Round Academics Administrators Expert User

1 54 33 54

2 53 32 53

3 49 43 53

Table 6-4 Numbers of People Invited for Each Round

Chapter 6 Result and Analysis of the Delphi Survey

132

The researcher aimed at inviting more than 40 people for each group. Unfortunately, due to an

operation error, only 33 administrators were invited. The number of the people invited

decreased for later rounds because some of the recipients of the invitation email replied and

hoped not to participate. Therefore, they were not invited in later rounds. There was one

exception that the number of administrators invited increased in round 3. It was decided in

round 3 that, although it was not planned in the survey to recruit more participants after the

survey began, having more administrators would definitely improve the quality of the results.

Therefore, 12 more administrators were invited. Unfortunately, none of them participated and

thus the results were not affected by this invitation.

Detail invitation figures are presented below (Table 6-5):

Round Email Phone

Invitation Reminder Contact

Established

Left

Message

Cannot

Contact

Incorrect

Login

(Persons)

Responded

(Persons)

1 141 136 10 22 15 5 47 22

2 138 131 N/A N/A N/A N/A 18 12

3 147 119 21 33 30 12 26 16

Table 6-5 Statistics for Invitation

For round 1 and round 3, both email and phone invitations were executed. For round 2, only

email invitation was sent. The original plan was that phone invitation would be only done in

round 1 and the participants should then be aware of the survey. With the decrease in

respondents in round 2, phone invitation was again implemented in round 3. The numbers in

the table referred to the number of times an action was done except for login and responded.

For example, in the 'Cannot Contact' figure, some of the calls were repeated calls to the same

Chapter 6 Result and Analysis of the Delphi Survey

133

individual. Another figure that cannot be incorporated into the table was the number of

participants who verified the summarised statements in round 1. The number was 22, which

indicated that all the participants in round 1 verified the statements.

Figure 6-1 No. of Invitation Sent in Round 3

Email invitations and reminders were sent in batches on different dates to disperse the possible

workload on the web server (Watt 1999) and the researcher. An example of this strategy can be

seen on the distribution of email sent in round 3 (Figure 6-1). For potential participants that

could be contacted by phone, they would be called first and then the email would be sent.

As discussed in the previous chapter that 'No Comment' check boxes were provided to obtain a

more definite reply on the participants' desire not to response to certain questions.

Chapter 6 Result and Analysis of the Delphi Survey

134

Round 1 2 3

With Answers 107(36%) 91(63%) 104(51%)

No Comment 101(34%) 13(9%) 9(4%)

No Response 92(30%) 40(28%) 91(45%)

Table 6-6 'No Comment' Responses from Question Page

Table 6-6 refers to 'No Comment' responses collected on the question page (Figure 5-8) where

the 12 questions were asked. If the participant went into the answer page of a particular

question and gave answers, then it is classified as 'With Answers'. If the participant did not

gave answer and did not select the 'No Comment' check box, then it is classified as 'No

Response'. The figure in the table is the count of the three types of responses to each question

on question page.

Round 1 2 3

With Answers N/A 1904(96%) 2345(89%)

No Comment N/A 78(4%) 211(8%)

No Response N/A 3(0%) 75(3%)

Table 6-7 'No Comment' Responses from Answer Pages

Table 6-7 refers to responses collected on the answer pages (Figure 5-24). For each statement

on an answer page, the participant could choose to select a rating, select 'No Comment' check

box or did nothing. These three actions correspond to the three categories in the table. As in

round one, answers given were qualitative and there was no rating involved, therefore, there

was no data collected.

Chapter 6 Result and Analysis of the Delphi Survey

135

Another measurement of quality is the amount of feedback from previous results that a

participant received. It could be measured in two ways, references to result pages and changes

in responses.

Location of Referral Number of References %

Information Centre 6 67.67%

Help 1 11.11%

Directed from Email 2 22.22%

Total 9

Table 6-8 Round 2 References to Results

Location of Referral Number of References %

Information Centre 11 61.11%

Survey Introduction 1 5.56%

Additional Information 5 27.78%

Unknown 1 5.56%

Total 18

Table 6-9 Round 3 References to Results

In the design of Delphi survey, the results of the previous round(s) were presented to the

participants. By taking advantage of the log of the web server, the effectiveness of this

mechanism could be measured. The figures in Table 6-8 and Table 6-9 were obtained by

examining the Apache web server log at the point after the participant had logged-in. Instances

of viewing the result pages were identified and the page accessed just before the viewing of the

result pages were obtained. They were the locations of referral to the result pages. Locations of

referral identified included information centre, survey introduction, help, additional

information and directed from invitation email. After the participants entered from the referral

Chapter 6 Result and Analysis of the Delphi Survey

136

page to the result page, for round 2, the average pages of results viewed directly after the

references were 6.1 and 1.9 pages for round 3.

Another method to examine the effect of feedback is to measure the change in responses

between round 2 and 3. 93.30% of the answers were unchanged.

Difference

in Rating

Number of

Responses %

Number of

Responses %

3 1 0.07%

More Important 2 4 0.29% 35 2.58%

1 30 2.21%

Unchanged 0 1267 93.30% 1267 93.30%

1 45 3.31%

Less Important 2 10 0.74% 56 4.12%

3 1 0.07%

Table 6-10 Difference in Rating in Round 2 and 3

The opinion of the participants on the design and procedure of the survey could also be

discovered from the results of the Post Delphi survey. Only two participants replied. Both of

them were unaware of the communication process between participants via the format of the

survey. Both felt that the survey was too long but one felt the survey was worthwhile while the

other did not like it. The improvements suggested were to shorten the survey and use an

interview strategy instead. Technological comments included using no JavaScript in web pages,

improvement on check box comment and the bandwidth of the web server to the Internet was

low. The design of the interface could be improved as well. One participant also comments that

he or she found the results interesting.

Chapter 6 Result and Analysis of the Delphi Survey

137

In this sub-section, different statistics and data related to the quality of the survey were

presented. This data will be further examined in the discussion sub-section below.

6.2.2 Agreed Answers

Within the data collected of the Delphi survey, statements that the participants agreed on were

short-listed. These statements will be presented in this sub-section.

According to Table 6-2, there were four participants who only participated in the second round

and not the third round. Therefore, it was assumed that the answers the four participants gave in

round 2 were their final answers.

Figure 6-2 Histogram of Average Ratings

Chapter 6 Result and Analysis of the Delphi Survey

138

The average ratings for statements from questions 1-7 and 12 were charted in a histogram

(Figure 6-2) and there were 194 statements. To obtain the statements that the participants

agreed as the important issues, the histogram was divided in three equal parts (Table 6-11).

 No. of Statements Range

Most Important (First Third) 61 Ratings<2.49

Less Important (Second Third) 68 2.49<Ratings<3.112

Least Important (Third Third) 65 3.112<Ratings

Table 6-11 Division of Important Statements

The first third was the most important statements, the second third was the less important and

the third third was the least. The number of the statements for the first third was slightly lower

as there were 11 statements with the rating 2.5 and it was decided that they would be grouped to

the second third.

Under this selection criterion, the 61 most important statements were listed in the following

table (Table 6-12). Rating 1 for a statement denotes that it is extremely important while rating 7

means that it is totally irrelevant.

Qn no. Description Average

1. What are the objectives of an IFHOSP site?

1.2 To support concurrent and collaborative software development 1.4

1.3 To facilitate communication between developers 1.4

1.18 To allow potential developers to contribute to projects 1.5

1.1 To enable distributed software development for developers from different 1.6

 geographic locations

1.4 To facilitate communication between developers and users (of Free 2.0

Chapter 6 Result and Analysis of the Delphi Survey

139

 Software/Open Source software)

1.5 To facilitate cooperation between related parties (programmers, designers, 2.0

 documentation writers, advocates/salesman, etc.)

1.20 To facilitate software development in a better way 2.2

1.37 The site should be fast and has high availability. 2.4

1.38 To facilitate high levels of communication multiple means 2.4

1.29 To build a sense of community between developers for a project 2.5

2. What tools can be employed on an IFHOSP site and what are the

 important features and usability factors for each of them?

2.1 Source Code Repository 1.1

2.2 Mailing List 1.4

2.5 WWW Server 1.5

2.4 Tracking System 1.8

2.11 Security Measures (e.g. ssh) 2.2

3. What work practices and culture should be promoted?

3.27 Jane Jacob's systems of survival's commercial moral syndrome 1.7

3.17 Flexibility towards volunteers 1.8

3.37 Fun and good spirit and hope 1.8

3.35 Clarity, simpleness of code 1.9

3.28 Using centralised repository for source code 1.9

3.29 To include automated building and testing facilities in releases 2.1

3.9 Creating a public library atomsphere, giving users as much freedom as 2.1

 possible and staying out of the users' way

3.16 Listening to others 2.2

Chapter 6 Result and Analysis of the Delphi Survey

140

3.20 Openness in attitude, no hidden agenda 2.2

3.21 Openness in procedures and policies 2.2

3.30 Easy to use, high usability 2.4

3.13 Tolerance, respect and patience 2.4

3.1 Sense of responsibility 2.4

3.38 Frequent submissions of contributions 2.4

3.5 Reuse of existing source code 2.4

4. What are factors that motivate users to use an IFHOSP site?

4.2 Available 24 hours a day 1.1

4.8 The tools provided are effective and productive 1.4

4.3 Reliable 1.6

4.20 To attract more contributors 2.0

4.9 Convenience - provides resources are difficult for an individual to maintain 2.0

 (e.g. web site)

4.6 Fast access, responsive (high bandwidth and power server) 2.1

4.4 Low Cost or Free 2.2

4.7 The tools provided are standard and commonly used 2.2

4.16 The site is frequently updated 2.3

5. What are barriers that prevent users from using an IFHOSP site?

5.1 Unreliable 1.7

5.5 The opposite of the answers in question 4 2.0

5.7 Counterproductive user interface 2.2

6. What are the positive results for users in using an IFHOSP site?

Chapter 6 Result and Analysis of the Delphi Survey

141

6.2 Increase communication within the developers 1.3

6.13 More reliable then individually hosted servers (e.g. with only dial-up 1.5

 connection)

6.1 Facilitation of developers to update the source code in the repository 1.6

 directly and reduction of the need to interact with the project leader to

 change the code

6.6 Getting people to contribute to the development from all over world 1.8

6.22 Tools with better quality than individually hosted sites 1.8

6.25 Decrease the startup cost of hosting an Open Source/Free Software 2.1

6.17 Facilitating collaboration and reduction of duplicated effort 2.1

6.3 Increase communication between the developers and other parties 2.1

6.20 Obtaining up to date information 2.2

6.26 Decrease the possibility of producing multiple non-synchronized versions 2.2

 of software

6.5 Decrease time in administration of an IFHOSP site individually 2.2

7. What are the negative results for users in using an IFHOSP site?

7.10 Loss control of the choice of tools hosted on site 2.4

12. What are other important issues in IFHOSP?

12.4 IFHOSP site should be careful on the usage agreements with users and 1.5

 provide them with enough freedom

12.11 The acronym IFHOSP is pointlessly obscure 1.9

12.8 Anyone wanting to setup an IFHOSP needs to be aware of the 2.0

 responsibility involved

12.9 An IFHOSP should be run in an open fashion and users should be well 2.0

Chapter 6 Result and Analysis of the Delphi Survey

142

 informed

12.1 Expanding an IFHOSP into multiple mirror sites to increase reliability and 2.2

 obtain more credibility from users

12.5 Fair to all efforts 2.3

12.10 An IFHOSP should be have up to date information of the site and employ 2.4

 novel techniques

Table 6-12 The Most Important Statements from the Delphi Survey

A qualitative presentation of question Q1, 3-7 is shown below. Question 2 is omitted, as the

statements were short and may not benefit from a qualitative presentation. The issues in

question 12 are too diverse to be grouped.

One major theme in the objectives in a FOSPHost site is communication, such as to allow

potential developers to contribute, to facilitate effective communication between developers,

users and other stakeholders in multiple means and to build a sense of community between

developers for a project. Another focuses in the list of objectives include supporting concurrent

and collaborative software development in a distributed fashion and implementing a software

development process that is above common standard.

Work practices and culture that should be promoted in a FOSPHost site includes attitude such

as the commercial moral syndrome of Jane Jacob's systems of survival (see appendix D),

flexible towards volunteers, fun, hope and good spirit, listening to others, openness in attitude,

procedures and policies with no hidden agenda, tolerance, respect, patience and sense of

responsibility. In terms of coding practices and co-ordination, clarity, simplicity of code, using

centralised repository for source code, frequent submissions of contributions and reuse of

existing source code. The management of a FOSPHost site also should include automated

Chapter 6 Result and Analysis of the Delphi Survey

143

building and testing facilities in releases and create a public library atmosphere to give users as

much freedom as possible and staying out of the users' way. Creating an inviting environment

by making the site easy to use is also important.

To motivate developers to use a FOSPHost site, it could acquire qualities such as available 24

hours a day, reliable, fast access, responsive (high bandwidth and power server), convenience

(provides resources are difficult for an individual to maintain), low cost or free and frequently

updated. The tools provided on the site should be effective, productive, standard and

commonly used. The ability of the site to attract more contributors is also another important

factor.

Barriers for using a FOSPHost site are factors that are the opposite to the motivation factors

including unreliability and counterproductive user interface.

Positive results in users employing a FOSPHost site are improvements in communication and

co-ordination. These include the increase in communication within the development team and

also between the developers and other parties. Other positive factors are facilitation of

developers to update the source code in the repository directly and reduction of the need to

interact with the project leader to change the code, obtaining up to date information and

decrease the possibility of producing multiple non-synchronized versions of software. Other

benefits consist of facilitating collaboration and reduction of duplicated effort and receiving

contributions to the development from people all over world.

Other positive results are hosting related. By using a FOSPHost site not hosting by the user,

one can obtain services that may be more reliable then individually hosted servers. Tools on

Chapter 6 Result and Analysis of the Delphi Survey

144

external FOSPHost may also have better quality. Startup cost of hosting and administration

time is less comparing to an individually hosted FOSPHost site.

There are a number of negative results but the only statement rated as important is that the

control of the choice of tools hosted will be lost if an external FOSPHost is employed.

The implications of the results will be discussed in later sub-sections.

6.2.3 Controversial Answers

Other than the statements that the participants agreed on, there were statements that they

strongly disagreed on. These are called controversial statements and they will be presented in

this sub-section.

Figure 6-3 Histogram of Variance of Ratings

Chapter 6 Result and Analysis of the Delphi Survey

145

The variance ratings for statements from questions 1-7 and 12 were charted in a histogram

(Figure 6-3) and there were 194 statements. To discover the most controversial statements, the

histogram was divided in three equal parts (Table 6-13). Then the first third contained the most

controversial statements.

 No. of Statements Range

Most Controversial (First Third) 65 2.12<Ratings

Less Controversial (Second Third) 64 1.345<Ratings<2.12

Least Controversial (Third Third) 65 Ratings<1.345

Table 6-13 Division of Controversial Statements

Under this selection criterion, the 65 most controversial statements were (Table 6-14):

Qn no. Description Avg. Var.

1. What are the objectives of an IFHOSP site?

1.28 To provide training grounds for new developers 3.7 4.5

1.36 To distribute software that is useful 4.1 3.6

1.17 To provide data for research 4.8 3.4

1.27 To facilitate the development of software that is affordable by 3.8 3.4

 everyone

1.32 To provide tools needed to achieve the objectives of IFHOSP 2.7 3.2

1.16 To serve the Free Software/Open Source community 3.4 3.0

1.24 To attract other Free Software/Open Source projects to come in 4.0 2.9

 and host on the site

1.31 To provide an archive of Open Source/Free Software 3.1 2.9

 development related materials to the general public

1.21 To make software with better quality available to the world 3.7 2.6

Chapter 6 Result and Analysis of the Delphi Survey

146

1.7 To promote existing project(s) hosted on site to users of software 3.2 2.5

1.13 To provide a centralised location for Free Software/Open Source 3.8 2.1

 project(s)

2. What tools can be employed on an IFHOSP site and what are the

 important features and usability factors for each of them?

2.10 Wiki Wiki Web 3.9 4.3

2.11 Security Measures (e.g. ssh) 2.2 2.9

2.9 Discussion Forum 2.9 2.7

2.12 News Stand 3.7 2.5

3. What work practices and culture should be promoted?

3.34 The practices of Extreme Programming 3.6 5.1

3.25 Avoid force 3.7 4.4

3.18 The value of heterogeneity, differences as assets 2.7 3.4

3.36 Standards coding style 3.1 3.1

3.2 Measurement of quality of code 3.2 3.1

3.4 Reinforcing explicit development roles 4.3 3.0

3.19 Nothing should be 'promoted'. 4.8 2.9

3.5 Reuse of existing source code 2.4 2.6

3.14 Awareness of different culture and language background 2.9 2.4

3.13 Tolerance, respect and patience 2.4 2.3

3.11 Distributed style of development and decentralised 2.6 2.3

3.31 Flexibility in tools for rapid project administration 3.3 2.2

3.32 A system to attribute credit 2.8 2.2

3.37 Fun and good spirit and hope 1.8 2.1

Chapter 6 Result and Analysis of the Delphi Survey

147

4. What are factors that motivate users to use an IFHOSP site?

4.12 Many tools are provided 3.1 4.1

4.11 High security 2.7 4.0

4.24 To compete with other projects 5.0 3.6

4.25 Users of software hosted on IFHOSP will use the site 3.0 3.0

4.4 Low Cost or Free 2.2 2.6

4.5 Sufficiently large capacity (e.g. storage, cpu, memory) 2.8 2.5

5. What are barriers that prevent users from using an IFHOSP site?

5.14 Intellectual property issues - the host of the IFHOSP may impose 2.9 4.5

 some rights to the projects hosted

5.11 Not having enough control over the IFHOSP comparing with a 3.3 4.2

 local machine

5.15 Incompatibility with the format that users had in software 3.3 4.0

 development

5.20 Difficult to casually browse or some information cannot be 2.6 3.6

 accessed without a username

5.13 No control the content and the development direction of the IFHOSP 4.0 3.4

5.6 Low storage capacity 3.0 3.3

5.12 Not trusting the host of the IFHOSP 3.2 3.3

5.19 The IFHOSP does not reach a critical mass of users and projects 3.1 3.1

 to achieve its advertising function

5.5 The opposite of the answers in question 4 2.0 3.0

5.8 The odd urge to pay for software rather than help build it yourself 5.8 2.5

5.3 Low in technical skill, inexperience in using an IFHOSP 3.3 2.5

Chapter 6 Result and Analysis of the Delphi Survey

148

5.17 Legal issues on software distribution 3.9 2.4

6. What are the positive results for users in using an IFHOSP site?

6.24 Interesting parties on a certain project can be found before the 3.8 4.2

 project begins

6.18 Possibility of reviving dead projects 3.2 3.4

6.16 Greater possibility for getting community credit 3.0 2.7

6.10 Flexibility, being able to select from many ways of doing things 3.3 2.7

6.22 Tools with better quality than individually hosted sites 1.8 2.4

7. What are the negative results for users in using an IFHOSP site?

7.8 Low cost in setup will encourage starting unserious projects 4.0 6.7

7.18 Limitation placed on Intellectual Property rights. Depending on 3.8 5.3

 the license under which you get to use the IFHOSP, you may

 suddenly find that you've allowed licensing you hadn't planned.

7.7 Low cost in setup will encourage projects to be publish before 3.8 4.7

 they are ready

7.9 No negative results 4.7 4.3

7.6 Low cost in setup will encourage development of projects that are 4.2 4.2

 similar (reinvention of the wheel)

7.5 Low cost in setup will encourage forking of projects 4.7 4.0

7.4 Possible extra "collaboration" with unwanted parties ("back-seat 3.1 2.8

 programmers", trolls)

7.12 Limited tool customisation 2.8 2.8

12. What are other important issues in IFHOSP?

Chapter 6 Result and Analysis of the Delphi Survey

149

12.11 The acronym IFHOSP is pointlessly obscure 1.9 3.7

12.13 A remedy of the administrator(s) of IFHOSP interfering with the 2.5 3.4

 development of project(s) is to provide mirroring or withdrawal

 paths for users if they want to host their projects elsewhere

12.7 IFHOSP sites need to focus on maximising productivity 2.9 2.6

12.12 Big IFHOSP are bad (e.g. Freshmeat) Small IFHOSP are good. 5.2 2.3

12.2 Maintaining a commitment to hosting only those projects which 3.0 2.2

 are under a sufficiently liberal license.

Table 6-14 The Most Controversial Statements from the Delphi Survey

Other than using quantitative data for analysis, qualitative data collected also contained useful

clues for the discovery of controversial ideas. Qualitative data were collected in round 1, where

the opinions from the participants were summarised into the statements above. Furthermore, in

round 2 and 3, they were invited to give comments to these statements. A number of the

comments fell on controversial issues as controversies usually attracted discussions. A

qualitative examination of the results by grouping similar arguments is thus carried out to

present a richer picture of the controversial issues involved. Controversial concepts are

obtained, namely 'We love freedom, but how far can it go?', 'What characteristics are admirable

in source code?', 'What is a worthy motivation?' and 'Important but not urgent tasks'.

The first controversial concepts is named 'We love freedom, but how far can it go?' One of the

answers to question 3, 'What work practices and culture should be promoted?' in round 1 by

Alvin was 'They shouldn't promote any particular practice. The heterogeneity of approaches is

one of the strengths of the way things are done without these infrastructure sites' (Q3.18, Q3.19).

Schulhoff also suggested that 'Acknowledgement of developers different cultural and technical

backgrounds as a positive element - very different from corporate monocultures' (Q3.19).

Chapter 6 Result and Analysis of the Delphi Survey

150

Moreover, the summarised statement for Q3.9 is "Creating a public library atomsphere, giving

users as much freedom as possible and staying out of the users' way". These opinions

represented the importance for FOSPHost sites to allow freedom and promote heterogeneity.

Another manifestation of the desire for freedom can be seen in discussion of Intellectual

Property in Q5.14, Q7.18 and Q12.4. Neil suggested that the administrators of the FOSPHost

sites should not own any of Intellectual Property of the project hosted. Mark also suggested that

FOSPHost sites should 'provide complete mirroring/withdraw paths for users of the site'

(Q12.13) to ensure maximum freedom.

When it comes to management style, 'avoid force' (Q3.25) and 'tolerance, respect and patience'

(Q3.13) was proposed. Attitudes such as 'awareness of different technology background'

(Q3.15) and 'awareness of different culture and language background' (Q3.14) were also

suggested to promote heterogeneity.

Negative effects of heterogeneity and lack of control can be seem in 'the fear of getting flame

from other people' (Q5.21) and the 'possible extra "collaboration" with unwanted parties

("back-seat programmers", trolls)' (Q7.4).

Remedies to negative effects could be methods such as 'ability to operate private or

semi-private developer groups necessary to avoid "collaboration" with unwanted parties'

(Q12.14), 'reinforcing explicit development roles' (Q3.4) which emphasize on a heavier hand

on management. Brendan, who proposed the idea of tolerance, patience and avoid force, also

suggested the need of firmness (Q3.23). Chris also suggested that if peaceful solutions could

not be found, at the end, forceful action such as forking would be needed (Q3.25). Moreover, if

there were no mechanism to discern quality, then the natural selection scheme of Free/Open

Chapter 6 Result and Analysis of the Delphi Survey

151

Source would not function (Q3.13). There was also a comment in response to the statement

"Nothing should be 'promoted'" (Q3.19) in round 2 by Garrett:

Hosting sites are great places to promote projects which are successful, so that others will learn

about them. Lack of knowledge about what quality projects exist is one of the great faults of the

Free Software/Open Source community today.

The next controversial concept was named 'What characteristics are admirable in source code?'

Indeed, different participants had different ideas on what characteristics of a piece of software

were valuable.

The first important value proposed was 'usefulness'. Statements such as 'to distribute software

that is useful' (Q1.36) and 'do not focus on the volume of software created, but usefulness' (Q3.6)

were suggested.

The next value was quality. Supporting statements included 'to make software with better

quality available to the world' (Q1.21) and 'measurement of quality of code' (Q3.2).

Another value of software was that it could be reused. Statements such as 'to facilitate the reuse

of source code and reduce duplication of effort' (Q1.14), 'emphasis on history, reuse old

resources' (Q3.7), 'reuse of existing source code' (Q3.5) and 'possibility of reviving dead

projects' (Q6.18) exemplified this view.

Producing useful and quality software was believed to require some discipline in programming.

Therefore, practices such as 'standards in software design' (Q3.33), 'standards coding style'

(Q3.36) and 'computer science/software engineering knowledge' (Q3.8) were suggested. As in

Chapter 6 Result and Analysis of the Delphi Survey

152

Free/Open Source software development, collaboration was emphasized, 'clarity, simpleness of

code' (Q3.35) was also favoured.

FOSPHost sites also lowered the barrier for sharing software projects, but it could also have

possible negative effects. Effects included 'low cost in setup will encourage forking of projects'

(Q7.5), 'starting unserious projects' (Q7.8), 'projects to be publish before they are ready' (Q7.7)

and 'development of projects that are similar (reinvention of the wheel)' (Q7.6). Therefore,

forking, unserious, unready and similar projects were regarded as problems in software

development from these opinions.

Counter arguments existed for the suggestions above. In terms of usefulness, different values

were suggested. For example, Terence commented that 'alpha code is typically NOT useful'

(Q1.36) while Garrett mentioned that "A lot of software is created merely to 'learn.'" (Q3.6)

In terms of quality, the problem of defining quality could be troublesome. Garrett made a

sarcastic comment that 'measuring the quality of code? You've got to be kidding me. It's hard

enough deciding what "quality code" even is' (Q3.2). Chris also claimed that 'conventional

measurements (LOCs, function points and so on) are not interesting' and quality could be

obtained by peer-review instead (Q3.2).

The positive side of discarding source code rather than reuse was also discussed. Chris

suggested that 'there is a part about reusing old resources, but if something becomes irrelevant,

it is replaced with extreme prejudice. There is no place for legacy code in open source, which is

both a quality and a problem. The code is clearer and more stable (in medium and long term)

because of this, but it might be less stable at short term (while change is ongoing) and backward

compatibility suffers ("upgrade or die" seems to be the motto of library developers)' (Q3.7).

Terence also pointed out that reusing code might also have it own cost that other related

Chapter 6 Result and Analysis of the Delphi Survey

153

components might be upgraded and thus incompatiable (To the extent that this is efficient

(given necessary incompatibilities in data-models, etc., across appliations) (Q1.14)).

When it came to standard and software engineering, Neil claimed that 'K&R is Evil(tm). The

"GNU Coding Standards" are wrong and lead directly to lesser quality code' (Q3.36) (K&R

referred to Brian Kernighan and Dennis Ritchie's influential book – 'The C Programming

Language' (Kernighan & Ritchie 1988)). On software engineering, there was no substantial

comment except Garrett replied that 'Helps a great deal, but is not necessary'. Nevertheless, the

average rating for the statement 'computer science/software engineering knowledge' (Q3.8) was

3.0 and the variance was 2.0. Comparing the most controversial statement 'Low cost in setup

will encourage starting unserious projects' (Q7.8), which had a variance of 6.7, a variance of 2.0

was quite low, but it could be argued that a number of participants disagree on the importance of

this discipline.

Alternative values for software were also suggested. Neil claimed that 'all software is valuable,

regardless of size or purpose. None should be discouraged' (Q3.6), which seemed to imply that

all software had intrinsic value. Mark, when promoting reuse of software, wrote, "don't focus

the site purely on the 'creation of new software' (though this is perhaps the most fun part of

programming)" (Q3.5), this also implies that he was aware of 'fun' as another value of software.

What is a worthy motivation? Other than fulfilling the objective of producing useful and

quality software, motivations such as fun, credit and speed were also suggested in the survey.

Each of these motivations also had their own twist.

From literature (Lakhani et al. 2003; Torvalds & Diamond 2001), the statement 'fun and good

spirit and hope' (Q3.37) was expected to be important. Indeed, the average rating of this

Chapter 6 Result and Analysis of the Delphi Survey

154

statement was 2.1, which also reflected this expectation. Two academics, however, rated this

statement negatively and thus resulted as a controversial topic. Both of them rated statements

on reuse of source code, usefulness and standard coding style highly.

Another motivation was credit. While most participants agreed that credit was reasonably

important ('fair to all efforts' (Q12.5) had an average rating of 2.3 and a variance 1.3), how

credits were attributed could be controversial. Considering the comment on the 'a system to

attribute credit' (Q3.32), Chris suggested that 'one of the motivation of open source is getting

credit and recognition (instead of money), so there should definitely be a way to get "paid". But

at the same time, systematizing this kind of thing could seem wrong and counter to some

programming practices (egoless programming (Weinberg 1971), extreme programming (Beck

1999)). When it came to the topic of 'giving hosts of IFHOSP sites every credit that they

deserve' (Q12.6), Chris also commented that 'they certainly deserve credit, but beware: they

have their own advantages in doing so, either reputation-wise or in a financial way'.

Another controversial motivation was speed. Garrett commented on 'frequent submissions of

contributions' (Q3.38) and 'having things move fast is one of the things that people like about

FS/OS. Without it, users lose interest in projects, and following that, developers also lose

interest.' Another similar motivation was 'to compete with other projects' (Q4.24).

Nevertheless, Neil suggested that 'speed of projects is irrelevant - particularly volunteer led

ones' (Q3.38) and 'to compete with other projects' (Q4.24) has an average rating of 5.0 and a

variance of 3.6, which was considerably controversial.

Diverged rating are also found in the topic of welcoming and training less mature developers

(Q1.28, Q3.12) and the role of FOSPHost in providing data for research (Q1.17). This may

imply a diverse view of topics that were important but not urgent.

Chapter 6 Result and Analysis of the Delphi Survey

155

Obviously, a number of the statements are not included in the qualitative analysis above.

Nonetheless, if a statement did not form any common topic with other statements, then a forced

grouping would twist its meaning and more harm would be done. The discussion of the

controversial answers can be found in later sub-sections.

6.3 Analysis of the Results of the Delphi Survey

After the presentation of the data collected, a review on the choice made in the design of the

Delphi survey based on the responses will be performed. The quality of responses of the survey

will also be assessed. Possible improvement to the Delphi survey will then be suggested. The

pros and cons of the data analysis methods used and the content of the data obtained will be

discussed.

6.3.1 Delphi Survey Method

In this sub-section, the appropriateness of employing the Delphi survey as a method of

investigation and the online implementation will be examined. The design of the questions in

round 1 and the rating system will be discussed.

The first question to examine is the appropriateness of the Delphi survey method in answering

the research questions. By examining the results, the breadth of opinions collected from this

method was seldom seen in other methods. A number of surveys were done on the topic of

Free/Open Source (Hertel, Niedner & Herrmann 2002; Lakhani et al. 2003; Reis 2002b). In

these surveys, a number of questions were premeditated from the researchers' own knowledge

domain and the participants could not suggest ideas during the survey. The Delphi survey

allowed a less presumptuous approach and thus resulted in a more diverse collection of opinion.

If interviews were conducted instead, the depth of data collected would increase but again the

breadth might decrease. The argument then follows that whether the diversity of opinion is an

appropriate response to the research questions. A possible answer would be yes, if the results of

Chapter 6 Result and Analysis of the Delphi Survey

156

this study has to be ultimately useful to the Free/Open Source communities. As argued in the

analytical framework chapter (chapter 4), diversity exists in the Free/Open Source communities.

By considering different voices in the communities, the evaluation model built can be more

relevant to actual needs without projecting a 'theory from the ivory tower' image.

The next question to consider is the appropriateness of employing the World Wide Web as a

media of data collection. As most of the potential participants were computer literates, thus

their ability of accessing a web survey should be a relatively minor concern. The researcher

also did not receive any request for help in this area. Comparing to a paper-based system, using

a web-based system reduced mailing cost and delay. The researcher also had the freedom to

present the results in more comprehensive way by taking advantage of hyperlinks. Other

conveniences included data collected in the survey is directly fed into a database for analysis

and the web server logs were available to trace the behaviour of the participants. The results on

'References to Results' for rounds 2 and 3 (Table 6-8 and Table 6-9) are examples of tracing

behaviour in the Apache web server log. Nevertheless, the system took the researcher a number

of months to develop and it could not be done without former commercial programming

experience. The error in running the project was relatively few, except in the invitation of

participants. This error, however, was not related to the main part of the survey system, which

was found to be satisfactorily stable. Some potential participants did not allow JavaScript for

security reason and one of the participants complained about bandwidth available in the Post

Delphi survey. It was unfortunate that the provided web server was the only available one in the

department for surveys, and this was a limitation beyond the researcher's control.

The quality of the questions posed in the first round can also be examined. In the previous

sub-section, the reasons for asking the 12 questions were explained. From the data collected,

one can review the effectiveness of these questions. A number of questions were not answered

Chapter 6 Result and Analysis of the Delphi Survey

157

by more than ten expert users. One group of them were the sub-questions for each tools in

question 2. The possible reasons could be the design of sub-question within a survey was too

complex. Another group of questions were related to the motivations, barriers, positive and

negative results of administrators. As the number of administrators who participated were few,

such outcome was inevitable. For other questions, the answer received generally corresponded

to the intended purpose. Some similar answers appeared simultaneous in different questions,

for example Q1.37 'The site should be fast and has high availability' was similar to Q4.2

'Available 24 hours a day' and Q4.6 'Fast access, responsive'. Nevertheless, such cases were

relatively rare and the effect on the overall quality of the survey would probably be minor.

A rating system using a 1-7 scale was employed to collect importance of statements in rounds 2

and 3. '1' was assigned as the most important scale and '7' the least. This assignment was

counter-intuitive when it came to presentation of results graphically with blue colour bars

because the length of the bars for '1' had to be longest while '7' the shortest. The formula

on rr −= 7 was introduced to reverse this relationship where or was the original rating and nr

was the magnitude to be displayed on the blue bar.

To conclude, Delphi survey was an appropriate method to employ. It was successfully

conducted online and had a number of advantages over paper-based method. The questions

asked in the round 1 questionnaire generally yielded answers that were relevant. A technical

problem was found in employing the 1-7 scale in ratings and was consequentially resolved.

After the discussion of the method, the validity and quality of the results will be examined.

6.3.2 Responses and Validity

In this sub-section, different aspects of the quality of the data collected will be discussed. A

revisit of the validity criterion of the Delphi survey will first be presented, and then the statistics

on the number of participants will be discussed. A reflection on different methods in the

Chapter 6 Result and Analysis of the Delphi Survey

158

measurement of number of participants will also be presented and the reason for choosing the

question-based method as a measure for the validity will be proposed. The number of

participants in this survey will also be compared with other published Delphi surveys. The

possible barriers for participating in the survey will also be suggested. Other factors that affect

the quality of response such as statistics on 'No Comment' and 'No Response', 'Reference to

Results' and change of opinion between round 2 and 3 were also be presented.

From the methodology chapter (chapter 5), the minimum number of experts in each of the three

groups is 10. This is different from a general survey in which participants were selected from a

sample of the whole population. Recalling that Delphi survey was chosen because the topic of

investigation was relatively new and thus expert opinions were sought. Therefore, it has a

different logic in validity when compared with the response rate approach in a common survey.

The logic behind the Delphi survey is when the number of expert participated reach a certain

level, there will be little variation in the quality of results obtained (Ziglio 1996).

Under this criterion, according to Table 6-1, there were more or equal to 10 expert users

participated in questions 1 to 7 and 12. For the group of academics, question 1, 3, 4 and 5 met

the criterion. Unfortunately, for administrators, none reached the target. Therefore, it could be

concluded that the results of the survey reached the minimum requirement for validity only for

some of the questions with some groups of participants. Results from question 1-7 and 12 are

taken as valid in this study.

Another factor that could affect the validity of the survey was how many round did the

participants contribute. From Table 6-3, 66% of the participants only contributed in one round.

This also had a negative impact on the validity of the survey, as feedback was an important

mechanism in the survey to facilitate communication between experts.

Chapter 6 Result and Analysis of the Delphi Survey

159

The responses of this survey can be compared with other published surveys (Table 6-15).

 Number of Participants for at

least One Round

Number of Sub-Groups

(Ludlow 1975) 60 3

(Jillson 1975) 25 5

(Goldstein 1975) 34 12

(Goldschmidt 1996) 121 5

(Twining 1999) 7 Homogeneous

This Survey 32 3

Table 6-15 Comparison of Number of Participants for Different Delphi Survey

Though the responses of this survey are not the best in the comparison, the number of

participants are close to Goldstein (1975) and higher than Jillson (1975) and Twining (1999).

