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Abstract

Blind signatures enable a receiver to obtain signatures on messages of its choice without
revealing any message to the signer. Round-optimal blind signatures are designed as a two-
round interactive protocol between a signer and receiver. Coincidentally, the choice of message
is not important in many applications, and is routinely set as a random (unstructured) message
by a receiver.

With the goal of designing more efficient blind signatures for such applications, Hanzlik
(Eurocrypt ’23) introduced a new variant called non-interactive blind signatures (NIBS). These
allow a signer to asynchronously generate partial signatures for any recipient such that only the
intended recipient can extract a blinded signature for a random message. This bypasses the two-
round barrier for traditional blind signatures, yet enables many known applications. Hanzlik
provided new practical designs for NIBS from bilinear pairings.

In this work, we propose new enhanced security properties for NIBS as well as provide
multiple constructions with varying levels of security and concrete efficiency. We propose a
new generic paradigm for NIBS from circuit-private leveled homomorphic encryption achiev-
ing optimal-sized signatures (i.e., same as any non-blind signature) at the cost of large pub-
lic keys. We also investigate concretely efficient NIBS with post-quantum security, satisfying
weaker level of privacy as proposed by Hanzlik.
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1 Introduction

A blind signature scheme is a special class of digital signatures that allows a receiver to obtain
a signature on a message of the receiver’s choice without revealing this message to the signer.
Typically, blind signatures are implemented as an interactive protocol between the signer (holding
a secret key sk) and the receiver (holding the message m to be signed and the signer’s public
verification key vk). At the end of their interaction, the receiver should obtain a valid signature
σ on m. The protocol needs to be correct (i.e., the output signature can be verified using vk and
m) and additionally, it needs to satisfy two security properties: blindness (i.e., the signer does not
obtain any information with respect to m) and one-more unforgeability (i.e., the receiver cannot
create more valid signatures beyond the ones received after interacting with the signer).

Blind signatures were first introduced by Chaum [Cha83] and have been used as a main build-
ing block in numerous privacy-preserving applications. One of the most prominent applications,
and the one originally considered by Chaum [Cha83] is private electronic payments (e-cash). The
idea is that in an e-cash system, a bank (a.k.a. the signer) creates electronic coins through the use
of blind signatures. Each coin is associated with a unique serial number selected by the user, and
the bank’s signature on it serves as proof of its validity. The blindness property guarantees that no-
body (including the bank) can trace the spending of user coins, while the unforgeability property
guarantees that users cannot forge coins. Beyond e-cash, blind signatures have found applications
in e-voting systems [CGT06], anonymous credentials/tokens [PZ13, BL13, FHS15, DGS+18], di-
rect anonymous attestation [BCC04] and coin tumblers for cryptocurrencies [HBG16, HAB+17].

Two-move barrier. The original blind signature scheme by Chaum [Cha83] requires two-moves
of interaction: the recipient sends the blinded message to the signer and the signer responds with
a signature on the blinded message. The recipient locally un-blinds the signature and outputs
the final message/signature pair. It is easy to see that blind signatures are impossible unless the
recipient and signer both send at least one message. Thus, two-move blind signatures are con-
sidered round-optimal and are particularly interesting for real-world applications. Beyond their
optimal communication efficiency, their unforgeability automatically extends to the concurrent
setting [Lin08, HKKL07] (i.e. even when the adversary engages in multiple concurrent sessions
with the signer). There has been a long line of research on round-optimal blind signatures un-
der different models and assumptions [BNPS02, Bol03, Fis06, GRS+11, SC12, FHS15, FHKS16,
Gha17, KNYY21, AKSY22, BLNS23a].

Non-interactive blind signatures: beyond the two-move barrier. In a two-move blind signa-
ture scheme, the first message originates from the receiver and typically includes a blinded ver-
sion of the message to be signed. Interestingly though, in many applications, the signed message
is selected randomly and does not come from a specific distribution or has a specific structure.
Consider e-cash as an example, where the signed message is a random value denoting the e-coin
ID, arbitrarily selected by a user. This observation was recently made explicit by Hanzlik [Han23]
who put forward a new notion called non-interactive blind signatures (NIBS).

In a NIBS system, each receiver is associated with a public-secret key pair (pkR,skR) such that
any signer can asynchronously create partial signatures psig, called presignatures, given only the
receiver’s public key pkR. The receiver can extract a pair of blinded signature σ and message µ
from presignature psig using its corresponding secret key skR. Completeness states that σ is a
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valid signature for message µ, and can be verified given only signer’s verification key vk. The
message µ should be an unpredictable message for the receiver and the signer.

In terms of security, a NIBS scheme should satisfy the properties of (one-more) unforgeability
and blindness similar to the interactive setting. As pointed out in [Han23], using some secret
input from the receiver (i.e. skR) during the computation of the final signature is crucial to achieve
blindness without incurring two-moves. Additionally, Hanzlik also extended the idea of NIBS to
tagged non-interactive blind signatures (TNIBS) to resemble the functionality of partially blind
signatures. That is, signatures that allow for the inclusion of some un-blinded metadata, called
the ‘tag’, along with the blinded signature. For example, the tag could contain application specific
public information such as date, time, purpose, etc.

Non-interactive blind signatures could replace traditional blind signatures in any applica-
tion where the choice of message is not important, and could be set as a random (unstructured)
message. This would lead to protocols with minimal communication complexity. Beyond the
case of e-cash, (tagged) NIBS can be used to implement anonymous token systems, à la Privacy
Pass [DGS+18], and lottery systems—we refer to [Han23] for a longer discussion on applications.
Interestingly, if we consider the PKI model, then a recipient never needs to interact with a signer
to send its public key. Thus, a signer can issue and publish presignatures for users without ever
interacting with them. This property makes NIBS suitable for many modern applications. As an
example, consider cryptocurrency airdrops which is a mechanism to gift coins to users (typically
used to bootstrap interest in a new coin). A cryptocurrency could distribute coins to registered
user public keys by creating and publishing presignatures, and then users could obtain the final
signatures (i.e., the actual coins) in a privacy preserving way.

Existing constructions. [Han23] provided a generic template for building (T)NIBS in the ran-
dom oracle (RO) model from verifiable random functions, digital signatures, and general purpose
dual-mode non-interactive witness indistinguishable proofs. They also designed a practically ef-
ficient NIBS scheme from signatures on equivalence classes [HS14, FHS19], and a TNIBS from
tag-based equivalence class signatures [HS21]. Both schemes crucially rely on the use of bilin-
ear pairings for instantiating the underlying equivalence-class signature. Moreover, their security
proofs are carried out in the generic group model.

This work. The goal of this work is two-fold: pushing the barriers both on the definitional
framework and on constructions. Since NIBS is a newly introduced primitive, our first focus
is to examine the definitional framework proposed in [Han23] and to ask the following natural
question:

Is the definitional framework proposed by [Han23] correctly capturing the desired proper-
ties?

As it turns out, the blindness properties defined by [Han23] only capture a weaker level of privacy,
which is not adequate for all the applications NIBS was proposed for. Thus, in this work, we revisit
the definitional framework and provide blindness definitions that better capture the intended
level of privacy and which should be considered the basis for future NIBS development.

On the construction side, the current state-of-the-art is that we do not have efficient post-
quantum NIBS, even with only conjectured security. This was left as an important open problem
in [Han23] and brings us to the following question:
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Can we design efficient (tagged) NIBS from post-quantum assumptions?

We answer the above question in the affirmative, and believe this will lead to further progress
in the emerging area of practical (round-optimal) blind signature schemes with post-quantum
security (see [LNP22a, AKSY22] and references therein). We summarize our contributions below.

1. We address the privacy shortcomings of the existing NIBS definition framework, and present
new stronger blindness properties for NIBS. Our study of stronger blindness definitions is mo-
tivated by scenarios in which a blindness attacker might be able to get a hold of some presig-
natures along with their corresponding message-signature pairs.1 We also provide a new feasi-
bility result by extending the folklore Fischlin’s paradigm [Fis06] to the non-interactive setting,
while proving security in our stronger corruption model.

2. We propose a new generic paradigm for designing (non-interactive) blind signatures with optimal-
sized signatures from any circuit-private leveled homomorphic encryption (LHE) scheme. We
show that LHE can upgrade any regular (non-blind) signature into a NIBS without increas-
ing the size of the final signature. We believe that our LHE-based template could serve as an
alternative to the famous Fischlin’s paradigm. With great ongoing research in the realm of
(somewhat/leveled) homomorphic encryption, we further believe that our proposed template
might lead to alternate approaches to efficient (non-interactive) blind signatures in the future.
As we discuss later, our LHE-based construction enables a new interesting tradeoff leading to
optimal-sized signature with large public keys and pre-signatures; while a general NIZK-based
solution enables the opposite tradeoff.