This comparison is in no way comprehensive but it shows that there were other published

surveys that had similar number of participants.

Reasons for not having a higher response rate were firstly the topic was quite narrow and some

participants did not feel interested enough while others considered themselves not

knowledgeable enough to contribute. Secondly, a number of the participants invited were also

too busy to respond. Thirdly, some participants were not familiar with Delphi survey and

qualitative data collection. Some of them preferred quantitative instead and participated only in

round 2 or round 3. Fourthly, from the Post-Delphi survey, the survey might be too long and the

web server too slow. The sub-question structure for question 2 was not effective as well. In

retrospect, it was also the naivety of the researcher that the Free/Open Source communities

would consist of motivated members that would like to participate in this survey. Indeed most

Chapter 6 Result and Analysis of the Delphi Survey

160

responses came from the group of expert users, but better research data could be obtained if the

researcher invited more.

Other than using the total number of participants of the whole survey as a basis to measure

validity, two other methods are available, namely number of participants for each question and

each statement. The number for the whole survey (19 expert users, 9 administrators and 14

academics from Table 6-2) is closer to the validity criterion but it does not account for the

variations in participation for each round and each question. If the number of participants for

each statement was chosen as the measure of validity, then all the statements with no responses

would affect the figure. Nevertheless, some of these statements might probably be the result of

conscious decisions from participants who just did not choose 'No Comment'. Therefore, the

number of participants contributed for each question is used for estimating the validity. This

argument could be strengthened by the assumption that if one responded to even some of the

statements within a question, one would probably have considered other statements but did not

respond, as all statements were on the same page.

The validity of agreed and controversial statements can also be discussed. The agreed

statements were selected based on the calculation of average ratings while controversial

statements were chosen by variances. The susceptibility of these two calculations to changes

can be compared. The hypothetical scenario of adding one more participants can be considered

as a reference. It can be proposed that for the agreed statements, as most of the participants,

agreed them were important, the possibility of a new participant that disagreed would be low.

And even at the event of disagreeing, the effect to the average rating would be minor. On the

other hand, for controversial statements, the calculation of variance would be more susceptible

if more participants had contributed. So the proposition is that the calculation of variance is

more susceptible. Nevertheless, after some mathematic derivations (see appendix F), this

Chapter 6 Result and Analysis of the Delphi Survey

161

proposition is not supported and there is no conclusion on which calculation is more susceptible

to changes. Therefore, there is no conclusion on which type of statements are relatively lower

in validity than the other type.

Another measure of the quality of the data is the expertise of the participants. From the

statistics of 'No Comment' and 'No Response' (Table 6-6, Table 6-7), there were a significant

percentage of 'No Comment' and 'No Response' for the 12 questions at the question page. For

round 1 the total percentage for 'No Comment' plus 'No Response' was 64% and for round 3 was

49%. This may suggest that a significant number of experts may not be able to comment in a

comprehensive manner. This may reflect the situation that FOSPHost was still a fairly new

topic at the time of the survey.

Another measure of the quality of the data was the communication between the participants or

feedback. The figure for 'Reference to Results' could be a possible indicator. The total number

of referral was 9 for round 2 and 18 for round 3. These figures were the total number of times

that all participants referred to the results. If each participant referred twice, then for round 2

the figure would be 24. In round 3, the feature of 'additional information' where participants

could look up results and glossary in another browser window (Figure 5-35, Figure 5-36 and

Figure 5-37) was added and the number of referral increased. This may suggest that would be

most participants would just go through the survey with minimal referral to the results other

than the information on the question page. Nevertheless, these figures could be an

underestimation of feedback as participants could read the results before login. These actions

could not be traced by the researcher, as the researcher had no way to relate the IP addresses in

the web server log with the participants' userid.

Chapter 6 Result and Analysis of the Delphi Survey

162

Another indicator of feedback was the change of opinion between round 2 and 3. From Table

6-10, the change was minimal. This may either indicate that the feedback mechanism was not

effective or the participants were firm in their opinion.

To conclude, the validity of the survey reached the minimum standard but it can be improved. It

will be argued below that the results did make a contribution to knowledge and therefore the

validity and quality of the results will be important pieces of information for those who build

their research on these results. With the analysis above, those who would like to build on these

results can have substantial information to decide which part of the results should be accepted,

reproved or disproved. The two indicators on feedback showed that the feedback mechanism

was not effective. These indicators may not be conclusive, but they served as an example for

the potential of online Delphi survey of having different ways of measuring data quality. In the

next sub-section, lesson learnt in this survey and ways to improve surveys in Free/Open Source

communities will be presented.

6.3.3 Possible Improvements in Delphi Survey Method

In this sub-section, lesson learnt from this Delphi survey and other surveys in Free/Open Source

communities will be presented.

An obvious improvement is more participants should be invited. At the time of the survey, as

the topic of Free/Open Source was quite new, the number of academics that published at least

one paper was low. The number of academics participated in question 2 was lower than

question 1 and 3 may also suggest that their understanding of the practical side of the topic

could also be limited. Administrators of FOSPHost were also harder to find than expert users,

as users were always more. Within the constraint of the survey, where time and effort was

limited, it was difficult to find more in these two categories.

Chapter 6 Result and Analysis of the Delphi Survey

163

Another method may be to shorten the survey to get more responses. Nonetheless, as argued

above, the diversity of the survey would be lost. It was possible to make the survey

non-FOSPHost specific by asking the questions extracted directly from the model of individual

participation to a Free/Open Source community, such as 'what is the negative results of joining

a Free/Open Source community?' and then deduce the implications to a FOSPHost site. This

approach, however, may get more participants as the scope of 'expertise' increase but the

FOSPHost specific responses would be lost.

Learning from experiences in other surveys, there may be other ways to increase the number of

responses. Some communities may be more open to surveys than others. For example, the

Linux kernel mailing list could be one of the worst places to conduct survey. Lakhani, Wolf &

Bates (2002) estimated that there were about 4000 participants in the list and the web survey

they conducted received 134 responses. Another survey by Hertel, Niedner & Herrmann (2002)

obtained 141 replies. Lastly, Kuwabara (2000) asked for interviews and obtained only 32

replies. These response rates were all worse than the Delphi survey. On the other hand,

Lakhani, Wolf & Bates (2002) received 526 responses from 1648 developers (32%) on

SourceForge and Reis (2002a) received 521 valid responses from a sample of 1102 invitations

(47%) to developers of a variety of projects.

It may be proposed that the design of the survey may affect the response rate. A preliminary

examination of "The Free Software Engineering Survey" by Reis (2002a), which achieved the

highest response rate, showed that the presentation of survey was direct on the task required and

the intention was clear. The survey consisted of about 70 items and it only took an estimated 15

minutes to complete. As a participant of Free/Open Source communities, his writing style

(colloquial and sarcastically self-boasting) also related to potential participants (Reis 2002b):

8. Who on earth are you?

Chapter 6 Result and Analysis of the Delphi Survey

164

My name is Christian Reis. I'm a Brazilian developer involved with ORBit-Python, Bugzilla,

PyGTK, Stoq and occasionally some other free software projects. I started my MSc in 2000 and

this survey is an important part of the research (which is why you should be nice and help out). I

have something of a webpage, too.

These might be the possible factors to increase response rates in surveying the Free/Open

Source communities.

6.3.4 Data Analysis

In this sub-section, methods of analysis will be discussed.

The data were analysed both quantitatively and qualitatively. In interpreting the Delphi survey,

qualitative analysis is seldom used and there may even be a tendency to use strict numerical

procedures (for example (Schmidt 1997)). The decision to use qualitative method was that this

method could bring out the meaning of the data to the fullness of its potential. Recalling the

purpose of the research is exploratory and practices such as to be 'flexible' (Neuman, Bondy &

Knight 2003, p. 30) and 'explore all sources of information' (Neuman, Bondy & Knight 2003, p.

30) were recommended. Another reason is because the participants and the researcher alike had

invested time into the survey, detail analysis should be done to make good use of the data

collected. The discussion on quantitative analysis will be presented below and then qualitative.

During the selection process, the ratings from four participants who only participated in the

second round were included. This was not a common Delphi survey analysis practice, but

according to Table 6-10, most participants who contributed in two rounds gave similar answers

in round 3. Therefore, the error in assuming that the answers the four participants gave in round

Chapter 6 Result and Analysis of the Delphi Survey

165

2 were their final answers should be relatively low. The positive side of this strategy was the

number of data points in the survey would increase.

For the agreed statements, the selection is based on the first third rule from all the ratings from

every statement in the survey. Another method of selecting the first third from each question

could have been executed. The assumption behind this method is that every question is equally

important and thus the computation of the first third in every question should be handled

separately. Undoubtedly, the design of the questions was based on literature. Nevertheless, the

basis for the assumption that every question is equally important is not found. By calculation

the cut-off score for first third from all the ratings, the importance of each question could be

assessed by the number of statements above the cut-off score.

Question Agreed Controversial

1 10 11

2 5 4

3 15 14

4 9 6

5 3 12

6 11 5

7 1 8

12 7 5

Table 6-16 Number of Statement Selected in Each Question

From Table 6-16, the numbers of agreed and controversial statements in most questions were

similar except for question 5 and 7, where controversies seemed to reign. This may suggest that

the lack of common consent of barriers and negative effects of FOSPHost in the opinions of the

experts. A possible explanation was a fair number of participants were expert users of

FOSPHost, who were probably enjoying a number of positive effects over the negative ones.

Chapter 6 Result and Analysis of the Delphi Survey

166

The people who suffered significantly from the barriers and negative effects were not included

in the survey. As surveys recruited participants on a voluntary basis, this kind of bias is

unavoidable, as for most surveys. The implications of this finding and whether the findings

relate to the mentioned bias can be further substantiated by additional research.

After the discussion of the quantitative analysis, the qualitative analysis will be also examined.

From a positivist viewpoint, one of the weaknesses of the qualitative analysis above is that

statements with different ratings were included in the same paragraph with no specification of

the difference of their importance. This will promote a false sense of equality between the

statements. Also, some of the opinions were personal and quoting them may not help in

obtaining a generalised conclusion. Nevertheless, as the purpose of the study was exploratory,

gathering information on the topic has priority and a more interpretive approach was used.

Based on the data collected, explanations of the phenomenon can then be devised and a more

positivist approach can be used to substantiate the claims of the research.

For the agreed statements, the task was mainly on grouping and most of the content of the

statements were included except question 2 and 12. Participant comments were seldom quoted.

In contrast, the qualitative analysis for controversial statements quoted more heavily on

comments and a number of statements were left out of the analysis, as they did not form

concepts with other statements. A number of non-controversial statements were included

instead to strengthen the different sides of the controversy. A more interpretive approach was

also adopted. The reason for these differences could be that the results for agreed statements

were closer to the common understandings on the topic and controversial statements by nature

were diverse. Therefore, more quotations were needed to portray a clearer picture of the

concepts in disagreement.

Chapter 6 Result and Analysis of the Delphi Survey

167

After the examination of the methods of analysis, the meanings from the data analysed will be

further explored.

6.3.5 Discussion of Results

In this sub-section, the content of the results will be discussed.

From the agreed statements, one major theme can be identified – communication. Facilitating

communication of different parties from different locations (Q1.1, Q1.3, Q1.4, Q1.5, Q1.18,

Q6.2, Q6.6) via multiple means (Q1.38) is both an essential objectives and positive outcomes of

a FOSPHost site. Some important work practices also fall into the category of encouraging

communication, such as clarity and simpleness of code (Q3.35), listening to others (Q3.16),

openness in attitude (Q3.20), tolerance, respect and patience (Q3.13). This communication

model is different from the conventional hierarchical management in a business organization

where communication from a low-level staff to another low-level staff in different department

must be done through managers levels above them. Dafermos (2001) argued the

communication process in this conventional hierarchical management was less effective than in

a Free/Open Source software development process. One may thus deduce that effectiveness of

communication might be one of the success factors of Free/Open Source software development

process over a hierarchical system.

Within the grand objective of facilitating communication, such communication is conducted by

people with different purposes and styles, indicated from the controversial statements. Some

developers aim at producing useful software (Q1.36, Q3.6) while others are just programming

to learn (Q3.6) or prototyping (Q1.36). Some may be very lenient towards co-developers and

willing to include even the inexperienced (Q1.28, Q3.12) but others may want to have more

control. Some even suggest that external FOSPHost sites made it too easy to start a Free/Open

Source software project and the results were many unserious (Q7.8), low-quality projects (Q7.7)

Chapter 6 Result and Analysis of the Delphi Survey

168

were produced. With the diversity of the results collected, this confirms the conclusion from

the literature review that there were a number of variables in a Free/Open Source community.

By identifying different opposing arguments from the survey, more variables in Free/Open

Source communities are discovered and a more substantial picture of the situation can be

obtained.

We can also analyse the results using the software evaluation classification proposed in

sub-section 5.3.1. The major categories found in the agreed answers from question 2, 3, 4 and

12 will be discussed first and then question 1 and 6. Answers from question 5 and 7 will not be

discussed, as there are too few of them to conclude which category is more dominant.

As suggested in the design of the questionnaire for the first round of the Delphi survey, question

2 was aimed at the utility and usability aspect of FOSPHost. The results obtained were mainly

on utility and some on usability, but unfortunately the validity of the results for the specifics of

each tool was high enough. For other questions, answers related to any of the four categories

were possible. As question 3 was expected at collecting opinion of culture and work practices,

and thus most of the answers obtained can be categorized as context, for example 'fun and good

spirit and hope' (Q3.37), 'tolerance, respect and patience' (Q3.13) and 'openness in attitude, no

hidden agenda' (Q3.2). Most of these comments referred to the working relationships between

developers and some referred to the administration of the site as well, for example, 'openness in

procedures and policies' (Q3.21) and 'giving users as much freedom as possible' (Q3.9).

Factors that motivate users to use a FOSPHost site were collected in the responses to question 4.

They were mainly utility and usability concerns, for example, 'the tools provided are effective

and productive' (Q4.8), 'the tools provided are standard and commonly used' (Q4.7), 'available

24 hours a day' (Q4.2), 'reliable' (Q4.3) and 'fast access, responsive' (Q4.6).

Chapter 6 Result and Analysis of the Delphi Survey

169

Questions 8 to 11 were aimed at collecting intrinsic concerns. Unfortunately, the number of

responses to statements within these questions did not satisfy the requirement for validity.

Nevertheless, a number of intrinsic concerns were collected in question 12. The last question,

number 12, is basically an 'any other business' question. Most of the responses were related to

the management issues and attitudes of the administration of a FOSPHost site, for example

'IFHOSP site should be careful on the usage agreements with users and provide them with

enough freedom' (Q12.4), 'An IFHOSP should be run in an open fashion and users should be

well informed' (Q12.9), 'Anyone wanting to setup an IFHOSP needs to be aware of the

responsibility involved' (Q12.8), 'Expanding an IFHOSP into multiple mirror sites to increase

reliability and obtain more credibility from users' (Q12.1) and 'An IFHOSP should be have up

to date information of the site and employ novel techniques' (Q12.1). Most of the responses in

question 12 can be classified as intrinsic, except responses such as 'The acronym IFHOSP is

pointlessly obscure' (Q12.8).

Most answers to question 3 and 12 corresponded to the intrinsic and context categories

respectively, but by comparing the content of the statements, similarities can be found. An

agreed answer to question 3 'openness in attitude, no hidden agenda' (Q3.2) refers to work

practices in the community was similar to another statement in question 12 'An IFHOSP should

be run in an open fashion and users should be well informed' (Q12.9). Another pair with similar

theme were 'sense of responsibility' (Q3.1) and 'Anyone wanting to setup an IFHOSP needs to

be aware of the responsibility involved' (Q12.8). It is then possible to postulate that the users

may regard the administration of a FOSPHost a part of the community and measure them with

similar values as in the community, or as least expect the administration to understand the

respect these values. Evidences from real cases of disputes on a FOSPHost site (Dachary 2001;

Kuykendall 2001; OSDir.com 2002) also support this postulation of expectations of the

administration.

Chapter 6 Result and Analysis of the Delphi Survey

170

Question 1 was designed to investigate the objectives of a FOSPHost site and question 6 the

positive results from using the site. A number of the agreed answers from both questions were

similar as some positive results suggested in question 6 were the fulfilment of the

corresponding objectives suggested in question 1. So answers from both questions will be

analysed together. Many of the answers obtained were broad purposes that can only be

achieved by a combined effort from all four categories. For example, the objective of 'to

support concurrent and collaborative software development' (Q1.2) may imply providing

source code repository such as Concurrent Versions System (CVS) (Q2.1), providing tools with

interfaces that is effective, productive and high usability (Q3.3, Q4.8). Other than utility and

usability, the culture of the community on the site should be welcoming and practices such as

fun, good spirit, flexible, tolerance and respect (Q3.37, Q3.17, Q3.13) are probably essential.

Additionally, not just the users of the site should foster these values; the administrators of the

FOSPHost site also may need to respect these values. It can then be argued that a number of

answers to question 1 and 6 are related to most of the four categories.

From the above analysis, there were answers that related to all four categories. For trends in

answers to different questions, answers to question 2 were utility; question 3 were mostly

context; question 4 were mostly utility and usability; question 12 were mostly intrinsic; and

question 1 and 6 covered most of the four categories. It can be observed that there were a

significant number of agreed answers to question 3 and many related to context. It can then be

postulated that the awareness of users of FOSPHost on contextual issues are high.

To summarise, by using both quantitative and qualitative analyses, the meaning in data can be

more readily extracted. Recalling the purpose of this research as exploratory, the results did

construct a more comprehensible picture of important issues in FOSPHost. As Delphi survey,

Chapter 6 Result and Analysis of the Delphi Survey

171

unlike conventional surveys, starting by asking broad, open questions, some of the results

obtained did not conform to 'conventional ideas' and a number of diverse views were expressed.

6.4 Summary of Chapter Six

The data collected in the survey was presented and analysed in this chapter. In the result

presentation section, agreed and controversial answers were showed as well as a variety of data

on the responses of the participants. In the analysis section, first, the Delphi survey was

examined as a method in data collection. Second, the validity and the quality of the data were

discussed. Third, improvements to the survey were suggested. Fourth, the method in handling

and interpreting the data was discussed. Lastly, important findings in the results were

discussed.

The Delphi survey was examined as a method to collect data and found to be reasonably

appropriate. Conducting the survey using the World Wide Web did not pose a high barrier to

most participants. This online system provided convenience to the participants as well as

additional functionality to the researcher in analysing participants' response. Most of the

questions in the questionnaire for the first round were also found to produce the desired

response.

The validity of the survey was examined against the criterion prescribed by literature and also

other published literature Delphi surveys. The validity was found to just satisfy the criterion

prescribed. Nevertheless, a number of other Delphi surveys had similar number of responses.

The quality of the data was also examined by the number of statements with 'No Comment' or

'No Response' and found that a significant number of participants might not have the

knowledge to ask all the questions asked. The feedback mechanism was also reviewed and

found that the mechanism was not used much by the participants.

Chapter 6 Result and Analysis of the Delphi Survey

172

Improvements to the survey were also suggested. This included to invite more participants, a

short survey with clear intention and to speak the language of the Free/Open Source

communities.

Both quantitative and qualitative analyses were used in handling and interpreting of the data.

This approach extracted a richer and more comprehensive picture of the topic, which satisfied

the purpose of an exploratory research.

From the results of the survey, facilitation of communication was found to be the most

important agreed theme. On the basis of communication, participants also contribute in their

own diverse purposes and styles.

To conclude, the Delphi survey was probably an appropriate method to collect data on the topic

of FOSPHost and fulfilled the purpose of an exploratory research. The survey was successful

conducted obtaining useful results.

According to the analysis in this chapter, the results of the survey will probably have some

contribution to the understanding of the Free/Open Source phenomenon. More data will be

presented in the next chapter to portray a clearer picture of the topic of FOSPHost.

Chapter 7

Detailed investigation on External Hosting Sites

7.1 Introduction

In this chapter, the execution and the results of the detailed investigation will be presented. The

backgrounds of the sites studied will be described and the data will be presented with

comparison on each features and policies. The classification of infrastructure and

non-infrastructure sites will be introduced and a preliminary exploration of differences between

these two categories will be performed.

7.2 Data Collection and Selection of Sites

The data collection process started on 24 February 2003 and the first version (v0.02) of the

comparison table was published online on 19 March 2003. Emails were sent to administrators

of the sites investigated. An updated version (v0.03) based on the feedback was published on 4

April 2003. An interactive feature evaluation interface (see chapter 8) was then implemented

and three more FOSPHost sites (GBorg, GForge and SEUL) were added. The last batch of

emails was sent on 22/9 to collect feedback and statistics. Statistics was updated and minor

changes were added as a result. This version (v0.04) was published on 8 December 2003. The

discussion below was a report of the comparison of this version.

Recalling the three criteria for selection of sites:

Chapter 7 Detailed investigation on External Hosting Sites

174

1. Free/Open Source projects are hosted on site.

2. The site welcomes the hosting of Free/Open Source projects from other parties.

3. The site should employ as least a source code repository with basic version control

capability.

Ten sites were selected according to these criteria. They include Asynchrony (asynchrony.com

2001), BerliOS (BerliOS), freepository (Minnihan 2003), GBorg (GBorg development team

2003), GForge (Tim Perdue et al.), icculus.org (Gordon 2003), Savannah (Free Software

Foundation 2003b), SEUL (SEUL.org 2002), SourceForge (SourceForge 2003) and

SunSITE.dk (Sunsite.dk staff group 2003a). Other FOSPHost sites that fit the criteria but were

not investigated may include ibiblio (ibiblio.org 2003a), Novell Forge (Novell 2003) and

Tigris.org (Collab.Net 2002a). The assistance from the administrators of these sites was not

sufficient and the data collected was not enough to make substantial comparisons between other

sites. Nevertheless, the sites included probably could represent most of the external hosting

sites available. Also, after the completion of the data collection and analysis, Asynchrony was

closed down on the 5 Jan, 2004 (asynchrony.com 2004). Nevertheless, the data collected from

the site served as an interesting comparison and thus it is still included in this study.

In order to further analyse the sites investigated, a classification system is introduced -

infrastructure and non-infrastructure sites, which will be elaborated in the next section.

7.2.1 Infrastructure and Non-infrastructure sites

FOSPHost sites can generally be categorised into infrastructure and non-infrastructure sites.

On infrastructures sites, most information about the developers and the projects hosted is stored

in databases and standard tools are provided by the site. SourceForge is an example of this

category. On SourceForge, there is a standard project page for every project. The page is

generated from the corresponding information retrieved from database. On the other hand, for

Chapter 7 Detailed investigation on External Hosting Sites

175

non-infrastructure sites, information of projects is not stored in a database format and users of

the site usually construct their project page out of HTML pages. Indeed a number of

infrastructure sites also provide the facility of HTML pages hosting and some users created

their own project pages by themselves, but many just use the standard page for convenience.

Within the sites investigated, BerliOS, freepository, GBorg, GForge, Savannah, and

SourceForge can be classified as infrastructure sites and icculus.org, SEUL and SunSITE.dk

can be classified as non-infrastructure sites. For other FOSPHost sites that were not

investigated, Novell Forge (Novell 2003) and Tigris.org can be classified as infrastructure sites

and ibiblio a non-infrastructure site.

7.2.2 Introduction to Infrastructure Sites

The backgrounds of infrastructure sites investigated will be presented in this section. The

background of the best known site of this category, SourceForge, will be presented first. Then

the backgrounds of forked projects of SourceForge, which consist of BerliOS, Savannah and

GForge, will then be explained. Finally, sites that do not have much relationship with

SourceForge, namely Asynchrony, freepository and GBorg, will be examined.

Not much was written on the history of SourceForge and the information presented below is

based on the interview of the original project leader, Tim Perdue (OSDir.com 2002). The

SourceForge project was instigated by a few engineers in a Linux hardware company called VA

Linux. The original vision of the project was to create a distributed software project

management tool for IT managers so that project information can be downloaded and managed

on the managers' own client software. This project did not gain much support from the

company until a survey company reported that SourceForge was the only best known name of

the company. In the light of the report, the management of VA Linux then asked the team of

engineers to improve SourceForge for a launch at a major trade conference. The hosting

Chapter 7 Detailed investigation on External Hosting Sites

176

functions were decided to be improved first, leaving the original vision of a client for IT

managers to be put aside. The launch was very successful and a client for IT managers was not

mentioned again in the management of VA Linux.

The hardware business of the company continued to deteriorate and the management decided to

find new ways to obtain revenue – and selling SourceForge was one of them. The source code

of SourceForge was no longer available on the SourceForge site and an improved version called

SourceForge Enterprise was marketed (Wire 2000). This move made some of members of the

Free/Open Source community angry because SourceForge was GPL licensed and the source

code should be available. The original project leader, Tim Perdue, also left the company due to

the disappointment in the handling of this event. Even before the closing up of the source code,

there were complaints about the alleged action of appropriating the copyright of the work of the

users to the company, trying to entrap users by closing down export features and not listening to

the needs of users (Advogato 2001a; Dachary 2001; Kuykendall 2001). The financial position

of the company was also in doubt (Advogato 2001a; Kuykendall 2001). Despite of these

complaints, SourceForge is still the best known FOSPHost site to date hosting a number of

famous projects.

Several FOSPHost projects were based on earlier versions of SourceForge and were developed

independently (fork). BerliOS developer FOSPHost site was one of the early forked projects

probably based on SourceForge v1.5 (Moen 2002). The goal of the site was to act as a neutral

mediator for developers, users and businesses in the area of Open Source. The site was also

trilingual - English, Danish and Spanish. Thus one of the major changes of BerliOS developer

FOSPHost site on the SourceForge v1.5 source code was the translation of the interface into

these two other languages.

Chapter 7 Detailed investigation on External Hosting Sites

177

Savannah was another fork developed by the Free Software Foundation based on SourceForge

v2.0 (Moen 2002). Free Software Foundation had been running the GNU project (a project to

create a Free version of Unix) for years and hosting various software projects on the GNU web

site (Free Software Foundation 2003d). These projects were arranged in a tree/directory

structure. For example, Emacs was classified under the category of 'Text creation and

manipulation' and the sub-category of 'Editors'. An information page was available for each

project on basic information such as download and contact information (Free Software

Foundation 2003c). Employing Savannah thus strengthened the hosting capability of the

organization. Other motivations of forking may due to the dissatisfaction of SourceForge from

the reasons listed above, especially the intention of appropriating the copyright of the work of

the users to VA Linux and entrapment of users, which was expressed in a Free Software

Foundation Europe article by Loic Dachary, a member of the Savannah project team (Dachary

2001).

Another fork was GForge, which was led by the original SourceForge project leader Tim

Perdue based on the source code of last available SourceForge v2.61pre4 (Moen 2002). Tim

Perdue was obliged not to work on projects related to VA Linux after leaving the company until

recently. GForge was produced after this obligation was lifted with the collaboration of other

developers and another existing fork debian-sf (Roland Mas, Christian Bayle & Kwon). Some

saw it as the legitimate 'heir' of SourceForge project (Moen 2002). Changes from original

SourceForge source code included removing code which catered for the need of extreme

scalability (as SourceForge was a gigantic site), easier to install and the tabbed theme

(OSDir.com 2002). The official site of GForge (http://gforge.org/) only provided hosting for

the GForge project itself, not for any other projects. There was no intention to run another

'SourceForge' using the GForge software. Nevertheless, a number of FOSPHost sites did

employ the GForge software (Copeland 2003). In the comparison below, unlike other sites,

Chapter 7 Detailed investigation on External Hosting Sites

178

GForge actually represents the software, rather than the site (because it only hosted one project).

Nonetheless, this comparison will be meaningful for the collection of FOSPHost sites that

employed GForge.

As we will see in the discussion below, SourceForge and its forked counterpart had a number of

similarities in features. The term SourceForge codebase sites will be used to refer to this group

of FOSPHost sites for convenience.

Other infrastructure sites that were not related to SourceForge are Asynchrony, freepository and

GBorg. The Asynchrony web site was an attempt to leverage the networking capability of the

Internet to bring talented programmers and business people together to make money by creating

software (Elfanbaum 2001). A large proportion of the site was to facilitate distributed software

development and both proprietary and Free/Open Software can be hosted. Therefore, it is

qualified as a FOSPHost site. Freepository was a FOSPHost site that only provided the source

code repository tool. It was found by John Minnihan back in 1999. GBorg was a FOSPHost

site for hosting Free/Open Source projects related to the PostgreSQL database (The

PostgreSQL Global Development Group).

There were also other infrastructure sites that were not investigated in this research including

Novell Forge (which was based on XoopsForge (Arjen van Efferen & Black 2002)) and

Tigris.org (which was running SourceCast by Collab.Net).

7.2.3 Introduction to Non-infrastructure Sites

After the presentation of the backgrounds of infrastructure sites, the backgrounds of the

non-infrastructure sites will be explained in this section. icculus.org, SEUL and SunSITE.dk

are the members of this category and they will be introduced in this order.

Chapter 7 Detailed investigation on External Hosting Sites

179

icculus.org was run by Ryan Gordon, a former Loki employee (Loki was an Free/Open Source

game software company). The projects hosted on the sites were mainly games. SEUL was the

acronym for 'Simple End-User Linux' and the mission for the site was to promote the adoption

of Linux by end-users through supporting the development and distribution of high quality Free

Software. The accessibility of Linux would hopefully be increased as a result (SEUL.org 2001).

Lastly, SunSITE.dk was an affiliated project under the SunSITE (Sun Information and

Technology Exchange), which was sponsored by Sun Microsystems to Universities globally

(Sunsite.dk staff group 2003b). The goal of SunSITE.dk was 'to help power the development of

Open Source Software in the world' (Sunsite.dk staff group 2003c).

There were also other non-infrastructure sites that were not investigated in this research, one of

them was ibiblio, which was termed 'the public's library and digital archive' on the Internet

(ibiblio.org 2003a).

7.3 Comparison of External Hosting Sites

Sites that were investigated will be compared in this section. Features and other important

information were grouped into six categories and they will be presented in the following order:

• General Information

• Project Tools - Tools for Public/Developers

• Project Tools - Tools for Project Administrators

• Personal Tools for Developers

• Community Tools

• Others

The list of features investigated was first built by discovering features available in SourceForge.

Then, more features were added to the list when they were found in subsequent sites

investigated.

Chapter 7 Detailed investigation on External Hosting Sites

180

7.3.1 General Information

The first category to be presented is 'General Information' of the site. In this category, overall

statistics of the site and whether feedback was obtained from the respective site administrators

were included. The comparison for these factors are tabulated in Table 7-1 in ascending order

of their respective numbers of projects hosted.

The statistics for a number of FOSPHost sites could be found on the front pages of the sites, but

others were obtained by asking the administrators. For the number of developers, for the

non-infrastructure sites, as databases were not used to record the details of developers, users

with Unix shell account and CVS access were counted instead. Since the administrators gave

responses on the statistics independently, the date and time for obtaining the statistics was not

uniform. The researcher tried to obtained them within a few days tolerance and most figures

were obtained between 22 Sep 2003 and 23 Sep 2003.

It can be seen that non-infrastructure site generally had less projects that infrastructure sites.

Another interesting observation is that all the administrators from the non-infrastructure sites

were willing to communicate with the researcher but not all of the infrastructure sites,

especially the larger ones. For the comparison table presented below, the sorting order of the

sites will remain the same as Table 7-1 as it emphasized the differences between

non-infrastructure and infrastructure sites.

Chapter 7 Detailed investigation on External Hosting Sites

181

Site Type

No. of Projects,

excluding projects

mirrored

(Regardless of

activities)

No. of Members

(Regardless of

activities)

Input from site

administrator(s)

to this table

SEUL Non-Infrastructure

About 50 ACTIVE

projects (23 Sep 03

17:30 +10)

About 300 with shell

access, about 225 with

CVS read/write access

(23 Sep 03 17:30 +10) Yes

icculus.org Non-Infrastructure

61 (19 Mar 03

17:30 +10)

111 Shell Accounts +

more developers (19

Mar 03 17:30 +10) Yes

SunSITE.dk Non-Infrastructure

111 (23 Sep 03

19:30 +10)

205 CVS access, exact

number of members not

available (23 Sep 03

19:30 +10) Yes

GBorg Infrastructure

123 (8 Aug 03

23:00 +10)

3,012 (8 Aug 03 23:00

+10) Yes

BerliOS Infrastructure

818 (23 Sep 03

13:00 +10)

4,583 (23 Sep 03 13:00

+10) No

Asynchrony Infrastructure

1,848 (23 Sep 03

16:30 +10)

33,309 (23 Sep 03 16:30

+10) No

Savannah Infrastructure

1,886 (23 Sep 03

13:00 +10)

20,575 (23 Sep 03 13:00

+10) No

freepository Infrastructure

over 2,500 (22 Sep

03 23:00 +10)

2,948 (22 Sep 03 23:00

+10) Yes

SourceForge Infrastructure

68,586 (23 Sep 03

13:00 +10)

703,365 (23 Sep 03

13:00 +10) No

GForge Infrastructure

Irrelevant in this

Comparison

Irrelevant in this

Comparison Yes

Table 7-1 Comparison of General Information of FOSPHost Sites

Chapter 7 Detailed investigation on External Hosting Sites

182

GForge was a special case in this comparison that only one project was being hosted on the site

http://gforge.com/ - GForge itself. If one judges only on size, this site may not seem like a

worthwhile FOSPHost to investigate. Nevertheless, the focus for the comparison GForge with

other sites in this case is actually the features of the FOSPHost sites that employed the GForge

software. Some of those sites consisted of hundreds of projects and thousands of developers

(Copeland 2003). Therefore, the figures on the site http://gforge.org/ are not irrelevant in this

comparison. One may then ask how many projects are hosted in total by the sites that employed

GForge software. This will be quite difficult to answer. Just like the estimation of the number

of Linux machines on earth (Miller 2002), anyone can use the GForge software and is not

obliged to report it. Therefore, an estimation of these figures was not done. Also, the contact

that the researcher made was to the development team of GForge who were also administrating

http://gforge.com/ as well.

Another factor to consider for the comparison of GForge was that sites that employ the GForge

software could choose what tools and services to provide – tools that were supported by the

GForge software could be disabled and tools that were not supported could be added, as GForge

was a Free/Open Source software. The features provided in this comparison were what GForge

could support without disabling any feature and without addition. Therefore information of

sites that employed 'altered' GForge was not accounted for in this comparison.

Before we begin the discussion of feature comparison, one more matter is worth mentioning.

As explained before, for non-infrastructure sites, users of the sites can present their projects in

free format HTML pages. As we will see in the comparison, some sites also provided tools

such as web server-side scripts and database. In this way, users of the sites could have great

flexibility in installing tools of their own choices, even though the sites may not provide the

Chapter 7 Detailed investigation on External Hosting Sites

183

tools as a standard feature. This type of situation will be denoted by 'DIY' in the comparison

('DIY' stands for 'Doing It Yourself').

The two categories to be examined are 'Project Tools - Tools for Public/Developers' and 'Project

Tools - Tools for Project Administrators'. Both of these categories relate to 'Project Tools' but

the former can be used by the public and developers while the latter can be used only by the

administrators of projects. The 'Tools for Public/Developers' will be examined first.

7.3.2 Project Tools - Tools for Public/Developers

'Project Tools - Tools for Public/Developers' is the category that contains the most numerous

items for comparison. Therefore the items are further divided into three groups. The first group

concerns the public the most. Features in this group are useful for people who just want to use

the product of the projects – general information of the project, the software and the

documentation. The next two groups consist of tools that facilitate more communication

between users and developers of the projects. One of the groups consists of tools that were

voted as important in the Delphi survey. The other group includes other tools that were found

on the sites investigated.

The comparison of the first group of features is tabulated in Table 7-2. Features compared

include standardized format for general information, free format HTML project homepage,

project role assignment, project news, download service, document management and statistics.

These features are mostly used by people who just want to know about the project and use the

product of the project with minimal further participation. The direction of communication of

these tools is mostly unidirectional. That is, from the project team to outsiders. For

standardized format for general information, all the non-infrastructure sites did not have a

standardized format while infrastructure ones had. One exception was freepository as it only

provided source code repository service and had no general information or project page. For

Chapter 7 Detailed investigation on External Hosting Sites

184

free format HTML project homepage, most sites had this service except GBorg and freepository.

For GBorg, the standardized general information page was the only choice. It was then obvious

that a number of infrastructure sites also provided free format html pages for project homepage

and some projects actually preferred them to the standardized format. For the comparison of

project news, the results were again similar to standardized format for general information. For

download service, common existing protocols such as HTTP and FTP were employed on a

number of sites. For some infrastructure site using the SourceForge codebase, a more

sophisticated mechanism was provided – 'File Release'. This system enabled the project

administrators to organise download files and distribute them via different mirror sites. Some

sites also had another dedicated system for documentation of the project. They were given

different name, such as DocManager or FAQ, but the basic function was to store and distribute

documents. The 'DIY' item in the 'Document Management' feature meant that the project

administrators needed to use the free format HTML pages for dissemination of the

documentation. The last feature to discuss is statistics for projects. Usually, the basic statistics

provided was number of web pages accessed (net traffic). Project activities statistics included

actions such as CVS commits and tracker activities (CVS and tracker will be explained below).

Comparative statistics here meant that statistics from one project was presented together with

statistics of other projects or rankings were given to a project based on statistics of all projects.

The availability of statistics in non-infrastructure sites varied as well as infrastructure sites.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-2 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (1)

Site Type

Standardized

Format for

General

Information

Free Format

HTML

Project

Homepage Project Role Assignment

Project

News

Download

Service Document Management Statistics

SEUL NI No Yes DIY DIY HTTP, FTP DIY

Comparative statistics via Webalizer at

http://stats.seul.org/ (Apache and CVS log

available for admin)

Icculus.org NI No Yes No (See 'Policies') DIY HTTP DIY Unknown

SunSITE.dk NI No Yes DIY DIY FTP, rsync DIY net traffic only

GBorg I Yes No Yes Yes FTP

FAQ, genpage (Free

format HTML only pages

management) No

BerliOS I Yes Yes Yes Yes

File Release,

FTP DocManager Project activity, net traffic, comparative stat.

Asynchrony I Yes Yes Yes Yes HTTP DIY

Number of beta download, number of

versions produced

Savannah I Yes Yes Yes Yes FTP FAQ Unknown

freepository I

No General

Information No

Four member types based on

permissions to CVS: Admin,

Basic, Read-Only, Disabled No HTTPS No Unknown

SourceForge I Yes Yes Yes Yes File Release DocManager Project activity, net traffic, comparative stat.

GForge I Yes Yes Yes Yes File Release DocManager Project activity, net traffic, comparative stat.

Chapter 7 Detailed investigation on External Hosting Sites

186

The comparison of the second group of features is tabulated in Table 7-3. Tools discussed in

this group were voted as important in the Delphi survey. From the survey results, five items

were voted important, namely source code repository, mailing list, World Wide Web (WWW)

server, tracking system and security measures, in the order of importance. WWW server was

such a basic infrastructure of FOSPHost that employed by most and would not be compared

here. Security measures were used most by project administrators and thus will be discussed in

the category of 'Project Tools - Tools for Project Administrators'. Therefore, three tools will be

presented here, namely source code repository, mailing list management system and tracking

system.

The first tool to be compared is source code repository, which was voted as the most important

tool on a FOSPHost site. The basic function of a source code repository is to serve as a central

location to manage different versions of a project. Details discussion of this tool can be found

in appendix G and only issues that are directly related to FOSPHost sites will be examined here.

For all the sites investigated, the basic system employed was CVS (Concurrent Versions

System). For all sites, CVS was network-enabled (CVS server). Except for Asynchrony, all

sites employed a system for browsing the repository via the web. There were two commonly

employed systems, CVSweb (The FreeBSD Project 2003) and ViewCVS (ViewCVS Users

Group 2002). CVSweb was one of the early systems to present CVS via the web interface.

Nevertheless, CVSweb was found to be difficult to maintain (most of the code was

concentrated in one file, cvsweb.cgi, which was more than 100K bytes) and a clone called

ViewCVS was implemented. Indeed, more sites employed ViewCVS than CVSweb. As

mentioned above, these web-enabling systems were only for browsing, but more functionalities

were added in freepository for creating, updating and deleting of directories and files for the

repository with versioning capabilities via the web interface. Another additional function was

member management, in which different permissions to the repository could be assigned to

Chapter 7 Detailed investigation on External Hosting Sites

187

different members. freepository also promoted the use of Eclipse plug-in for CVS SSL (Secure

Sockets Layer) (Wilms 2003). Eclipse is an IDE (Integrated Development Environment) for

programming in different computer language (eclipse.org) and this plug-in could assist the user

of Eclipse to communicate with the CVS repository more conveniently. It might be possible

that for other sites, the CVS SSH plug-in for Eclipse could be used to achieve similar function,

but it was not promoted at other sites. It could be seen that though freepository lacked a number

of features comparing to other sites, it was probably the most specialised site on the

management of source code repository.

Mailing list management system is another tool that was voted as important. Its basic function

is to deliver email sent to the list to subscribers. An obvious function that follows is the

management of subscribing members. In the comparison, Mailman (Free Software Foundation

2003a) was most commonly used. This system included most common functionalities with a

web interface. Another system used was Ezmlm, which was built upon qmail (Nelson et al.

2003). Ezmlm-idx could also be employed to add extra functionalities on top of Ezmlm such as

multi-message threaded message retrieval from the archive and a web interface (Lindberg &

Ringel 1999). A probably obsolete system, Majordomo was used by SEUL (both its project

homepage (Great Circle Associates 2001) and FAQ (Barr, D.) were not maintained). This

system was not web-enabled and to view its mail archive via the web, extra software called

MHonArc (Hood 2003) was employed.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-3 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (2)

Site Type Source Code Repository Mailing List Tracker

SEUL NI CVS Server with ViewCVS and CVSweb Majordomo + MHonArc Jitterbug

icculus.org NI CVS Server and ViewCVS Ezmlm-idx Bugzilla

SunSITE.dk NI CVS Server and ViewCVS Ezmlm, Mail Filtering DIY

GBorg I CVS Server and ViewCVS Mailman Bug / Feature / Task

BerliOS I CVS Server and ViewCVS Mailman Bug / Support / Patch / Task

Asynchrony I CVS Server Yes Project Change Request / Task

Savannah I CVS Server and ViewCVS Mailman Bug / Support / Patch / Task

freepository I

CVS Server, CVSWeb, Eclipse plugin and Web-based CVS

management tool (login, add/update/delete directories/files,

member management) No No

SourceForge I CVS Server and ViewCVS Mailman

Bug / Support / Patch / Feature /

Task / Task Dependency

GForge I

CVS Server and CVS Web Interface (ViewCVS, Ronald Petty's

php CVS and Dracos Moinescu's php OO CVS) Mailman

Tracker made by GForge,

theme can be defined by user

Chapter 7 Detailed investigation on External Hosting Sites

189

The next feature to be compared is tracking systems. Tracking systems can be used to register

different issues in a project. A number of the infrastructure sites employed their built-in

tracking systems. An example can be taken from a GForge bug tracker. In (Figure 7-2), a

screen capture of a bug report is shown. Major parameters on the bug report included date,

summary, category (what type of bug), priority, state (what stage of resolution is this bug report

in), the person who submitted the report and the developer(s) who the bug was assigned to. The

system also accepted comments on the bugs and relevant files. A tabulated overview of bug

reports was also available (Figure 7-1). The items in the table could also be re-arranged

according to parameters such as state and priority. Though trackers were often used to manage

bug reports, it was also possible to be employed for other issues such as feature requests,

support requests, task assignments and patches submission.

Figure 7-1 Overview of Bugs

Chapter 7 Detailed investigation on External Hosting Sites

190

Figure 7-2 Details of a Bug Report

Chapter 7 Detailed investigation on External Hosting Sites

191

Two out of the three non-infrastructure sites provided tracking systems. Jitterbug, a web-based

system designed by the instigator of Samba, (Tridgell & Shearer), was provided at SEUL. Its

basic functions were similar to the example above, but it also accepted bug reports from both

email and web interface. On the other hand, an even more sophisticated tracking system,

Bugzilla, was provided at icculus.org. Advanced features included supporting a more

structured bug resolving procedure, dependencies between bugs, user permissions and others.

The comparison of the last group of features is tabulated in Table 7-4. Features compared

include IRC (Internet Relay Chat), webmail, forum, Wiki, survey and other tools.

The first tool compared, IRC is a synchronous, real time, text-based communication tool via the

Internet. In a Free Software survey (Reis 2002a), in which the participants were developers in

the communities. 22.4% of all the participants voted IRC as important. Although IRC servers

were available freely around the globe, it was interesting to see that two out of the three

non-infrastructure sites had their own IRC servers. For the third one, icculus.org, they had a

dedicated channel on irc.freenode.net. On the other hand, for infrastructure sites, only

Asynchrony had an IRC system via a Java client interface.

A forum is a discussion board on the web for facilitation of opinions. It was provided by sites

using the SourceForge codebase and Asynchrony. It is possible that the function of this tool

overlaps with the mailing list and thus not adopted by other sites.

A Wiki is 'a freely expandable collection of interlinked Web "pages", a hypertext system for

storing and modifying information - a database, where each page is easily editable by any user

with a forms-capable Web browser client' (Leuf & Cunningham 2001, p. 14). It was voted as

the most controversial tool to be included on a FOSPHost site. Some may not be in favour of

Chapter 7 Detailed investigation on External Hosting Sites

192

Wiki due to its chaotic nature (anyone can change anything). The fact that only BerliOS

provided such a service may also be an indicator of its controversy. It was, however, Wiki

might be integrated into GForge in the near future (Nikhil Goel et al. 2003).

A survey system is a polling mechanism on the web to collect quantitative opinions. Two types

of survey system were found among the sites. One type was user-defined, and the other was

pre-defined. For user-defined, the topics of the survey and items to vote for could be defined by

the users. Nevertheless, in the case of pre-defined survey, the topics and items were decided

beforehand. In Asynchrony, survey was employed as a mechanism to rank projects. Five

pre-defined factors were polled, marketability, feasibility, profitability, 'coolness' and

uniqueness. In BerliOS and GForge, user-defined survey systems were available.

'Other tools' is a category for tools that exist in one site only. For SunSITE.dk, a USENET

server was setup for projects. For GBorg, there was a patch management system that was

different from a normal tracker with additional functions such as versioning and indications of

the applications of patches. There was also a dedicated area for errata in GBorg. For BerliOS,

there was a dedicated area for screenshots of the project. For GForge, Gantt charts could be

generated from the task tracker. On the other hand, a number of the special tools/features

mentioned above can be implemented if free format HTML pages with web server-side scripts

were available.

Site Type IRC Forum Wiki Survey Other Tools

SEUL NI IRC server at irc.seul.org DIY DIY DIY

icculus.org NI #icculus.org on irc.freenode.net DIY DIY DIY

SunSITE.dk NI

Server provided SunSITE.dk:6667 and

irc.ircnet.dk:6667 DIY DIY DIY Usenet

GBorg I No No No No

Patch Management /

Errata

BerliOS I No Yes Yes Yes Screenshots

Asynchrony I via a Java client interface on site Yes Unknown

Ratings on

pre-defined attributes

of a project

Savannah I No Yes No Unknown

Freepository I No No No No

SourceForge I No Yes DIY DIY

GForge I No Yes DIY Yes

Task Manager & Gantt

Chart

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-4 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (3)

Chapter 7 Detailed investigation on External Hosting Sites

194

Important issues in the category 'Project Tools - Tools for Public/Developers' have been

discussed above. Before starting the comparison of the next category, it is important to reiterate

that users of sites that did not provide the tools mention as standard features may still able to

employ those tools, but it has to be managed by the project administrators themselves (DIY).

7.3.3 Project Tools - Tools for Project Administrat ors

The next category to be examined is 'Project Tools - Tools for Project Administrators'. These

tools were available for project administrators only. They included management for 'tools for

public/developers', ask for help (recruitment), activity history, web server-side scripts, shell,

database, compile farm, uploading, export, virtual hosting, security and backup. The

comparison is tabulated into three tables (Table 7-5, Table 7-6 and Table 7-7).

The first item to be compared is "management for 'tools for public/developers'". This function

is basically designed for infrastructure sites to config the database generated project pages and

to select what tools to offer to developers and the public. The result of this comparison was

therefore similar to 'standardized format for general information'. Except for freepository, all

the infrastructure sites provided this service while non-infrastructure sites did not.

The next item is 'Ask for Help (Recruitment)'. It is a comparison of facilities on different sites

for recruitment of new developers. For infrastructure sites, many of them had dedicated

sections for recruitment (Asynchrony, BerliOS, GForge, Savannah and SourceForge). For

GBorg, administrators of projects could put up 'join now' signs on the project front pages or

advertised the recruitment on the site news. Two non-infrastructure sites, icculus.org and SEUL

adopted this approach too.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-5 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (1)

Site Type

Management for 'Tools for

Public/Developers' Ask for Help (Recruitment) Activity History Web Server-Side Scripts

SEUL NI DIY

Invite others to join by advertising at the project page or in

public areas DIY

SSI, PHP3 and 4, CGI,

Embperl

icculus.org NI DIY

Invite others to join by advertising at the project page or in

public areas DIY PHP

SunSITE.dk NI DIY DIY DIY

SSI, PHP, JSP, other CGI

on approval

GBorg I Yes

Invite others to join by enabling the 'join now' function at

the project page or advertises it in public areas No No

BerliOS I Yes Yes Unknown PHP3

Asynchrony I Yes Yes Unknown Unknown

Savannah I Yes Yes Yes No

freepository I No No No No

SourceForge I Yes Yes Yes PHP3 and 4

GForge I Yes Yes Yes

Depends on the

availability of individual

sites

Chapter 7 Detailed investigation on External Hosting Sites

196

The next feature to evaluate is activity history. Different from project statistics, activity history

focuses on changes that only the administrators can make, for example, updating of the general

information at the database generated project page or giving permissions to developers to

assign items in bug trackers. This function was provided by GForge, Savannah and

SourceForge.

The next feature to discuss is web server-side scripts. These scripts enable web pages to be

generated according to the input from the users at the browser side. Most sites that offered free

format HTML pages also offered this service as well except Asynchrony and Savannah. The

most common script supported was PHP (PHP Hypertext Preprocessor) (The PHP Group 2003),

which was one of the most popular Free/Open Source web server-side scripts.

The next feature to be discussed is database. Database is usually employed together with web

server-side scripts. As expected, the sites that offered this service was the same as the ones that

offered web server-side scripts. MySQL (MySQL AB 2003) was the most popular database

offered.

The next feature compared is command shell. Command shell is a powerful Unix command

line management tool to organise files and perform other lower level tasks on the server

(comparing to web-based tools). Nevertheless, offering shell accounts to users could also pose

a higher security risk to the system due to the powerfulness of the tool. Considerable attention

was needed to run this service.

There was a number of complementary web-based tools programmed in the SourceForge

codebase to manage shell accounts and thus many sites using SourceForge codebase offered the

service except Savannah posed criteria for the provision. For non-SourceForge related

Chapter 7 Detailed investigation on External Hosting Sites

197

infrastructure sites, this service was probably not provided. For non-infrastructure sites,

selected personnel could access the shell accounts. One of the administrators of the

non-infrastructure site mentioned that shell account was regarded as a 'scarce' service and a

possible underlying message of giving out an account was a token of acknowledgement to the

recipient. One remark is that the 'Yes' in this feature (and shell accounts) for GForge means that

the GForge software had provision for database shell accounts management. As for data in

other features on GForge, the assumption is that no function is disabled.

The next feature is compile farm. This service enables users to compile and test a piece of

software on different computer platforms. Considerable amount of resources was required to

run this service and only SourceForge provided it.

The next feature to discuss is export. This function is to let the users retrieve data residing on

the FOSPHost site. Recalling the complaints about SourceForge, the ability to export was seen

to be a measure of the 'freedom' of a FOSPHost site. For sites with SourceForge codebase, all

of them provided CVS tarball. A tarball is a file that contains a collection of compressed file

processed by utilities tar and gzip. In this case, the tarball contained the CVS repository. Other

export functions ranged from contents of trackers, forums, project summary (a part of the

database generated project page), project news and document manager. For freepository, there

was an option to backup the source code or the whole repository with other configuration files.

For non-infrastructure site, SunSITE.dk had a policy on export that it could be provided on

request. For other two non-infrastructure site, the policy was unknown.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-6 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (2)

Site Type Database Shell Compile Farm Export

SEUL NI MySQL and PostgreSQL

Available to selected

developers No Unknown

icculus.org NI MySQL on request Available to team leaders No Unknown

SunSITE.dk NI MySQL

Available to selected

developers No On request to administrator

GBorg I No No No CVS export on request to the administrator

BerliOS I MySQL Yes No

CVS Nightly tarball, Forums, Bugs Tracker,

Support Tracker and Patches Tracker

Asynchrony I Unknown Unknown No Unknown

Savannah I No Only some people had it No CVS Nightly tarball, Forums

freepository I No No No

Members can auto-tar up their projects and

download them on the fly. These tarballs may be

source code only, or the whole CVS repository (,v

files)

SourceForge I MySQL Yes Yes

CVS Nightly tarball, Trackers, Project Summary,

Project News, Document Manager

GForge I Yes Yes

Depends on the availability of

individual sites

CVS Nightly tarball, Project Summary, Project

News, Forums, Bugs Tracker

Chapter 7 Detailed investigation on External Hosting Sites

199

The next feature is called virtual hosting. This is a mechanism to allow the project front page to

acquire a domain name, such as http://www.projectname.com/, instead of

http://FOSPHost.com/projects/projectname/. There were web-based management tools

programmed in the SourceForge codebase to manage virtual hosting and thus many sites using

SourceForge codebase offered the service except Savannah. For Asynchrony, an alternative

method, which required fewer configurations on the server, was employed. Every project was

assigned the domain http://projectname.asynchrony-projects.com/. For non-infrastructure site,

SunSITE.dk provided service similar to Asynchrony – http://projectname.sunsite.dk/ with

addition email service using the same domain name. On the other hand, SEUL and icculus.org

provided full virtual hosting service.

The next two features relates to the security measures of the FOSPHost sites. Security

measures were voted as an important feature for tools on FOSPHost sites and two common

encryption protocols are usually employed. The first type is SSH (Secure Shell) (Konig 1997).

SSH is a replacement of the rlogin protocol for remote access of command shell accounts. This

was further developed into other protocols such as SCP (Secure Copy Protocol) and SFTP

(Secure File Transfer Protocol) for file transfer and other purposes. Two versions of SSH were

available, SSH1 and SSH2, in which SSH2 was the improved, better version (Acheson 2001).

On the other hand, SSL was developed to provide encrypted communication via WWW

(Netscape Communications Corporation 1998). Therefore, file transfer using FTP and HTTP

were not encrypted but SCP, SFTP or HTTPS (HTTP with SSL encryption) were encrypted.

For a CVS server, it can be coupled to either SSH or SSL for authentication.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-7 Comparison of 'Project Tools - Tools for Public/Developers' of FOSPHost Sites (3)

Site Type Virtual Hosting Uploading Security Backup

SEUL NI Yes SCP, SFTP and rsync SSH (1 & 2)

No formal policy, users could do

backup themselves

icculus.org NI Yes SCP SSH, SSL Backup daily with one week archive

SunSITE.dk NI

Host name at projectname .sunsite .dk

with email FTP and rsync Daily

GBorg I No

HTTP Form, FTP to an

incoming directory and move

file(s) via web management No explicit policy

BerliOS I Yes SCP SSH (1 & 2), SSL on web Unknown policy

Asynchrony I

host name at

projectname .asynchrony-projects .com FTP SSH, SSL Unknown policy

Savannah I No CVS via SSH SSH1, SSL on web Unknown policy

freepository I No CVS via SSL 100% SSL Unknown policy

SourceForge I Yes

SCP, SFTP, FTP to an

incoming directory and move

file(s) via web management

(SSL) SSH (1 & 2), SSL on web

Explicit backup policy (5 types of

data, daily)

GForge I Yes HTTPS Form

Depends on the policy of

individual sites

Depends on the policy of individual

sites

Chapter 7 Detailed investigation on External Hosting Sites

201

In terms of encryption used onsite, only SunSITE.dk and GBorg did not use encrypted

protocols. For other sites, SSH was usually employed for command shell related

communication and SSL for web related communication. Most of them employed SSH as the

authentication CVS except for freepository as only SSL was available on site. For freepository,

all communications to the site were SSL authenticated. Uploading was initially not categorised

as a feature for security comparison but this feature was later found to have be a number of

security issues as login name and password were sent within the process. For site that

employed encryption, most of them had encrypted upload as well, except for Asynchrony,

where FTP was employed to upload HTML pages for project pages. SourceForge also

employed an interesting combination of uploading method. For uploading to shell and project

HTML pages, SCP or SFTP could be used. To upload to file release system, files were

uploaded by FTP. Then the uploaded file would appear on a web interface accessible via SSL.

This file then needed to be handled via the web interface to be assigned into one of the released

file of the file release system. This method was also used in GBorg, without the SSL security.

Other methods such as rsync (The Samba Team 2003), a program that can be used to

synchronise mirror sites, was employed by SEUL and SunSITE.dk. Encryption could also be

added to rsync to increase security. Other interesting method could be using CVS with SSH

encryption for uploading in Savannah. One of the main functions for CVS is version control,

and it is more complex and harder to learn than FTP or HTTP. It is then seldom used for upload.

Nevertheless, for users of FOSPHost, they probably know how to use CVS, thus one less

service could be employed on Savannah.

The last feature compared is the backup policy. One method to recover from failures in

computer systems is to have a regular backup policy. Major parameters in a backup policy

include frequency and data. Taking SourceForge as an example, the backup policy was stated

in the on site documentation explicitly that backup was done daily on five types of data, namely

Chapter 7 Detailed investigation on External Hosting Sites

202

site data (user and project records, trackers content, etc.), host data (operating systems, tools,

etc.), project file release data, project CVS data, project-specific and user-specific content (user

files on compile farm, shell, project web pages, etc.). Unfortunately, for other infrastructure site,

such explicit statement was not found. For non-infrastructure sites, icculus.org had a daily

backup schedule with one week archive. SunSITE.dk also had a daily backup schedule. For

SEUL, users were welcome to make their own backup.

7.3.4 Personal Tools for Developers

For infrastructure sites, many provided memberships for individual developers. Some provided

dedicated pages for developers on issues concerning the projects that they were involved. The

category 'Personal Tools for Developers' is a preview of these features. Items compared include

web space to host personal information, skill and experience, tracker/forum/file monitoring,

projects involved, assigned/submitted issues from trackers, survey, diary, bookmark and money

earned. The comparison is tabulated in Table 7-8.

The first function to be examined is web space to host personal information. For most

FOSPHost sites, there was either a database generated personal page or no personal page at all.

One exception was icculus.org, where web space was provided for hosting personal

information (possibly for selected individuals only). For other non-infrastructure sites, the

focus seemed to be on projects and thus personal pages were not available. For infrastructure

sites, though web space was assigned to projects not individuals, most had database generated

personal pages with information such as username, skills and project involved, except for

freepository, where there was none.

The next feature compared is skill and experience. For sites that had database generated pages

for individual developers, all of them had provision for the developers to state their skills and

Chapter 7 Detailed investigation on External Hosting Sites

203

experiences. Such information can be useful in the recruitment of developers to projects. This

function seemed to be one of the main reasons for the existence of the database generated pages.

The next function was tracker/forum/file monitoring. This function either presented the files or

messages posted of the tools subscribed or sent notification emails when there were updates.

With this function, developers did not have to go through the subscribed tools one by one. This

function was provided by all the SourceForge codebase sites. Only tracker monitoring was

available at GBorg.

The next function to be discussed is projects involved. This function was actually a list of

projects in which the developer was officially a team member of. This was again a common

feature that was present in all the infrastructure sites except for freepository.

In some FOSPHost site, a list of issues, which were assigned to or submitted by the developer in

different trackers, was provided as a summary. This function was provided by the SourceForge

codebase sites.

The next feature is survey. As mentioned above, survey is a tool to collect quantitative opinions

from users. A list of surveys that concerned the developer was provided at BerliOS and

GForge.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-8 Comparison of 'Personal Tools for Developers'

Site Type

Web Space to

Host Personal

Information

Skill and

Experience

Tracker/Forum/File

Monitoring

Projects

Involved

Assigned/Submitted

Issues from Trackers Survey Webmail Diary Bookmark

Money

Earned Rating

SEUL NI No No No No No No DIY No No No No

icculus.org NI Yes DIY DIY DIY DIY DIY Yes DIY DIY DIY No

SunSITE.dk NI No No No No No No DIY No No No No

GBorg I No Yes Tracker only Yes

No, but could sent

notification via

monitoring system No No No No No No

BerliOS I No Yes Yes Yes Yes Yes Redirect Yes Yes No Yes

Asynchrony I No Yes Unknown Yes Unknown No Redirect No No Yes Yes

Savannah I No Yes Yes Yes Yes No Redirect No Yes No Unknown

freepository I No No No No No No No No No No No

SourceForge I No Yes Yes Yes Yes No Redirect Yes Yes No No

GForge I No Yes Yes Yes Yes Yes Redirect Yes Yes No Yes

Chapter 7 Detailed investigation on External Hosting Sites

205

A webmail system is a web interface to handle emails. Two types of systems were found in the

sites investigated. The first type was a redirection service. Email sent to a developer on site,

such as users@fosphost.org will be redirected to his or her own email, such as

users@own-host.com. Another system was to store email sent to developers in a mail server on

site. Only icculus.org provided the second type of service while Asynchrony and SourceForge

codebase sites employed the first type.

Individual developers could write personal notes or diary entries if the diary function was

available. This was not a very important function and was only provided by BerliOS,

SourceForge and GForge.

Another function was bookmark. This function enabled the developer to mark some of the

pages on site. Then the developer could have quick access to those pages by selecting them

from the bookmark list. All the SourceForge codebase sites provided this function.

The next function to be discussed is money earned. This was a function only available on

Asynchrony. As mentioned in the background of the site, the main objective of Asynchrony

was to make money by selling the product of the projects. The amount of money earned was an

indication of the ultimate result of this process. It was not surprising that other sites did not

have this function.

The last function to be compared is rating. As many sites did not measure success with money,

rating systems were employed instead. Two rating systems were found, one by Asynchrony,

and another one from the SourceForge codebase. For the SourceForge codebase rating system,

it was inspired by the rating system at Advogato (Advogato 2003). Five aspects were rated,

namely teamwork/attitude, code (code-fu), design/architecture, follow-through/reliability and

Chapter 7 Detailed investigation on External Hosting Sites

206

leadership/management. Other developers on the site gave scores on these five aspects. A

site-wide ranking of the developer was also calculated. This service was hosted at BerliOS and

GForge. SourceForge used to host such as service, but it was removed later on. On the other

hand, the Asynchrony rating system was even more sophisticated. The final rating of a

developer were based on three scores, peer (75%), experience (20%) and quality (5%). The

peer score based a peer rating system similar to the SourceForge codebase system. The

experience score was calculated from the shares earned from the projects involved. The quality

score was obtained by the quality review from customers of the products of the projects. By

combining the weighed sum of these three factors, the final rating was calculated. This seemed

to be an attempt to construct an indicator for recruitment purposes.

7.3.5 Community Tools

In all FOSPHost sites investigated, there are facilities to foster communication between

developers in different projects and the general public. In most sites, these features are

provided or at least linked at the first page of the site. This page will be referred as the

community page in our discussion. Features such as access, search project, project listing at

front page, classification of projects, search people, project help wanted, latest news, get

support and a number of other features will be examined. The comparison is tabulated in Table

7-9, Table 7-10 and Table 7-11.

The first item for comparison is the permission to access the community page. In most sites,

anyone could access the pages as they were provided at the first pages of the sites. Asynchrony

was the only exception, where only registered members were granted the privilege. The

community page was the first page that a member was directed to after logging in.

The next group of functions to be compared is related to finding projects and people on site.

The first feature to be examined is search project. In most infrastructure sites, this feature

Chapter 7 Detailed investigation on External Hosting Sites

207

existed except for freepository. For sites with SourceForge codebase, searches based on the

keywords of projects were provided. The search function provided by Asynchrony had more

elaborated options to search on type, status, keywords and various dates of projects such as

project starting date. Preferences on the sorting of the results were also provided. For

non-infrastructure sites, this function was not provided.

Another way to find projects on sites is by listing(s) provided at the front community page of

the site. Different sites provided different listing of selected projects. Most infrastructure sites

displayed the best project listings with different selection criteria such as activities or times of

download. Latest or newest project listings were also presented in some sites. Interesting

variations could also be found. On Savannah, latest projects were further divided in GNU,

non-GNU and www.gnu.org projects. GNU stands for the GNU Not Unix project, which is an

attempt to produce a Free Unix system. To become a part of the GNU project meant that the

software had to aligned with the aim and requirements of the GNU project and interoperable

with other GNU software. www.gnu.org projects were specific tasks related to the mentioned

site. On the other hand, recalling that the objective of Asynchrony was to make money, two

listings of 'Need Beta Testers' and 'Completed' were displayed. In the context of the site,

'Completed' meant that the products of the listed projects were on sale in the market and started

making money. Therefore, a list of these projects was displayed to promote the success of the

site. Before products can be sold, beta testings were required. Beta testers could be recruited

on site and those who could suggest useful feedbacks could obtain monetary payments. A

listing of projects that 'Need Beta Testers' was thus designed to facilitate this process. Lastly, a

list of categories of projects was displayed at the front community page of GBorg for easy

access. For non-infrastructure sites, SEUL provided a drop down menu with all projects hosted.

For icculus.org, a list of projects was provided at the first page of the site. The leaders of the

project could request to be shown on the list.

Chapter 7 Detailed investigation on External Hosting Sites

208

On most FOSPHost sites, projects were classified so that users of the sites had yet another

method to locate projects. Most sites classified projects by different topics such as usage areas

and programming languages. In Savannah, classification was done based on GNU and

non-GNU. In Asynchrony, keywords suggested by project leaders such as vb (as in visual basic)

and rpg (as in role-playing game) were used for categorisation. For two non-infrastructure sites,

icculus.org and SunSITE.dk, there was no classification system and all projects were presented

in one list.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-9 Comparison of 'Community Tools' (1)

 Type Access Search Project Project Listing at Front Page Classification

SEUL NI Public No A drop down menu for all projects Topics

icculus.org NI Public No

Projects listed by the requests of the leaders of the

project Just a single list of projects

SunSITE.dk NI Public No No Listing at front page, but a link to listing Just a single list of projects

GBorg I Public No Top / Latest / Category List Topics

BerliOS I Public Keywords Top download / Most active / Newest Topics

Asynchrony I

Only for

registered

members

Type / Status / Keywords / Various

Dates with sorting preferences New / Top / Need Beta Testers / Completed Keywords

Savannah I Public Keywords Newest GNU / non-GNU / www.gnu.org projects GNU and non-GNU

freepository I Public No No No

SourceForge I Public Keywords Most Active / Top Download Topics

GForge I Public Keywords Most Active / Top Download Topics

Chapter 7 Detailed investigation on External Hosting Sites

210

After the discussion of features for finding projects, features provided to locate developers

registered on site were investigated. Obviously, in order for this function to exist, a registration

system is required. Non-infrastructure sites thus did not provided such service. For

infrastructure sites, freepository also did not have this function. For SourceForge codebase

sites, most of them provided keyword search on the login name and the real name of registered

developers on site. This function was altered on GForge to allow a distinct name or skill search.

In Asynchrony, people could be searched by name, skill or rating.

The next function is an interaction between projects and developers – project help wanted. This

is a function to facilitate recruitments that were initiated by project leaders. Developers can use

this function to find projects that they want to contribute to. This function was provided in

SourceForge codebase sites and Asynchrony. In SourceForge codebase sites, recruitment

requests were categorised into different skills. Latest recruitment requests were also shown (all

SourceForge codebase site except BerliOS). Recruitment skill categories were displayed at the

front page of Savannah. For other SourceForge codebase sites, there were links from the front

page to the 'Help Want' page. In Asynchrony, the same search engine for general project search

can be used for finding recruitment requests from projects as well.

For most sites, there were dedicated locations for announcements and latest news. The most

common announcements were new releases of software from projects hosted on site. Some

would also post news about server statuses and matter related to the organization of hosting.

The most interesting case was SEUL that the news section was dedicated to promote Linux by

showing only news in 'Real World' on Linux (this was changed after the investigation was

completed).

Chapter 7 Detailed investigation on External Hosting Sites

211

The next item for examination is how to get support for the sites. As for SourceForge codebase

sites, the software used as the FOSPHost interface was usually hosted on site as well. Therefore,

those who encountered problems with the site were recommended to report those issues to the

corresponding trackers of the FOSPHost project hosted on site. In BerliOS, an email address to

the administrator was provided as well. Similar approach was adopted by freepository, where a

user forum and Bugzilla bug tracking system was setup. In GBorg, the GBorg interface was

also hosted as a project with trackers and users were welcomed to email to the administrator for

support and other comments. In Asynchrony, a chat interface using Java was available on site.

For non-infrastructure sites, email was the recommended method to get support. For

SunSITE.dk, there was an IRC channel to contact staff too.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-10 Comparison of 'Community Tools' (2)

 Type Search People Project Help Wanted Latest News Get Support

SEUL NI No No

News in "Real World" on

Linux Email admin

icculus.org NI No No On new releases Email admin

SunSITE.dk NI No No

On server status and

important projects news Email admin, IRC with staff

GBorg I No No On new releases Trackers, email admin

BerliOS I Keywords Yes On new releases Submit request to a tracker, email to staff

Asynchrony I Name / Skill / Rating Search interface available

On site changes and company

businesses

Chat with support via a Java client interface

on site

Savannah I Keywords Yes (Front page) On new releases Submit request to a tracker

freepository I No No No User forum, Bugzilla

SourceForge I Keywords Yes On new releases Submit request to a tracker

GForge I Name / Skill (by keywords) Yes (Project Openings) Depends on the editor Depends on the policy of individual sites

Chapter 7 Detailed investigation on External Hosting Sites

213

Other than the community tools compared above, some sites also provided other special

features. One of these features is advertising. As the most popular external FOSPHost site,

having advertisements at SourceForge seemed to make sense. They were hosted as banners on

the top of most pages of the site. On the other hand, free advertisements for customers,

sponsors and Free/Open Source projects were available at the front page of GBorg. In SEUL,

Linux advocacy documents were hosted on site (Savannah was of course strong in advocacy on

Free Software but there was no obvious on site feature such as catchy hyperlinks or banners to

promote it).

Another special feature is discussion area for topics not directly related to projects. For

example there was a mailing list hosted on SEUL called seul-edu, which was a list on

introducing Linux to schools. Other similar list existed on SEUL as well. Discussion areas

were also provided at Asynchrony on general technical issues regarding different operating

systems and languages.

Other miscellaneous features included an opinion poll at the front page of SunSITE.dk on

technical topics such as blog and IPv6. On Asynchrony, in addition to having skill profile of

register members, there was collaboration with an external skill certification company to

substantiate the 'claims', of the members. For icculus.org, three lists were found on the

community page of the site. The first was a list of personal sites, then a list of web sites that was

virtually hosted by icculus.org. The third list was the most interesting list of all, a list of credits.

Contributions mentioned on that list included cash as well as hardware, expertise and even

icculus.org icons. According to the administrator of the site, most of the donation actually went

to developers on the site. For example, when a developer required a particular hardware in

order to progress in development, it was donated by others. These good deeds were the origin

of this list.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-11 Comparison of 'Community Tools' (3)

 Type Other Features

SEUL NI Linux Advocacy

Mailing Lists for

Topical Discussion

icculus.org NI

List of

Personal web

sites

List of virtually

hosted web sites

List of credits for

donation & call for

donation

SunSITE.dk NI Opinion Polls

GBorg I

Advertisements from

customers, sponsors and also

from Free/Open Source

projects (for free)

BerliOS I

Asynchrony I

General Discussion

Area (System /

Technical / Projects)

SkillDrill (External

company for skill

certification)

Savannah I

freepository I

SourceForge I

Advertisements bar from

customers

GForge I

Chapter 7 Detailed investigation on External Hosting Sites

215

7.3.6 Others

The category 'others' is comprised of items that cannot be classified into categories above.

Nevertheless, these items are also important in their own terms. Items to be compared in this

category are software for web interface of FOSPHost, license of web interface, development

methodology, license requirement for project hosted, copyright, advertisement, legal and

language related issues, flexibility, donation, miscellaneous items and additional services from

sites in the same organization. The comparison is tabulated in Table 7-12, Table 7-13, Table

7-14 and Table 7-15.