3. We also design a practical lattice-based (T)NIBS scheme that satisfies a weaker level of privacy,
as proposed in [Han23]. As we discuss later, this is still adequate for a subset of applications
mentioned in [Han23]. The concrete costs and overhead of our NIBS scheme are similar to that
for state-of-the-art interactive (round-optimal) blind signatures from lattices. We introduce,
and prove security of our system under, a more robust variant of the one-more-ISIS assump-
tion [AKSY22], that we call randomized one-more-ISIS assumption which may be of independent
interest. We do preliminary cryptanalysis of our assumption, and show that all known attacks
on the one-more-ISIS assumption [AKSY22] are unsuccessful in breaking our variant.

Related work on lattice-based blind signatures. Recently, many new round-optimal schemes for
lattice-based blind signatures have been proposed [LNP22a, dK22, AKSY22, BLNS23a]. Lyuba-
shevsky et al. [LNP22a] use one-time signatures, and build blind signatures under standard lattice
assumptions (MSIS, MLWE). However, their scheme only supports bounded polynomial number
of signatures per public key with each signature being around 150 KB in size. This was improved
by del Pino and Katsumata [dK22] who adapted Fischlin’s paradigm [Fis06] to the lattice setting.
The resulting scheme allows for an unbounded number of signatures, of around 102 KB each,
and is also secure under standard lattice assumptions. Agrawal et al. [AKSY22] significantly im-
proved both the signature, as well as the transcript size, by also leveraging Fischlin’s paradigm,
but relying on efficient lattice-based NIZK for linear relations [LNP22b]. Their final signature
size is 45 KB and the total transcript is just over 1 KB. The security of their scheme is based on
the one-more ISIS assumption [AKSY22]. Most recently, Beullens et al. [BLNS23a] improved the

1At a very high level, one could view our definitions providing a stronger CCA-style blindness guarantee, while
existing definitions provide only a CPA-style blindness guarantee.
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Communication Complexity
Scheme Assumption R→ S S→ R |σ |

[AKSY22] OM-ISIS 0.96 KB 0.56 KB 45 KB
[BLNS23a] MSIS and MLWE > 100 KB ∼ 60 KB 22 KB
Our Construction (7.1) rOM-ISIS 0 B 0.96 KB 68 KB

Table 1: Our construction compared with state of the art two-move lattice-based blind signatures.
R→ S communication is 0 bytes if a PKI exists, else it is a one-time cost unlike the two-move schemes
that have a linear dependence.

Agrawal et al. scheme by off-loading some inefficient computation to the receiver’s first message.
This has the twin benefit of simultaneously allowing a reduction to standard lattice assumption,
as well as reducing the signature size to just 22 KB. However, this came at the cost of the re-
ceiver having to prove the validity of cryptographic hash function input-output pair in its first
message. This makes the first message significantly less efficient at a few hundred kilobytes. We
compare the concrete cost of our lattice-based NIBS construction with the current state-of-the-art
round-optimal blind signatures from lattices in Table 1.

2 Technical Overview

In this section, we provide a high-level technical overview and summarize our main contributions.
We start by recalling the notion of non-interactive blind signatures.

2.1 Defining non-interactive blind signatures

In a NIBS system, the Setup algorithm generates the system’s (global) public parameters pp (viewed
as CRS in-the-sky). There are two key generation algorithms, KeyGenS → (sk,vk),KeyGenR →
(skR,pkR), for the signer and receiver, respectively. Given sk, the signer runs a (randomized) Issue
algorithm for any receiver’s public key pkR to compute a presignature, psig and nonce. Here
nonce roughly denotes the randomness used by the signer. The receiver then runs the Obtain al-
gorithm on the above presignature to compute the final message-signature pair (µ,σ ) using secret
key skR

2.
[Han23] also extended the above basic notion to tagged NIBS (TNIBS). The goal was to capture

the notion of partially blind signatures [AF96] which allow a signer and recipient to jointly agree
on a public metadata/value to be included as part of the signed message. This is captured by
allowing such a common metadata/value, called a tag, to be chosen explicitly by the signer, and
shared with the receiver along with the presignature. Syntactically, TNIBS is defined identically
to NIBS, except Issue, Obtain, and Verify algorithms take tag τ as an additional input.

The need for reusability. An essential property of NIBS is reusability, which says that a signer
can issue multiple distinct presignatures (leading to multiple distinct message-signature pairs)
for the same receiver public key pkR. Hanzlik [Han23] attempted to capture this property by
providing a random nonce value as input to the Issue algorithm. Unfortunately, as we explain
in Section 4, the existing formulation is insufficient in capturing the desired reusability property.
The issue is that, under the current formulation, there can exist trivial NIBS scheme where Issue
and Obtain algorithms simply ignore nonce, thus lead to a limited one-use system. To fix this, we

2Our syntax is nearly identical to that proposed in [Han23]. We deviate slightly in the handling of nonce as we
discuss in this section, and also later in Section 4.
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formalize reusability as its own property. Informally, it says that any receiver should obtain two
distinct message-signature pairs for two distinct presignature-nonce pairs for any given receiver.
Fortunately, the bilinear-based NIBS schemes [Han23] already satisfy reusability, but just did not
prove/define it formally.

NIBS Security. For security, we want NIBS to satisfy one-more unforgeability and blindness.
One-more unforgeability for NIBS can be defined as a natural extension of the one-more unforge-
ability for traditional blind signatures [PS96]: the adversary gets access to a presignature oracle,
and after receiving ℓ presignatures for recipient public keys specified by the adversary, the adver-
sary must return ℓ + 1 valid signatures.

On the other hand, defining blindness for NIBS is much more nuanced than for traditional
blind signatures3. Intuitively, it is captured by defining unlinkability between presignatures and
final signatures. More formally, Hanzlik [Han23] proposes the following experiment: the adver-
sary receives two recipient public keys pkR0

,pkR1
, and outputs two presignatures psig0,psig1 (one

for each). The challenger extracts the final signature-message pairs (µ0,σ0), (µ1,σ1) from these,
and the scheme is said to satisfy receiver blindness if the attacker cannot link the final signature-
message pairs to the presignatures. Abstractly, receiver blindness could be thought of as an ‘inter-
receiver’ blindness property, since it guarantees that a malicious signer cannot figure out the
recipient of a final (blinded) signature between two possible options.

Hanzlik [Han23] also proposed a secondary blindness notion, called nonce blindness. This
can be viewed as an intra-recipient blindness property, where what we want is that a signer issuing
more than one presignature to a specific user should not be able to link the final message-signature
pairs to the corresponding presignatures. Essentially, this provides some flavor of “ordering” un-
linkability. This was formalized by Hanzlik [Han23] via an experiment similar to that of receiver
blindness with the difference that the adversary is only given one recipient public key pkR, while
it still outputs two presignatures psig0,psig1. The challenger extracts the final signature-message
pairs (µ0,σ0), (µ1,σ1) from these, and the scheme is said to satisfy nonce blindness if the attacker
cannot link the final signature-message pairs to the original presignatures.

The issues with [Han23] blindness. Unfortunately, the two blindness definitions given by Han-
zlik [Han23] do not really capture a sufficient level of privacy that would be required in most NIBS
applications.

The core issue is that both definitions only guarantee unlinkability of two presignatures with
their corresponding message-signature pairs. That is, a NIBS scheme secure under the existing
nonce blindness might not satisfy unlinkability when given three (or more) presignatures to dif-
ferent users. To showcase the problem consider a concrete scenario wherein an adversary issues
two presignatures to a user with pkR0

and one presignature to a user with pkR1
. Once the adver-

sary learns two signatures of a user (through a verifier), they will know with certainty4 that this
must have been the user with pkR0

.

New stronger blindness definitions. To capture such practical attacks described above, we pro-
pose a new stronger security framework for NIBS blindness properties. The motivation is to cap-

3Essentially, this is because the receiver does not choose the message in the non-interactive setting.
4We note that this is not a problem in regular blind signatures, where blindness is indeed defined as an indistin-

guishability game. However the creation of user assigned presignatures in NIBS complicates the definition of blindness.
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ture scenarios where an adversary is able to learn some correlation between presignature-nonce
pairs and their corresponding blind signature-message pairs. We formulate this by providing an
adversary oracle access to the receiver’s secret key in the form of Obtain queries. To ensure this is
not trivially impossible, we restrict the adversary to not make an Obtain query on any of the two
challenge presignatures psig0,psig1.