The first item is software for web interface of FOSPHost. The web interface is what glues the

tools and information of projects together. For two out of the three non-infrastructure sites,

static HTML pages were used to present the content of the site and link to different projects

hosted and tools. For SunSITE.dk, a content management system, Drupal (drupal.org), was

employed. For infrastructure sites, all of them developed their own software for the interface,

except that the SourceForge codebase sites based their systems on SourceForge code from

different versions.

For the licenses of the web interface, most of them were GPL licensed, which was one of the

most popular license for Free/Open Source software in general. Exceptions were GBorg was

licensed under the Great Bridge Open Source License and Asynchrony was proprietary.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-12 Comparison of 'Others' (1)

Site Type

Software for Web Interface

of FOSPHost License of Web Interface Development Methodology

License Requirement for Project

Hosted

SEUL NI Just a few HTML pages Probably no need for a license Probably no need for a "Methodology"

Free/Open Source Projects,

Exceptions permitted

icculus.org NI Just a few HTML pages Probably no need for a license Probably no need for a "Methodology" Free/Open Source projects

SunSITE.dk NI Drupal GPL Free/Open Source Free/Open Source Projects

GBorg I GBorg Great Bridge Open Source License Free/Open Source, Self-Hosted on site OSI Licenses

BerliOS I

BerliOS (probably based on

SourceForge v1.5) GPL Free/Open Source, Self-Hosted on site Free/Open Source Projects

Asynchrony I Developed by Asynchrony Proprietary Closed Source Both Proprietary and Open Source

Savannah I

Savannah (based on

SourceForge v2.0) GPL Free/Open Source, Self-Hosted on site GPL compatible licenses

freepository I Freepository GPL Free/Open Source, Self-Hosted on site No restriction

SourceForge I SourceForge

GPL (but download files not found

and no CVS) Closed Source Free/Open Source Projects

GForge I

GForge (based on

SourceForge v2.61pre4) GPL

Free/Open Source, Hosted at

http://gforge.org Policies can vary for different sites

Chapter 7 Detailed investigation on External Hosting Sites

217

Another closely related issue is development methodology. As most of the software for web

interface was Free/Open Source software, the development methodologies were expected to be

Free/Open Source as well. This software could also be hosted as an individual project on their

own sites (self-hosting). This was in fact the prevailing methodology, except for SourceForge,

where there was no source code for download and no CVS available (It was checked by the

researcher on 24/2/03 and a few other times). This confirmed with the background study of

SourceForge that the source was closed.

After the discussion of the license of the software for web interface, the license requirements

for the projects hosted on varied sites need to be examined too. As the criteria for the selection

of sites for investigation, all the sites need to accept Free/Open Source software for hosting.

Most of them in fact only allowed Free/Open Source licenses except for Asynchrony and

freepository, where hosting proprietary software were a valid option. In SEUL, license was

negotiable under some circumstances, but unlike Asynchrony and freepository, it was not an

official option, which would be approved automatically. On the other hand, only GPL

compatible licenses were allowed on Savannah, which could be regarded as the most

'restrictive' of all.

The next item to be discussed is the copyright of the software developed on the FOSPHost sites

investigated. For most sites, the developers owned the copyright of the source code (and the

corresponding cells on the comparison table were left blank). Asynchrony was the exception.

Another interesting aspect was data preservation. This policy stated that even if a project was

officially moved to another FOSPHost site, the original FOSPHost reserved the right to host the

data and the project leader could not remove it. This policy was adopted on GBorg and

SourceForge.

Site Type Copyright Advertisement Legal and Language Related

SEUL NI

icculus.org NI

SunSITE.dk NI

No Commercial ads

and/or banners Satisfy Danish law, content in English or Danish

GBorg I

The developers owns the code but the site can

keep hosting them even if closed later

No Commercial ads

and/or banners

BerliOS I

Some documentations and interfaces had European

language translations other than English

Asynchrony I Asynchrony owns the code

Savannah I Free Software / Rights to code (of users)

No revenue-generating

Advertisements No dependencies to non Free Software, no GIF files

freepository I Users own the code, not the site

SourceForge I

Data Preservation - contributors own the code

but it will cannot be deleted from the site

GForge I

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-13 Comparison of 'Others' (2)

Chapter 7 Detailed investigation on External Hosting Sites

219

The next item to be compared is advertisement on the web pages hosted. Both SunSITE.dk

and GBorg had adopted policy to avoid commercial advertisement or banners. Savannah had

an even more exact definition that advertisements could not be revenue-generating.

The next item is legal and language related issues. While probably none of the sites

investigated would tolerate illegal materials, some had interesting requirements on the project

hosted. For SunSITE.dk, the content of the project hosted needed to be either English or Danish

and legal under Danish law. For Savannah, the software hosted needed to have no

dependencies on non Free Software. Image files with GIF format should not be used. For

BerliOS, multi-lingual seemed to be encouraged. Even some of the getting start guide of the

FOSPHost web interface was translated in the 'fourth' language on site, Hungarian.

The next issue for discussion is the flexibility of the management of the sites to accommodate

special needs of the users. For infrastructure sites, many have fixed templates and established

workflows in management. These structures may help users of the sites to decrease in

confusion. Nevertheless, structure also can imply a decrease in flexibility. For

non-infrastructure sites, SunSITE.dk seemed to welcome specific requests on services from

developers and encouraged prospective developers to host on other infrastructure sites if they

did not need any special services. Similarly, on icculus.org, administrator of site mentioned his

intention to manage in a flexible and informal manner to serve the best interests of each

individual developer, as opposing to the structured services provided in other infrastructure

sites. The administrator was also selective on developers and projects to maintain a smaller,

more elitist community around the site. It could be argued that flexibility was indeed one of the

advantages of non-infrastructure sites over infrastructure. Nonetheless, for most FOSPHost, by

its nature of being open, still offered substantial flexibility over traditional development tools.

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-14 Comparison of 'Others' (3)

Site Type Flexibility Donation Miscellaneous

SEUL NI

icculus.org NI

Flexible and informal to meet the need of individual

developers, no restrictive infrastructure such as 'Role

Management', elitist & selective on projects to form a smaller

community where individual needs can be cared for

Most donations go to

developers' needs (e.g. new

video card, motherboard)

SunSITE.dk NI

Willing to adapt to individual needs, policy negotiable, tools

negotiable

Welcome more volunteers to

help run the site

SunSITE.dk URL must be visible

when re-directed from other sites

GBorg I

BerliOS I

Asynchrony I

Savannah I

freepository I Donation encouraged

SourceForge I

GForge I

Chapter 7 Detailed investigation on External Hosting Sites

221

Donations were explicitly encouraged on some site. freepository was one of them.

SourceForge also started a donation campaign recently but it was not included as it was

discovered after the data collection was completed. On the other hand, people, not money was

asked for on SunSITE.dk. The most interesting case was found at icculus.org. As mentioned

above, most donations were not made to the need of the site, but to needs of other developers on

site to help them progress in their projects.

Site Type Additional Services from sites in the same organization

SEUL NI

icculus.org NI

SunSITE.dk NI

GBorg I Other information on PostgreSQL

BerliOS I

Other services that assist Open Source Business

development such as SourceAgency and DevCounter

Asynchrony I

Savannah I Free Software related topics and philosophies

freepository I

SourceForge I

Part of OSDN (Open Source Development Network) with

Slashdot, NewsForge, etc

GForge I

(NI – Non-Infrastructure, I – Infrastructure)

Table 7-15 Comparison of 'Others' (4)

The last issue to be examined is additional services from sites in the same organization. A

number of infrastructure FOSPHost sites were parts of some organizations. In GBorg, users

were directed to other information on the PostgreSQL database on the front page of the site.

Similarly, on Savannah, links to topics related to Free Software and GNU projects were also

presented at the front. For BerliOS, the FOSPHost service was actually one of the many

Chapter 7 Detailed investigation on External Hosting Sites

222

services that the overall BerliOS web site provided. The goal of the site was to act as a neutral

mediator for developers, users and businesses in the area of Open Source. Examples of other

services were 'SourceBiz', which provided updated Open Source business news and

'SourceWell', where announcement of new version Open Source Software and retrieval

information could be found. For SourceForge, it was a member of the OSDN (Open Source

Development Network), which was made up of other prominent Free/Open Source sites such as

Slashdot (OSDN 2003a) and Freshmeat (OSDN 2003b).

7.4 Discussion of the Comparison

From the comparison above, ten external FOSPHost sites were studied. Brief backgrounds of

the sites were introduced. Tools that facilitated communication between developers, users and

other interested parties (Q1.3, Q1.4, Q1.5 & Q1.38) in a distributed fashion (Q1.1) were

examined. Different policies on different the sites were also compared. A total of 69 items

were compared and they were divided into six aspects, namely general information, project

tools - tools for public/developers, project tools - tools for project administrators, personal tools

for developers, community tools and others. A more detail picture of FOSPHost sites in

operation was thus depicted.

The ten FOSPHost sites examined represented a diverse collection of sites. Many of them had

their own theme. For SEUL, the focus was on end-user application on Linux. For icculus.org,

the focus was on games. Projects hosted on GBorg were related to the PostgreSQL database.

Open Source businesses were promoted on BerliOS with emphasis on localisation. On

Asynchrony, money making was the aim. Sophisticated computations on revenue sharing,

rating of projects and members were adopted. For Savannah, the philosophy of Free Software

and the GNU project was promoted. Though freepository only provided source code repository

service, this service was probably the most feature-rich among the sites. A number of sites also

did not have a particular theme, namely, SunSITE.dk, SourceForge and GForge.

Chapter 7 Detailed investigation on External Hosting Sites

223

As stated in the methodology chapter (chapter 4), the data collected was publicly available.

Due to the nature of openness in FOSPHost, a lot of the data were readily accessible on the

Internet. By having access to the source code of most of the sites, the job of determining which

features existed was made easier. Administrators of a number of sites were also open in their

response when asked. For administrators that did not respond, most of the sites contained

documents to explain the policies of the sites. This also matched that agreed Delphi survey

results on 'openness in attitude, no hidden agenda' (Q3.2), 'openness in procedures and policies'

(Q3.21) and 'an IFHOSP should be run in an open fashion and users should be well informed'

(Q12.9).

For all the sites investigated, though there were different criteria on allowing projects to be

hosting, service fee was not one of the criteria. This could reflect the administrators'

understanding on the desire of the users to obtain a FOSPHost service that was 'low cost or free'

(Q4.4).

In the Delphi survey results, five tools were named important. They were source code

repository (Q2.1), mailing list (Q2.2), WWW server (Q2.5), tracking system (Q2.4) and

security measures (Q2.11). All the sites employed source code repositories and WWW servers.

Except for Asynchrony, all source code repositories allowed anonymous web-based access.

This matches with the agreed results from the Delphi survey on "creating a public library

atmosphere, giving users as much freedom as possible and staying out of the users' way" (Q3.9).

With the exception of freepository, all sites provided mailing lists and tracking systems. In

terms of security measures, while icculus.org and SunSITE.dk did not provide encrypted

protocol, others implemented them at least in some of the services provided.

Chapter 7 Detailed investigation on External Hosting Sites

224

Another result related to the tools offered was 'standard and commonly used' (Q4.7). In the case

of source code repository, all sites employed CVS, which was the most popular Free/Open

Source repository. There were some variations in mailing list, tracking system and security

measures, but most of the tools provided were still commonly used.

The classification of infrastructure and non-infrastructure sites were used in the comparison and

found that non-infrastructure sites were generally smaller in size in terms of project hosted.

Relevant comments could be found in the controversial results from the Delphi survey on the

size of a FOSPHost site. One of the barriers suggested in preventing users from using a

FOSPHost was 'the IFHOSP does not reach a critical mass of users and projects to achieve its

advertising function' (Q5.19). So increase in size is a favourable characteristic. Nevertheless,

an opposing view was also found, 'big IFHOSP are bad (e.g. Freshmeat) small IFHOSP are

good' (Q12.12). Unfortunately, further explanation of the strength of smaller sites was not

elaborated. Furthermore, small in size and non-infrastructure sites may not bear any

relationship with each other. It may be just a coincident. Further examination is thus needed.

A quantitative comparison of the number of features available between the ten sites can also be

done. The results were listed in Table 4-1. Features that were not present or unknown were

regarded as missing and DIY is not regarded as missing. Also, many of the items compared

under the 'General Information' and 'Others' categories were backgrounds and policies of the

sites, not features. Therefore they were excluded. Under these rules, 53 items were counted

and three infrastructure sites GForge, SourceForge and BerliOS provided the most features.

One non-infrastructure site came fourth in the comparison icculus.org, and it provided just one

less feature than SourceForge and BerliOS.

Chapter 7 Detailed investigation on External Hosting Sites

225

Site No of Features (Include DIY) No of Features Missing

GForge 43 10

SourceForge 41 12

BerliOS 41 12

icculus.org 39 14

Asynchrony 33 20

Savannah 31 22

SunSITE.dk 30 23

SEUL 30 23

GBorg 23 30

freepository 8 45

Table 7-16 Number of Features excluding 'General Information' and 'Others'

One reason for icculus.org in providing more features is the availability of personal page for

developers. If we further exclude the category of 'Personal Tools for Developers', then the

number of features provided by SunSITE.dk and SEUL were the same as icculus.org and they

all came fourth in the comparison (Table 7-17).

Chapter 7 Detailed investigation on External Hosting Sites

226

Site No of Features (Include DIY) No of Features Missing

GForge 34 8

SourceForge 34 8

BerliOS 32 10

SunSITE.dk 29 13

SEUL 29 13

icculus.org 29 13

Asynchrony 28 14

Savannah 25 17

GBorg 19 23

freepository 8 34

Table 7-17 Number of Features excluding 'General Information', 'Personal Tools for Developers' and

'Others'

One possible shortcoming of this comparison was counting every feature as equal. Moreover,

omitting 'Personal Tools for Developers' might be reasonable only if the features that related to

projects were the most important features. Nevertheless, the figure above may give an

overview of the situation and may suggest that features provided may not be the major

differences between infrastructure and non-infrastructure sites.

In the comparison above, the focus was on quantitative data. If we look into the qualitative

content of the comparison, from the item 'Input from site administrator(s) to this table', all the

administrators from non-infrastructure sites offered help but not all infrastructure sites. The

willingness in communication could also be seen in the availability of synchronous, real-time

communication tools such as IRC. The administrators could also be contacted directly by email.

In contrast, in some larger infrastructure sites, trackers were the standard way of

Chapter 7 Detailed investigation on External Hosting Sites

227

communication. In terms of policies, SunSITE.dk and icculus.org were flexible in catering for

special needs. In SEUL, even the license requirement for project hosted could be negotiable.

If flexibility and willingness to communicate were probably the attributes of non-infrastructure

sites, then what kind of effect would they have on the developers? The handling of shell

accounts in non-infrastructure sites may provide insight to this question. First considering in

SourceForge, shell accounts and database service came with every project approved. To get an

account was a matter of following the procedure prescribed in the documentation. On the other

hand, from the examination above, shell accounts were not granted automatically in

non-infrastructure sites. Only selected personnel could gain the right to this service. A possible

underlying message was that having a shell account was a token of trust and acknowledgement.

It could then be seen that the operation of non-infrastructure sites could give developers a more

personalised service. Flexibility and willingness to communicate were probably the

pre-conditions for the developers to feel the care and respect from the administration of the

sites.

Another interesting example could be found on icculus.org, a non-infrastructure site.

Donations could be made not only to the site, but donations such as hardware could also be

given personally to developers. Such action was obviously encouraged by the site and a credit

list of such deeds was presented on the front page. Quoting from the administrator, this policy

was one of the measures to achieve the philosophy of 'happy developers are productive

developers'. The administrator also admitted that the number of donations to developers were

substantially more than donations to the site. In huge infrastructure sites such as SourceForge,

the top 10 projects might have thousands of hit on the project front pages daily. Hosting on

non-infrastructure sites might not have this effect of gaining popularity. Nevertheless, the

Chapter 7 Detailed investigation on External Hosting Sites

228

quality of attention in receiving hits on project page and receiving a gift from others could be

substantially different.

Flexibility did not just enable the administration of a site to serve personal needs of developers;

it may also allow developers to be themselves. One of the controversial results from the Delphi

survey was 'Reinforcing explicit development roles' (Q3.4). Two comments were made against

this statement. Chris argued that 'Hackers are often jacks-of-all-trades. Pigeon-holing them is

bad.' Garrett also claimed that "It's good for 'roles' to not be taken too stringently in FS/OS.

Many of us are 'all-purpose' developers. The diversity we are exposed to can't let us get stuck in

one 'role'." As the 'standard format' did not exist in non-infrastructure, developers needed to

make more decisions on the design of the project page and the employment of tools. The

arguments proposed by Chris and Garrett might imply that some developers would rather be

granted this freedom as the norm. Another relevant controversial result was found in Q3.18.

The statement 'The value of heterogeneity, differences as assets' was a summary of two

comments, one was suggested by Alvin that 'they (administrators of FOSPHost sites) shouldn't

promote any particular practice. The heterogeneity of approaches is one of the strengths of the

way things are done without these infrastructure sites.' (Alvin's comment was actually the

origin of the idea of the classification of infrastructure and non-infrastructure sites) It is

possible to postulate that the design of non-infrastructure sites may fit the work practices of

certain groups of developers.

After the discussion of various aspects of non-infrastructure sites, we can revisit the

relationship between size and non-infrastructure sites. One of the administrators of a

non-infrastructure site pointed out that the size of the site was kept intentionally small

otherwise the amount of personalisation in the communication cannot be maintained. On the

other hand, by the nature of the infrastructure, more projects can be hosting as the structure can

Chapter 7 Detailed investigation on External Hosting Sites

229

effectively streamline the management on infrastructure sites. It will also be easier to locate a

project hosted or a developer registered more easily as every entity has the same format.

Flexibility is thus harder to achieve and communication may become more formal.

It can then be postulated that by creating a smaller, more flexible non-infrastructure sites, a

closer community with more personalised attention can be built. The personalised attention

given to developers can then be a positive motivation for advancing their projects. For

infrastructure sites, the management was partly done through the structure and the policies of

sites. For non-infrastructure sites, it could be argued that more emphasis was put on motivating

the developers in a more intangible, personal level. Being flexible may also fit the project

management style of particular developers.

After the discussion of the differences between the two categories, there is an issue that may

require clarification. The discussion above is not an endorsement from the author on

non-infrastructure sites. Non-infrastructure sites are probably less known and thus more

attention was paid in the discussion above. The differences between infrastructure and

non-infrastructure sites were examined and probably they are more applicable in some

occasions than others. Due to the primarily focus of the data collected was on the 'what'

questions on features, the possibility to establish a well-reasoned preference for one or the other

was low. Further research into the 'how' and 'why' questions may be required.

From the analysis of infrastructure and non-infrastructure sites above, there seemed to be

differences found between two groups of sites. This categorisation thus seemed to perform its

job of separating sites with differences. Nonetheless, more research into the 'how' and 'why'

questions will be required to determine the nature of these two groups of sites. Moreover,

Chapter 7 Detailed investigation on External Hosting Sites

230

SourceForge codebase sites also had a big influence among infrastructure sites and they may

have the potential to become a category on their own rights.

Recalling that the overall purpose of the research was exploratory, the preference of this

investigation should be given to breadth over depth. Nevertheless, one might find some of the

features discussed descended into minute details. This approach was taken as administrators

probably had a technical background and preferred clear, technical presentation. Fortunately,

this assumption seemed to be correct and the comparison table opened doors for the researcher

to start conversations with a number of administrators. One of the administrators appreciated

the researcher's effort for making it clear how the sites measured up to SourceForge, while

another found a feature from another site interesting and might add that to his/her own site.

This approach of including details of features was also chosen as some of the users of the final

evaluation model may also have similar technical background as the administrators. From the

responses elaborated above, this approach had contributed to this study and possibly will

contribute to the evaluation model as well.

The study presented was on one hand, a reasonably comprehensive research on external hosting

sites; but, on the other hand, opened other doors for further research. From the agreed result of

the Delphi survey, tools provided on a FOSPHost site should be effective and productive (Q4.8).

The availability of the sites should be high as well as the bandwidth (Q1.37 & Q4.6). The

usability of the tools was important as well (Q3.3). Moreover, 'How' and 'why' questions such

as 'how does the sites serve the purpose of different type of users?' and 'why does different

administrator run the sites different?' can be studied to deepen the understanding on

infrastructure and non-infrastructure sites. Research method such as interviews on

administrators and developers can also be conducted to collect more data to answer these

questions.

Chapter 7 Detailed investigation on External Hosting Sites

231

7.5 Summary of Chapter Seven

Ten sites were investigated in this detail study. The backgrounds, features and policies of these

sites were compared under the categories of general information, project tools - tools for

public/developers, project tools - tools for project administrators, personal tools for developers,

community tools and others. These sites were further classified into infrastructure and

non-infrastructure based on their nature. Through this study, the meaning of a FOSPHost site

fostering communication of different parties in multiple means was further expanded.

Relationships between Delphi survey results and the findings in the investigation were found

and the differences between infrastructure and non-infrastructure sites were explored.

After accumulating data from the Delphi survey and the detailed investigation, it is possible to

construct an evaluation model on FOSPHost sites. The detail implementation of this evaluation

will be elaborated in the next chapter.

Chapter 8

Construction of Evaluation Model

8.1 Introduction

In this chapter, the implementation of the evaluation model, which was the final product of the

research, will be showed together with the rationale of the design of the implementation. The

discussion of this rationale will begin from the examination of the nature of the data collected in

the previous chapters and the choice of suitable types of evaluation presentations. After

deciding the types of presentations, the choice of tools for implementations will be explained.

Afterwards, the actual implementation will be presented. A discussion of the implementation

will also be included.

8.2 Data Collected and Choice of Evaluation Present ation

Two types of data were collected in this research. One was from the Delphi survey and the

other from the detailed investigation. The data from the Delphi survey was both quantitative

and qualitative. It consisted of qualitative statements with quantitative numbers to indicate

their respective validity, importance and controversy. A substantial proportion of the content of

the statements covered a number of broad topics. On the other hand, the data from detailed

investigation was mainly qualitative. Most of the content covered by each items in the

comparison table of the detailed investigation was fairly specific.

Chapter 8 Construction of Evaluation Model

233

According to the nature of data collected, different evaluation presentations were chosen.

Recalling that there are two major types of presentations, namely checklist/framework and

broad topics. Within the presentation of checklist/framework, the presentation may prompt the

user to give different types of answers, namely binary, subjective scale, weighed scale,

measured results and qualitative answer. With evaluation built on checklist/framework with

binary answers, the focus of the evaluation tended to be very specific while broad topics

presentation gave the users of the evaluation a lot of freedom to explore. Nevertheless, broad

topics presentation may require more mental effort from the users (Table 5-4).

Matching the nature of the data collected to the nature of the evaluation presentation, a checklist

with qualitative answers was chosen to present the Delphi survey results. This was chosen as

many of the statements in the Delphi survey contained broad meanings. Broad topics

presentation might not be applicable, as it required an established theoretical framework as well

as mental effort from the users of the evaluation. One of the shortcomings of this presentation

was the quantitative side of the data could not be easily represented. A possible compensation

was to sort the statements in the checklist presentation according to the measure of importance

voted in the Delphi survey. Nevertheless, some statements will be grouped together for

simplicity's sake and ordering according to importance came second in terms of priority.

Comparing to Delphi survey results, the data collected in detailed investigation was more

specific. Therefore, a checklist presentation with subjective scale or weighed scale could be

chosen. Nevertheless, one of the drawbacks of subjective scale is that all features will be

presented as equally important since the final score calculation will be a simple summation of

the scores given to every feature. Employing weighed scale may rectify this shortcoming, but

not totally. Two possible situations may arise. One situation will be that the user may find

assigning numbers for different importance difficult. Another situation will be that in a

Chapter 8 Construction of Evaluation Model

234

weighed system, the summation of the score of many minor features will be equal one major

feature. Nevertheless, this situation might not be true in real life. In some cases, the major

features will be so important that the presence of many other minor features will be irrelevant.

A modified version of weighed scale was thus devised.

This modified presentation was similar to weighed scale, but the importance of features was

weighed qualitatively. For example, each feature could be classified as nice to have, important

and indispensable. Three scores were then calculated according to the features presented, such

as the number of indispensable features present. The FOSPHost sites with the most

indispensable features present will then be ranked first. They would then be ranked according

to the important features and the nice to have features. In this way, the importance of major

features and minor features would not be mixed.

From the data analysis in section 7.4, there were links between the data of Delphi survey results

and detailed investigation. By taking the advantage of the hyperlinks of the World Wide Web,

these links were represented as links on web pages. Another fact from the analysis was that

many areas in this study would be benefited from further research. Further input from the

Free/Open Source communities or any other parties to this evaluation would then be favourable

and the evaluation was designed to accept comments.

8.3 Implementation of the Evaluation Presentations

From the discussion above, there would be two formats of presentation employed. For Delphi

survey results, the format would be checklist with qualitative answers. For detailed

investigation of external FOSPHost sites, a checklist with modified weighed answers would be

used. The related issues between the two formats would be joined by hyperlink and the system

should also accept comments from users of the evaluation. The implementation of the

specification stated will be explained below. The choice of tools to accomplish the task will

Chapter 8 Construction of Evaluation Model

235

first be introduced and then the actual implementation of the evaluation model will be

presented.

8.3.1 Tools Chosen for Implementation

In this section, tools employed for the implementation of the evaluation will be introduced and

explained. One of the most basic resources was to find a web hosting service. As the Delphi

survey was executed online before, the researcher could use the same web hosting service again.

Nonetheless, another hosting service was chosen for two reasons. First, from the Delphi survey

results (Post-Delphi survey), the bandwidth of web server that the researcher could access in the

University was too narrow. Second, it would be nobody's duty to maintain the site after the

graduation of the researcher in his PhD programme, as this research project would end.

ibiblio.org (ibiblio.org 2003a) was chosen as the host. ibiblio.org was 'a conservancy of freely

available information, including software, music, literature, art, history, science, politics, and

cultural studies.' (ibiblio.org 2003b) There were on average three million information requests

per day and the site was well managed. Also, the site did not just provided its contributors with

basic web hosting service, services such as web server-side scripts and database were also

available. Tools such as PHP and MySQL were found to be indispensable in order to

accomplish the task.

From the description above, ibiblio.org seemed to fit the needs of this research. Nevertheless,

the question asked from the reverse direction 'did this research satisfy the requirement of

becoming a collection of the site?' also needed to be considered. One of the aims of the site was

to 'create, expand, improve, publish, and distribute research on the open source communities'

(ibiblio.org 2003b). This research thus matched this goal. Another requirement was

non-commercial. This project also did not generate any revenue and thus satisfied this

condition. The researcher hence applied to the site and was successfully granted the status of a

contributor.

Chapter 8 Construction of Evaluation Model

236

For presenting the Delphi results as a checklist evaluation, Wiki was employed. Recalling that

a Wiki is 'a freely expandable collection of interlinked Web "pages", a hypertext system for

storing and modifying information - a database, where each page is easily editable by any user

with a forms-capable Web browser client' (Leuf & Cunningham 2001, p. 14). It was chosen as

Wiki is strong in its hyperlink functionalities and allows inputs from users.

There were many implementations of Wiki available (may be close or more than a hundred

(Wiki Engines 2003)). WakkaWiki (Mans 2003) was chosen in this case as it provided several

important features, namely comment area and access control. From the Delphi survey results,

Wiki was voted as the most controversial tool. The reason may be due to its chaotic nature of

Wiki (anyone can change anything). By having a separate comment area and access control,

more control could be gained while users could still give their opinion. This was important, as

the PhD programme required the author to produce original work. If others could 'contribute'

directly to the Wiki online, it would be difficult to prove that the work was original. Therefore,

commenting was chosen to be the feedback mechanism, rather than the standard Wiki practice

of allowing anyone to change anything.

In the implementation of the modified weighed scale checklist, the method of tailor-made

programming using PHP and MySQL was chosen as this checklist presentation was seldom

found in other places. The tailor-made method could give the researcher total control on the

design of the presentation of the checklist and thus this method was chosen.

Tools selected for the implementation was introduced in this section together with the rationale

of the choices. The actual implementation will be presented in the next section.

Chapter 8 Construction of Evaluation Model

237

8.3.2 Evaluation Model Implemented with the Chosen Tools

After the introduction of tools employed, the implementation of the presentations of the

evaluation will be showed in this section. The implementation should be up and running at

http://www.ibiblio.org/fosphost/wakka/EvaluateFOSPHost and the reader is encouraged to

browse it online. The site map of the implementation is illustrated in Figure 8-1. The section

that was implemented by Wiki contained mostly the results from the Delphi survey and it was

divided into four sections, namely 'What is a Free/Open Source Hosting (FOSPHost) Site?',

'Common Objectives and Possible Benefits of Using a FOSPHost Site', 'Preferred Attributes of

a FOSPHost Site' and 'Controversial Issues of FOSPHost Sites'. Issues on infrastructure and

non-infrastructure sites also were included in Wiki under 'Controversial Issues of FOSPHost

Sites'. On the other hand, the weighed checklist was implemented by PHP and MySQL. A

comparison table was also implemented for those who did not want to go through the process of

assigning weights on different features. Relevant items in both sections were linked by

hyperlinks. Hyperlinks were also built to link statements in Wiki to the results from Delphi

survey so that readers could discover the origins of these statements in their contexts.

From the site map (Figure 8-1), the front page of Wiki contained introductory information and

links to six other sections (Figure 8-2). The idea of FOSPHost was explained in the page 'What

is a Free/Open Source Hosting (FOSPHost) Site?' The classification of external hosting and

self-hosting sites was also introduced and advantages for each type of sites were also stated.

References to results of Delphi survey were made through the (Q?.?) links (Figure 8-3). The

next section, 'Common Objectives and Possible Benefits of Using a FOSPHost Site', was

designed to convey a realistic expectation to a FOSPHost site. The content was mainly made up

of statements from question 1 (objectives) and question 6 (benefits) from the Delphi survey.

Figure 8-1 Site Map for Evaluation Model

Chapter 8 Construction of Evaluation Model

239

Figure 8-2 Front Page of Wiki

Chapter 8 Construction of Evaluation Model

240

Figure 8-3 What is a FOSPHost Site?

The next section, 'Preferred Attributes of a FOSPHost Site', was made up of the agreed answers

from the Delphi survey. As analyzed in sub-section 6.3.4, the agreed answers could be

categorised using the software evaluation classification, namely intrinsic, utility, usability and

context. This system was adopted and four corresponding sub-sections were thus created

(Figure 8-4). In the intrinsic sub-section, preferred attributes related to the administration of a

FOSPHost site were listed. These attributes were mainly contributed from the results of

question 12 of the Delphi survey. In the utility sub-section, tools voted as important from

question 2 of the Delphi survey were listed (Figure 8-5). They were linked directly to the

comparison of FOSPHost sites implemented by PHP and MySQL so that the user could lookup

how these features were implemented at each of the ten sites tabulated. The next sub-section

was usability, where important usability factors for a FOSPHost site were listed. Most of these

factors were obtained from answers to question 4 of the Delphi survey. For the last sub-section,

Chapter 8 Construction of Evaluation Model

241

issues on context, culture and work practices were stated (Figure 8-6). Most of the content

was obtained from the answers of question 3 of Delphi survey, which was a question asked

exactly on these issues.

Figure 8-4 Preferred Attributes of a FOSPHost Site

Figure 8-5 Preferred Attributes - Utility

Chapter 8 Construction of Evaluation Model

242

Figure 8-6 Preferred Attributes - Context

The last section on Wiki was 'Controversial Issues of FOSPHost Sites'. Four sub-sections were

created, namely 'Infrastructure and Non-Infrastructure Sites', 'We love freedom, but how far can

it go?', 'What characteristics are admirable in source code?' and 'Other Controversial Issues'

(Figure 8-7). Except for the sub-section 'Infrastructure and Non-Infrastructure Sites', which

was based on the classification and analysis from the detailed investigation, the other three

sub-sections were based on the results from the Delphi survey. From the analysis of

controversial answers, the answers were categorised into four groups, namely 'We love freedom,

but how far can it go?', 'What characteristics are admirable in source code?', 'What is a worthy

motivation?' and 'Important but not urgent tasks'. Nevertheless, as the different issues within

the sub-sections were presented mostly in point-form format, it was difficult to explain issues in

'What is a worthy motivation?', which required detail explanation. In order to solve this

problem, three groups were formed rather than three, namely 'We love freedom, but how far can

it go?' (Figure 8-8), 'What characteristics are admirable in source code?' and 'Other

Controversial Issues'. Similar to preferred attributes, relevant statements were linked to Delphi

Chapter 8 Construction of Evaluation Model

243

survey and the comparison of FOSPHost sites implemented by PHP and MySQL as

references to users.

Figure 8-7 Controversial Issues of a FOSPHost Site

Figure 8-8 We love freedom, but how far can it go?

After the detail description of the Wiki implementation, the implementation of the weighed

checklist by PHP and MySQL will be explained. There were two major components in this

implementation, the comparison table and the weighed evaluation. The comparison table will

be introduced first.

Chapter 8 Construction of Evaluation Model

244

The comparison table implemented was simply a concatenation of the comparison tables in

chapter 7 with additional functionalities. The items showed on the table were arranged into

different groups, namely 'General Information', 'Project Tools - Tools for Public/Developers',

'Project Tools - Tools for Project Administrators', 'Personal Tools for Developers', 'Community

Tools', 'Others', which were the same as the grouping in chapter 7. A complete table was

available on site in static html format. This table, however, was quite huge and users might just

want a portion of the whole table. Options were available for them to generate a table with

specified feature groups and sites (Figure 8-9). After the table was generated, in case the user

wanted further adjustment, one could modify one's choice on the same page and re-generate the

table (Figure 8-10 & Figure 8-11).

Figure 8-9 Opinions for Generating Customised Comparison Table

Chapter 8 Construction of Evaluation Model

245

Figure 8-10 Example of Customised Comparison Table Generated (1)

Chapter 8 Construction of Evaluation Model

246

Figure 8-11 Example of Customised Comparison Table Generated (2)

After the explanation of the implementation of the comparison table, detail description of the

weighed checklist can be found below. There were three steps involved in using the checklist.

In the first step, the user was asked to specify which feature groups should be included for

evaluation. This groups were the same as the grouping in the comparison table. Users were

also asked to define several features classes, which were the weights to be used. The default

included three classes, indispensable, important and nice to have. Different colours could also

be assigned to each of the classes (Figure 8-12).

Chapter 8 Construction of Evaluation Model

247

Figure 8-12 Step 1 of Weighed Checklist

After choosing these options, an evaluation form was generated and it was the second step of

employing the checklist. In the evaluation form generated, the users could indicate the

importance of each feature in the feature groups chosen by assigning it to an appropriate feature

class. The user could also choose the sites to be included in the evaluation (Figure 8-13).

Chapter 8 Construction of Evaluation Model

248

After the user had assigned the importance of the features to the feature classes, the scores of

each of the sites selected were calculated and presented in the result page, which was the third

and final step. The calculation of the score was that 1 was awarded for a presence of the feature

and 0 for none. The score for each feature class was calculated individually. Finally, the sites

were ranked according to the score of the most important feature class and then the classes

followed. An exception was given to features that required DIY. Recalling DIY meant that

users of a FOSPHost site could install a certain tool on their own accord. DIY could be a

nuisance or an advantage, depending on the need and the attitude of the user. Therefore, it was

designed so that the user of the checklist could choose to award a DIY item a score from 0 to 2

to account for this variation (Figure 8-14 & Figure 8-15).

From the screen captures (Figure 8-12, Figure 8-13, Figure 8-14 & Figure 8-15), one may

notice that a different name, 'Evaluation of Free/Open Source Project Hosting (FOSPHost)

Sites Available for Hosting Projects Externally from Project Owners based on User-defined

Criteria', was given to the title of the web pages of the weighed checklist rather than variations

of the phrase 'weighed checklist'. This was done so because it was too complicated to explain

what was a modified weighed checklist and why was implemented. Alternatively, the user was

encouraged to iterate through the three steps a few times to generate the desired result rather

than presenting an explicit explanation in details.

Chapter 8 Construction of Evaluation Model

249

Figure 8-13 Step 2 of Weighed Checklist

Chapter 8 Construction of Evaluation Model

250

Figure 8-14 Step 3 of Weighed Checklist (1)

Chapter 8 Construction of Evaluation Model

251

Figure 8-15 Step 3 of Weighed Checklist (2)

In this section, the implementation of the evaluation model was explained and screen captures

were showed. Two different types of tools were employed in the implementation, namely Wiki

and PHP with MySQL and the content of the data collected was presented.

8.4 Discussion of the Evaluation Model

After the description of the implementation of the evaluation model, the quality of the model

itself can be evaluated also. A suitable evaluation presentation format was chosen based on the

nature of the results of the Delphi survey and the detailed investigation of external hosting

FOSPHost sites. Recalling that the main focus of the detailed investigation was selected to be

on the features of the FOSPHost sites to accommodate the expectations of both Free/Open

Source developers and new comers. The weighed checklist then could be a helpful tool for sites

comparison based on features offered. Hyperlinks were also used extensively to related

relevant pieces of information all the way back to their origins upon the empirical results

collected. The system also accepted comments from the users of the evaluation. Therefore, it

can be regarded that the original specification of the evaluation model was successfully

implemented.

Chapter 8 Construction of Evaluation Model

252

Nevertheless, further examination can be performed for further improvement. Several

limitations could actually be found. As stated above, it would be difficult to present the

quantitative results obtained from the Delphi survey together with the qualitative presentation.

Moreover, while benefited from the breadth of the results collected from the Delphi survey, the

arguments in the preferred attributes in the sub-sections on intrinsic, usability and context

would certain be strengthened if more in-depth data was available.

Within the constraints of the present research programme, these limitations would be difficult to

eliminate. Nonetheless, in terms of presenting quantitative ratings to qualitative statements,

modification of the Wiki engine may be required. The specific implementation of Wiki engine

chosen for the implementation of the evaluation, WakkaWiki, was a lightweight

implementation in terms of the amount of source code used. The decision to choose a

lightweight implementation was done intentionally so that alteration to the code could be done

more easily. Furthermore, the edit page function of the Wiki will be activated after the

completion of the examination process of this dissertation. Hopefully, more opinion could be

collected to suggest directions for further in-depth research in the area of FOSPHost. In short,

by taking the advantage of Free/Open Source, in source code and in concept, the site was

designed for growth and thus the limitations stated above can be more readily overcome in the

future.

8.5 Summary of Chapter Eight

In this chapter, the construction process of the final product of the research, an evaluation model

for FOSPHost sites, was presented. The chapter started by reviewing the nature of the results

obtained from the Delphi survey and the detailed investigation of external hosting FOSPHost

sites. Qualitative presentation and modified weighed checklist presentation were chosen

correspondingly and a detail specification was devised. Tools were chosen accordingly and the

Chapter 8 Construction of Evaluation Model

253

specification was successfully implemented. Though limitations to the implementation

were found, promising methods of improvement were suggested.

In the next chapter, the overall quality of the result and the evaluation model will be discussed.

A further interpretation of the implication of the results together with other supportive literature

will be presented.

Chapter 9

Discussion of Results

9.1 Introduction

In this chapter, the overall quality of the findings and the evaluation model presented on the

web will be examined. Implications arise from the results will be explored. These implications

will be connected to the wider discussion of the Free/Open Source phenomenon.

9.2 Discussions and Limitations of this research

In this project, results from the Delphi survey and the detailed investigation were presented in

an evaluation web site constructed to the evaluation presentation chosen. The rough estimate of

the responds from the Free/Open Source communities can be obtained by a google search on

'www.ibiblio.org/fosphost/'. About 50 entries were obtained on 30 August 2005 (A few of the

50 entries obtained was the related to the attacks from indecent spam on Wiki, so the actually

number should be lower). Many of the web pages in the search result were Free/Open Source

related sites or mailing lists concerning the topic of FOSPHost. Most of them prefer the table

format rather than the evaluation format (For example, a good number of links referred to

'http://www.ibiblio.org/fosphost/exhost.htm', which is the all-in-one comparison table). The

content of the Wiki was also less discussed. Moreover, even in the table format, the utility

aspect was the more popular. One of the sites that linked to the evaluation, 'Loads of Linux

Links' (Willard & Irwin 2005), picked the link to the comparison of 'Project Tools - Tools for

Chapter 9 Discussion of Results

255

Public/Developers' and 'Project Tools - Tools for Project Administrators' only. Moreover, a

leader from the communities, Karl Fogel, who is a leader developer of CVS and Subversion,

and also wrote an important book on version control systems and the co-ordination of

Free/Open Source project (Fogel 1999), also left a thank you note on the evaluation site forum.

A former version of this dissertation was emailed to him on his request. It is possible that some

of the result in this dissertation will be included in the coming edition of his book.

The estimate obtained above thus supports the assumption that the Free/Open Source

communities would prefer a detailed investigation. It was also no surprise that the communities

prefer the utility aspect of the comparison. The evaluation mechanism was also not preferred.

Three other aspects, namely intrinsic, usability and context, are built from the result Delphi and

the content were relatively thin. By employing a Delphi survey using the flexible model of

individual participation to a Free/Open Source community as a basis of the initial questionnaire,

a broader range of data could be collected but the depth for each of the answer collected was

less. A similar situation occurred in the detailed investigation of external hosting sites. The

basic sources of data were the presentation of the sites on the Internet, on site documentation

and the source code of the site. It was difficult to reach a more solid conclusion on the nature of

infrastructure and non-infrastructure sites as the rationale of the design of these sites seldom

was explicitly stated in the sources of data investigated. Comments from some site

administrators from the confirmation process of the comparison tables were found to be

invaluable in understanding their rationale and thus conducting interviews may be a promising

direction to obtain such data. Nevertheless, due to the limitation of resources, the research had

to stop at this point. Therefore, the evaluation model, which was built on the data collected,

covered a broad range of topics. It would be desirable to cover each topic in depth, but it was

again the limitation of this study. This shortcoming definitely decreases usefulness of this

evaluation to the user.

Chapter 9 Discussion of Results

256

Another limitation is that the presentation also could not sufficiently represent the quantitative

data collected during the Delphi survey. It could be improved by modifying the source code of

WakkaWiki but again this is another area for further research. Moreover, only the developers

were the focus of the model of individual participation to a Free/Open Source community and

views from other stakeholders may not be collected.

As a summary, the research probably fulfilled its original purpose as an exploratory research.

Under this purpose, in-depth investigation was not the priority and therefore one of the obvious

limitations was the depth of the study. Nonetheless, the results of this research probably have

open ways to further studies.

9.3 Implications of the Findings – Free/Open Source as a Different

Paradigm

In this section, the results obtained will be further interpreted and related to literature and the

Free/Open Source phenomenon itself. The proposition of Free/Open Source software

development process as a radically different method comparing with conventional software

engineering process (the Bazaar model) will be examined. The results of this examination will

then shed light on how the Free/Open Source phenomenon could be investigated and

understood.

At the commencement of this dissertation, the idea of using the metaphor of the Cathedral and

the Bazaar (Raymond 2000b) to demonstrate the differences between the traditional software

engineering approach and the Free/Open Source software development process was introduced.

What does the results of the Delphi survey imply on the nature of the Free/Open Source

software development process? Is it a radically different process, or it is just a change in some

of the parameters in managing a software project?

Chapter 9 Discussion of Results

257

The examination of the question starts from the 'Cathedral' metaphor. Johnson (1999)

suggested that the metaphor referred to the waterfall model of software development process

(Royce 1970). This process starts from system requirements, software requirements, analysis,

program design, coding, to testing and operations. Several assumptions seemed to be made.

The requirement of the system was assumed to be relatively stable with clear purposes. Or in

short, order was expected in whole process and if something went wrong, for it to be pulled

back to order. As software development processes are seldom linear, a number of modifications

were added to the waterfall model to incorporate iterative elements. Nevertheless, the basic

assumption of orderliness still remained.

Another aspect is that process is the focus of the development and programmers are assumed to

be more or less obedient. They will still follow the process prescribed. An example of such

view can be found in the Capability Maturity Models (CMM) (Software Engineering Institute

2003a). These models were established to improve the quality of software produced. Three

dimensions were recognized, namely, process, technology and people, which would affect

quality. Process was chosen to be the key dimension (Bate et al. 1995). Even in the model that

is probably closest to individual programmers, the Personal Software Process (PSP)

(Humphrey 2000), the idea was to improve a programmer's performance by adopting certain

disciplines. Variables such as time, size of code written and defects were measured and fed

back to the programmers as well. The goal is to improve the overall productivity. Factors on

work environment and psychology of programmers were also addressed in the People

Capability Maturity Model (P-CMM) (Curtis, Hefley & Miller 1995) such as communication,

staffing, career development, managing performance and team building. Other materials have

also been written for managers to exploit these factors and maximise the motivations of

programmers (DeTienne, Smart & Jones 1995; Humphrey 1997; Whitehead 2001). For

Chapter 9 Discussion of Results

258

example, from the book 'Managing Technical People' written by the founder and a fellow of

the Software Engineering Institute, Watts Humphrey (1997), much insightful advice on

managing programmers was given. Techniques such as recognition, delegation, and feedback

of performances were discussed. Nevertheless, the bottom line seems to be to meet the target

with the limited resources that a programmer has. The process dimension is probably placed in

a high priority than the human dimension.

Referring to the discussion of the Free/Open Source software development process, a number

of academics also proposed different models of the process (Aoki et al. 2001; Jorgensen 2001;

Nakakoji et al. 2002; Wu & Lin 2001). Some of these models even have similarities with the

waterfall model. On the other hand, Jones (2000) found difficulties in comparing conventional

software engineering with in Free/Open Source software development. He was originally

trying to investigate whether Brooks's law was proven wrong by the Free/Open Source software

development process. An obvious place to investigate was the schedules of software projects.

Then he found that the scheduling practices in the two processes were different and thus

difficult to use this method of comparison to draw conclusion on Brooks's law. An interviewee

in that article compared the flexibility in scheduling in Free/Open Source software development

with Michelangelo creating an artistic masterpiece. 49% of the participants in BCG Hacker

survey also agreed that programming was 'like composing poetry or music' (Lakhani et al.

2003). This confirms with one of the top agreed practices to be promoted – flexibility towards

volunteers (Q3.17).

Another difference could be that Free/Open Source was said to be 'very different from corporate

monocultures' (Q3.18). As a Free/Open Source project is run openly, it is then more possible to

encounter unexpected voices and even accidents. Considering Linux, the Free/Open Source

project 'par excellence', was named 'an accidental revolution' in a biography of Linus Torvalds

Chapter 9 Discussion of Results

259

(Torvalds & Diamond 2001). In fact, accidents are anticipated and welcomed. Raymond

(2000b) explained that Free/Open Source software may be used for purposes beyond its

original design. By communication with end-users, such unexpected needs can be heard and

accommodated. Fogel (1999) explained in a similar idea under the name of evolution-centered

design. The essence of this design is flexibility and comprehensibility so that the code-base can

be used and re-used to solve programs that one may not even expect. An example was that there

should not be an arbitrary length limit on an input stream. Without such limit, a data structure

that holds text strings can be used to hold binary graphic data instead. This approach in project

management is seldom heard in conventional software engineering practices. The process

dimension seems to take a lower priority.

As discussed above, in conventional software engineering, the process dimension is more

important than the people dimension. Techniques to motivate programmers were employed,

but the aim seems to be to maintain the process. According to research on motivation in work

(Herzberg, Mausner & Snyderman 1959) and also specific surveys in the field of information

technology (Couger 1988), the nature of work (originally called 'work itself' in the surveys) was

the among the top motivators. If a programmer who is not even happy with the nature of the job

of computer programming, he or she is unlikely to have the motivation to pursuit excellence or

enjoy the challenge of an aggressive schedule suggested by Humphrey (1997). In contrast,

most participants of Free/Open Source projects were found to be highly motivated due to the

love of programming. Lakhani et al. (2003) surveyed 684 developers on SourceForge and

found 60% of the participants agreed that 'With one more hour in the day, I would spend it

programming'. Another survey by found that 80% of respondents participated in Free/Open

Source due to self-determination (Hars & Ou 2001). Flexibility in management (Q3.17) may

also increase the possibility in creating a win-win situation to achieve both the project goal and

personal goals of the developers. Keeping developers happy is one of the recommended

Chapter 9 Discussion of Results

260

practices (Q3.37). This practice of flexibility and emphasis on motivation of developers was

again reflected from the non-infrastructure FOSPHost from the detailed investigation. Again,

this is different from the traditional software development situation mentioned above where the

bottom line seems to be to a programmer has meet the project target with limited resources.

This difference in goal may cause different consequences to arise. Powell (2002) observed a

circumstance in the KDE project that the developers picked tasks that interested them and

'boring' tasks were accumulating as the project grew. On the other hand, motivation can also be

utilised to improve project efficiency. For example, Collab.Net is a company selling web-based

collaborative software development environments and consulting services inspired by

Free/Open Source software development processes. In this web-based environment, different

permissions can be assigned (Collab.Net 2003b). One application of this permission feature is

about protecting intellectual property of the company, but another use of this feature is not to

make all source code immediately available internally to employed developers. They had to

'earn' their right to access some of the source code, which creates an extra motivation system

(Carpenter 2001). This is different from conventional practice as process, rather than

motivation, is emphasized (Robbins 2002).

When the consideration of the purpose of a software project becomes more diverse, how the

benefits a project is evaluated may also be changed. In a discussion on project failure on

Advogato, higb said:

'I consider my mpEDIT project to be dead, but it got to be one chapter in somebody's book, was

used in a college course, and was picked up briefly by the NCSA. Along the way it helped people

learn programming. Even if it never got to be a widely used tool, I count it as a measured success'.

(Advogato 2000c)

Chapter 9 Discussion of Results

261

The example may suggest a more comprehensive consideration of the benefits, rather than just

judging from the functionality and usability of software. Indeed, from the results of the survey,

a number of different values of software are obtained such as learning (Q3.6) and fun (Q3.37).

Other than qualitative arguments, there is quantitative evidence from empirical data that some

Free/Open Source Software can evolve differently from conventional closed source

development in the laws of software evolution (Scacchi 2003). During the investigation of

these discrepancies, Scacchi suggested that Free/Open Source software 'constitute a distinct

technological regime' (Scacchi 2003, p. 25). To understand the evolution process of Free/Open

Source software, alternative ontologies needed to be established. From the discussion above,

some important rules are different in the world of Free/Open Source software such as order,

project goals and motivation. Borrowing from science fiction or cosmological physics, there

may be many possible universes out there. The one that is familiar, software engineering, may

be only one of these many possibilities. Free/Open Source software development allows

developers to run project on their own terms, and thus it is possible to run software projects in

many different ways. Within the results of the survey, embracing practice of software

engineering (Q3.8), aiming to produce useful software (Q1.36, Q3.6), seeking to reuse software

(Q3.5, Q3.7), reinforcing explicit roles in projects (Q3.9) and not including inexperienced

developers (Q1.28) are closer to conventional values in software engineering, but they

represent only a part of the opinion voiced. A number of different universes could be out there.

If the Free/Open Source phenomenon is really a collection of other universes, is there any

chance to find rules within them? Referring back to Jones' (2000) article on Brooks's law, he

seemed to suggest that conventional methods of measuring project progress such as schedule

comparison may not apply, but it did not prove or disprove the law. In contrast, the inclusion of

Chapter 9 Discussion of Results

262

an application of Brooks's law in project management within Red Hat seemed to suggest that

Brooks's law still holds. Another piece of evident is found when Mockus, Fielding & Herbsleb

(2002) compared two well-known Free/Open Source projects, Mozilla and Apache. They

found that Mozilla had a higher level of module interdependence comparing to Apache. A

larger core group for each module was thus needed and the speed of development was slower.

This may suggest a confirmation of Brooks's law rather than disproving it. If we refer back to

the metaphor, when one enters another universe, things may look chaotic, because some of the

laws of physics are different. Nonetheless, laws may still exist, and some may even be the same

as before, but others may be unknown to newcomers, as they bring the assumptions from the

previous universe. Similar in the study of Free/Open Source, when some of the ground rules

change, many questions that are not significant before needed to be asked and investigated.

Nevertheless, it is optimistic that rules can be found, as some rules may be still the same.

A few words need to be said on the arguments laid above. The arguments may seem to portray

a positive impression that Free/Open Source software development process is better than

traditional software development process. A number of arguments presented above can be

regarded as responses to the question, 'What works in Free/Open Source that fails in

Closed-Source?' With this assumption, the impression of the argument will probably be in

favour to Free/Open Source. It is common to find studies in success factors in success projects

such as Linux (Moon & Sproull 2000) Mozilla and Apache (Mockus, A., Fielding & Herbsleb

2002) but research on failure factors in failed projects are hard to find. One example of failure

is the number of abandoned projects on SourceForge. As discussed above, diversities exist in

Free/Open Source and it is not the author's intention to support sweeping statements such as 'the

Free/Open Source software development process is better'. More research is needed to define

and categorise different Free/Open Source projects, processes and developers. Then failure

factors can be probably more readily uncovered.

Chapter 9 Discussion of Results

263

Another impression that the argument above may portray is that Free/Open Source is

considerably different. This again is due to the question asked at the beginning that it is an

investigation of differences. Even with the source code freed/opened, it is possible to run the

project using the waterfall model. It is argued by Collab.Net (2003c) that the processes support

on a FOSPHost site can also support CMM goals (Though the original analysis is based on the

Closed-Source product of Collab.Net, SourceCast, which was inspired by FOSPHost sites,

many of the arguments in the paper referred can still apply to general FOSPHost sites). Saying

'Some of the Free/Open Source processes can be similar to traditional software development

process' is not a contradiction to the multiple universes metaphor. Particular types of Free/Open

Source universes may be close to the traditional universe that we are familiar with and other

Free/Open Source universes may be far away.

To conclude, one of the most agreed results from Delphi survey was the importance of

communication. It is not surprising as software is flexible in multiple dimensions and thus

software development is one of the most complicated human processes. In the Free/Open

Source communities, communication is even more essential as participants can come from a

diverse background with different purposes and styles. Mutual understanding can hardly be

achieved without some of the attitudes suggested such as tolerance (Q3.13), patience (Q3.13)

and listening to others (Q3.16). Maybe it is also time for academics to communicate more with

the communities and find out what the other universes look like. Existing knowledge from the

academic world is probably useful to the Free/Open Source communities (for example Wilson

(1999) stressed the important of design and good practices in programming, not heroic stories

of bug eradication at 2:00 a.m.), but the context of how it can be applied needs further

exploration to ensure relevancy.

Chapter 9 Discussion of Results

264

9.4 Summary of Chapter Nine

In this chapter, the overall quality of the evaluation was assessed. The utility dimension was

probably the most popular dimension of the four. Other limitations of the research were

identified as well. The result of the research was further interpreted to contribute to the

discussion of the nature of the Free/Open Source phenomenon.

In the next chapter, the summary of the dissertation will be presented. Areas for further

research with suggestions to potential methodologies and methods will be explored. Finally,

the possible future of software industry and how the results of this research may be even more

important in such context will be discussed.

Chapter 10

Conclusion

10.1 Introduction

In this chapter, a summary of the findings of this study will be presented. The contributions of

the findings to the body of knowledge will be discussed. Further research on both the specific

area of FOSPHost and the general area of the Free/Open Source phenomenon will be suggested.

Research methodologies and methods will be suggested for further investigation of the general

area of the Free/Open Source phenomenon. Based on 'futurological' academic writings and

economic analysis, the possible future of the software industry will be projected and the

potential contributions of the findings will be discussed.

10.2 Summary of Findings

The summary of the findings from frameworks developed to the evaluation model built will be

presented below. The contributions of knowledge of the findings will also be discussed.

Recalling the objectives of the research are 'discovering the areas relevant to the topic of

FOSPHost and establishing the boundaries for data collection. Analytical frameworks will be

built from literature as a starting point for investigation. Important issues in the design and

employment of FOSPHost sites will then be obtained. The findings will be presented in an

Chapter 10 Conclusion

266

evaluation format available on the Internet.' Following these objectives, the research question

and sub-questions formulated are:

'How to construct an evaluation model for a FOSPHost site?'

And the research sub-questions are:

1. What relevant analytical frameworks can be built to facilitate the investigation of the

design and deployment of FOSPHost?

2. What are the important factors in FOSPHost design and deployment from data collection?

3. How to build an evaluation model from these important factors in FOSPHost?

How the result of this research responded to above sub-questions will be presented in the

following sub-sections.

10.2.1 The Model of Individual Participation to a F ree/Open Source

Community and Software Evaluation Classification

At the beginning of this research project, the most influential explanation to the Free/Open

Source phenomenon was the Bazaar model. As argued in sub-section 2.3, the model by itself

did not provide enough details to explain the inner workings of the phenomenon. The model of

individual participation to a Free/Open Source community was thus devised to establish

important aspects within a Free/Open Source community, namely communication,

contributions, co-ordination and culture. Essential elements such as motivations, barriers,

positive and negative results from the developers' viewpoint were also included. This model

were compared with four other models and found to be a suitable framework for research in

FOSPHost. This was the response to research sub-question number 1.

The study is also about evaluation and thus the methods employed in software evaluation were

reviewed. Two separate software evaluation approaches were identified, namely software

Chapter 10 Conclusion

267

evaluation during development and software product evaluation, which were usually employed

by the development team and the users of the software respectively. As in the situation of

Free/Open Source, though the users of the software may not also be the developers, the

developers of the software are probably the users. Moreover, the developers were usually quite

accessible to the users as well. Therefore, the two approaches were merged to become a new

evaluation classification framework, which includes the evaluation of intrinsic, utility, usability

and context qualities of the software. This framework laid the foundation for the response to

research question number 3.

The research was then built on these two frameworks for further investigation and data

collection.

10.2.2 Delphi Survey

One of the major data collections was conducted through an online Delphi survey. A total of 32

experts participated in 3 rounds of Delphi survey and the validity of the survey was acceptable.

61 agreed statements and 65 controversial statements were obtained. The software evaluation

classification was found to be useful in analysing the agreed statements. Recommendations in

all four software evaluation categories were found. For the controversial statements, four

themes were developed, namely 'We love freedom, but how far can it go?', 'What characteristics

are admirable in source code?', 'What is a worthy motivation?' and 'Important but not urgent

tasks'. These themes suggested that there were diverse views in some practices on FOSPHost

sites. The data collected was available on the Internet at

http://www.ibiblio.org/fosphost/IFHOSP/ibibliologo.htm?URL=index.html. The result of the

Delphi survey was a part of the response to research question number 2.

10.2.3 Detailed investigation

Though the agreed statements collected covered all four software evaluation qualities, the

amount of data collected on utility was less than expected. A detailed investigation on external

Chapter 10 Conclusion

268

hosting sites was then conducted. Ten sites were examined and compared based on their

backgrounds, features and policies. The classification of infrastructure and non-infrastructure

FOSPHost sites was suggested and diversity was likely found in from the analysis of data

obtained using this classification. The result of the detailed investigation enriched the response

to research question number 2.

10.2.4 Evaluation Model

Based on the data collection from the Delphi survey and the detailed investigation, an

evaluation model was constructed. From the nature of the two different data sources, a

checklist with qualitative answers was chosen for the presentation of Delphi survey results and

a modified weighed scale checklist for detailed investigation results. The evaluation model was

implemented as a web site using WakkaWiki (Mans 2003), PHP and MySQL. The evaluation is

available at http://www.ibiblio.org/fosphost/wakka/EvaluateFOSPHost. This model was built

as the response to research question number 3 and subsequently to the overall research

question.

10.2.5 Contributions of the Findings

This research is one of the earliest comprehensive investigations on the topic of FOSPHost. It

is not uncommon to find research on a specific tool available on FOSPHost sites such as source

code repositories (Asklund & Bendix 2002; MacDonald, Hilfinger & Semenzato 1998; Shapiro

& Vanderburgh 2002a; Shapiro, Vanderburgh & Lloyd 2003; van der Hoek 2000) or on

SourceForge statistics (Crowston & Scozzi 2002; Hunt & Johnson 2002; Kienzle 2001;

Krishnamurthy 2002; Lakhani et al. 2003). Nevertheless, a comprehensive study on the topic

of FOSPHost is seldom found. The scope of this research ranged from the actual tools provided

to the culture and work practices on FOSPHost sites. Views from the administration of the

FOSPHost sites as well as issues from the context of usage of the users were included. An

exploratory study that covered a similar topic with a scope of similar size was rare. This study

likely contributed to the body of knowledge in the area of FOSPHost.

Chapter 10 Conclusion

269

Though there were limitations to this study (which was discussed in the previous chapter), the

first contribution of this research is to give the readers and the stakeholders of FOSPHost sites

preliminary ideas but with known source and validity on what FOSPHost sites are and how they

work. This then may lead to the next contribution to the understanding of Free/Open Source

communities and the whole Free/Open Source phenomenon. The final products of this research

are also freely and openly available on the Internet for dissemination of these findings.

Other than its results, this research also established sound frameworks such as the model of

individual participation to a Free/Open Source community and the software evaluation

classification. Smaller but also important classifications such as self-hosting and external

hosting FOSPHost sites and infrastructure and non-infrastructure FOSPHost sites were also

devised for the analysis of the topic of FOSPHost. All these can be promising tools for the

research in the area of Free/Open Source.

10.4 Further Research

In this section, areas for further research will be suggested. The areas for further research in the

specific topic of FOSPHost and also the further development of the model of individual

participation to a Free/Open Source community will be presented first. Based on the discussion

above on the diversity of Free/Open Source communities, potential methodologies and methods

will be recommended for further research in the broader context of the Free/Open Source

phenomenon.

10.4.1 Further Research on FOSPHost

Within the scope of FOSPHost sites, basic utilities of different external hosting sites were

investigated and compared. An overall picture of recommended practices was also obtained

from the Delphi survey. Nevertheless, there are more areas that can be further investigated.

The detailed investigation on FOSPHost sites was focussed on the functionalities of external

Chapter 10 Conclusion

270

hosting sites. More detailed investigation into individual important tools such as source code

repositories and tracker systems can be done. The usability of each tools and the overall

FOSPHost site can be evaluated. The results obtained from the Delphi survey did contain

opinions on intrinsic and context qualities of FOSPHost sites. Nonetheless, as the emphasis of

Delphi survey was more on breadth and less on depth, more in-depth studies can be done on

these areas. A number of possible methods of evaluation in these areas are also suggested in the

literature on software evaluation in sub-section 5.3.1. The characteristics of infrastructure and

non-infrastructure sites can be further investigated using methods such as interviews too.

Moreover, details of other possible methodologies and methods will also be discussed below.

Other than external hosting sites, self-hosting sites such as the Mozilla project (Reis & Fortes

2002; The Mozilla Organization 2003b) can be examined. The effect of employing tools hosted

on different sites rather than one centralised site can also be explored. Moreover, employment

of FOSPHost sites in corporate situations is also an interesting and practical area for research.

Some literature on this topic is already available (Derome & Huang 2003; Fink 2003;

O'Mahony 2003).

Another possible area for further research is to improve the evaluation model. As discussed

above, it could be difficult to present the quantitative data collection in the Delphi survey using

the current WakkaWiki interface. This interface can be adjusted by altering the source code of

the WakkaWiki.

On the other hand, a more fundamental review can be performed on the evaluation model.

Quoting from Breakwell & Millward on the definition of evaluation methods (1995, p. 2):

Evaluation methods are distinguishable from other research methods in terms of their purpose,

which is to establish whether specified activities, systems and physical arrangements are effective.

Chapter 10 Conclusion

271

They are used to assess how far certain provisions, practices or procedures (what might be called

'the three Ps') are actually achieving the objectives set for them. Evaluations may, on occasion, go

further and attempt to establish why objectives are not achieved by the three Ps.

Therefore, the breath and depth of evaluation can be substantially broadened.

This variety in evaluation methods can also be showed from a preliminary literature review.

Breakwell & Millward (1995) also suggested five subjects of evaluation, namely activity,

personnel, provision of resources, organisational structure and objectives. From an

organizational point of view, evaluation can be classified by the agent who conducts the

assessment, namely internal-external, invited-imposed and participatory and non-participatory

(Breakwell & Millward 1995). In addition, Owen & Rogers (1999) suggested that different

evaluation approaches can be employed at different stages of the execution of a project, namely

proactive (before execution), clarificative (during execution), interactive (during execution),

monitoring (during execution) and impact (after execution). Wadsworth (1997) also compiled a

list of more that 80 different philosophies, models and techniques in evaluation.

The evaluation model developed in this research was based on software evaluation. Though

FOSPHost sites are very much software driven, they are also providing a service operated by

the administrators of the sites. Extension to the definition of intrinsic was already required to

accommodation this service aspect of FOSPHost sites. Some of the approaches and techniques

suggested above may be relevant to the evaluation of FOSPHost sites and improvements can be

made.

After the discussion of the further research on the topic of FOSPHost, it is also possible to

further develop the underlying model used to study FOSPHost - the model of individual

Chapter 10 Conclusion

272

participation to a Free/Open Source community. More knowledge on the details of each aspect

of the model is obtained from the data collection processes in this research, and other literature

and research since the conception of the model in late 2000. This knowledge can be

incorporated into the content of the model with the specification that whether the content is

generally applicable to most Free/Open Source communities or just to a particular group of

communities in order to preserve the flexibility of the model. Other than aggregating

knowledge that is currently available, more research could be conducted to conduct more data

especially in the area of contributions and negative results of participation of a FOSPHost site.

The structure of the model can be further expanded to include other stakeholders such as user

communities, commercial organizations, and the non-commercial organizations that managed

Free/Open Source projects (Feller & Fitzgerald 2002). Effects of the community on the

intermediate environment and global society (Romm, Pliskin & Clarke 1997) can also be

incorporated.

10.4.2 Further Research on the Broader Context of t he Free/Open

Source Phenomenon

After the discussion of possible areas for further research on FOSPHost, possible directions for

research in the broader context of the Free/Open Source phenomenon will be proposed.

Relevant methodologies and methods will also be suggested.

From the discussion above, there was considerable diversity in the different practices adopted

in the Free/Open Source communities. The metaphor of alternative universes was used to

illustrate this situation. Laws in the Free/Open Source communities may exist, but where can

one find them? One of the differences mentioned above between conventional software

engineering process and Free/Open Source software development process is personal

motivations. Therefore, one of the possible points of entry for research is personal factors.

Feller & Fitzgerald (2002) created an extensive list of motivations of individuals, organizations

Chapter 10 Conclusion

273

and communities in three levels, namely technological, economic and socio-political context.

Lakini et al. (2003) surveyed and categorised four types of motivations - 'learning &

simulations', 'hobbyists', 'professionals' (do it for work reasons) and 'community believers'.

Hertel, Niedner & Herrmann (2002) surveyed the Linux kernel mailing list and compared the

motivations of the participants with general motivation model such as 'Extended Klandermans

Model' and found it to be similar. The results of from the Delphi survey also found different

purposed and styles among participants. Nevertheless, there are few researches on the process

from motivation to participation, the course of participation and the consequential positive and

negative results.

For example, if someone was motivated to contribute to the Linux kernel, where would one

start? Did one start from subscribing to the Linux kernel mailing list and have one's mailbox

flooded with email from the list? (It was quite common to have more than 7000 messages per

month (Linux Kernel Mailing List 2003)) Or did he/she just track down issues at kernel traffic

(Brown et al. 2003)? Did one overcome the barrier and learn about the norm of the group just

by reading about the mailing list, or did one attend a local LUG (Linux User Group) and learn

from experienced participants? He or she probably downloaded, changed, compiled and tested

the latest version of the kernel. What level of skill was required? How did one come to the

understanding of the process of submitting a patch starting from the command diff and patch to

the lieutenant organization structure of Linux kernel development? The questions asked above

are related to one of the most complicated form of participation in the community – code

submission. Other forms of participation, for example, testing and bug submission, may be less

involved. Nevertheless, these questions just touch on the surface of what is required to portray

a picture of a personal process of participation. More research is probably needed.

Chapter 10 Conclusion

274

One may argue that this kind of investigation neither formed any generalisation, nor proved any

causal relationship within the system. Recalling the suggestion by Neuman, Bondy & Knight

(2003) data from exploratory and descriptive research were needed before carrying out

exploratory research. Without a solid understanding of the background of the topic, the

possibility of discovering relationships may decrease and proposing causal relationships

between unrelated or partially related variables may increase. For example, Crowston & Scozzi

(2002) tried to verify the competency rally theory using the data from SourceForge. With only

numeric data and discrete categories (such as alpha, beta, … , mature) on a set of

non-modifiable variable, according to the authors, the validity of the verification was low.

(This is not a criticism on the authors' lack of understanding of different factors and underlying

process, as the authors were aware of them in the discussion of the limitations of the research.

This is only a demonstration of the effect of a limited data set.) To conclude, a better

understanding of factors and underlying processes will lay the groundwork for theory building

in the research of the Free/Open Source phenomenon. One of possible directions is to

investigate personal factors and processes.

Another advantage in studying personal factors that is the understanding of personal factors

might assist in the measurement of project success. As argued above, personal success can be

an influential factor in project success. Nevertheless, in most Free/Open Source software

development research, success is still measured in the traditional ways. For example, in a

number of SourceForge statistics analyses (Crowston & Scozzi 2002; Hunt & Johnson 2002;

Kienzle 2001; Krishnamurthy 2002), information such as maturity, activity rate and number of

downloads were used to define success. In contrast, a research done by Kienzle on variety

aspects of Free/Open Source software project success also included a list of personal

success/outcomes (Advogato 2002a). This can be another direction for further investigation.

Chapter 10 Conclusion

275

(To do justice to the research mentioned, factors such as maturity were chosen probably due to

the availability of the statistics. The researchers may be aware of other factors of success.)

After the discussion of personal factors, the developers participate not in vacuum but against a

specific backdrop - the culture and work practices of a particular community. According to

Elliott and Scacchi (2003, p. 66), 'the fruition and persistence of rich cultural beliefs and values

in the work itself' can be one of the important factors of a successful Free/Open Source online

community. The culture and work practices are an important context for the investigation of

participation.

After considerations of possible areas for investigation, methodologies and methods of

investigation in the Free/Open Source phenomenon can be examined based on previous

discussions. More focus will be placed on potential methodologies and methods that can

possibly discover rules in alternative universes.

In order to study personal factors and culture, several methodologies can be considered.

Phenomenology (Garfinkel 1967; Gubrium & Holestein 2000) is a methodology that deals the

study of subjective beliefs and values. Ethnomethodology (Gubrium & Holestein 2000; Schutz

1972), while related to phenomenology, put more emphasis on the interaction between

individuals and the discovering social orders of the community. Both methodologies require

the researcher to suspend his or her own value system and investigate the phenomenon as it is.

If the Free/Open Source phenomenon really contains alternative universes, this practice of

suspension of value system may be helpful in situations where social rules are not familiar to

the researcher. Only a few studies employed these methodologies (Lawrie, Arief & Gacek 2002;

Ratto 2003) and their potential is yet to be explored. Another methodology employed for

investigation in related areas was ethnography (Tedlock 2000). An example of the applications

Chapter 10 Conclusion

276

of this methodology was by Scacchi (2002) on the development of requirement of Free/Open

Source software systems. And the research by Elliott & Scacchi (2003) mentioned above

employed ethnography coupled with grounded theory (Glaser & Strauss 1967; Strauss &

Corbin 1990) to study the culture of a Free/Open Source community and interesting results

were obtained.

In terms of research methods, protocol analysis (Ericsson & Simon 1993) is probably a method

with potential but seldom employed. Referring to studies on the design processes of

mechanical engineers, Waldron & Waldron (1996) suggested a number of methods including

interviews, protocol analysis (Ericsson & Simon 1993) and case study. One of the

lesser-known methods out of the three is protocol analysis and it will be explained briefly

below.

'A protocol is defined as a description of the activities (ordered in time) in which a subject

engages while performing a task.' (Waldron & Waldron 1996, p. 24). The method of protocol

analysis is to collect and analyse the protocols obtained. Several methods are available to

collect data on protocols. One of them is the verbal or think-aloud protocols. The designer is

required to speak out relevant information about the design during the design process without

the researcher's intervention. Another method is called discussion protocols. This method is

usually applied in group design by recording the discussion. Another method is called the

depositional method where the designer is not required to speak aloud but to explain the design

process at convenient intervals. The researcher can also ask questions during the process when

the designer forget to explain. The benefit of protocol analysis is the richness of the data

obtained (Waldron & Waldron 1996).