We call these the strong receiver (resp. nonce) blindness properties. At a high level, these can
be viewed as CCA-version of blindness (since adversary gets query access to the secret key like in
IND-CCA). These definitions guarantee blindness to hold even when a malicious signer is able to
bypass blindness of signatures from previous sessions. Now any NIBS scheme that is secure under
the above stronger definitions protects against the attacks described earlier. This is because we
are letting an adversary break blindness of all non-challenge presignatures, and still ask that the
blindness of the challenge presignatures is unaffected. We discuss our definitions in detail later
in Section 4.

When is basic-blindness [Han23] sufficient? There are many applications, as discussed in the
introduction as well as [Han23], where the basic-blindness receiver and nonce blindness proper-
ties as defined by [Han23] are not sufficient. Thus, one of our main assertions and contributions
is that for typical applications of NIBS, where multiple presignatures are issued to multiple recip-
ients, the strong blindness definitions should be used.

We also remark that there are some applications where the notion of basic blindness will be
sufficient. As a concrete application, consider one-per user anonymous airdrops or e-voting to-
kens, where only a single presignature will be generated for each recipient. In such applications
the notion of (basic) receiver-blindness alone, as defined by [Han23], is sufficient. More broadly,
any NIBS scheme satisfying only basic receiver blindness implies a round-optimal (interactive)
blind signature scheme for random messages. Thus, any NIBS scheme with basic blindness al-
ready covers all known applications of traditional blind signatures where messages are selected
randomly. Therefore, we believe that a NIBS scheme satisfying only receiver-blindness is inter-
esting for some applications. Since achieving basic-blindness is relatively easier than achieving
strong-blindness, a NIBS scheme secure as per the basic blindness can lead to schemes with better
concrete efficiency.

In this work, we provide new constructions and templates for designing NIBS that are secure as
per our stronger blindness definitions. We also design new practically efficient NIBS scheme se-
cure as per the basic blindness definitions [Han23]. This leads to first post-quantum NIBS scheme.
We leave the problem of designing practically efficient NIBS with strong blindness as an interest-
ing open problem.

2.2 Extending Fischlin’s paradigm to NIBS

In this section, we start describing our main technical ideas. Our starting point is the well-known
Fischlin’s paradigm [Fis06] for constructing traditional blind signatures. At a high level, Fischlin’s
scheme assumes a common reference string (CRS), a standard signature scheme S, an encryption
scheme E, a commitment scheme COM and general NIZK proofs.

The CRS contains an encryption public key pkE , while each signer simply generates its key pair
(sk,vk) by running the setup of the signature scheme. The user computes c = COM(m) and sends
c to the signer. The signer runs Sign(sk, c) to produce σ ′ and sends σ ′ to the user. If the signature
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verifies, the user computes ct = EncpkE (c ∥ σ ′) and outputs ct,m and a NIZK π proving knowledge
of signature σ ′ and message m such that σ ′ is a signature on a commitment of m. Intuitively, the
one-more unforgeability follows from binding of the commitment scheme and unforgeability of
the signature scheme, via straight-line extraction enabled by the trapdoor key skE corresponding
to pkE . Further, blindness follows from the semantic security of the encryption scheme, zero-
knowledge of the NIZK, and hiding property of the commitment. Consider the following natural
extension of Fischlin’s paradigm to the non-interactive setting.

Adapting Fischlin’s paradigm to NIBS. Given that there is no interaction between the signer
and the user, the receiver’s public key will, in a sense, replace the commitment submitted in the
first move. The challenge now is that the commitment can no longer represent a commitment of a
single message but has to be a succinct commitment of an exponential number of messages at once.
The hope is that signer can sign the commitment in a way such that the signature obliviously binds
to exactly one of those messages at random. This binding to one message from an exponential set
is important for one-more unforgeability as otherwise the receiver could cheat. Lastly, the receiver
can use NIZKs to prove knowledge of the signature and reveals the choice of message that was
obliviously selected.

Thus, to extend the above template, we need to overcome two challenges: (a) how to commit
to an exponential number of messages efficiently, and (b) how can the signer obliviously select
one of those messages. Our approach is to set the receiver’s public key pkR as a commitment to
a PRF key K , and the key K (along with its opening) as the secret key. Note that this implicitly
defines the exponential set of messages as all the outputs of the PRF. Then, during the issuance
of a presignature, the signer can obliviously sample one of the messages by selecting a random
input r and signing it along with pkR. The user obtains a final signature on the message m = FK (r)
and along with m it outputs σ to be a NIZK proof of knowledge of a (pre)signature on pkR and r
corresponding to the message m.

Given that the PRF is a deterministic function and commitment is binding, our approach guar-
antees that the receiver can only obtain a single final signature from a presignature which allows
us to prove one-more unforgeability. Further, blindness properties can be reduced to the zero-
knowledge property of the underlying NIZK and hiding of the commitment scheme. Moreover, as
we discuss in detail later in Appendix D, we can prove our scheme to be secure under our stronger
blindness definitions. The core intuition is that the NIZK proof systems are multi-theorem zero-
knowledge, thus they can be used to simulate responses to all Obtain queries including the chal-
lenge queries, thus each blinded signature is completely unlinkable to its presignature, since the
blinded signature is simulated without any information about the presignature.

Remark 2.1. Hanzlik [Han23] proposed a similar generic template for NIBS using verifiable ran-
dom functions and general-purpose dual mode witness indistinguishable proofs, but only proved
security under his restricted blindness notions. Our construction is notably simpler as it only re-
quires a PRF and general-purpose NIZK, and provides stronger blindness security. For complete-
ness, we provide the full construction in Appendix D satisfying our strong blindness definitions.

2.3 A new template: Circuit-private LHE to NIBS

We now describe a new template for designing NIBS with stronger blindness based on circuit-
private LHE. We already know that homomorphic encryption with special properties [AJL+12,
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MW16] are useful in designing round-optimal MPC protocols. Moreover, such protocols can be
client-optimized where the communication complexity of a client is extremely low. Our main
observation is that we can instantiate a NIBS scheme as a specialized two-round MPC protocol
where the first round message can be reused [IKO+11, AMPR14, MR17, BJOV18, CDI+19], and
by using FHE to instantiate the protocol, we can optimize the communication complexity for the
receiver to nearly optimal. Let us elaborate on our main ideas below.

Our key idea is that rather than using NIZKs to hide the receiver’s secrets, we can leverage the
fact that leveled homomorphic encryption (LHE) enables arbitrary homomorphic operations on
the receiver’s commitment. Specifically, the receiver commits to a PRF secret key K by encrypting
it under LHE. Using this commitment, a signer issues a presignature as follows: it first homomor-
phically evaluates the PRF FK (·) on some randomness r of its choice and then homomorphically
generates a signature on FK (r) treated as a message. The resulting ciphertext ĉt is, therefore, an
encryption of the signature on FK (r). Under the mild assumption that the LHE is circuit-private
[OPP14], the signer can simply send ĉt as the presignature along with an argument of knowledge
that ĉt was evaluated using the signing key as input to the circuit, and randomness r as the nonce.
The receiver sets its message to FK (r) and obtains the corresponding signature by decrypting ĉt.
Notably, the final signature is just a regular signature and is thus optimal in size. Moreover, be-
yond optimality, this construction satisfies our stronger notion of blindness: strong receiver and
nonce blindness.

At a high level, both strong-receiver/nonce blindness follow from the IND-CPA security of the
encryption scheme which ensures that ct does not reveal anything about K , and the pseudoran-
domness of F, which ensures that two messages on different nonces look random. The one-more
unforgeability of the protocol follows from the unforgeability of the underlying signature scheme
and the circuit-privacy of the LHE. For the proof to go through, we additionally require that both
parties also prove knowledge of their secret keys. That is, our proof is in the knowledge of secret
key (KOSK) model [MOR01, Bol03]. As a supplementary contribution, we also prove that any
NIBS scheme secure in the KOSK model is also secure in the standard model, assuming existence
of NIZKs.

Our LHE-based NIBS construction is described in Section 5, and the generic compiler to up-
grade security in KOSK model to standard model is provided in Appendix B. We highlight that
our construction explores a new interesting trade-off that yields optimal-sized signatures while
paying in terms of higher setup and computation costs. We believe this could lead to alternate
approaches to practical NIBS (and round-optimal interactive blind signatures) in the future.

2.4 Making Fischlin-based NIBS practical and post-quantum

The next contribution of our work is a practically efficient NIBS scheme that satisfies basic-
blindness definitions [Han23]. Moreover, we provide a proof-of-concept estimate of all the pa-
rameters sizes of our NIBS construction. Let us start by revisiting the Fischlin-based NIBS con-
struction that we explained earlier in Section 2.2. We show how to adapt our construction by
combining with new ideas such that it makes the design concretely efficient, yet it satisfies (basic)
receiver-blindness.

With the above goal, we look back to the recent work by Agrawal et al. [AKSY22] on desgin-
ing practical round-optimal (interactive) lattice-based blind signatures. Agrawal et al. suggested
that the usage of NIZKs is somewhat unavoidable when designing round-optimal blind signatures
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from lattices5. Thus, their main insight was that, by optimizing the NP language for which NIZKs
are needed, one could instantiate Fischlin’s paradigm efficiently. In particular, they showed that
NIZKs for linear relations, which are already known to be efficiently implementable from lat-
tice assumptions [LNP22b], are sufficient for building practically efficient round-optimal blind
signatures.

Our initial attempt is to follow a similar approach. We start by optimizing our NIZK-based
template for designing NIBS, similar to how [AKSY22] optimized Fischlin’s paradigm. The chal-
lenge here is to remove all inefficient generic cryptographic components currently used in our
NIZK relation, and implement them via just linear relations. As a starting point, consider the
standard hash-then-sign paradigm. A signer samples lattice trapdoor as (C,TC) and outputs C
as verification key vk. Receiver starts by randomly selecting a PRF key K , and sets its public key
pkR = Com(K ;s) as a commitment of K with its secret key skR = (K,s), for some random string s.
Signer then assigns presignatures to receiver: it uniformly samples randomness r as nonce, and
provides a short preimage of H(pkR||r) as the presignature, where C · z = H(pkR||r) and psig = z,
nonce = r. Finally, receiver generates message µ as FK (r), and signature π as a NIZK proof estab-
lishing that z = C−1 (H(pkR||r)

)
, µ = FK (r) and z is short.

Such a design essentially instantiates our NIBS template with the lattice-based signature scheme
in [GPV08]. Observe that the major source of inefficiency in the NIZK arises from the hash evalu-
ation and the PRF evaluation. These evaluations are extremely heavy and thus not very practical
to prove in a NIZK. Our strategy is to entirely exclude both computations from the NIZK relation.
Following from the blueprint of [AKSY22], it is possible to remove the hash evaluation (from the
NIZK relation) if we fix the receiver’s public key as pkR = A · x +H(δ) for some randomly sampled
x and hash input δ, where A is a random matrix part of the CRS. Evaluations of H(δ) could then
be performed outside of the NIZK proof system, if the signature contains δ in the clear. This re-
moves the need to prove costly hash evaluations using the NIZK. The reason this does not break
blindness is that even if the signer learns δ, it still cannot link δ with pkR as x contains enough
entropy so that A · x statistically hides all information about H(δ).

However, at this point, the parallels between our design and the interactive blind signature
scheme in [AKSY22] start to diminish. This is because, in the interactive setting, a receiver can
simply select δ as a fresh message in each new session. But, in NIBS, we need to create multiple
signatures for the same receiver key pkR. And, the issue is pkR binds to a fixed value for the
lifetime of the system. Thus, unlike [AKSY22], we cannot set δ as the final signed message. This
is because this will violate reusability, and make the NIBS scheme only single-use. Therefore, it
will not be any more advantageous than a regular two-round blind signature scheme. Basically,
this suggests that we cannot simply replace the usage of a PRF within our generic template as
easily! Moreover, if we keep on using the PRF to generate a fresh message from each distinct
presignature computed by the signer, then the receiver will have to prove it using the NIZK which
will be extremely inefficient.

In summary, this means we can no longer use δ (inside each receiver’s key), or the PRF trick
to generate a fresh message from each distinct presignature computed by the signer. To this
end, we propose an entirely different approach to generate the final messages from presignatures.
Our insight here is that the extracted final messages need not be ‘truly random messages’, but it
is enough to have (1) the messages be just uncorrelated amongst different receivers, and (2) be

5This is due to the fact that all existing practical lattice-based signature schemes do not support simple algebraic
homomorphisms in a practically efficient way, unlike signatures from pairings or factoring-based assumptions.
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distinct for any two distinct valid presignatures for the same receiver.

Our idea is to set the final message as A ·
[
x⊥
z⊥

]
instead of FK (r), where C ·z = pkR. Here we write

x⊤ and x⊥ to be the top and bottom halves of x (respectively), and the same notation applies to
z. The intuition is that, while the receiver’s public key contains the entire x vector, if we set the
parameters appropriately, then we can argue by the leftover hash lemma that x⊥ is statistically
hidden from the signer’s view. We point out that it is important in our design that the signer
implicitly assigns nonce to be z⊥ (with presignature z⊤) where C · z = pkR, instead of sampling
r as randomness and z as preimage of pkR||r. This ensures that NIZKs for linear relations are
still sufficient as well as makes the design even more optimal. For ensuring this property from
preimage sampling, we rely on the Bonsai trick [CHKP10, ABB10b] for lattice trapdoors. Using
the standard Bonsai trick, one can generate a preimage z with the above special property, i.e. z⊥
is sampled as a random Gaussian vector with appropriate norm.

The above serves as the core skeleton of our efficient construction in Section 7 however, as we
discuss next, we need to make a few more slight modifications to ensure that we can prove desired
unforgeability and blindness security properties for our NIBS scheme.

2.5 Security and the randomized OM-ISIS assumption

Since the lattice-based core of our optimized NIBS scheme shares many similarities with inter-
active blind signature scheme of [AKSY22], a natural first attempt is to prove unforgeability of
our NIBS scheme using the same proof strategy as used in their work. Now, to prove security of
their round-optimal blind signature scheme, Agrawal et al. [AKSY22] proposed a new ISIS-like
assumption, called the one-more ISIS assumption (OM-ISIS)6. Below we briefly recall the assump-
tion7.

1. The challenger samples a challenge matrix A ∈Zn×m
q along with a large set of random target

vectors T ⊂Z
n
q . It provides the attacker with A and T .

2. A can make preimage queries for any target vector t̂ ∈ Zn
q to which the challenger replies

with a short8 vector x̂ such that A · x̂ = t̂.

3. OM-ISIS assumption says that A, having made at most ℓ preimage queries, cannot output
ℓ + 1 distinct vector pairs

{
(xj ,tj )

}
j∈[ℓ+1]

such that A · xj = tj , tj ∈ T , xj is sufficiently short.

Intuitively, the assumption says that an adversary cannot find good (i.e., reasonably short) preim-
ages for a set of ℓ + 1 randomly selected vectors, even when it has access to a preimage sampling
algorithm that can generate at most ℓ preimages for adversarially selected target vectors.

Agrawal et al. also performed some preliminary cryptanalysis of their assumption. While
they were able to design practical attacks [AKSY22, § 4.5] for certain parameter settings, they
suggested that, by carefully selecting the parameters in the above assumption, all known attacks
fail. Moreover, they proved that their two-round blind signature scheme can be proven secure
under the above assumption with those parameters.

6The “one-more” name inspired from one-more-RSA assumption [BNPS03].
7For ease of exposition, we present a simplified assumption here. In the original assumption, the set of target vectors

T can be chosen adaptively by the challenger.
8As in typical lattice settings, by short vectors we mean vectors with small norms.
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However, the presence of efficient practical attacks on a wide range of parameters on the
OM-ISIS assumption suggests that this assumption is not very stable and robust. On a techni-
cal level, the assumption appears quite strong since an attacker can ask for short preimages for
“any” target vector of its choice. In more detail, an attacker can simply ask for multiple short
preimages for the all-zeros vector. Given such preimage vectors, an attacker can combine them to
create an approximate lattice trapdoor. As Agrawal et al. discussed, the quality of such a trapdoor
computed is worse than the actual trapdoor, thus such a trapdoor would be useless if the ℓ + 1
preimage vectors that the attacker must compute have to be as short as the preimage vectors it
received.

Unfortunately, setting the parameters carefully sidesteps just one limitation of the OM-ISIS as-
sumption, but does not make the assumption truly robust. Simply put, we believe that providing
an unrestricted preimage query access to the attacker is too strong. To further illustrate this, con-
sider an even simpler attack that finds short preimage vectors without creating a lattice trapdoor.
The attacker just makes two preimage queries (which correspond to preimage queries) — one on
vector 0 and other on any non-zero vector t ∈ T (T is the target set). Let z1 and z2 be the respective
preimage vectors. That is, A · z1 = 0 and A · z2 = t. Given z1 and z2, an attacker simply output
three distinct vectors z2, z2 − z1, and z2 + z1 as the preimages for the same target vector t ∈ T .

Abstractly, the issue is that an adversary can perform simple linear combinations on preimage
vectors, and such linear combinations map to appropriate linear combination of the correspond-
ing target vectors. While this does not qualify as an attack on the two-round blind signature
scheme of Agrawal et al. [AKSY22] (since any admissible attacker in their system must be gener-
ating preimages on ℓ+1 distinct vectors), this highlights that the OM-ISIS assumption is susceptible
to arbitrary linear combination attacks.