Chapter 10 Conclusion

277

Referring to literature, methods such as interviews (Asklund & Bendix 2002; Jorgensen 2001;

Kuwabara 2000; Yamauchi et al. 2000) and case studies (Aoki et al. 2001; Kenwood 2001;

Mockus, A., Fielding & Herbsleb 2002; Moon & Sproull 2000) were employed in different

studies in Free/Open Source. Nonetheless, protocol analysis is seldom used. Obviously,

studies of mailing lists and IRC records may coincide with some of the practices of protocol

analysis such as discussion protocols. Nevertheless, a complete adoption of this methodology

may be worth trying. The advantage of using protocol analysis is that the richness of the data

obtained is high and thus the Free/Open Source phenomenon can be studied based on empirical

data with fine details that may be crucial to the discovery of unknown laws. One drawback of

this methodology can be a high level of cooperation is required with the designer(s) involved.

With the future mass adoption of video conferencing equipment, video analysis of design

process may be also possible. (The application of protocol analysis to the study of the

Free/Open Source phenomenon was actually first suggested by Professor Paula Swatman in

Royal Melbourne Institute of Technology in August 2000 together with the Delphi survey

method. Delphi survey was adopted consequently in this research while protocol analysis was

dropped due to drawbacks suggested by others.)

Scacchi (2003) also suggested that borrowing from biological evolutionary research, the

method of taxonomic analyses, phylogentic analyses and software systematics may help in the

research of Free/Open Source software. Other analysis techniques may also be relevant.

Nevertheless, analysis techniques usually require empirical data, in this case, from the

Free/Open Source communities. The methods discussed above such as interviews, case study

and protocol analysis are possible choices for obtaining data for such analysis together with

code analyses. By employing these methods, it is possible to establish a firm basis for rigid

research on the phenomenon of Free/Open Source.

Chapter 10 Conclusion

278

One reason for conducting research in Free/Open Source may be the differences with

conventional practices and beliefs in respect of software development, but when we look into

the future of Free/Open Source, several benefits may be obtained. The availability of the data

provided by the Free/Open Source communities is one of them. Scacchi (2003) suggested that

data for Free/Open Source software projects are more readily available than Closed-Source

commercial projects as it depend on the willingness of those company to disclose relevant data.

Thus, research using Free/Open Source data may prevail in the future. Not only is the

availability an advantage, the diversity of these projects is also favourable for research (So,

Thomas & Zadeh 2002). A greater diversity in projects may imply more variables on the

different aspects of these projects can be analysed and more theories can be built. It is also

possible that some fundamental laws in all universes (principles that are applicable for all

projects) can be discovered. Laws in another universe can also inform alternate practices in this

universe (for example, 'Why Not Improve Coordination in Distributed Software Development

by Stealing Good Ideas from Open Source?' by Mockus, Audris & Herbsleb (2002)) and the

possibility of mixed universes can also be explored (for example, 'A Framework for Creating

Hybrid-OSS Communities' by Sharma, Sugumaran & Rajagopalan (2002)).

In this section, possible directions of research on FOSPHost, personal factors and culture of

communities were recommended together with relevant methodologies and methods. The

future potential of the research in Free/Open Source was predicted to be positive.

10.5 Possible Future of the Software Industry and t he Potential

Applications of the Findings

Relevancy of the findings to the current situation of the Free/Open Source phenomenon and

areas for further research were presented in the previous sections. In order to fully evaluate the

significance of this research and potential of further research, future trends need to be explored.

In order to look into the future, a brief history of software will be reviewed first and four future

Chapter 10 Conclusion

279

trends will be introduced. The implications of these trends to the Free/Open Source

phenomenon and the potential applications of the findings of this study will then be discussed.

A substantial amount of research was done that led to the invention of computer and the Internet,

and a considerable amount of early research work in computers and the Internet was funded by

military organizations (Gromov 2002; IEEE Computer Society 2002; The Computer Museum

History Center). Therefore, it can be argued that at the beginning computers and the Internet

were devised and controlled by organizations with a more centralised structure. There was little

distinction of roles in computer related staff – they just had to make it work and almost all of

them were technically knowledgeable. Moreover, software was usually written for a particular

organization for a specific purpose.

As computer systems became more complex and more people were involved, operators of

computer programs were no longer programmers themselves. From the discussion of the origin

of usability and HCI in sub-section 5.3.1.2, these topics became important as operators became

less and less technical capable. The importance of usability increased even more as personal

computer became more popular and some users might know nothing about computers before

(Lindgaard 1994). COTS software was an obvious example. This situation of separation of

producers and consumers of software was also reflected in the evaluation classification for

software proposed in sub-section 5.3.1. There were two categories, intrinsic and context, which

were closer related to producers of software and users respectively. Moreover, software

companies would usually want to create software that can be used by a group of users with

similar needs, so that more copies can be sold. In other words, software was created for a

problem domain, not just for solving a particular problem. This is probably a fair description of

the current software industry.

Chapter 10 Conclusion

280

After a brief review of the history of software, what will the future of the Free/Open Source

phenomenon be? It is possible to extrapolate first by studying general future trends suggested

by futuristic writers and then deduces the possible effects that the Free/Open Source

phenomenon may have. Four trends will be discussed below, namely prosumption,

Internetworking between organizations, globalisation and market segmentation.

Futuristic writers such as Toffler (1981) and Tapscott (1996) suggested that prosumption, the

combination of producers and consumers, may be a possible trend. Toffler (1981) explained

that before the industrial revolution, most people were farmers and they consumed what they

grew. Selling goods from producers to consumers was a relatively infrequent activity.

Nevertheless, when the industrial revolution arrived, production was modernised and producers

of goods and consumers of goods were usually two separate groups of people. Toffler observed

trends in contemporary economy that more products employed models such as self-help,

self-service or DIY to give consumers more power in self-determination. Tapscott (1996) also

quoted the example from the Chrysler automobile company that customers could made special

orders to tailor-made cars (with limitations, of course).

The Free/Open Source phenomenon matched the prosumption concept stated above.

Raymond's (2000b) suggested that one of the important motivations of Free/Open Source

developers is "scratching one's itch". The availability of source code also allows users to

customise the software or even contribute back to the community. In this case, the line between

producers and consumers disappears. Therefore, on the one hand, the Free/Open Source

phenomenon is not a particularly distinct wonder but it is just another example of the trend of

prosumption. On the other hand, unlike automobiles, many types of software can now be

created from ground up by personal computers and the extensive distribution of such computers

means that most people can become potential producers. (Of course, some specialised software

Chapter 10 Conclusion

281

still requires expensive hardware and expertise.) Therefore, the flexibility that a software

consumer can acquire is greater than an automobile consumer and we are just beginning to see

the manifestation of such power.

The next trend to be discussed is globalisation (Castells 2000; Tapscott 1996). This means that

the interaction between the people in different parts of the world will increase. Miller (2003)

suggested that personal computers will be further adopted globally and more people will

become computer literate. The supply of programmers from different countries through the

Internet will hence increase in quantity as well as in quality in the future. Therefore, more

potential contributors will be available in the future for the Free/Open Source communities.

From the Delphi survey results, FOSPHost sites enable distributed software development for

developers from different geographic locations (Q1.1 & Q6.6). Therefore, as the trend of

globalisation continues, the reliance on collaboration tools such as FOSPHost sites will

increase.

Another trend that was closely related to globalisation was the Internetworking within and

between organizations (Castells 2000; Tapscott 1996). The examples quoted by the two authors

were usually business related, but Free/Open Source provided an unexpected collaboration

between the commercial and non-commercial worlds. IBM, HP and Sun Microsystems all

employed Linux in some of them products. This type of collaboration was new and sometimes

conflicts can arise (O'Mahony 2003; Stark 2003). Even businesses that did not deal with

Free/Open Source foundations or communities employed Free/Open Source methodology and

FOSPHost sites as a paradigm for Internetworking within and between organizations (Derome

& Huang 2003). Indeed, from the Delphi survey results, FOSPHost sites could facilitate and

enhance communication for commercial and non-commercial producers, consumers and other

Chapter 10 Conclusion

282

stakeholders (Q1.3, Q1.4, Q1.5 & Q6.2), if run properly. Therefore, the study of FOSPHost as

a communicative and collaborative tool may be even more significant.

The last trend for discussion is market segmentation. McCraw & Tedlow (1997) suggested a

model of the three phases of marketing, namely fragmentation, unification and segmentation.

The first stage is fragmentation, which occurs in the early stage of developing a new type of

products, such as automobiles or computers. There were many independent producers

manufacturing different products with a similar concept. None of them yet becomes

well-known or the leader of the market. The volume of production for each of the producers is

relatively low and the margins and prices are high. The next stage is unification, where only

one player will become the brand of the product. The volume of production of this company is

high. Though the margin and price for the product is lower than in the fragmentation stage, the

profit can be enormous as the company captured the majority of the market share. In the third

stage, segmentation, products were designed to target different needs and aspirations of the

perspective consumers. Comparing this model with the development of the software market,

Microsoft is probably a sign of the unification stage. Nevertheless, the rise of Free/Open

Source operating systems may suggest a transition to the segmentation stage. In fact, though

Linux is the most famous Free/Open Source operating system, there are others such as

FreeBSD, NetBSD and OpenBSD. There is not just one desktop environment but also

GNOME, GNUStep, KDE, Xfce and others. Segmentation can be based on functionalities. For

example, OpenBSD is focused on security. Nevertheless, it can be observed that sometimes

segmentation is due to ideology, such as KDE and GNOME. From the discussion of diversity

in the sub-section 9.3, developers may come from different backgrounds, with different

personal factors and needs. Such differences may be manifested in different work practices and

culture in the different development community. A variety of software may thus be developed.

Chapter 10 Conclusion

283

Intrinsic qualities of software will then be the important factors for differentiating between

segments.

If there is a transition of the market from unification to segmentation, consumers may find the

situation chaotic as their choices diversifies. The evaluation of software will thus become an

even more important method to distinguish the similarities and differences of software. The

software evaluation classification proposed in this research could possibly provide a more

comprehensive model that is suitable to the evaluation of Free/Open Source software. When an

organization acquires a piece of software, it can be the beginning of a relationship with the

Free/Open Source community that produces it. As mentioned in the discussion

Internetworking between organization above, there could be conflicts between commercial and

Free/Open Source communities (O'Mahony 2003; Stark 2003). One possible cause of conflicts

is the mismatch between the culture and work practices of the Free/Open Source communities

(intrinsic) and the commercial organization (context). As these factors are already accounted

for in the software evaluation classification proposed, it has a good potential to produce useful

analysis on Free/Open Source software.

There are some comments to the futuristic extrapolation above. One comment is that the

discussion above is in no way comprehensive. Relevant trends such as molecularization and

disintermediation (Tapscott 1996) are not mentioned. Only the most relevant trends are

elaborated due to the limitations of this dissertation.

Another comment is that all the trends suggested are in favour of the growth and expansion of

the Free/Open Source phenomenon. It will then be beneficial to present some trends that do not

encourage this growth. A current threat at the moment when this document is composed is the

legal battle between SCO and IBM on the intellectual property of Linux (The SCO Group 2003).

Chapter 10 Conclusion

284

Many were not confident of SCO winning, but even if SCO loses the case, the topic of

intellectual property will still probably be a threat until the legal system catches up with this

new frontier of the Internet (Barlow 1993). Nonetheless, a more possible threat from the inside

was suggested by Raymond (2003) - the elitist attitude of Free/Open Source communities. This

attitude may have the potential to keep the culture as a minority.

To conclude, a number of general future trends are in favour of the growth and expansion of the

Free/Open source phenomenon and FOSPHost will probably remain an important topic. The

software evaluation classification developed in this research also may provide a useful basis for

software analysis in the segmented software market.

List of References

Acheson, S 2001, The Secure Shell(TM) Frequently Asked Questions, viewed 10 Nov 2003,

<http://www.employees.org/~satch/ssh/faq/ssh-faq.html>.

Advogato 2000a, Fallible Hacker Figureheads, viewed 1 Feb 2002,

<http://www.advogato.org/article/123.html>.

Advogato 2000b, Version Control Systems: The Next Generation, viewed 27 Oct 2000,

<http://www.advogato.org/article/145.html>.

Advogato 2000c, Ask the Advogatos: why do Free Software projects fail?, viewed 19 Oct 2000,

<http://www.advogato.org/article/128.html>.

Advogato 2001a, Leaving SourceForge, viewed 23 Apr 2002,

<http://www.advogato.org/article/357.html>.

Advogato 2001b, On Holy Wars and a Plea for Peace #2, viewed 1 Feb 2002,

<http://www.advogato.org/article/396.html>.

Advogato 2001c, CVS mixed-tagging for massive Open Source Project Management, viewed

14 Mar 2003, <http://www.advogato.org/article/247.html>.

Advogato 2002a, Project Success - Measuring it/Facilitating it, viewed 3 Feb 2003,

<http://www.advogato.org/article/441.html>.

Advogato 2002b, CVS Considered Harmful, viewed 14 Mar 2003,

<http://www.advogato.org/article/519.html>.

Advogato 2003, Advogato, viewed 24 Feb 2003, <http://www.advogato.org/>.

Alan 2001, ITS: The Incompatible Time Sharing System, viewed 12 Feb 2003,

<http://www.its.os.org/>.

Alexander, JE & Tate, MA 1999, Web wisdom : how to evaluate and create information quality

on the Web, Lawrence Erlbaum Associates, Mahwah, N.J.

Aoki, A, Hayashi, K, Kishida, K, Nakakoji, K, Nishinaka, Y, Reeves, B, Takashima, A &

Yamamoto, Y 2001, 'A case study of the evolution of Jun: An object-oriented open-source 3D

multimedia library', paper presented to Proceedings of the 23rd International Conference on

Software Engineering, Toronto, Ontario, Canada, May 2001.

Apple Computer Inc. 2002, Darwin - Open Source, viewed 31 Jan 2003,

<http://developer.apple.com/darwin/>.

Arief, B, Bosio, D, Gacek, C & Rouncefield, M 2002, Dependability Issues in Open Source

Software, Department of Computing Science, University of Newcastle, viewed 9 Dec 2002,

<http://www.cs.ncl.ac.uk/research/trs/papers/760.pdf>.

Arjen van Efferen & Black, BW 2002, XoopsForge Official Website, viewed 31 Oct 2003,

<http://xoopsforge.sourceforge.net/modules/news/>.

Asklund, U & Bendix, L 2002, 'A Study of Configuration Management in Open Source

Software Projects', IEE Proceedings - Software, vol. 149, no. 1, pp. 40-6.

List of References

286

asynchrony.com 2001, Asynchrony: Where Great Ideas Meet Their Potential,

<http://www.asynchrony.com/>.

asynchrony.com 2004, Asynchrony has been closed down, viewed 20 Feb 2004,

<http://www.asynchrony.com/>.

Australian Society of Certified Practising Accountants' Information Technology Centre of

Excellence 1995, Commercial accounting software selection principles, Australian Society of

Certified Practising Accountants, Melbourne, Vic.

Babbie, ER 2002, The basics of social research, 2nd edn, Wadsworth Thomson Learning,

Belmont, CA.

Barlow, JP 1993, The Economy of Ideas, viewed 18 Mar 2002,

<http://www.eff.org/~barlow/EconomyOfIdeas.html>.

Barr, D David Barr, viewed 5 Nov 2003, <http://www.visi.com/~barr/>.

Barr, J 2002, Linus tries to make himself scale, viewed 5 Dec 2002,

<http://www.linuxworld.com/site-stories/2002/0211.scale_p.html>.

Bate, R, Kuhn, D, Wells, C, Armitage, J, Clark, G, Cusick, K, Garcia, S, Hanna, M, Jones, R,

Malpass, P, Minnich, I, Pierson, H, Powell, T & Reichner, A 1995, A Systems Engineering

Capability Maturity Model, Version 1.1, viewed 15 Sep 2003,

<http://www.sei.cmu.edu/pub/documents/95.reports/pdf/mm003.95.pdf>.

Beck, K 1999, Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading,

Massachusetts.

Ben-Menachem, M 1994, Software configuration management guidebook, McGraw-Hill

International Software Quality Assurance Series., McGraw Hill Book Co., London ; New York.

Bentson, R 2000, The Proper Image for Linux, viewed 29 Dec 2000,

<http://www2.linuxjournal.com/lj-issues/issue57/2931.html>.

BerliOS BerliOS Developer: Welcome, viewed 9 Apr 2003, <http://developer.berlios.de/>.

Bevan, N 1995, 'Usability is Quality of Use', paper presented to Proceedings of the 6th

International Conference on Human Computer Interaction, Yokohama, viewed 11 Feb 2003,

<http://www.usability.serco.com/papers/hcistd95.pdf>.

Bezroukov, N 1999a, 'Open Source Software Development as a Special Type of Academic

Research (Critique of Vulgar Raymondism)', First Monday, vol. 4, no. 10, viewed 2 Jun 2000,

<http://firstmonday.org/issues/issue4_10/bezroukov/index.html>.

Bezroukov, N 1999b, 'A Second Look at the Cathedral and Bazaar', First Monday, vol. 4, no. 12,

viewed 2 Jun 2000, <http://firstmonday.org/issues/issue4_12/bezroukov/index.html>.

Bezroukov, N 2000, 4.1. Linus and Linux; Linus Torvalds' Short Unauthorized Biography,

viewed 3 Nov 2000,

<http://www.softpanorama.org/People/Torvalds/Linus_Torvalds_biography.shtml>.

Bezroukov, N 2002, California Sunrise (1997-2000): Linux Hype Festival and IPO Gold Rush,

viewed 6 Dec 2002,

<http://www.softpanorama.org/People/Torvalds/linus_california_sunrise.shtml>.

List of References

287

BitMover 2002, Feature summary, viewed 14 Mar 2003,

<http://www.bitkeeper.com/Products.BK_Pro.Feature.html>.

Blaikie, N 1993, Approaches to Social Enquiry, Polity Press, Cambridge, England.

Blease, D 1986, 'Educational Software Selection Criteria', in D Squires & AM 1994 (eds),

Choosing and using educational software : a teachers' guide, Falmer Press, London ;

Washington, D.C, pp. 135-9.

Bolinger, D & Bronson, T 1995, Applying RCS and SCCS, O'Reilly, Sebastopol, California.

Bosch, S, Promis, P & Sugnet, C 1994, Guide to selecting and acquiring CD-ROMS, software

and other electronic publications, Acquisitions guidelines ; no. 9, American Library

Association, Chicago.

Breakwell, GM & Millward, L 1995, Basic evaluation methods : analysing performance,

practice and procedure, Personal and professional development, British Psychological Society,

Leicester.

Britannica.com 2000, Positivism, viewed 6 Feb 2000,

<http://www.britannica.com/bcom/eb/article/5/0,5716,62575+1+61024,00.html?query=positi

vism>.

Brooks, FP 1995, The mythical man-month : essays on software engineering, Anniversary edn,

Addison-Wesley Pub. Co., Reading, Mass.

Brown, Z, Sullivan, P, Vincent, B, Pouech, E, Emsley, P, Seigo, AJ, Samuelson, P, Flagg, C,

Harford, A, Appel, J, Kriukovas, A, Waugh, J, Quirk, J, Mundkur, P, Miller, R, Robbins, S, Law,

S, Phillips, S, Buchbinder, A, Kaper, R, Rusin, Z, Muller, J, Rufian-Zilbermann, EC, Butler, TR,

Cohn, S, Kohler, B, Eckersley, P, Martinez, D, Michlmayr, M, Miramon, Cd, Guthrie, J,

Howells, C, O'Sullivan, R, Team, KP, Jensen, L, Mous, F, Team, KT & Zealey, M 2003, Kernel

Traffic, viewed 15 Jul 2003, <http://kt.zork.net/>.

Buckley, FJ 1996, Implementing configuration management : hardware, software, and

firmware, 2nd edn, IEEE Computer Society Press ;IEEE Press, Los Alamitos, Calif.; New York.

Bull, G & Garofalo, J 2003, 'Rationale for Building an Educational Source Forge', Learning &

Leading with Technology, vol. 30, no. 8, May 2003, pp. 18-21.

Carpenter, K 2001, Opening New Doors - Sun Microsystems and CollabNet Make NetBeans

Platform an Open Source Success, viewed 11 Sep 2001,

<http://www.softwarebusinessonline.com/articles/aug01-2.htm>.

Castells, M 2000, The rise of the network society, 2nd edn, Blackwell Publishers, Oxford.

Catella, C & Exploris Museum 1999, World Wide Web Page Evaluation Form, viewed 9 Dec

1999, <http://www.ncsu.edu/midlink/WWW.eval.html>.

Checkland, P 1981, Systems Thinking, Systems Practice, Wiley, Chichester, Sussex; New York.

CIDOC Multimedia Working Group 1997, Multimedia Evaluation Criteria, viewed 15 Sep

1999, <http://www.archimuse.com/cidoc/cidoc.mmwg.eval.crit.html>.

Ciolek, TM 1997, Information Quality - Catalogue of Potent Truisms, viewed 27 Jul 1999,

<http://www.ciolek.com/WWWVLPages/QltyPages/QltyTruisms.html>.

List of References

288

Clarke, R 1999, 'The Willingness of Net-Consumers to Pay: A Lack-of-Progress Report', paper

presented to Proc. 12th International Bled EC Conf., Slovenia, June, viewed 22 Apr 2000,

<http://www.anu.edu.au/people/Roger.Clarke/EC/WillPay.html>.

Collab.Net 2002a, Tigris.org: Open source software engineering, viewed 9 Apr 2003,

<http://www.tigris.org/>.

Collab.Net 2002b, subversion.tigris.org, viewed 9 Apr 2003, <http://subversion.tigris.org/>.

Collab.Net 2003a, Customers, viewed 9 Apr 2003,

<http://www.collab.net/customers/index.html>.

Collab.Net 2003b, CollabNet SourceCast Guided Tour, Collab.Net, viewed 11 Jul 2003,

<http://www.collab.net/downloads/media/pdfs/sourcecast_guided_tour.pdf>.

Collab.Net 2003c, CMM Impact Analysis - The CollabNet SourceCast Environment and

Collaborative Development, viewed 4 Aug 2003,

<http://www.collab.net/downloads/media/pdfs/cmm_impact_analysis.pdf>.

Collab.Net 2003d, Alliances, viewed 28 Oct 2003,

<http://www.collab.net/about/alliances/ta.html>.

Confucius 500 BC, The Analects, trans. Muller C, viewed 20 Feb 2004,

<http://www.human.toyogakuen-u.ac.jp/~acmuller/contao/analects.htm>.

Cooper, A 1999, The Inmates are Running the Asylum: Why High-Tech Products Drive us

Crazy and How to Restore the Sanity, SAMS, Indianapolis, Indiana.

Copeland, T 2003, GForge Sites, viewed 31 Oct 2003,

<http://gforge.org/docman/view.php/1/52/gforge-sites.html>.

Couger, JD 1988, 'Motivators vs. Demotivators in the IS Environment', Journal of Systems

Management, vol. 39, no. 6, pp. 36-41.

Crowston, K & Scozzi, B 2002, 'Open Source Software Projects as Virtual Organizations:

Competency Rallying for Software Development', IEE Proceedings - Software, vol. 149, no. 1,

pp. 3-17.

Curtis, B, Hefley, WE & Miller, S 1995, Overview of the People Capability Maturity Model,

viewed 15 Sep 2003,

<http://www.sei.cmu.edu/pub/documents/95.reports/pdf/mm001.95.pdf>.

Dachary, L 2001, SourceForge drifting, viewed 21 Nov 2001,

<http://www.fsfeurope.org/news/article2001-10-20-01.en.html>.

Dafermos, GN 2001, 'Management and Virtual Decentralised Networks: The Linux Project',

First Monday, vol. 6, no. 11, viewed 28 Jan 2003,

<http://firstmonday.org/issues/issue6_11/dafermos/index.html>.

Delbecq, AL, Van de Ven, AH & Gustafson, DH 1975, Group techniques for program planning :

a guide to nominal group and Delphi processes, Scott Foresman, Glenview, Illinois.

Dempsey, BJ, Weiss, D, Jones, P & Greenberg, J 2002, 'Who is an Open Source Software

Developer? Profiling a community of Linux Developers', Communications of ACM, vol. 45, no.

2, pp. 67-72.

List of References

289

Derome, J & Huang, K 2003, Creating and Delivering Value with Collaborative Software

Development Tools, viewed 28 Oct 2003,

<http://www.collab.net/downloads/media/pdfs/creating_and_delivering_value.pdf>.

DeTienne, KB, Smart, KL & Jones, BD 1995, 'Motivating your IS staff', Journal of Systems

Management, vol. 46, no. 2, pp. 40-4.

DiBona, C, Ockman, S & Stone, M 1999, 'Appendix A: The Tanenbaum-Torvalds Debate', in C

DiBona, S Ockman & M Stone (eds), Open Sources: Voices from the Open Source Revolution,

O'Reilly & Associates, Sebastopol, California, viewed 7 Nov 2000,

<http://www.oreilly.com/catalog/opensources/book/appa.html>.

Dix, A 1994, 'Computer Supported Cooperative Work: A Framework', in D Rosenberg & C

Hutchison (eds), Design Issues in CSCW, Springer-Verlag, London, pp. 9-26.

drupal.org drupal.org community plumbing, viewed 14 Nov 2003, <http://drupal.org/>.

Dumas, JS & Redish, J 1999, A practical guide to usability testing, Rev. edn, Intellect Books,

Exeter, England; Portland, Oregon.

eclipse.org eclipse.org, viewed 20 Nov 2003, <http://www.eclipse.org/>.

Elfanbaum, D 2001, A Slightly Rambling White Paper and Personal Rant on the Dawn of

TransCapitalism and the WeCosystem Vision, viewed 30 Oct 2003,

<https://www.asynchrony.com/vision.jsp>.

Elliott, MS & Scacchi, W 2003, Free Software: A Case Study of Software Development in a

Virtual Organizational Culture, viewed 9 Jul 2003,

<http://opensource.mit.edu/papers/eliottscacchi.pdf>.

Enzer, S 1975, 'Plastics and Competing Materials by 1985: A Delphi Forecasting Study', in HA

Linstone & M Turoff (eds), The Delphi Method:Techniques and Applications, Addison-Wesley,

London, pp. 195-209.

Ericsson, KA & Simon, HA 1993, Protocol Analysis, MIT Press, Cambridge, Massachusetts.

Eunice, J 1998a, Beyond the Cathedral, Beyond the Bazaar, viewed 19 Oct 2001,

<http://www.illuminata.com/public/content/cathedral/intro.htm>.

Eunice, J 1998b, Beyond the Cathedral, Beyond the Bazaar - The Key is Community, viewed 19

Oct 2001, <http://www.illuminata.com/public/content/cathedral/cathedral5.htm>.

Everhart, N (ed.) 1996, Web Page Evaluation Worksheet, viewed 15 Sep 1999,

<http://www.duke.edu/~de1/evaluate.html>.

Feller, J & Fitzgerald, B 2002, Understanding Open Source Software Development, Addison

Wesley, London.

Fenton, NE & Pfleeger, SL 1997, Software metrics : a rigorous and practical approach, 2 edn,

PWS, London.

Fink, M 2003, The Business and Economics of Linux and Open Source, Prentice Hall PTR,

Upper Saddle River, New Jersey.

Fogel 1999, Open Source Development With CVS, Coriolis, Scottsdale, Arizona.

Forge, S 2000, 'Open Source: The Economics of Giving Away Stuff, and Software as a Political

Statement', Info, vol. 2, no. 1, February, pp. 5-7.

List of References

290

Foster, E 1998, 1997 Product of the Year: Best Technical Support Award: Linux User

Community, InfoWorld, viewed 27 Nov 2000,

<http://www.infoworld.com/cgi-bin/displayTC.pl?/97poy.supp.htm>.

Fraser, D & Goodacre, CF 1993, Selecting library management software : evaluative criteria

for circulation and cataloguing functions, Centre for Information Studies Charles Sturt

University-Riverina, Wagga Wagga, New South Wales.

Free Software Foundation 2000, What is Free Software?, viewed 21 Jun 2000,

<http://www.fsf.org/philosophy/free-sw.html>.

Free Software Foundation 2002, Why ``Free Software'' is better than ``Open Source'', viewed

30 Jan 2003, <http://www.gnu.org/philosophy/free-software-for-freedom.html>.

Free Software Foundation 2003a, Mailman, the GNU Mailing List Manager, viewed 28 Mar

2003, <http://www.gnu.org/software/mailman/index.html>.

Free Software Foundation 2003b, Savannah: Welcome, viewed 7 Apr 2003,

<http://savannah.gnu.org/>.

Free Software Foundation 2003c, Emacs - Extensible, real-time editor, viewed 31 Oct 2003,

<http://www.gnu.org/directory/text/editors/emacs.html>.

Free Software Foundation 2003d, GNU's Not Unix! - the GNU Project and the Free Software

Foundation (FSF), viewed 31 Oct 2003, <http://www.gnu.org/>.

Freedman, A (ed.) 1998, The Computer Glossary: The Complete Illustrated Dictionary, 8th edn,

American Management Association, New York.

Fuller, MD 2004, BSD For Linux Users :: Philosophies, viewed 23 Apr 2004,

<http://www.over-yonder.net/~fullermd/rants/bsd4linux/bsd4linux8.php>.

Gabriel, RP & Goldman, R 2002, 'Open Source: Beyond the Fairy Tales', Center for Business

Innovation Journal, no. 8, pp. 59-65, viewed 27 Aug 2003,

<http://www.cbi.cgey.com/journal/Issue8/Open_Source.pdf>.

Gacek, C, Lawrie, AT & Arief, LB 2001, The many meanings of Open Source, CS-TR-737,

Department of Computing Science, University of Newcastle upon Tyne, viewed 31 Oct 2001,

<http://www.cs.ncl.ac.uk/people/l.b.arief/home.formal/Papers/TR737.pdf>.

Gallivan, MJ 2001, 'Striking a Balance between Trust and Control in a Virtual Organization: A

Content Analysis of Open Source Software Case Studies', Information Systems Journal, vol. 11,

no. 4, pp. 277-304.

Garfinkel, H 1967, Studies in ethnomethodology, Prentice-Hall, Englewood Cliffs, New Jersey.

GBorg development team 2003, GBorg -- The Development website, viewed 30 Oct 2003,

<http://gborg.postgresql.org/>.

Ghosh, RA 1998a, 'Cooking pot markets: an economic model for the trade in free goods and

services on the Internet', First Monday, vol. 3, no. 3, viewed 2 Jun 2000,

<http://www.firstmonday.dk/issues/issue3_3/ghosh/index.html>.

Ghosh, RA 1998b, 'FM Interview with Linux Torvalds: What motivates free software

developers', First Monday, vol. 3, no. 3, viewed 1 Aug 2000,

<http://www.firstmonday.org/issues/issue3_3/torvalds/index.html>.

List of References

291

Ghosh, RA 2002, 'FLOSS Workshop report : Advancing the Research Agenda on Free / Open

Source Software', paper presented to Workshop on Advancing the Research Agenda on Free /

Open Source Software, Brussels, 14 October 2002, viewed 24 Jan 2003,

<http://www.infonomics.nl/FLOSS/report/workshopreport.htm>.

Glaser, BG & Strauss, AL 1967, The discovery of grounded theory : strategies for qualitative

research, Aldine, New York.

Goldschmidt, P 1996, 'A Comprehensive Study of the Ethical, Legal and Social Implications of

Advances in Biomedical and Behavioural Research and Technology', in M Adler & E Ziglio

(eds), Gazing into the Oracle: The Delphi Method and Its Application to Social Policy and

Public Health, Jessica Kingsley Publishers, London, pp. 89-132.

Goldstein, NH 1975, 'A Delphi on the Future of the Steel and Ferroalloy Industries', in HA

Linstone & M Turoff (eds), The Delphi Method:Techniques and Applications, Addison-Wesley,

London, pp. 210-26.

Gordon, RC 2003, icculus.org -- The Helping Phriendly Box, viewed 9 Apr 2003,

<http://icculus.org/>.

Grassian, E 1998, Thinking Critically about World Wide Web Resources, viewed 27 Jul 1999,

<http://www.library.ucla.edu/libraries/college/instruct/web/critical.htm>.

Great Circle Associates 2001, Majordomo, viewed 5 Nov 2003,

<http://web.archive.org/web/20020823114958/http://www.greatcircle.com/majordomo/>.

Gromov, bGR 2002, History of Internet and WWW:The Roads and Crossroads of Internet

History, viewed 12 Sep 2003, <http://www.netvalley.com/netvalley/intval.html>.

Grudin, J 1992, 'Utility and usability: research issues and development contexts', Interacting

with Computers, vol. 4, no. 2, pp. 209-17.

Gubrium, JF & Holestein, JA 2000, 'Analyzing Interpretive Practice', in NK Denzin, YS

Lincoln & H Fehring (eds), The handbook of qualitative research, 2nd edn, Sage Publications,

Thousand Oaks, California, pp. 487-508.

Hacker, JQ 1999, Feature: Conflicting Open Source Developers, viewed 26 Nov 2000,

<http://slashdot.org/features/99/07/12/1639202.shtml>.

Hamerly, J, Paquin, T & Walton, S 1999, 'Freeing the Source: The Story of Mozilla', in C

DiBona, S Ockman & M Stone (eds), Open Sources: Voices from the Open Source Revolution,

O'Reilly & Associates, Sebastopol, California, viewed 7 Nov 2000,

<http://www.oreilly.com/catalog/opensources/book/netrev.html>.

Harris, R 1997, 'Evaluating Internet Research Sources', viewed 15 Sep 1999,

<http://www.sccu.edu/faculty/R_Harris/evalu8it.htm>.

Hars, A & Ou, S 2001, 'Working for free? - Motivations of participating in Open Source

Projects', paper presented to The 34th Hawaii International Conference on System Sciences.

Hauben, M & Hauben, R 1997, The Netizens and the Wonderful World of the Net: An Anthology,

viewed 22 May 2000, <http://studentweb.tulane.edu/~rwoods/netbook/contents.html>.

Helmer, O 1975, 'TOC & Preface', in HA Linstone & M Turoff (eds), The Delphi

Method:Techniques and Applications, Addison-Wesley, London, pp. iv-xx.

List of References

292

Henderson, JR 1999, The ICYouSee Guide to Critical Thinking About What You See on the Web,

viewed 15 Sep 1999, <http://www.ithaca.edu/library/Training/hott.html>.

Hertel, G, Niedner, S & Herrmann, S 2002, 'Motivation of Software Developers in Open Source

Projects: An Internet-based Survey of Contributors to the Linux Kernel', Research Policy,

special issue on Open Source Software Development, vol. 32, no. 7, pp. 1159-77.

Herzberg, F, Mausner, B & Snyderman, BB 1959, The motivation to work, 2nd edn, Wiley ;

Chapman & Hall, New York.

Hinchliffe, LJ 1997, Evaluation of Information, viewed 19 Nov 1999,

<http://alexia.lis.uiuc.edu/~janicke/Eval.html>.

Hofstede, GH 1997, Cultures and Organizations, McGraw-Hill, Berkshire, England.

Hood, E 2003, MHonArc Home Page, viewed 5 Nov 2003, <http://www.mhonarc.org/>.

Hornby, AS & Crowther, J 1995, Oxford advanced learner's dictionary of current English, 5

edn, Oxford University Press, Oxford.

Huang, K, Lee, YW & Wang, RY 1999, Quality Information and Knowledge, Prentice-Hall,

New Jersey.

Humphrey, WS 1997, Managing technical people : innovation, teamwork, and the software

process, SEI series in software engineering., Addison-Wesley, Reading, Massachusetts.

Humphrey, WS 2000, The Personal Software Process (PSP), viewed 15 Sep 2003,

<http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr022.pdf>.

Hunt, F & Johnson, P 2002, 'On the Pareto distribution of open source projects', paper presented

to Proceedings of the Open Source Software Development Workshop, Newcastle upon Tyne,

U.K., 25-26 Feb. 2002, viewed 25 Mar 2002,

<http://www.dirc.org.uk/events/ossdw/OSSDW-Proceedings-Final.pdf>.

ibiblio.org 2003a, ibiblio - April is Great, viewed 9 Apr 2003, <http://www.ibiblio.org/>.

ibiblio.org 2003b, About ibiblio, viewed 27 Nov 2003, <http://www.ibiblio.org/about.html>.

IBM 2003, developerWorks: Linux, viewed 31 Jan 2003,

<http://www.ibm.com/developerworks/linux/>.

IEEE Computer Society 2002, Events in the History of Computing - World War II, viewed 12

Sep 2003, <http://www.computer.org/history/development/wwii.htm>.

jacobito 2001, Gnome Hackers Sorting Out Differences RE:2.0, viewed 6 Feb 2003,

<http://slashdot.org/article.pl?sid=01/06/19/1223245&mode=thread>.