Existence of such linear combination attack strategies are a big barrier to designing reusable
non-interactive blind signatures. Our initial attempt to build NIBS as a generalization of the
Agrawal et al. scheme turns out to be insecure. The attack is basically the same as the one de-

scribed above. To ensure reusability, we set the final message as A ·
[
x⊥
z⊥

]
rather than just δ (where

δ is was used in the receiver’s public key). An attacker simply makes one presignature query for
some receiver public key pkR, and one presignature query for the all-zeros vector (as the pub-
lic key), and combines them linearly to obtain > 2 valid presignatures for pkR. One can easily
show that the resulting final messages for all these preimage vectors will also be different, thereby
constituting an efficient attack on one-more unforgeability of our basic NIBS scheme.

Randomized OM-ISIS assumption. To thwart the aforementioned linear-combination style at-
tacks on the OM-ISIS assumption, we propose a new variant that we call randomized one-more ISIS
assumption rOM-ISIS. Our goal here is twofold— (a) we want to turn OM-ISIS assumption into a
more robust assumption such that there do not exist any efficient/practical attacks (irrespective
of how the parameters are set), (b) we can design a non-interactive (as well as two-round) blind
signature scheme which can be proven under the new assumption.

Our strategy is to prevent an attacker from learning preimages on arbitrary target vectors of
its choice. This was the central property that was exploited by Agrawal et al. [AKSY22] in their
practical attacks/cryptanalytic efforts. To this end, we make the challenger “re-randomize” each
target vector (independently for each query) before computing its preimage. In turn, this takes
away the attacker’s prior advantage from obtaining distinct short preimages for the same target
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vector (or any target of its choice more generally). Moroever, by carefully selecting how the per-
query re-randomization happens, we can also avoid all known affine attacks that we discussed.
Below we summarize our new randomized one-more ISIS assumption rOM-ISIS.

1. The challenger samples a challenge matrix A ∈ Zn×m
q and a randomization matrix B ∈Zn×m

q

along with a large set of random target vectors T ⊂ Z
n
q . It provides the attacker with A, B

and the vector set T .

2. A can make preimage queries for any target vector t̂ ∈ Zn
q such that the challenger replies

with a short vector x̂ and a ±1 vector ŷ ∈ {±1}m such that A · x̂ +B · ŷ = t̂.

3. rOM-ISIS assumption says that A cannot output ℓ+ 1 distinct vector tuples
{
(xj ,yj ,tj )

}
j∈[ℓ+1]

such that A · xj +B · yj = tj , tj ∈ T , xj is sufficiently short, yj is a ±1 vector, and A made at

most ℓ preimage queries.

Intuitively, the attacker now cannot truly select the preimage vector arbitrarily since the chal-
lenger randomizes the actual target vector as (t −B · y), where y is a random ±1 vector. Since the
attacker receives the vector ŷ used for randomization, it is unclear whether we can reduce it to
the standard ISIS assumption.9 However, our preliminary cryptanalysis (cf. § 6.1) shows that it is
more robust when compared with the OM-ISIS assumption. We believe that this new formulation
could serve as a better lattice analogue of the one-more RSA assumption [BNPS03]. For exam-
ple, we can also prove that a mild adaptation of the Agrawal et al. [AKSY22] two-round blind
signature scheme is still secure under rOM-ISIS assumption, and now we no longer have set the
parameters as carefully to avoid simple attacks as was done in [AKSY22]. This further illustrates
the flexibility of our new assumption. Later, in Section 6, we describe the assumption in full detail
and also provide some preliminary cryptanalysis.

Our final NIBS construction. With the above strengthening of the one-more ISIS assumption,
we make some slight changes to our core design. Each signer additionally samples a random ±1
vector y, and computes the preimage for the syndrome for (pkR −B · y), instead of just pkR, i.e., it
samples z such that C · z = pkR −B · y. The signer then explicitly sets z as the presignature and y
as the nonce. Given this, the receiver creates a NIZK proof π stating that, given A,B,C,w,δ, there
exist vectors x,y and z such that the following relation holds:

C · z + B · y = A · x +H(δ) ∧ w = A ·
[
x⊥
z⊥

]
∧

y =
[
y1 y2 · · ·

]T
, ∀i : yi ∈ {±1} ∧ ∥x∥, ∥z∥ are short.

We describe our NIBS construction in detail in Section 7.1. We prove one-more unforgeability
of our NIBS protocol under the rOM-ISIS assumption. Here, we run into a slight technical is-
sue. Namely, when proving one-more unforgeability, the reduction will need to extract the adver-
sary’s ℓ + 1 forgeries from the NIZK proof, but rewinding ℓ + 1 times results in an exponential (in
ℓ) soundness loss. Fortunately, one can easily apply the so-called “encryption-to-the-sky” trick

9Interestingly, one can easily show by a simple application of the leftover hash lemma [HILL99, DRS04, DORS08],
that if the attacker does not receive ŷ, then this is as hard as the standard ISIS assumption.
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[AKSY22, BLNS23a] to get straight-line extraction. More concretely, we modify the proof system
to also require a proof of encryption to the witness (x,y,z). Therefore the precise relation that the
receiver must prove also includes ct = PKE.Enc(pke.pk,x||y||z;r), where the ciphertext ct and the
PKE public key pke.pk also form part of the instance, and the encryption randomness r is included
in the witness. As done is prior works, this can be efficiently proved using a linear relation. Fi-
nally, the receiver sets (w,δ) as its message and (π,ct) as the corresponding signature. To verify a
signature, one simply runs the verification algorithm for the NIZK.

In the security proof, the reduction now retains access to the PKE secret key. This allows the
reduction to extract xi , yi and zi for all of the adversary’s ℓ + 1 forgeries. If the hash function is
modeled as a random oracle, the reduction can simply answer all hash queries for H(δ) from the
challenge set T ; if it further sets the public matrix A as a matrix-matrix product of the rOM-ISIS
challenge matrix C, it can break rOM-ISIS. Observe that the matrix A, statistically hides the re-
ceiver’s secret x (by the leftover hash lemma). In the security proof, we combine this fact with the
zero-knowledge property of the NIZK proof system, and the semantic security of the encryption
scheme to prove receiver blindness.

Remark 2.2. Independently, Bootle et al. [BLNS23b] proposed the ISISf assumption. Under this
assumption, the adversary is given access to a preimage oracle that outputs a randomly chosen
ŷ ∈ D (D some domain) and a short vector x̂ ∈Zn

q such that for (public) matrix A ∈Zn×m
q sampled

from some distribution and (public) function f : D → Z
n
q , A · x̂ = f (ŷ). The assumption then

requires that it is hard for an adversary to output a value y ∈D and a short vector x (, x̂) satisfying
A · x = f (y). Importantly, this assumption is dependent on the choice of f . For instance, if f is
the linear map y 7→ B · y for B ∈ Zn×m

q and y←$ Zm
q , then the ISISf is trivially broken by linearly

combining the query responses. [BLNS23b] also define an interactive version (that is reducible to
the non-interactive ISISf ) where the adversary is allowed to query for preimages under specific
targets t̂ ∈ Zl

q and the oracle outputs (ŷ, x̂) such that A · x̂ = f (ŷ) + C · t̂ for matrix C ∈ Zn×l
q of the

challenger’s choice. Under this characterization, one might hope to abstractly view the rOM-ISIS
assumption as an instantiation of interactive-ISISf where the function f linearly maps ŷ ∈ {±1}m
to −B · ŷ. However, if C is the n × n identity matrix as in rOM-ISIS, there is a non-negligible
probability that outputs under this map can be efficiently linearly combined to give an arbitrary
valid solution, so the ISISf problem is actually not hard for this function. On the other hand, the
rOM-ISIS assumption remains hard as the adversary is also restricted to providing its (one-more)
forgeries on a set T of target vectors chosen by the challenger.

Tagging our NIBS construction. We also discuss a simple modification to our NIBS construction
to make it tagged. Recall that in tagged NIBS, the signer and receiver jointly agree on a value
that will be treated as a public part of the signed message. To add such a public value τ to each
blind signature, the signer computes a short preimage z such that C · z = pkR −B · y +H(τ) using a
secret trapdoor for C. It then sends τ along with the preimage z and nonce y to the receiver. The
receiver now includes τ in the instance of the NIZK relation, and generates an appropriate NIZK
proof. The one-more unforgeability of this protocol (described in Section C) follows by a similar
reduction to rOM-ISIS (in the random oracle model). Of course, here we have the additional H(τ)
term, but notice that the one-more unforgeability reduction, both models the hash function to the
adversary and chooses the tag τ . Thus the challenger can choose H(τ) in a way that later allows it
to extract a short preimage for its rOM-ISIS challenge using the (one-more) forgery. The argument
for receiver blindness follows directly from receiver blindness of the NIBS counterpart.
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Nonce blindness. We also provide a NIBS scheme that satisfies basic nonce blindness in Section 8.
Thus, this construction satisfies all the definitions originally provided in [Han23]. To make our
NIBS scheme into a nonce-blind NIBS scheme, we make two important technical changes. First,

the receiver’s key generation algorithm samples and commits a random bit θ, so pkR = A·
[
x
θ

]
+H(δ).

The second change is in Obtain, which now computes the message w as (1− 2θ)(z⊥ − x⊥).
The intuition behind the (1−2θ) term is that it prevents simple affine attacks on nonce blind-

ness that can be carried our by subtracting two messages. Crucially, w does not leak any informa-
tion about the nonce if x⊥ is chosen such that it “smudges-out” z⊥. As we mentioned earlier, this
construction is secure under the basic nonce blindness definition, and we can easily upgrade it to
k-nonce blindness by sampling (k − 1) smudging vectors as well as commit (k − 1) bits instead of
a single θ bits. At a high level, we are using smudging along with a one-time pad style argument
for proving basic nonce blindness, and this can be extended to k-nonce blindness by having more
smudging terms.

2.6 Efficiency comparisons for our NIBS schemes

As a proof-of-concept, we provide estimates for the various parameter sizes in our scheme. Just as
[AKSY22], we instantiate our construction 7.1 with Falcon [FHK+17] for signatures, [LPS10] for
Regev-style encryption and [LNP22b] for the NIZK for linear relations. In table 2, we provide the
public key, transcript and signature sizes for all our NIBS constructions. By weak blindness, we
mean basic blindness [Han23], and by strong blindness, we mean our newly introduced defini-
tions.

Construction |pkR|
|psig|+
|nonce| |σ | Blindness

Lattice-based (7.1) 1.6 KB 0.96 KB 68 KB Weak
Lattice-based (8.1) λ · 1.6 KB λ · 0.96 KB λ · 68 KB Weak
Circuit-private LHE (5.2) poly(λ) poly(λ) ∼ 0.5 KB Strong
General-purpose NIZKs (D.1) ∼ 2 KB ∼ 0.5 KB poly(λ) Strong

Table 2: Public key, transcript and signature sizes of our constructions.

3 Preliminaries

Notation. Let λ denote the security parameter, and PPT denote probabilistic polynomial-time.
We denote the set of real numbers by R and the integers by Z. We denote the set of all positive
integers up to n as [n] := {1, . . . ,n} and the set of all non-negative integers up to n as [0,n]B {0}∪[n].

For a vector x of even length, we write x⊤ and x⊥ to be the top and bottom halves of x respec-

tively, i.e. x =
[
x⊤
x⊥

]
. Similarly, for any matrix A = [AL | AR] ∈ Zn×2m

q , we denote its left and right

halves as AL and AR, respectively.
For a vector x, we write its ℓ2 norm as ∥x∥2, often dropping the subscript and writing it simply

as ∥x∥. We write the ℓ∞ norm of x as ∥x∥∞.
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3.1 Lattice preliminaries

An m-dimensional lattice L is a discrete additive subgroup of Rm. Given positive integers n,m,q
and a matrix A ∈Zn×m

q , we let Λ⊥q (A) denote the lattice {x ∈Zm : A ·x = 0 mod q}. For u ∈Zn
q , we

let Λu
q (A) denote the coset {x ∈Zm : A · x = u mod q}.

Discrete Gaussians. Let ς be any positive real number. The Gaussian distribution Dς with pa-
rameter ς is defined by the probability distribution function ρς(x) = exp(−π∥x∥2/ς2). For any set
L ⊂R

m, define ρς(L) =
∑

x∈Lρς(x). The discrete Gaussian distribution DL,ς over L with parameter
ς is defined by the probability distribution function ρL,ς(x) = ρς(x)/ρς(L) for all x ∈ L.

The following lemma (Lemma 4.4 of [MR04, GPV08]) shows that if the parameter ς of a dis-
crete Gaussian distribution is small, then any vector drawn from this distribution will be short
(with high probability).

Lemma 3.1. Let m,n,q be positive integers with m > n, q ≥ 2. Let A ∈Zn×m
q be a matrix of dimen-

sions n×m, ς = Ω̃(n) and L = Λ⊥q (A). Then

Pr[∥x∥ >
√
m · ς : x←$DL,ς] ≤ negl(n).

We will also require the following lemma (Lemma 4.4 of [Lyu12]) concerning the minimum-
entropy of the discrete Gaussian distribution.

Lemma 3.2. Let D
Z

m,ς be the discrete Gaussian distribution over Zm for any m > 1, with variance
ς. Then, for any ς ≥ 3/

√
2π we have that H∞

(
D

Z
m,ς

)
≥m.

Lattice trapdoors. Lattices with trapdoors are lattices that are statistically indistinguishable from
randomly chosen lattices, but have certain ‘trapdoors’ that allow efficient solutions to hard lattice
problems.

Definition 3.3 ([Ajt96, GPV08]). For lattice parameters n,m,q with m ≥ O(n logq), a trapdoor
lattice sampler consists of algorithms TrapGen and SamplePre with the following syntax:

• TrapGen(1n,1m,q) → (A,TA): The lattice generation algorithm is a randomized algorithm
that takes as input the matrix dimensions n,m, modulus q, and outputs a matrix A ∈ Zn×m

q
together with a trapdoor TA.

• SamplePre(A,TA,u,ς)→ s: The presampling algorithm takes as input a matrix A, trapdoor
TA, a vector u ∈ Z

n
q and a parameter ς ∈ R (which determines the length of the output

vectors). It outputs a vector s ∈Zm
q such that A · s = u and ∥s∥ ≤

√
m · ς.

These algorithms must satisfy the following properties:

1. Well-Distributedness of Matrix. The following distributions are statistically indistinguish-
able:

{A : (A,TA)←$ TrapGen(1n,1m,q)} ≈s {A : A←$ Zn×m
q }.

2. Preimage Sampling: For all (A,TA)←$ TrapGen(1n,1m,q), if ς = ω(
√
n · logq · logm), then the

following distributions are statistically indistinguishable:

{s : u←$ Zn
q ,s←$ SamplePre(A,TA,u,ς)} ≈s DZ

m,ς.
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These properties are satisfied by the gadget-based trapdoor lattice sampler of [MP12] for pa-
rameters m such that m = Ω(n · logq).

Bonsai lattice trapdoors. In this work, we will rely on the bonsai trick for lattice trapdoors [ABB10a,
CHKP10]. Briefly, using the standard Bonsai trick, one can sample preimage vectors with a special
property that a portion of the preimage vector will be sampled as a random Gaussian vector with
appropriate norm, rather than from a pre-defined lattice coset. Throughout the sequel, we will
routinely sample matrices of dimensions n× 2m such as A ∈Zn×2m

q , where

(AL,TAL
)←$ TrapGen(1n,1m,q), AR←$ Zn×m

q .

To create a preimage s ∈ Z2m
q , for any vector u ∈ Zn

q , such that A · s = u, we simply sample s⊥ ←$

D
Z

m,ς, and s⊤←$ SamplePre(AL,TAL
,u−AR · s⊥,ς).

We refer to the above bonsai-based lattice trapdoors as bLT = (bLT.TrapGen, bLT.SamplePre),
where the trapdoor generation and preimage sampling algorithms are defined as above. Clearly,
the algorithms for bLT satisfy the standard well-distributedness property, as well as the preimage
sampling property. Moreover, it satisfies the following stronger half-preimage well distribution
property:

Half-Preimage Well Distributedness. For all (A,TA)←$ bLT.TrapGen(1n,12m,q), every vector u ∈
Z

n
q , every ς, the following distributions are identical:

{s⊥ : s←$ SamplePre(A,TA,u,ς)} ≡ D
Z

m,ς.

3.2 Hardness assumptions

Definition 3.4 (SIS). Let q,n,m,β be functions of security parameter λ. An instance of the SISq,n,m,β

problem is a matrix C←$ Zn×m
q , and a solution to the problem is a vector z ∈Zm such that ∥z∥2 ≤ β

and C · z = 0 (mod q).

Definition 3.5 (Inhomogeneous-SIS). Let q,n,m,β be functions of security parameter λ. An in-
stance of the ISISq,n,m,β problem is a matrix C←$ Zn×m

q and a vector y←$ Zm
q , and a solution to the

problem is a vector z ∈Zm such that ∥z∥2 ≤ β and C · z = y (mod q).

For suitably chosen parameters, the ISIS problem is at least as hard as certain worst-case lattice
problems [Ajt96, MR04, GPV08].

We also recall the one-more ISIS assumption (OM-ISIS), as defined by Agrawal et al. [AKSY22].