Jacobs, J 1993, Systems of survival : a dialogue on the moral foundations of commerce and

politics, Hodder & Stoughton, London.

Jacobson, T & Cohen, L 1996, Evaluating Internet Resources, viewed 15 Sep 1999,

<http://www.albany.edu/library/internet/evaluate.html>.

Jillson, IA 1975, 'The National Drug-abuse Policy Delphi', in HA Linstone & M Turoff (eds),

The Delphi Method:Techniques and Applications, Addison-Wesley, London, pp. 124-59.

Johnson, K 1999, Open-Source Software Development, viewed 22 Dec 2000,

<http://www.cpsc.ucalgary.ca/~johnsonk/SENG/SENG691/open.htm>.

List of References

293

Jones, CG 1975, 'A Delphi Evaluation of Agreement Between Organizations', in HA Linstone

& M Turoff (eds), The Delphi Method:Techniques and Applications, Addison-Wesley, London,

pp. 160-7.

Jones, CM 1998, Evaluation of Effective Instructional Web Sites: A Pilot Study, viewed 4 Nov

1999, <http://ccwf.cc.utexas.edu/~jonesc/research/evaluation.htm>.

Jones, P 2000, Brooks' Law and open source: The more the merrier? Does the open source

development method defy the adage about cooks in the kitchen?, viewed 1 Jun 2000,

<http://www-4.ibm.com/software/developer/library/merrier.html>.

Jorgensen, N 2001, 'Putting it all in the trunk: incremental software development in the

FreeBSD open source project', Information Systems Journal, vol. 11, no. 4, pp. 321-36.

Kelty, CM 2000, Scale and Convention: Programmed Languages in a Regulated America,

Mass. Institute of Technology, Ph.D Dissertation.

Kelty, CM 2001, 'Hau to do things with words', in Knowledge and Society, JAI Press, vol. 13,

viewed 29 Jan 2002, <http://www.kelty.org/or/papers/hauto.kelty.pdf>.

Kenwood, C 2001, A Business Case Study of Open Source Software, viewed 3 Jun 2002,

<http://www.mitre.org/support/papers/tech_papers_01/kenwood_software/kenwood_software.

pdf>.

Kernel.Org The Linux Kernel Archives, viewed 30 Oct 2003, <http://www.kernel.org/>.

Kernighan, BW & Ritchie, DM 1988, The C programming language, 2nd edn, Prentice Hall,

Englewood Cliffs, N.J.

Kienzle, R 2001, Sourceforge Preliminary Project Analysis, viewed 23 Jan 2002,

<http://www.osstrategy.com/sfreport/>.

Kirk, EE 1999, Evaluating Information Found on the Internet, viewed 15 Sep 1999,

<http://milton.mse.jhu.edu:8001/research/education/net.html>.

Koch, S & Schneider, G 2002, 'Effort, Cooperation and Coordination in an Open Source

Software Project: GNOME', Information Systems Journal, vol. 12, no. 1, pp. 27-42.

Kollock, P 1996, 'Design Principles for Online Communities', paper presented to Harvard

Conference on the Internet and Society, viewed 16 Jun 2000,

<http://www.sscnet.ucla.edu/soc/faculty/kollock/papers/design.htm>.

Kollock, P 1999, 'The Economies of Online Cooperation: Gifts and Public Goods in

Cyberspace', in MAK Smith, Peter (ed.), Communities in Cyberspace, Routledge, London, pp.

220-42.

Konig, T 1997, Ssh (Secure Shell) FAQ - Frequently asked questions, viewed 7 Nov 2003,

<http://www.rz.uni-karlsruhe.de/~ig25/ssh-faq/index.html>.

Krishnamurthy, S 2002, 'Cave or Community?: An Empirical Examination of 100 Mature Open

Source Projects', First Monday, vol. 7, no. 6, viewed 5 Feb 2003,

<http://firstmonday.org/issues/issue7_6/krishnamurthy/>.

Kuwabara, K 2000, 'Linux: A Bazaar at the Edge of Chaos', First Monday, vol. 5, no. 3, viewed

31 Jul 2000, <http://firstmonday.org/issues/issue5_3/kuwabara/index.html>.

List of References

294

Kuykendall, D 2001, phpGroupWare is leaving SourceForge, viewed 8 Feb 2002,

<http://mail.gnu.org/pipermail/phpgroupware-developers/2001-November/000002.html>.

Lakhani, KR & Hippel, Ev 2003, 'How open source software works: "free" use-to-use

assistance', Research Policy, vol. In Press, Corrected Proof, Available online 27 November

2002, viewed 15 Jan 2003,

<http://www.sciencedirect.com/science/article/B6V77-479TM54-1/1/1206f45569b80b7bc5c0

b0981c437493>.

Lakhani, KR, Wolf, B & Bates, J 2002, The Boston Consulting Group Hacker Survey, viewed 6

Feb 2002, <http://www.osdn.com/bcg/BCGHACKERSURVEY.pdf>.

Lakhani, KR, Wolf, B, Bates, J & DiBona, C 2003, The Boston Consulting Group Hacker

Survey - Release 0.73, viewed 15 Jan 2003,

<http://www.osdn.com/bcg/BCGHACKERSURVEY-0.73.pdf>.

Lancashire, D 2001, 'The Fading Altruism of Open Source Development', First Monday, vol. 6,

no. 12, viewed 20 Jan 2003,

<http://www.firstmonday.org/issues/issue6_12/lancashire/index.html>.

Lang, T 'An Overview of Four Futures Methodologies', The Manoa Journal of Fried and

Half-Fried Ideas, vol. 7, viewed 14 Feb 2003,

<http://www.soc.hawaii.edu/future/j7/LANG.html>.

Lawrie, T, Arief, B & Gacek, C 2002, 'Interdisciplinary Insights on Open Source', paper

presented to Proceedings of the Open Source Software Development Workshop, Newcastle

upon Tyne, U.K., 25-26 Feb. 2002, viewed 25 Mar 2002,

<http://www.dirc.org.uk/events/ossdw/OSSDW-Proceedings-Final.pdf>.

Le Cornu, P 1996, Hardware/software selection and purchasing, TAFE national information

technology series, ITE402, Eastern House, Victoria, Australia.

Lee, AS 1991, 'Integrating Positivist and Interpretive Approaches to Organizational Research',

Organization Science, vol. 4, no. 2, pp. 342-65.

Lee, SD 2002, Building an electronic resource collection : a practical guide, Library

Association, London.

Lerner, J & Triole, J 2002, 'Some Simple Economics of Open Source', The Journal of Industrial

Economics, vol. 50, no. 2, pp. 197-234.

Leuf, B & Cunningham, W 2001, The Wiki Way: Collaboration and Sharing on the Internet,

Addison-Wesley.

Levy, S 1984, Hackers: Heroes of The Computer Revolution, Anchor Press/Doubleday, Garden

City, New York.

Lewis, RO 1992, Independent verification and validation : a life cycle engineering process for

quality software, New dimensions in engineering, Wiley, New York.

Licklider, JCR & Taylor, R 1968, 'The Computer as a Communication Device', In Memoriam:

J.C.R. Licklider 1915-1990, reprinted by permission from Digital Research Center; originally

published as 'The Computer as a Communication Device,' in Science and Technology, April,

1968, pg. 40, p. 40.

List of References

295

Lindberg, F & Ringel, FB 1999, EZMLM/IDX MAILING LIST MANAGER, viewed 28 Mar

2003, <http://ezmlm.org/>.

Lindgaard, G 1994, Usability testing and system evaluation : a guide for designing useful

computer systems, Chapman & Hall, London.

Linstone, HA & Murray, T 1975, 'Introduction', in HA Linstone & M Turoff (eds), The Delphi

Method:Techniques and Applications, Addison-Wesley, London, pp. 3-12.

Linux Kernel Mailing List 2003, MARC: Mailing list ARChives at AIMS, viewed 15 Jul 2003,

<http://marc.theaimsgroup.com/?l=linux-kernel>.

Lord, T The arch Low-Budget Home Page, viewed 9 Apr 2003,

<http://regexps.srparish.net/www/>.

Ludlow, J 1975, 'Delphi Inquiries and Knowledge Utilization', in HA Linstone & M Turoff

(eds), The Delphi Method:Techniques and Applications, Addison-Wesley, London, pp. 102-23.

MacDonald, J, Hilfinger, PN & Semenzato, L 1998, 'PRCS: The Project Revision Control

System', paper presented to System Configuration Management ECOOP'98 SCM-8

Symposium, Belgium, July, viewed 17 Mar 2003,

<http://prdownloads.sourceforge.net/prcs/scm98.pdf>.

Maclachlan, M 1999, Panelists Describe Open Source Dictatorships, viewed 26 Nov 2000,

<http://www.techweb.com/news/story/TWB19990812S0003>.

Mans, HM 2003, WakkaWiki : WakkaWiki, viewed 10 Dec 2003,

<http://www.wakkawiki.com/WakkaWiki>.

Markus, ML, Manville, B & Agres, CE 2000, 'What Makes a Virtual Organization Work?'

Sloan Management Review, vol. 42, no. 1 (Fall), pp. 13-26.

McCabe, TJ 1976, 'A Complexity Measure', IEEE Transactions on Software Engineering, vol.

2, pp. 308-20.

McCraw, T & Tedlow, R 1997, 'Henry Ford, Alfred Sloan, and the Three Phases of Marketing',

in T McCraw (ed.), Creating Modern Capitalism : How Entrepreneurs, Companies, and

Countries Triumphed in Three Industrial Revolutions, Harvard, Cambridge, pp. 266-308.

McIntyre Library 1998, Ten C's For Evaluating Internet Sources, viewed 15 Sep 1999,

<http://www.uwec.edu/Admin/Library/Guides/tencs.html>.

McKendrick, J 2003, Is Open Source the New Normal?, viewed 21 Feb 2003,

<http://www.entmag.com/news/article.asp?EditorialsID=5704>.

McKusick, MK 1999, 'Twenty Years of Berkeley Unix From AT&T-Owned to Freely

Redistributable', in C DiBona, S Ockman & M Stone (eds), Open Sources: Voices from the

Open Source Revolution, O'Reilly & Associates, Sebastopol, California, viewed 7 Nov 2000,

<http://www.oreilly.com/catalog/opensources/book/kirkmck.html>.

McLuhan, M 1964, Understanding media : the extensions of man, Routledge & K. Paul,

London.

mettw 2000, Contribution balance, viewed 19 Oct 2000,

<http://www.advogato.org/article/128.html>.

Miller, P 2003, Aegis 4.11, viewed 9 Apr 2003, <http://aegis.sourceforge.net/>.

List of References

296

Miller, RR 2002, Counting desktop Linux users is impossible, viewed 20 Sep 2002,

<http://newsforge.com/newsforge/02/09/17/0111258.shtml?tid=19>.

Miller, RR 2003, The programmer as (starving) artist, viewed 9 Dec 2003,

<http://www.newsforge.com/article.pl?sid=03/12/02/1256211>.

Minnihan, J 2003, freepository - Enabling Global Software Development Collaboration,

viewed 30 Oct 2003, <https://www.freepository.com/>.

Mitroff, II & Turoff, M 1975, 'Philosophy and Methodoloigcal Foundations of Delphi', in HA

Linstone & M Turoff (eds), The Delphi Method:Techniques and Applications, Addison-Wesley,

London, pp. 15-36.

Mockus, A & Herbsleb, JD 2002, 'Why Not Improve Coordination in Distributed Software

Development by Stealing Good Ideas from Open Source?' paper presented to 2nd Workshop on

Open Source Software Engineering, Proceedings of 23rd

Int'l Conf. on Software Engineering, Orlando, Florida, May 25, viewed 23 Aug 2002,

<http://opensource.ucc.ie/icse2002/MockusHerbsleb.pdf>.

Mockus, A, Fielding, R & Herbsleb, J 2002, Two Case Studies of Open Source Software

Development: Apache and Mozilla, ALR-2002-003, Avaya Labs, viewed 9 Oct 2002,

<http://www.research.avayalabs.com/techreport/ALR-2002-003-paper.pdf>.

Moen, R 2002, GForge: possible renaissance for open-source SourceForge, viewed 22 Jul

2003, <http://lwn.net/Articles/17369/>.

Moody, G 2001, Rebel Code: The Inside Story of Linux and the Open Source Revolution,

Perseus, Cambridge, Massachusetts.

Moon, JY & Sproull, L 2000, 'Essence of Distributed Work: The Case of the Linux Kernel',

First Monday, vol. 5, no. 11, viewed 4 Dec 2002,

<http://firstmonday.org/issues/issue5_11/moon/index.html>.

MySQL AB 2003, MySQL The World's Most Popular Open Source Database, viewed 7 Nov

2003, <http://www.mysql.com/>.

Nakakoji, K, Yamamoto, Y, Nishinaka, Y, Kishida, K & Yunwen, Y 2002, 'Evolution Patterns of

Open-Source Software Systems and Communities', paper presented to Proceedings of 5th

International Workshop on Principles of Software Evolution (IWPSE2002), Orlando, Florida,

May 2002, viewed 24 Jan 2003,

<http://www.kid.rcast.u-tokyo.ac.jp/~kumiyo/mypapers/IWPSE2002.pdf>.

Nelson, R, Cole, S, Mueller, O & Theodoropoulos, P 2003, The qmail home page, viewed 5

Nov 2003, <http://qmail.glasswings.com.au/top.html>.

Netcraft 2004, Netcraft Web Server Survey, viewed 9 Jan 2004,

<http://news.netcraft.com/archives/2004/01/01/january_2004_web_server_survey.html>.

Netscape Communications Corporation 1998, Introduction to SSL, viewed 7 Nov 2003,

<http://developer.netscape.com/docs/manuals/security/sslin/contents.htm>.

Neuman, WL, Bondy, J & Knight, N 2003, Social research methods : qualitative and

quantitative approaches, 5th edn, Allyn and Bacon, Boston.

List of References

297

Newman, N 1999, The Origins and Future of Open Source Software: A NetAction White Paper,

viewed 28 Jul 2000, <http://www.netaction.org/opensrc/future/oss-whole.html>.

Nielsen, J 1993, Usability engineering, Academic Press, Boston.

Nielsen, J 2000, Designing Web Usability: The Practice of Simplicity, New Riders, Indianapolis,

Indiana.

Nikhil Goel, Christian Bayle, Adriano Nagelschmidt Rodrigues, Peter Masiar & Douglas, B

2003, Discussion Forums: Devel Forum, viewed 6 Nov 2003,

<http://gforge.org/forum/forum.php?thread_id=708&forum_id=5>.

Novell 2003, Welcome to Novell Forge, viewed 30 Oct 2003,

<http://forge.novell.com/modules/news/>.

O'Brien, JA 1997, Introduction to information systems, 8th edn, Irwin Book Team, Chicago.

O'Mahony, S 2003, 'Non-Profit Foundations and their Role in Community-Firm Software

Collaboration', paper presented to HBS - MIT Sloan Free/Open Source Software Conference:

New Models of Software Development, Boston and Cambridge, MA,, 19-20 Jun, 2003, viewed

6 Oct 2003, <http://opensource.mit.edu/papers/conf-omahony.pdf>.

Open Source Initiative 2000, History of the Open Source Initiative, viewed 18 Jun 2000,

<http://www.opensource.org/history.html>.

Open Source Initiative 2003a, The Open Source Definition, viewed 30 Jan 2003,

<http://www.opensource.org/docs/definition.php>.

Open Source Initiative 2003b, Open Source Initiative OSI - Welcome, viewed 30 Jan 2003,

<http://www.opensource.org/>.

Ormondroyd, J, Engle, M & Cosgrave, T 1999, How to Critically Analyze Information Sources,

viewed 15 Sep 1999, <http://www.library.cornell.edu/okuref/research/skill26.htm>.

OSDir.com 2002, Interview with OSDir: Interview with Tim Perdue. GForge and behind the

scenes at SourceForge, viewed 22 Jul 2003,

<http://osdir.com/modules.php?op=modload&name=News&file=article&sid=102>.

OSDN 2003a, Slashdot: News for nerds, stuff that matters, viewed 24 Feb 2003,

<http://slashdot.org/>.

OSDN 2003b, freshmeat.net, viewed 24 Feb 2003, <http://freshmeat.net/>.

Owen, JM & Rogers, PJ 1999, Program evaluation : forms and approaches, 2nd edn, Allen &

Unwin, St Leonards, N.S.W.

Pavlicek, RC 2000, Embracing Insanity: Open Source Software Development, Sams, Indiana.

Pennington, H Working on Free Software, viewed 25 Nov 2000,

<http://www106.pair.com/rhp/hacking.html>.

Pesch, R 2002, CVS--Concurrent Versions System v1.11.2, viewed 29 Jan 2003,

<http://ftp.cvshome.org/cvs-1.11.2/cederqvist-1.11.2.html.tar.gz>.

Powell, DE 2002, KDEvelopers on KDE users, viewed 5 Jul 2002,

<http://www.linuxandmain.com/modules.php?name=News&file=article&sid=128>.

Pressman, RS 1997, Software engineering : a practitioner's approach, 4th edn, McGraw-Hill,

New York.

List of References

298

Purdue University Libraries 1999, Evaluation of Information Sources, viewed 12 Dec 1999,

<http://www.lib.purdue.edu/library_info/departments/ugrl/ref/bib/evalinfo.html>.

Queensland University of Technology Division of Information and Academic Services 2003, A

Copyright Guide for Students, viewed 22 Jan 2004,

<http://www.tils.qut.edu.au/copyright/QUT_Student_Copyright_Guide.html>.

Ratto, M 2003, 'The Power of Openness: the hybrid work of Linux Free/Open Source kernel

developers', PhD thesis, University of California.

Raymond, ES 1999, 'The Revenge of the Hackers', in C DiBona, S Ockman & M Stone (eds),

Open Sources: Voices from the Open Source Revolution, O'Reilly & Associates, Sebastopol,

California, viewed 7 Nov 2000,

<http://www.oreilly.com/catalog/opensources/book/raymond2.html>.

Raymond, ES 2000a, Homesteading the Noosphere, viewed 22 Dec 2000,

<http://www.tuxedo.org/~esr/writings/homesteading/homesteading/>.

Raymond, ES 2000b, The Cathedral and the Bazaar, viewed 30 May 2000,

<http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.html>.

Raymond, ES 2000c, A Brief History of Hackerdom, viewed 30 May 2000,

<http://www.tuxedo.org/~esr/writings/hacker-history/hacker-history.html>.

Raymond, ES 2001, The Jargon File, viewed 28 Aug 2001,

<http://www.tuxedo.org/~esr/jargon/jargon.html>.

Raymond, ES 2003, 'Problems in the culture of Unix', in The Art of Unix Programming, viewed

8 Apr 2003, <http://www.catb.org/~esr/writings/taoup/html/ch19s04.html>.

Reis, C 2002a, The Free Software Engineering Survey, viewed 9 Apr 2003,

<http://www.async.com.br/~kiko/fsp/results.php>.

Reis, C 2002b, The Free Software Engineering Survey - (not really) Frequently Asked

Questions, viewed 6 Jun 2003, <http://www.async.com.br/~kiko/fsp/faq.php>.

Reis, C & Fortes, RPdM 2002, 'An Overview of the Software Engineering Process and Tools in

the Mozilla Project', paper presented to Proceedings of the Open Source Software Development

Workshop, Newcastle upon Tyne, U.K., 25-26 Feb. 2002, viewed 25 Mar 2002,

<http://www.dirc.org.uk/events/ossdw/OSSDW-Proceedings-Final.pdf>.

Rheingold, H 1993, The Virtual Community: Homesteading on the Electronic Frontier,

Addison-Wesley, Reading, Massachusetts.

Robbins, J 2002, Personal Communication (during a visit to Collab.Net), 21 Feb 2002.

Roland Mas, Christian Bayle & Kwon, S-S debian-sf Homepage, viewed 31 Oct 2003,

<http://www.nongnu.org/debian-sf/>.

Romm, C, Pliskin, N & Clarke, R 1997, 'Virtual Communities and Society: Toward an

Integrative Three Phase Model', International Journal of Information Management, vol. 17, no.

4, pp. 261-70.

Rosenberg, DH, C. 1994, 'Introduction', in DH Rosenberg, C. (ed.), Design Issues in CSCW,

Springer-Verlag, London, pp. 1-8.

List of References

299

Rossi, PH, Freeman, HE & Rosenbaum, S 1982, Evaluation : a systematic approach, 2nd edn,

Sage Publications, Beverly Hills, California.

Royal Melbourne Institute of Technology 2004, Fair Dealing, viewed 22 Jan 2004,

<http://www.rmit.edu.au/browse;ID=6xaviaznzwnf>.

Royce, WW 1970, 'Managing the Development of Large Software Systems: Concepts and

Techniques', paper presented to Proc. WESCON, Los Angeles, Aug. 25-28.

Rubin, J 1994, Handbook of usability testing : how to plan, design, and conduct effective tests,

Wiley technical communication library, Wiley, New York.

Salus, PH 1995, A Quarter Century of Unix, Addison-Wesley, Reading, Massachusetts.

Sarapuu, T & Adojaan, K 1998, 'Evaluation Scale of Educational Web Sites', paper presented to

Internet and Intranet Proceedings, Orlando, FL, Nov 7-12.

Scacchi, W 2002, 'Understanding Requirements for Developing Open Source Software

Systems', IEE Proceedings - Software, vol. 149, no. 1, pp. 24-39.

Scacchi, W 2003, Understanding Open Source Software Evolution: Applying, Breaking, and

Rethinking the Laws of Software Evolution, viewed 9 Jul 2003,

<http://opensource.mit.edu/papers/scacchi3.pdf>.

Scarlett, B 2001, 'Entriprise Effectiveness: A Cross-Cultural Study of Business Goals', PhD

thesis, Royal Melbourne Institute of Technology.

Schach, SR, Jin, B, Wright, DR, Heller, GZ & Offutt, AJ 2002, 'Maintainability of the Linux

Kernel', IEE Proceedings - Software, vol. 149, no. 1, pp. 18-23.

Schmidt, RC 1997, 'Managing Delphi surveys using nonparametric statistical techniques',

Decision Sciences, vol. 28, no. 3, pp. 763-74.

Schrock, K 1999, Kathy Schrock's Guide for Educators - Critical Evaluation Surveys, viewed

15 Sep 1999, <http://school.discovery.com/schrockguide/eval.html>.

Schulmeyer, GG & MacKenzie, GR 2000, Verification and validation of modern

software-intensive systems, Prentice Hall, Upper Saddle River, NJ.

Schutz, A 1972, The phenomenology of the social world, Heinemann Educational, London.

Schweik, CM & Semenov, A 2003, 'The Institutional Design of Open Source Programming:

Implications for Addressing Complex Public Policy and Management Problems', First Monday,

vol. 8, no. 1, viewed 10 Jan 2003,

<http://www.firstmonday.org/issues/issue8_1/schweik/index.html>.

SEUL.org 2001, SEUL Manifesto, viewed 31 Oct 2003,

<http://www.seul.org/what/manifesto.html>.

SEUL.org 2002, Seul.org Home Page, viewed 9 Apr 2003, <http://www.seul.org/>.

SGI 2003, SGI - SGI Global Developer Program SGI Open Source, viewed 31 Jan 2003,

<http://www.sgi.com/developers/oss/>.

Shapiro, JS 2002, OpenCM User's Guide, viewed 26 Mar 2003,

<http://www.opencm.org/opencm.html>.

Shapiro, JS & Vanderburgh, J 2002a, 'CPCMS: A Configuration Management System Based on

Cryptographic Names', paper presented to Proc. 2002 USENIX Annual Technical Conference,

List of References

300

FreeNIX Track, Monterey, CA, viewed 24 Feb 2003,

<http://www.opencm.org/papers/cpcms2001.pdf>.

Shapiro, JS & Vanderburgh, J 2002b, 'Access and Integrity Control in a Public-Access,

High-Assurance Configuration Management System', paper presented to Proc. 11th USENIX

Security Symposium, San Francisco, CA, viewed 20 Mar 2003,

<http://www.opencm.org/papers/usenix-sec2002.pdf>.

Shapiro, JS, Vanderburgh, J & Lloyd, J 2003, 'OpenCM One Year Later', paper presented to

Proc. 2003 USENIX Annual Technical Conference, FreeNIX Track, viewed 20 Mar 2003,

<http://www.opencm.org/papers/usenix-sec2002.pdf>.

Sharma, S, Sugumaran, V & Rajagopalan, B 2002, 'A Framework for Creating Hybrid-OSS

Communities', Information Systems Journal, vol. 12, no. 1, pp. 7-26.

Smith, AG 1997, Criteria for Evaluation of Internet Resources, viewed 27 Jul 1999,

<http://www.vuw.ac.nz/~agsmith/evaln/index.htm>.

Smith, AG 1998, 'Criteria for Evaluation of Internet Resources in a Digital Library

Environment', paper presented to Proceedings Of the First Asia Digital Library Workshop,

Hong Kong, 6-7 Aug.

So, H, Thomas, N & Zadeh, H 2002, 'What is in a Bazaar? A Model of Individual Participation

in an Open Source Community', paper presented to Proceedings of the Open Source Software

Development Workshop, Newcastle upon Tyne, U.K., 25-26 Feb. 2002, viewed 25 Mar 2002,

<http://www.dirc.org.uk/events/ossdw/OSSDW-Proceedings-Final.pdf>.

Software Engineering Institute 2003a, Capability Maturity Models, viewed 2 Oct 2003,

<http://www.sei.cmu.edu/cmm/cmms/cmms.html>.

Software Engineering Institute 2003b, Capability Maturity Model (SW-CMM) for Software,

viewed 9 Oct 2003, <http://www.sei.cmu.edu/cmm/cmm.sum.html>.

Software Engineering Standards Committee of the IEEE Computer Society 1998a, IEEE

Standard for Software Verification and Validation, IEEE Std 1012-1998, Institute of Electrical

and Electronics Engineers, New York.

Software Engineering Standards Committee of the IEEE Computer Society 1998b, IEEE

Recommended Practice for Software Acquisition, IEEE Std 1062-1998, Institute of Electrical

and Electronics Engineers, New York.

SourceForge 2003, SourceForge.net: Welcome, <http://sourceforge.net/>.

SourceForge 2004, SourceForge.net: Welcome, viewed 9 Jan 2004, <http://sourceforge.net/>.

Sowa, J & Zachman, J 1992, 'Extending and formalizaing the framwork for IS architecture',

IBM Systems Journal, vol. 31, no. 3, pp. 590-616.

Squires, D & McDougall, A 1994, Choosing and using educational software : a teachers' guide,

Falmer Press, London ; Washington, D.C.

Squires, D & McDougall, A 1996, 'Software evaluation: a situated approach', Journal of

Computer Assisted Learning, vol. 12, no. 3, pp. 146-61.

Stamelos, I, Angelis, L, Oikonomou, A & Bleris, GL 2002, 'Code Quality Analysis in

Open-Source Software Development,' Information Systems Journal, vol. 12, no. 1, pp. 43-60.

List of References

301

Stanford University 2003, Copyright & Fair Use, viewed 22 Jan 2004,

<http://fairuse.stanford.edu/>.

Stark, M 2003, The Organizational Model for Open Source, viewed 9 Jul 2003,

<http://workingknowledge.hbs.edu/pubitem.jhtml?id=3582&t=technology>.

Strauss, AL & Corbin, JM 1990, Basics of qualitative research : grounded theory procedures

and techniques, Sage, Newbury Park, California.

Strong, DM, Lee, YW & Wany, RY 1997, 'Data Quality in Context', Communications of the

ACM, vol. 40, no. 5, pp. 103-10.

Sun Microsystems Inc. Welcome to SunSource.Net - an information and links site edited by the

Sun Open Source Program Office, viewed 31 Jan 2003, <http://www.sunsource.net/>.

Sunsite.dk staff group 2003a, SunSITE.dk - Supporting Open Source, viewed Apr 9 2003,

<http://sunsite.dk/>.

Sunsite.dk staff group 2003b, About the SunSITE Program, viewed 31 Oct 2003,

<http://sunsite.dk/node/id/66>.

Sunsite.dk staff group 2003c, About sunsite.dk, viewed 31 Oct 2003,

<http://sunsite.dk/node/id/67>.

Susan, B 1997, Evaluation Criteria, The Good, The Bad & The Ugly: or, Why It's a Good Idea

to Evaluate Web Sources, viewed 15 Sep 1999,

<http://lib.nmsu.edu/staff/susabeck/evalcrit.html>.

Tapscott, D 1996, The Digital Economy: Promise and Peril in the Age of Networked

Intelligence, McGraw-Hill, New York.

Tedlock, B 2000, 'Ethnography and Ethnographic Representation', in NK Denzin, YS Lincoln

& H Fehring (eds), The handbook of qualitative research, 2nd edn, Sage Publications,

Thousand Oaks, California, pp. 455-86.

The Associated Press 2000, Security firm tests FBI limits with e-mail surveillance tool, viewed

31 Jan 2003, <http://www.cnn.com/2000/TECH/computing/09/19/email.surveillance.ap/>.

The Computer Museum History Center CHM: Timeline of Computer History, viewed 12 Sep

2003, <http://www.computerhistory.org/timeline/timeline.php?timeline_year=1970>.

The Free On-line Dictionary of Computing 1998, client-server, viewed 13 Mar 2003,

<http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?query=client-server&action=Search>.

The FreeBSD Project 2003, FreeBSD CVSweb Project, viewed 5 Nov 2003,

<http://www.freebsd.org/projects/cvsweb.html>.

The Mozilla Organization 2003a, bonsai, viewed 26 Mar 2003,

<http://www.mozilla.org/bonsai.html>.

The Mozilla Organization 2003b, mozilla, viewed 18 Dec 2003, <http://www.mozilla.org/>.

The PHP Group 2003, PHP Hypertext Preprocessor, viewed 7 Nov 2003,

<http://www.php.net/>.

The PostgreSQL Global Development Group PostgreSQL, viewed 17 Nov 2003,

<http://www.postgresql.org/>.

List of References

302

The Samba Team 2003, Welcome to the rsync web pages, viewed 7 Nov 2003,

<http://samba.anu.edu.au/rsync/index.html>.

The SCO Group 2003, Letter To Linux Customers, viewed 16 May 2003,

<http://www.sco.com/scosource/letter_to_linux_customers.html>.

The Unix vs NT Organisation 2001, The Unix vs NT Organisation, viewed 14 Sep 2001,

<http://www.unix-vs-nt.org/>.

Tichy, WF 1985, 'RCS-A System for Version Control', Software - Practice and Experience, vol.

15, no. 7, pp. 637-54, viewed 22 Nov 2002,

<http://citeseer.nj.nec.com/rd/0%2C111753%2C1%2C0.25%2CDownload/http://citeseer.nj.ne

c.com/cache/papers/cs/5588/http:zSzzSzwww.cs.yorku.cazSz%7EbrechtzSz4321zSzhandouts

zSzrcs.pdf/tichy91rcs.pdf>.

Tim Perdue, Christian Bayle, Roland Mas, Daniele Franceschi, Tony Guntharp, Michael

Jennings, Reinhard Spisser & Copeland, T GForge3:Welcome, viewed 30 Oct 2003,

<http://gforge.org/>.

Toffler, A 1981, The third wave, Pan Books, London.

Torvalds, L & Diamond, D 2001, Just for Fun: The Story of an Accidental Revolutionary,

TEXERE, New York.

Travis, D 2003, E-commerce usability : tools and techniques to perfect the on-line experience,

Taylor & Francis, New York.

Tridgell, A & Shearer, D JitterBug project suspended, viewed 5 Nov 2003,

<http://samba.anu.edu.au/jitterbug/>.

Tuomi, I 2001, 'Internet, Innovation, and Open Source: Actors in the Network', First Monday,

vol. 6, no. 1, viewed 24 Jan 2003,

<http://www.firstmonday.org/issues/issue6_1/tuomi/index.html>.

Turkle, S 1984, The Second Self: Computers and the Human Spirit, Simon & Schuster, New

York.

Turoff, M & Hiltz, SR 1996, 'Computer Based Delphi Processes', in M Adler & E Ziglio (eds),

Gazing into the Oracle: The Delphi Method and Its Application to Social Policy and Public

Health, Jessica Kingsley Publishers, London, pp. 56-85.

Twining, J 1999, 'Electronic Delphi Among Collaboratory Pioneers', in A Naturalistic Journey

into the Collaboratory: In Search of Understanding for Prospective Participants, PhD

Dissertation, Chapter 9, pp. 174-212, viewed 28 Aug 2000,

<http://intertwining.org/dissertation/dissertation.PDF>.

VA Software 2003, Alliances, viewed 28 Oct 2003,

<http://www.vasoftware.com/company/alliances.php>.

van der Hoek, A 2000, 'Configuration Management and Open Source Projects', paper presented

to 22nd Intl' Conf. On Software Engineering, 3rd Workshop on Software Engieering over the

Internet, 6 Jun. 2000, viewed 4 Oct 2000,

<http://sern.ucalgary.ca/~maurer/icse2000ws/submissions/Hoek.pdf>.

List of References

303

ViewCVS Users Group 2002, ViewCVS: Viewing CVS Repositories, viewed 26 Mar 2003,

<http://viewcvs.sourceforge.net/>.

Wadsworth, Y 1997, Everyday evaluation on the run, 2nd edn, Allen & Unwin, St. Leonards,

New South Wales.

Waldron, MB & Waldron, KJ 1996, 'Methods of Studying Mechanical Design', in MB Waldron

& KJ Waldron (eds), Mechanical Design, Springer, New York, pp. 21-34.

Watt, JH 1999, 'Internet Systems for Evaluation Research', in G Gay & T Bennington (eds),

Information Technologies in Evaluation: Social Moral, Epistemological, the Practical

Implications, New Directions for Evaluation, Jossey-Bass, San Francisco, CA, pp. 23-43.

Weinberg, GM 1971, The psychology of computer programming, Computer science series, Van

Nostrand Reinhold, New York.

Wellman, B & Gulia, M 1999, 'Net Surfers Don't Ride Alone: Virtual Communities as

Communities', in B Wellman (ed.), Networks in the global village : life in contemporary

communities, Westview Press, Boulder, Colorado, pp. 331-66.

Wheeler, DA 2002, More Than a Gigabuck: Estimating GNU/Linux's Size, viewed 5 Feb 2003,

<http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html>.

White, BA 2000, Software configuration management strategies and Rational ClearCase : a

practical introduction, Addison-Wesley object technology series, Addison-Wesley, Boston,

MA.

Whitehead, R 2001, Leading a software development team : a developer's guide to successfully

leading people and projects, Addison-Wesley, Harlow.

Wiki Engines, 2003, viewed 1 Dec 2003, <http://c2.com/cgi/wiki?WikiEngines>.

Wilcox, J & Shankland, S 2002, Analysts: Microsoft feels tug of Linux, viewed 20 Feb 2003,

<http://news.com.com/2102-1001-976755.html>.

Wilkinson, GL, Bennett, LT & Oliver, KM 1997, Evaluating the Quality of Internet Information

Sources, viewed 19 Nov 1999, <http://itech1.coe.uga.edu/Faculty/GWilkinson/webeval.html>.

Willard, A & Irwin, BE 2005, Loads of Linux Links: Software Archives, viewed 30 Aug 2005,

<http://loll.sourceforge.net/linux/links/Software_Archives/>.

Wilms, R 2003, An SSL connection method for CVS (sserver), viewed 20 Nov 2003,

<http://home.arcor.de/rolf_wilms/cvsssl/cvsssl_help.html>.

Wilson, G 1999, 'Is the Open-Source Community Setting a Bad Example?' IEEE Software, vol.

16, no. 1, pp. 23-5.

Wire, B 2000, VA Linux Launches 'SourceForge OnSite' Enterprise Solution, viewed 6 Feb

2001,

<http://www.businesswire.com/cgi-bin/f_headline.cgi?bw.120500/203400154&ticker=LNUX

>.

Wladawsky-Berger, I 2001, Wladawsky-Berger on Linux and open standards, viewed 28 Aug

2001, <http://www.ibm.com/news/us/2001/08/15.html>.

List of References

304

Wu, M-W & Lin, Y-D 2001, 'Open Source Software Development: An Overview', IEEE

Computer, June 2001, pp. 33-8, viewed 14 Jul 2003,

<http://speed.cis.nctu.edu.tw/~ydlin/insideopen.pdf>.