Definition 3.6 (One-more ISIS). Let q,n,m,ς,β be functions of security parameter λ. Consider the
following experiment:

1. The challenger uniformly samples a matrix A ∈Zn×m
q , and sends A to adversary A.

2. A adaptively makes queries of the following types to the challenger, in any order.

Syndrome queries. A requests for a challenge vector, to which the challenger replies with
a uniformly sampled vector t←$ Zn

q . We denote the set of received vectors by S.

Preimage queries. A queries a vector t̂ ∈ Zn
q ., to which the challenger replies with a short

vector x̂ ∈ Z
m
q such that A · x̂ = t̂ and ∥̂x∥ ≤ ς

√
m. Let ℓ denote the total number of

preimage queries.
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3. Finally, A outputs ℓ + 1 pairs of the form
{
(xj ,tj )

}
j∈[ℓ+1]

. And, A wins if

∀j ∈ [ℓ + 1], A · xj = tj , and
∥∥∥xj

∥∥∥ ≤ β and tj ∈ S.

The OM-ISISq,n,m,ς,β assumption states that for every PPT adversaryA, the probability thatAwins
is negl(λ).

In words, the assumption states that it is hard to find ℓ+1 short preimages from a set S of syn-
dromes, even when given up to ℓ inversions of arbitrary syndromes not in S , for any polynomially
bounded ℓ. Equivalently, it is hard to forge ℓ+ 1 GPV signatures [GPV08] given up to ℓ inversions
of arbitrary syndromes. However, the main reason this is not known to be reducible to standard
SIS (unlike security of GPV signatures) is that A can ask preimage queries on any arbitrary vector of
its choice.

3.3 Randomness extraction

The min-entropy of a random variable X is defined as H∞(X) def= − log2(maxx Pr[X = x]). Let
SD(X,Y ) denote the statistical distance between two random variables X and Y . Below we state
the Leftover Hash Lemma (LHL) from [HILL99, DRS04, DORS08].

Theorem 3.7. Let H = {h : X→ Y }h∈H be a universal hash family, then for any random variable
W taking values in X, the following holds

SD ((h,h(W )) , (h,UY )) ≤ 1
2

√
2−H∞(W ) · |Y |,

where UY denotes uniform distribution over Y .

We will use the following corollary, which follows from the Leftover Hash Lemma.

Corollary 3.8. Let ℓ > m · n log2 q +ω(logn), q a prime, and m,n are positive integers. Let R be an
k×m matrix chosen as per distributionR, where k = k(n) is polynomial in n and H∞ (R) = ℓ. Let A
and B be matrices chosen uniformly in Z

n×k
q and Z

n×m
q , respectively. Then the statistical distance

between the following distributions is negligible in n.

{(A,A ·R)} ≈s {(A,B)}

Lemma 3.9 (Smudging Lemma [AJL+12, Lemma 2.1, paraphrased]). Let B1,B2 be two polynomials
over the integers and let D = {D(λ)}λ be any B1-bounded distribution family. Let U = {U (λ)}λ and
U (λ) denote the uniform distribution over integers [−B2(λ),B2(λ)]. The family of distributions D
and U is statistically indistinguishable, D + U ≈s U , if there exists a negligible function negl(·)
such that for all λ ∈N, B1(λ)/B2(λ) ≤ negl(λ).

3.4 Cryptographic building blocks

We also recall the standard cryptographic building blocks that will be essential to this work.
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3.4.1 Pseudo Random Functions

A pseudorandom function (PRF) F : {0,1}λ × {0,1}λ → {0,1}λ is a keyed function10, that takes a
λ-bit key as input, and on input x ∈ {0,1}λ, it outputs a value y = FK (x). (Throughout the paper, we
use FK (x) as a shorthand for PRF evaluation.)

Definition 3.10 (Pseudorandomness). A PRF F is said to be secure if for every stateful PPT adver-
sary A, there exists a negligible function negl(·) such that for all λ, the following holds:

Pr
[
AOK,b(·)(1λ) = b : K ←$ {0,1}λ, b←$ {0,1}

]
≤ 1

2
+negl(λ),

where oracle OK,b(·) is defined as FK (·) if b = 0, otherwise it is defined as a random function from
{0,1}λ→ {0,1}λ.

3.4.2 Perfectly binding commitments

A commitment scheme COM consists of the following algorithms.

Setup(1λ,1n)→ crs. The setup algorithm takes as input the security parameter λ, message length
n, and outputs a crs crs.

Com(crs,m;r)→ c. The commit algorithm that takes as input the crs crs, message m ∈ {0,1}n, and
randomness r ∈ {0,1}λ. It outputs a commitment c. (We assume for simplicity that r is always
a λ-bit string. Note that this follows w.l.o.g., and is not an extra assumption.)

Verify(crs,m,c, r)→ 0/1. The verification algorithm takes as input the crs crs, message m, com-
mitment c, and an opening/randomness r. It outputs either 0 or 1 to signal validity of the
opening.

Correctness. A commitment scheme COM is correct if for every λ,n ∈N, crs crs←$ Setup(1λ,1n),
any message m ∈ {0,1}n, the following holds

Pr
[
Verify(crs,m,c, r) = 1 : r←$ {0,1}λ, c = Com(crs,m;r)

]
= 1.

Perfect binding. A commitment scheme is said to be perfectly binding if no commitment can
have valid openings for two different messages.

Definition 3.11 (Perfect binding). A commitment scheme COM is perfectly binding if for all λ,n ∈
N, every crs crs←$ Setup(1λ,1n), for every (c,m1, r1,m2, r2) such that m1 ,m2, the following holds
for at least one i ∈ {1,2}:

Pr[Verify(crs,mi , c, ri) = 1] = 0.

Computational hiding. A commitment scheme is said to be computationally hiding if a commit-
ment hides the messages when the openings are hidden.

Definition 3.12 (Hiding). A commitment scheme COM is computationally hiding if for every
stateful PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds

Pr

 A(c) = b
∧m0,m1 ∈ {0,1}n

:
1n←$A(1λ), crs←$ Setup(1λ,1n)
(m0,m1)←$A(crs), b←$ {0,1}
c←$ Com(crs,mb)

 ≤ 1
2

+negl(λ).

10For simplicity, we fix the key space, input space, and output space to be λ-bit strings.
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3.4.3 Public key encryption

A public key encryption (PKE) scheme PKE consists of the following polynomial-time algorithms.

Setup(1λ)→ (pk,sk). The setup algorithm takes as input the security parameter λ, and outputs a
public-secret key pair (pk,sk).

Enc(pk,m)→ ct. The encryption algorithm takes as input a public key pk and a message m ∈
{0,1}λ, and outputs a ciphertext ct.

Dec(sk,ct)→m. The decryption algorithm takes as input a secret key sk and a ciphertext ct, and
outputs a message m.

The scheme satisfies correctness if for all λ, m ∈ {0,1}λ, (pk,sk)←$ Setup(1λ), and every cipher-
text ct←$ Enc(pk,m), we have that Dec(sk,ct) = m. Further, the standard IND-CPA security notion
is defined as follows.

Definition 3.13. A public key encryption scheme PKE is IND-CPA secure if for every stateful PPT
adversary A, there exists a negligible functions negl(·), such that for every λ ∈N

Pr
[
A(ct) = b :

(pk,sk)←$ Setup(1λ);b←$ {0,1}
(m0,m1)←$A(pk);ct←$ Enc(pk,mb)

]
≤ 1

2
+negl(λ).

3.4.4 Signature schemes

A signature scheme S = (Setup,Sign,Verify) with message spaceM consists of three algorithms, as
follows:

Setup(1λ)→ (sk,vk). is a randomized algorithm that takes security parameter λ as input and re-
turns a pair of keys (sk,vk), where sk is the signing key and vk is the verification key.

Sign(sk,M)→ σ. is a possibly randomized algorithm that takes as input the signing key sk, and a
message M ∈M, and returns a signature σ .

Verify(vk,M,σ )→ {0,1}. is a deterministic algorithm that takes as input the verification key vk, a
message M ∈M, and a signature σ . It outputs 1 (accept) or 0 (reject).

A signature scheme satisfies correctness if for all λ ∈N, m ∈M, and every signing-verification
key pair (sk,vk)← Setup(1λ), every signature σ ←$ Sign(sk,m), Verify(vk,m,σ ) = 1.

Definition 3.14. A signature scheme S = (Setup,Sign,Verify) is a secure signature scheme if for
every PPT attackerA there exists a negligible function negl(·) such that for all λ ∈N, the following
holds

Pr
[
Verify(vk,m∗,σ ∗) = 1 :

(sk,vk)←$ Setup(1λ)
(m∗,σ ∗) =ASign(sk,·)(1λ,vk)

]
≤ negl(λ),

and A should never have queried m∗ to Sign oracle.
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3.4.5 Non-interactive zero knowledge (NIZK)

A NIZK proof system for language L consists of the following polynomial time algorithms:

Setup(1λ)→ crs. The setup algorithm takes as input the security parameter λ, and outputs a crs
crs.