Yamauchi, Y, Yokozawa, M, Shinohara, T & Ishida, T 2000, 'Collaboration with Lean Media:

How Open-Source Software Succeeds', paper presented to ACM Conference on Computer

Supported Cooperative Work (CSCW2000), Philadelphia, PA, viewed 18 Jun 2001,

<http://www.bol.ucla.edu/~yutaka/papers/yamauchi_cscw2000.pdf>.

Yee, D 1999, Development, Ethical Trading, and Free Software, viewed 11 Sep 2000,

<http://danny.oz.au/freedom/ip/aidfs.html>.

Yin, RK 1994, Case study research : design and methods, 2nd edn, Applied social research

methods series ; v. 5, Sage, Thousand Oaks, California.

Zachman, J 1987, 'A framework for IS architecture', IBM Systems Journal, vol. 26, no. 3, pp.

276-92.

Zawinski, J 1999, resignation and postmortem, viewed 22 Jun 2000,

<http://www.jwz.org/gruntle/nomo.html>.

Ziglio, E 1996, 'The Delphi Method and its Contribution to Decision-Making', in M Adler & E

Ziglio (eds), Gazing into the Oracle: The Delphi Method and Its Application to Social Policy

and Public Health, Jessica Kingsley Publishers, London, pp. 3-33.

Appendix A Related Publications

Two related articles were published during the course of the PhD programme. They are listed

below.

1. So, H, Thomas, N & Zadeh, H 2002, 'What is in a Bazaar? A Model of Individual

Participation in an Open Source Community', paper presented to Proceedings of the Open

Source Software Development Workshop, Newcastle upon Tyne, U.K., 25-26 Feb. 2002,

viewed 25 Mar 2002,

<http://www.dirc.org.uk/events/ossdw/OSSDW-Proceedings-Final.pdf>.

2. So, H., Thomas, N. & Zadeh, H. 2002, 'The Keys to Succeed in Building a Free/Open

Source Community for Software Development : a study on China, Hong Kong and Taiwan',

International Conference on Open Source, Taipei, 2-4 Aug. 2002.

Appendix B Licenses of Different Portions of the Di ssertation

and Other Copyright Issues

As a substantial part of the data was collected from Free/Open Source communities that have a

strong culture of sharing, it is appropriate to make this research available to the public as well

under a license that encourage sharing. The general principle for licensing of this dissertation is

that body will be licensed under the Creative Commons Attribution-NonCommercial-NoDerivs

v2.5 License (CC) and the source code written in this research is licensed under the General

Public License v2.0 (GPL).

The author is not an expert in licenses and CC and GPL were chosen partly because they were

commonly used. Creative Common is a well-known organization for providing flexible

protection on copyright and GPL was the most commonly used license for source code. These

licenses are enclosed below. This dissertation was formerly released under OpenContent

License v1.0 (OPL), which is now obsoleted by CC.

There are some minor issues worth mentioning. The content of the comparison table of the

external hosting FOSPHost sites was released into public domain as well as licensed under CC

as the content of this dissertation so that more flexibility was given to the usage of the content.

Another issue is that permission may be required to include the quoted the diagrams and tables

in this dissertation for digital dissemination under CC. Though these diagrams and tables

quoted from other sources can be included in the physical copy of the dissertation based on the

principle of fair use (Stanford University 2003) or fair dealing (Queensland University of

Technology Division of Information and Academic Services 2003; Royal Melbourne Institute

of Technology 2004), the rules for digital dissemination are different and the author will ask for

permission after the examination of this dissertation. The author would like to ask for the

Appendix B Licenses of Different Portions of the Dissertation

307

co-operation of the readers not to distribute the digital format of this dissertation on the

CD-ROM. The author will make a digital copy of this dissertation with the authorised diagrams

and tables only available to the public on the Internet later.

Another copyright issue is trademark acknowledgement. A list of trademarks appeared in the

dissertation is provided below.

Apache Trademark of the Apache Software Foundation

Bugzilla Trademark of the Mozilla Organization

Capability Maturity Models

(CMM)

Registered trademark of Software Engineering Institute

Chrysler DaimlerChrysler

CollabNet Registered trademarks of CollabNet, Inc.

FreeBSD Registered trademark of Wind River Systems, Inc.

GNOME Trademark of the GNOME Foundation

Java Trademark of Sun Microsystems, Inc.

Javascript Trademark of Netscape Communications Corporation

JavaServer Pages Trademark of Sun Microsystems, Inc.

JavaServer Pages (JSP) Trademark of Sun Microsystems, Inc.

Linux Trademark of Linus Torvalds

Microsoft Trademark of Microsoft Corporation

Microsoft Windows Trademark of Microsoft Corporation

Mozilla Trademark of the Mozilla Organization

MySQL MySQL AB

NetBeans Registered trademark of NetBeans Corporation

NetBSD Trademark of the NetBSD Foundation

Netscape Trademark of Netscape Communications Corporation

Novell Trademark of Novell, Inc.

Personal Software Process (PSP) Service Mark of Software Engineering Institute

Portable Document Format (PDF) Trademark of Adobe Corporation

PostgreSQL Trademark of the PostgreSQL Global Development Group

SCO Trademark of the SCO Group

Appendix B Licenses of Different Portions of the Dissertation

308

Secure Sockets Layer (SSL) Trademark of Netscape Communications Corporation

SourceCast Registered trademarks of CollabNet, Inc.

SourceForge Trademark of VA Software

Sun Trademark of Sun Microsystems, Inc.

Sun Microsystems Trademark of Sun Microsystems, Inc.

Sun Site Trademark of Sun Microsystems, Inc.

Team Software Process (TSP) Service Mark of Software Engineering Institute

UNIX Registered trademarks of X/Open Company Limited

VA Software Trademark of VA Software

Table B-1 List of Trademarks Acknowledged

All other trademarks and copyrights referred to in this dissertation are the property of their

respective owners.

Appendix B Licenses of Different Portions of the Dissertation

309

For more details on the legal code (full license) and disclaimer, please refer to

http://creativecommons.org/licenses/by-nc-nd/2.5/deed.en

Appendix C Content of Enclosed CD-ROM

As CD-recording technology is commonly adopted, a part of the content of the appendices is

also recorded in CD-ROM format to be more environmental-friendly and reduce the weight of

this dissertation. Moreover, extra functionalities can be provided in some of the content such as

the copy of dissertation in PDF format and the hyper-linked presentation of the Delphi survey

results in digital format. The content in the CD-ROM is listed below.

Content Directory/File

PDF Version of Dissertation /eval_fosphost.pdf

Delphi Survey Result /Delphi/result/index.html

Capture of the Evaluation Model on the WakkaWikki /wakka_pages_capture/index.html

Source Code of Delphi and Database Dump /Delphi

Source Code of Evaluation and Database Dump /eval_code

For convenience sake, introductory information for Delphi survey results, capture of the

evaluation model on the WakkaWikki, source code of Delphi and Database dump and source

code of Evaluation and Database dump are included in appendices G, H, I and J respectively.

Appendix D Jane Jacob's Systems of Survival

Jane Jacob suggested that there were two systems of morality that a society can become

sustainable (Jacobs 1993). They were called systems of survival. One of them was named

commercial moral syndrome and the other guardian moral syndrome.

Any society has to adopt morality such as cooperation, courage, moderation, mercy, common

sense, foresight, judgment, competence, perseverance, faith, energy, patience, wisdom in order

to survive. Nonetheless, there are also two systems of opposite morality that a society could

adopt. These are the commercial and guardian moral syndromes and the details of each

syndrome are listed below (Table D-1):

Table D-1 Commercial and Guardian Moral Syndromes (Jacobs 1993, pp. 23-4)

Appendix D Jane Jacob's Systems of Survival

312

Two syndromes were proposed based on the observation that human could adopt animal like

terrestrial behaviour in building society, which was represented by the guardian moral

syndrome. In contrast, unlike animals, human could exchange possession and doing trading,

which was represented by the commercial moral syndrome.

In the context of this research, opinion collected from participants in Delphi survey indicated

that commercial moral syndrome was the favourable syndrome to be promoted in a FOSPHost

site. This opinion may be a potential area of research.

Appendix E Susceptibility of Average and Variance

In the Delphi survey, both average and variance were employed to process the data. One may

ask the question as the number of participants in a Delphi survey is not too big, if there is one

more participants giving responses, how much change will there be in the result. Moreover,

will the change in variance be larger than the change in average? The conclusion can be

deduced algebraically from basic definitions of average and variance.

new average =
1

1111

+
+++++ +

n

xxxxx nnL

=
1

1

+
+ +

n

xxn n

new average – old average = x
n

xxn n −
+

+ +

1
1

=
1

1

+
−+

n

xxn (Eq. E-1)

new variance =
1

2
1

22
3

2
2

2
1

+
+++++ +

n

xxxxx nnL
- (new average)2

 =
() 2

1
2

1
2

11

+
+−

+
+ ++

n

xxn

n

xxn nn

new variance – old variance =
() ()()22

2

1
2

1
2

11
xx

n

xxn

n

xxn nn −−

+
+

−
+
+ ++

 =
()
1

22
1

+
+−+

n

xxn

()
()2

222
11

22

1

12

+
+−++− ++

n

xnxxxnxn nn

 =
() ()()

()2

22
1

2
1

1

1122

+
+−++− ++

n

xnxnxxnnx nn

Appendix E Susceptibility of Average and Variance

314

If we assume that n is big then n≈n+1 and 2(n+1)≈2n+1:

 ≈ ()
()1

22 22
1

2
1

+
−+− ++

n

xxxxx nn

=
() ()()

()1

222
1

+
−−−+

n

xxxxn (Eq. E-2)

Comparing the differences in average and variance, the term xxn −+1 exists in both differences.

Nevertheless, in variance, it is squared. Therefore, this squared term in the difference in

variance will always be greater than the term in the difference in average. On the other hand,

we know that () 22 xx − is the original variance and cannot be negative. Therefore, if the

original variance is large and the term xxn −+1 is large, the effect may cancel out, but the term

xxn −+1 is close to zero, the new variance will decrease in value. As we do not know the

distribution of the response, further derivation is difficult. Therefore, there is no conclusion

that difference in average is always smaller to the difference in variance or vice versa.

Appendix F Software Configuration System and Source Code

Repository

From the Delphi survey and the Free Software Engineering Survey (Reis 2002a), source code

repositories were the most essential tools of a FOSPHost site. One of the corresponding studies

of source code repositories in software engineering is software configuration system (SCM).

Both of the above topics are important, but as there should be only one central argument for a

dissertation, information on these two topics are included as an appendix. Relevant literature

will be reviewed on software configuration system and background, features and limitations of

CVS will be presented below. Other related source code repositories would be introduced as

well.

F.1 Historical Influences

At least two historical developments are relevant to the design of commonly used source code

repositories, namely the development of the discipline of software configuration management

and hacker culture.

The discipline of SCM was a branch of configuration management (CM), which could be traced

back for about 50 years. This method was initially applied to management engineering

drawings in hardware engineering processes (Buckley 1996). As more products included

software as one of its components, the discipline of software configuration management was

formed.

The formal definition of a configuration item is 'a collection of hardware, software, and/or

firmware, which satisfies an end-use function and is designated for configuration management.'

(Buckley 1996, p. 5) CM is the administration of these configurations. Four activities are

usually identified in CM, namely identification, change control, status accounting and audits

Appendix F Software Configuration System and Source Code Repository

316

(Ben-Menachem 1994; Buckley 1996). A simple definition of SCM is given by White (2000, p.

1) 'SCM is about managing change to software'. The four activities mentioned are applied in a

similar fashion to software. It is obvious that the practice of SCM emphasizes control and

processes.

Another radically different approach was hacker culture developed from universities such as

Massachusetts Institute of Technology (The word 'hack' in this paper does not refer to breaking

into computers. It refers to the ultimate standard of technical virtuosity and aesthetic in a

Free/Open Source community). One emphasis in this culture is to minimising barriers in

collaborative programming. Considering the ITS (Incompatible Time Sharing) System, a

system regarded as the ultimate expression of hacker culture (Levy 1984), there was no

password and anyone could change anything on the system. There was no procedure similar to

the 'proposal, justification, evaluation, co-ordination, approval' in CM change control

procedures but only the social pressure for quality programming (Levy 1984). As argued above,

one of the important aspects of this design was to minimise barriers in collaborative

programming by abolishing control and processes.

The hacker community in Massachusetts Institute of Technology did not last and after its

dispersion. Richard Stallman started the GNU project to produce a Free Unix operating system.

Since developers of the GNU no longer wrote code in the same room and social pressure could

not be asserted physically and verbally. Tools such as diff and patch were employed to cope the

need of distributed development (This was a depressing time for hackers, please refer to

Raymond (1999) and following sections for discussion of the development of this culture). diff

is a program that compares and presents the differences (and similarities) between two text files

on a line-to-line basis (Figure F-1). Patch is a program that does the reverse of diff – take the

original file and the output of diff to form the file with the changes described in the output of diff.

Appendix F Software Configuration System and Source Code Repository

317

These two tools seem to be quite primitive but they have been in use as the primary tools for

Linux kernel development for years (Bezroukov 2002).

Figure F-1 Illustration of the operation of diff

In the early 1980s, Walter Tichy also released a program called Revision Control System (RCS)

as Free software (Bolinger & Bronson 1995; Fogel 1999; Tichy 1985). This system has basic

function of a versioning system - giving each newly updated file a version number and keeping

track of the changes between versions in a central repository. Files can also be managed in a

group, which was referred by Tichy as a configuration, by giving them a common attribute,

such as a common version number or updated before a certain date. In order to preserve the

integrity of the system, a pessimistic locking system (i.e. 'lock-modify-unlock') policy is

Appendix F Software Configuration System and Source Code Repository

318

adopted. From Tichy's own explanation of the system (1985), he was aware of the drawback

that other programmers might be deterred when a file was locked. The remedy for this was a

branching version mechanism. This mechanism allow a locked file to be read and updated

using another set of version number. For example, a branched file from version 1.2 with has

version number 1.2.1.1, 1.2.1.2 and so on. This branch can then be merged back to the main

trunk at the later time. The design of this system was influenced by SCM, as Tichy consciously

put SCM functionalities in the system.

As RCS is free and portable (Fogel 1999), it became popular around the Free Software circle.

Though the branching functionality was provided, locking was such a nuisance that a number of

people wrote scripts around RCS and eventually rewrote the system in C. The new system was

called the Concurrent Versions System (CVS). The word 'Concurrent' means there is no locking

and programmers can work on the same file at the same time. The mechanism of the system is

illustrated in Figure F-2 (the diagram only shows one of the many possible scenarios).

Although CVS gets rid of the nuisance from locking, this implementation is less fool-proof than

RCS. In the official manual of CVS, the Cederqvist manual (Pesch 2002), it is explicitly

explained that if a person tries to get an update when another person is committing several files,

some of the files will be the latest update while others will not. The design was chosen because

the performance of CVS was not fast and locking while committing would deter collaboration

(Fogel 1999).

One can argue that on one hand, CVS is a version control system that has an explicit procedure

in controlling which it inherited from RCS and ultimately from the SCM discipline. However,

the design of replacing locking by a less fool-proof system could be an influence from the

hacker culture to increase participation. Therefore, this design can be regarded as the result of

Appendix F Software Configuration System and Source Code Repository

319

the interactions between order and chaos. This mechanism is probably one of the fundamental

bases in Free/Open Source software development co-ordination.

Figure F-2 Typical CVS Operation

F.2 A Closer Look at CVS

As CVS is the most common used source code repository in Free/Open Source communities, it

will be profitable to understand some of its basic functionalities. The functionalities chosen to

be discussed here are mainly based on the results from the Delphi Survey, where experts

selected several important aspects of a source code repository, namely version control,

client-server model, concurrency of development, tagging, security, branching, and

accessibility through web. Therefore, the discussion in this sub-section should portray a fair

picture of the system.

Appendix F Software Configuration System and Source Code Repository

320

The basic operation model of CVS is the client-server central repository model. The

client-server model is explained by the Free On-line Dictionary of Computing (1998) as

A common form of distributed system in which software is split between server tasks and client

tasks. A client sends requests to a server, according to some protocol, asking for information or

action, and the server responds.

This is analogous to a customer (client) who sends an order (request) on an order form to a supplier

(server) who despatches the goods and an invoice (response). The order form and invoice are part

of the "protocol" used to communicate in this case.

In the case of CVS, the server transmits the version of files that the clients request and accepts

the files checked-in by the clients. It also keeps track of different versions of the files submitted.

Moreover, the server also detects if there is any conflict during checkins (Figure F-2).

The Free On-line Dictionary of Computing (1998) also explained that the client-server model

can be centralised or distributed. In the case of CVS, it is centralised. This means that there is

only one server holding the complete information of the repository.

Another characteristic of CVS is the versioning of information. The smallest unit of

information that CVS could handle is a single file. A typical series of version number given to a

file is 1.1, 1.2, … and the last number of the version is usually increased by one after each

checkin (Pesch 2002). Therefore, if a project consists of different files, their individual version

numbers will probably be different from one another as their frequencies of update will be

different. Nevertheless, they can be assigned manually to a common number which is higher

than all the existing numbers.

Appendix F Software Configuration System and Source Code Repository

321

Although CVS handled files individually, it is common for users to manage several files in a

project (though Figure F-2 is illustrated with single files to emphasize the fact that CVS is a

per-file based system only). The mechanism to manage all the files within a project as a group

(configuration) is essential. CVS facilitates this using the function called tag. A tag can be

placed to a set of files and all the different version numbers of the files are recorded. The same

set of files can then be retrieved later just using this tag, rather than individual version numbers

of the files (Fogel 1999).

CVS also supports simultaneous development of the project in different branches. When a

branch is created, files in the new branch will be given a new version number. For example, a

file with version number 1.2 may have a new version number as 1.2.2.1 (Figure F-3). The next

version of this file within the new branch will have the number 1.2.2.2 and so on. The progress

of the branch and the main trunk will therefore have no effect on each other unless a merge is

done. During merging, some files may be changed in both the branch and the main trunk,

conflicts thus arise and manual resolutions are needed. As CVS is handling the version number

of each file in the repository independently, the tree diagram for each file can be different. This

is the reason why managing files in as a configuration is essential as it will be burdensome for a

developer to manually keep track of these different version numbers.

Figure F-3 The Tree Diagram for Branching and Merging for a Certain File

Appendix F Software Configuration System and Source Code Repository

322

When accessing CVS from a client to the server through a network, it is possible to setup the

server so that password authentication is required. Encryption system such as rsh, kerberos and

GSSAPI can also be employed to enhance security (Pesch 2002).

From the results of the Delphi Survey, World Wide Web interface of CVS was found to be

important. This feature allows easy access to the source code without switching to the CVS

client when browsing the web page of a project. The most commonly used World Wide Web

interface is ViewCVS (ViewCVS Users Group 2002). By employing ViewCVS, developers can

access the repository through lists of directories and files with version number, author, change

date and the most recent ChangeLog (text comment for every version checkin). It is also

possible to explore the project at different tags and branches. For each file in the repository, one

can view the content of the file in several ways. For source code, colorization of reserve words

and other programming structures are available. Annotation of origin (from which author and

which version) of each line of the file can also be generated. One can also compare the any two

version of the file using diff on the web interface. Indeed, one may argue that the web interface

may be easier to use than the command line client in exploring a project, thus encourage

contribution. Another extension to CVS is Bonsai (The Mozilla Organization 2003a), a World

Wide Web query interface to search content of a repository based on different criteria.

F.3 Limitations of CVS

CVS is more than 10 years old and Shapiro (2002) suggested it is a solution that effective solve

80% of the needs of the Free/Open Source Communities and thus good enough to gain

popularity. There are, however, a number of complaints on the limitations of this system,

several of these complaints are discussed below. Firstly, van der Hoek suggested that (2000)

developers usually checkin files that had substantial changes to the central repository. These

changes may involve a few intermediate versions their own private workspaces, but as there is

Appendix F Software Configuration System and Source Code Repository

323

only one repository, developers were left with no tools to manage these intermediate versions.

Secondly, there are also needs for distributed and replication of repositories (Advogato 2000b;

van der Hoek 2000). Thirdly, to rename files or directories in CVS, one has to first to delete the

object and then add the object with its new name into the repository. The system thus will

regard this object as new and versioning information will be lost (Advogato 2000b, 2002b; van

der Hoek 2000). Fourthly, the branching and merging procedure in CVS is too tedious

(Advogato 2000b, 2001c). Fifthly, as explained above, if one retrieves files from a repository

while another person is checking-in, some of the files retrieved may still be the old version.

Lastly, there is also suggestions to implement a stronger structure on configuration (Advogato

2000b) In CVS, unless a tag or branch command is issued, it is difficult for a developer to

retrieve the whole project at a certain time. MacDonald, Hilfinger and Semenzato (1998)

demonstrated by their Project Revision Control System (PRCS) that it is not necessary to give

version number in a per-file basis. In PRCS, every checkin involves the whole project, not just

individual files that are changed and the project as a whole bears a version number.

F.4 Other Systems Used in the Free/Open Source Comm unities

Other than CVS, there are other similar system used in the Free/Open Source communities, such

as Aegis (Miller, P. 2003), Arch (Lord), Bitkeeper (BitMover 2002), OpenCM (Shapiro &

Vanderburgh 2002b, 2002a; Shapiro, Vanderburgh & Lloyd 2003), PRCS (MacDonald,

Hilfinger & Semenzato 1998) and Subversion (Collab.Net 2002b). Most of them include

improvements from the shortcomings stated above. Even many of the systems above were

structurally different from CVS, some of their designs were, however, influenced by it. For

example, in the case of OpenCM, the command line operation of the client was designed to 'feel'

like CVS (Shapiro & Vanderburgh 2002a).

Appendix F Software Configuration System and Source Code Repository

324

F.5 Conclusion

In this appendix, the background of SCM and CVS was covered. The basic operations and

limitations of CVS were also explained. Other source repositories were also briefly introduced.

(References used in this appendix are included in the 'List of References' chapter in this

dissertation.)

Appendix G Results of Free/Open Source Hosting (FOS PHost)

Sites Delphi Survey

The data collected in the Delphi survey is presented in two formats. The first format is in

HTML with hyperlinks at /Delphi/result/index.html (An introduction of this format can be

found in chapter 5). The other format is the raw data in PostgreSQL database dump format can

be found at /Delphi/db.out. Some of the secondary data such as log of IP addresses are deleted

to keep the participants anonymous.

Appendix H WakkaWiki Pages

The qualitative part of the evaluation model was hosted using WakkaWiki on

http://www.ibiblio.org/fosphost/wakka/EvaluateFOSPHost. It was captured into static html

pages using a Free/Open Source program called WinHTTrack. Wiki sites are usually organised

as 'http://hostname/wiki/keyword'. Nevertheless, WinHTTrack adds the extension '.htm' to the

filename of the page capture so that the Windows operating systems can recognise the file as a

html page. For example, the page 'keyword' becomes 'keyword.htm' after capture. Links in the

captured pages to other captured pages are also adjusted automatically to this addition of

extension.

The capture was done on 22 Jan 2004 17:28:29 +10:00. The complete capture can be found in

the CD-ROM enclosed in the directory '/wakka_pages_capture'. To access the capture, please

open the index.html and you will be re-directed to the correct page.

Appendix I Source Code for Delphi Survey

The readme file of the source code for the evaluation model is included in this appendix to give

the reader more understanding of the code. The audience of the readme file is the

developers/users of the code and basic programming knowledge is assumed. The style of the

file is more informal and less academic in format. The complete source code can be found in

the CD-ROM enclosed in the directory 'Delphi'.

readme starts here...

What to expect

This is a system to conduct Delphi survey online for a PhD project to collect opinion on

Free/Open Source Project Hosting (FOSPHost) sites. This system was highly customised to the

specific survey that was conducted. In order for it to be usable to other situations, you must

modify the code. This implies that you need to know PHP PostgreSQL and prepare to read code.

This is my first project in PHP (but I have experience in web applications before) and so there

are definitely many areas for improvement. So much about the 'downside' of this system, I

better 'sell' the benefits of using or at least referring to this system. Through this system, real

data was successfully collected. In short, it worked. Therefore, there are a lot of details

included in this system that can help you to imagine what it is like to run a Delphi survey online

even if you hate reading and modifying code. This file contains a brief introduction of the

system and more details about the code is included in the code_issues.txt file.

Appendix I Source Code for Delphi Survey

328

The source code is licensed under GPL and the content of the database is OPL. These license

are included in the files gpl.txt and opl.txt. The current version is 0.10 written by Haggen So.

This document is updated on 3 Feb 2004.

To install, you need:

1. A web server

2. PHP (>=4)

3. PostgreSQL 7.0 or above

How to install:

1. Create a database called 'delphi' and create the user 'haggen'. Pour the 'db.out' in.

2. Put the files in some directories visible from through the web server.

3. Done

As the files are distributed in the state of the end of the survey, the login page is cannot be

accessed directly through 'index.html'. You can find it at 'old_register.html'. For different

rounds, their corresponding directories 'round1', 'round2' and 'round3' all contain information

that the survey was closed. The original directories with PHP scripts were moved to 'c_round1',

'c_round2' and 'c_round3' instead.

The process

A detail description of the process of the survey can be found in the PhD dissertation

'Construction of an Evaluation Model for Free/Open Source Project Hosting (FOSPHost) sites'

Appendix I Source Code for Delphi Survey

329

chapter 5. It can be found at http://www.ibiblio.org/fosphost/ when it is ready. A brief outline

will be provided below.

The survey consisted of 3 rounds: the first round was qualitative and second and third round

both quantitative & qualitative. 12 broad questions were asked in round 1 with Q2 as

multi-level question. The qualitative responses collected were then summarised into unit

concepts and the participants were asked to verify these concepts. Round 2 of the survey

commenced together with the presentation of the results for round 1. Participants were asked to

rate different statements (from unit concepts) and gave comments as well. Round 3 was a

repetition of round 2 with round 2 results supplied. A post Delphi survey were also done to

collect opinion on the implementation of the survey.

Table Structures

An introduction of the database tables will be helpful for the understanding of the code. A brief

outline of the main tables will be presented below.

The first issue to be explained was the anonymous participants design of the system. When the

participants were invited, they were given a UserID and a password. On the web server, the

UserID was the sole identification for the participants. The name and the email address of the

participants were not stored on the server. Therefore even in the case of the server being

compromised, the participants could still remain anonymous. The data collected thus could

also be easily made available to all without ethics concerns by just deleting sensitive data such

as IP addresses. The structure table that held the information of the participants is listed below.

create table userinfo (

id serial primary key,

Appendix I Source Code for Delphi Survey

330

userid varchar (10) unique,

nickname varchar (200),

password varchar (100),

expertuser int2,

administrator int2,

academic int2,

pleader int2,

nonpub int2);

For most tables in the database, primary keys, id, are inserted for identification purpose. For

userid, the ones that started with r (i.e. r4404) were assigned to actual participants of the survey.

The ones that started with p were assigned to pilot participants. Other odd ones such as

s000-s100, 123, 000, eugene and jasmine were created for testing purposes. As it was difficult

to refer to a person using an ID number, a unique nickname was given. A list of nicknames was

stored in the nickname table and a new participant could choose an unassigned name from the

list.

Whenever a participant tried to login, successfully or not, his or her action would be stored in

the log table:

create table log (

id serial primary key,

userid varchar (10),

nickname varchar (200),

password varchar (100),

time timestamp default current_timestamp ,

login int2,

Appendix I Source Code for Delphi Survey

331

ip cidr);

After an introduction to the participants' related tables, the tables for each round will be

explained. Before going into the details of the table stuctures, the concept of qnid and qnno

have to be explained. qnno was usually the question number displayed, such as 1.2 or 2.1.2.1.

Nevertheless, when this number was stored, it was in the form of 001002 or 002001002001 and

called qnid.

For round 1, the most important table was answer1, which stored the responses from the

participants.

create table answer1 (

id serial,

userid varchar (10),

ip cidr,

time timestamp default current_timestamp ,

qnid varchar (20),

answer text,

supans varchar (255),

nj int2,

deleted timestamp);

The field answer held the qualitative responses and supans held the quantitative responses. nj

standed for 'no judgment', and this field would be set to 1 when the 'No Comment' checkbox

was selected.

Appendix I Source Code for Delphi Survey

332

When a participant left a page that collected responses, his or her responses would be saved.

The action of saving involved assigning the previously saved responses as deleted (putting a

timestamp on the field deleted) and appending the new responses to the table. This action could

give the researcher extra information on the changes of responses and also the participant's

movements across pages.

After the responses were collected, they were summarised into unit concepts. The unit

concepts were stored in table.

create table codebook1 (

id int4 unique,

qnid varchar (20),

sid int2,

summary varchar (255));

The field sid was a unique number given to each concept within a question. The number

increased from 1 onwards. For convenience, when displaying the unit concepts, the

descriptions of the questions were stored in the records with sid=0. By when the table was

retrieved ordered by qnid and sid, the questions and concepts would both be retrieved in one

table.

The relationship between the answers given and the unit concepts summarised were

many-to-many. This was because many participants had expressed similar ideas, and within

one answer more than one unit concept could be expressed. This relationship was stored in

table coding1.

create table coding1 (

Appendix I Source Code for Delphi Survey

333

id int4 unique,

ansid int4,

codeid int4);

For round 2 and round 3, the ratings of statements (unit concepts) related to the questions were

collected. The structures of the tables that held the responses were the similar to round 1

answer1. One of the differences was randomisation of statements. In order to collect a more

unbiased data, the order of the statements presented for ratings were randomised when

displayed. The statements were randomised into a different order for each participant and they

were stored in the table qn2seq. By retrieving this table ordered by id, the randomised order

could be obtained.

create table qn2seq (

id int4 unique,

userid varchar (10),

qnid varchar (20),

qnnum varchar (20),

descn text,

leaf int2);

Site map and related filenames

To make the process and the related programs more understandable, site maps with related

filenames are provided below. Some minor files were not included.

Appendix I Source Code for Delphi Survey

334

Initial Login Area

Appendix I Source Code for Delphi Survey

335

Round 1

Appendix I Source Code for Delphi Survey

336

Round 2 & 3

Appendix I Source Code for Delphi Survey

337

Results Generation

The majority of the generation of the presentation of the result was automated. The mechanism

was to ask the PHP interpreter to output to a file rather than to the web server. The code for

generation are located at /result/gen1, /result/gen2 and result/gen3 and the main program for

generation was createhtm.php.

Appendix I Source Code for Delphi Survey

338

This mechanism was also used to generate pages for the verification process in round 1. The

generation program was /result/gen1/gencheck.php. The generated page could then be viewed

through /check1/check.php. One can also customize the generated pages, e.g.

'/check1/r9214.htm'.

Appendix J Source Code for Evaluation Model

The readme file of the source code for the evaluation model is included in this appendix to give

the reader more understanding of the code. The audience of the readme file is the

developers/users of the code and basic programming knowledge is assumed. The style of the

file is more informal and less academic in format. The complete source code can be found in

the CD-ROM enclosed in the directory '/eval_code'.

readme starts here...

A demo of the software can be found at

http://www.ibiblio.org/fosphost/exhost_choose.php

http://www.ibiblio.org/fosphost/exhost_evalset.php

You can work out which file does what from the demo.

The source code is licensed under GPL and the content of the database is public domain (this

license can be found in the file 'gpl.txt'). The current version is 0.10 written by Haggen So.

This document is updated on 3 Feb 2004.

To install, you need:

1. A web server

2. PHP (>=4)

3. MySQL 3 or above

Appendix J Source Code for Evaluation Model

340

How to install:

1. Create a database called 'fosp' and pour the 'fosp_dbdump' in.

2. Update the function connectdb in lib/lib.php with the correct connection

 parameters.

3. Put the files in some directories visible from through the web server.

4. Done

To customize:

Let's first study 'exhost_choose.php'

<?php

require('lib/lib.php');

pagehead();

connectdb($conn);

require('exhost_choose_head.php');

$cat='exhost';

require('lib/choose.php');

require('exhost_choose_tail.php');

?>

Short and simple, right. The first obvious thing is that there are many 'exhost*'. This is

designed so that more than one set of evaluation can be hosting in the same directory and using

the same database. That is, all files and tables related to external hosting are named 'exhost'.

Also, before including 'lib/choose.php', which is the general routine corresponding to

Appendix J Source Code for Evaluation Model

341

'exhost_choose.php', the variable $cat is set to 'exhost' so that the routine 'knows' to load data

from the 'exhost_*' tables.

So if you want to create another evaluation, for example, on operating systems, you can copy all

the 'exhost' files and tables with the prefix 'OS' and change all the $cat assignments into 'OS'.

Of course you need to fill the tables with new data ;)

If you want to change the content of a certain page, notice that usually the generated content is

in the middle of a HTML page and the header and footer are more or less static. Therefore they

are included as separate header and footer files. Any modification of the header and footer

should go into those files, not the 'program files' in /lib. Don't update the 'program files' for

content change unless you really need to.

To update a cell:

1. Generate a table that contains the cell

2. Add '&edit=1' to the URL and reload the page

3. An extra link will be added to every cell and click the link of the specific cell

4. Update the information

5. Copy the SQL statements generated into MySQL monitor

Usually, two SQL statements will be generated and one of them is to copy the old information

into a table called 'exhost_ver_*'. These tables have similar structures to 'exhost_*' with an

extra date field, 'deleted'. The function of these tables is to record all the changes.

An introduction to the code

Appendix J Source Code for Evaluation Model

342

The most important product of the program is the comparison table, and it can be generalised as

below:

 Item 1 Item 2

Feature 1 Cell Cell Feature Group1

Feature 2 Cell Cell

All the content in the table is stored in database and then loaded into different objects in runtime.

The HTML page of the comparison table is then generated from the content in the objects. So

let's start from the tables in the database.

From the table above, there are four types of content, namely feature groups, features, items and

cells. So, there are four corresponding tables in the database. For each table, there is a primary

key called 'id' (except for feature_grps). There are also other keys to relate the tables, namely

'rid' (row), 'cid' (column), 'grpid' (feature group). Two extra keys 'rsortid' and 'csortid' are

included to control the sort order when displayed. The table definitions are listed below:

CREATE TABLE exhost_feature_grps (

 grpid bigint(20) NOT NULL auto_increment,

 eval tinyint(4) default NULL,

 name varchar(255) binary default NULL,

 PRIMARY KEY (grpid)

) TYPE=MyISAM;

CREATE TABLE exhost_features (

 rid bigint(20) NOT NULL auto_increment,

 rsortid int(11) NOT NULL default '0',

 grpid bigint(20) NOT NULL default '0',

 name varchar(255) binary default NULL,

Appendix J Source Code for Evaluation Model

343

 PRIMARY KEY (rid),

 UNIQUE KEY rsortid (rsortid),

 KEY rsortid_2 (rsortid),

 KEY grpid (grpid)

) TYPE=MyISAM;

CREATE TABLE exhost_items (

 cid bigint(20) NOT NULL auto_increment,

 csortid int(11) NOT NULL default '0',

 name varchar(255) binary default NULL,

 PRIMARY KEY (cid),

 UNIQUE KEY csortid (csortid),

 KEY csortid_2 (csortid)

) TYPE=MyISAM;

CREATE TABLE exhost_data (

 id bigint(20) NOT NULL auto_increment,

 rid bigint(20) NOT NULL default '0',

 cid bigint(20) NOT NULL default '0',

 content varchar(255) binary default NULL,

 PRIMARY KEY (id),

 KEY rid (rid),

 KEY cid (cid)

) TYPE=MyISAM;

Appendix J Source Code for Evaluation Model

344

After the introduction of the structure of the tables, the data structure in the program will be

explained. A simple illustration of the major objects can be shown like this:

itemlist

+-featurelist

| +-array of features

+-array of items

 +-array of cells

itemlist contains two major elements, featurelist and array of items. For each item, it contains

the description to itself and also all the cells related to that item.

Another way to show them is by mapping them to the table:

Featurelist Item1 Item2

Array

of

Features

 Array

of

Cells

 Array

of

Cells

After explaining the data structure, it is time to outline the major algorithm in loading the data

from the tables to the objects:

Load featurelist according to condition

Load Itemlist according to condition

For each item in itemlist

Load content into array of cells according to featurelist

Appendix J Source Code for Evaluation Model

345

This algorithm can be seen from lib/evalres.php (Another implementation can be found in

lib/gentable.php, which is actually an earlier version of this algorithm. gentable.php will

definitely look nicer by calling the methods defined in obj.php, but it is not broken, so nothing

is done).