Prove(crs,x,ω)→ π. The prover algorithm takes as input a crs, an instance x ∈ L, and a witness
ω. It outputs a proof π.

Verify(crs,x,π)→ 0/1. The verification algorithm takes as input a crs, an instance x, and a proof
π. It outputs a bit to signal whether the proof is valid or not.

A proof system is complete if for every λ ∈ N, crs crs←$ Setup(1λ), any instance x ∈ L with
corresponding witness ω, the following holds

Pr[Verify(crs,x,π) = 1 : π←$ Prove(crs,x,ω)] = 1.

Furthermore, we require the following properties.

Definition 3.15 (Soundness). A proof system (Setup,Prove,Verify) is computationally sound if for
every stateful PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈N, the
following holds

Pr
[
Verify(crs,x,π) = 1
∧ x < L :

crs←$ Setup(1λ)
(x,π)←$A(1λ,crs)

]
≤ negl(λ).

Definition 3.16 ((Multi-theorem) Zero-knowledge). A proof system (Setup, Prove,Verify) is com-
putationally zero-knowledge if there exists a stateful PPT simulator S such that for every stateful
PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr


A({πi,b}i) = b

∧
(
∀i ∈ [ℓ], ωi is a valid
witness for xi ∈ L

)
:

b←$ {0,1}
crs0←$ Setup(1λ)
crs1←$ S(1λ)
{(xi ,ωi)}i∈[ℓ]←$A(1λ,crsb)
∀i ∈ [ℓ], πi,0←$ Prove(crs0,xi ,ωi)
{πi,1}i ←$ S(crs0, {xi}i)


≤ 1

2
+negl(λ).

Definition 3.17 (Knowledge extractor). A proof system (Setup,Prove,Verify) has a knowledge ex-
tractor if there exists a PPT extractor E such that for every stateful PPT attacker A, there exists a
negligible function negl(·) such that for all λ ∈N, the following holds

Pr


Verify(crs,x,π) = 1

∧
(
ω = E(τ,x,π) is not a
valid witness for x ∈ L

)
:
τ←$ {0,1}λ
crs←$ Setup(1λ;τ)
(x,π)←$A(1λ,crs)

 ≤ negl(λ),

where τ denotes the randomness used for running the setup algorithm, and we assume (w.l.o.g.)
that |τ | = λ.
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Remark 3.18. In our security proofs below, we make regular use of straight-line extraction. This
can be achieved generically using PKE by encrypting the witness under a shared public encryption
key and providing the ciphertext along with the proof. Additionally, the zero-knowledge proof
itself must contain a proof of correct computation of the ciphertext. Looking ahead to the security
proofs, the challenger will possess a secret decryption key corresponding to the public encryption
key enabling straight-line extraction.

3.4.6 Leveled homomorphic encryption

Let Cd denote the class of boolean valued circuits of depth d. A leveled homomorphic encryption
scheme LHE with message space {0,1} for circuit class {Cd}d∈N consists of the following polyno-
mial time algorithms:

Setup(1λ,1d)→ (sk,ek) The setup algorithm takes as input the security parameter λ, bound on
circuit depth d and outputs a secret key sk and evaluation key ek.

Enc(sk,m ∈ {0,1})→ ct The encryption algorithm takes as input a secret key sk, message m ∈ {0,1}
and outputs a ciphertext ct.

Eval(ek,C ∈ Cd ,ct)→ ct′ The evaluation algorithm takes as input an evaluation key ek, a circuit
C ∈ Cd , a sequence of ciphertexts ct = (ct1, . . . ,ctℓ) for some ℓ > 0 and outputs a ciphertext ĉt.
Here ℓ denotes the input length of C.

Dec(sk,ct)→ x The decryption algorithm takes as input a secret key sk and ciphertext ct and
outputs x ∈ {0,1} ∪ {⊥}.

Correctness. The scheme LHE is said to be (perfectly) correct if for all security parameter λ,
circuit-depth bound d, (sk,ek) ← Setup(1λ,1d), circuit C ∈ Cd and messages m1, . . . ,mℓ ∈ {0,1},
every ciphertext cti ←$ Enc(sk,mi) where ℓ denotes input length of C, the following holds:

Pr[Dec(sk,Eval(ek,C, (ct1, . . . ,ctℓ)) = C(m1, . . . ,mℓ)] = 1.

Definition 3.19 (Circuit privacy). An LHE scheme is said to be circuit private if there exists a PPT
algorithm Sim such that for every d ∈N any circuit C ∈ Cd with input length ℓ = poly(λ), and any
sequence of message bits m1, . . . ,mℓ ∈ {0,1}, the following holds:

(ek,Eval(ek,C, (ct1, . . . ,ctℓ)),ct1, . . . ,ctℓ) ≈c
(
ek, ĉt,ct1, . . . ,ctℓ

)
where (sk,ek)←$ Setup(1λ,1d), cti ←$ Enc(sk,mi) ∀i ∈ [ℓ], ĉt = Sim(ek,C(m1, . . . ,mℓ),ct1, . . . ,ctℓ).

4 A Stronger Model for Non-Interactive Blind Signatures

In a NIBS system, a signer issues a random presignature psig for any receiver R with public key
pkR, such that the receiver R can extract a blind signature σ for a random message µ using its
secret key skR. Syntactically, a non-interactive blind signature scheme consists of the following
polynomial-time algorithms:

Setup(1λ)→ pp. On input the security parameter λ, the global setup algorithm outputs a set of
public parameters pp. All the remaining algorithms take pp as an input, but for notational
clarity, we usually omit it as an explicit input.
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KeyGenS(pp)→ (sk,vk). This corresponds to the signer’s key generation algorithm. On input pp,
it samples a public-secret key pair (sk,vk).

KeyGenR(pp)→ (skR,pkR). This corresponds to the receiver’s key generation algorithm. On input
pp, it samples a public-secret key pair (skR,pkR).

Issue(sk,pkR)→ (psig,nonce). This is a randomized algorithm that is run by the signer. It takes
as input the signer’s secret key sk as well as a receiver’s public key pkR. It then outputs
a presignature psig along with nonce which represents (a portion of) the signer’s random
coins.

Obtain(skR,vk, (psig,nonce))→ (µ,σ ). This algorithm corresponds to the receiver’s blind signa-
ture extraction algorithm. Given the receiver’s secret key skR as an input, along with a ver-
ification key vk and presignature-nonce pair (psig,nonce), it outputs a message-signature
pair (µ,σ ) or aborts (in which case it outputs ⊥).

Verify(vk,µ,σ )→ {0,1}. This is the signature scheme verification algorithm that takes as input a
verification key and message-signature pair, and outputs 0/1.

Correctness. A non-interactive blind signature scheme satisfies correctness if for every security
parameter λ ∈ N, pp ←$ Setup(1λ), (sk,vk) ←$ KeyGenS(pp), (skR,pkR) ←$ KeyGenR(pp), the fol-
lowing holds:

Pr[Verify(vk,Obtain(skR,vk, Issue(sk,pkR))) = 1] = 1,

where the probability is taken over the random coins of Issue and Obtain.

Remark 4.1 (Comparing with [Han23], and the reusability property). The above formalization of
non-interactive blind signatures is nearly identical to the syntax introduced by Hanzlik, except we
do not regard nonce as an input supplied to the Issue algorithm but as an output. We essentially
simplify the syntax by viewing nonce as a signer’s public (random) coins. The Obtain algorithm
receives both (psig,nonce) (as in [Han23]).

Paraphrasing [Han23], the purpose of nonce is to ensure reusability of a receiver’s public key
for obtaining multiple message-signature pairs from a single signer. We emphasize that both for-
mulations are equivalent, and moreover, our formulation seems syntactically cleaner (and closer
to syntax for traditional blind signatures) as well as helps defining an important reusability prop-
erty that is necessary to avoid vacuous solutions. Further, we do not see any advantage in defining
nonce as anything other than signer’s public randomness since the goal here is to have the signing
process be non-interactive, and treating nonce as an extra input is inconsistent with that goal.

Equivalence of both formalizations. It is straightforward to see that NIBS scheme satisfying the
above syntax can be generically translated into satisfying the syntax from [Han23]. The idea
is to generate the randomness for our Issue algorithm by evaluating a PRF on the nonce
value and the public key pkR provided as input in Hanzlik’s version.11 For completeness,
we provide this in Appendix A.

11Concretely, IssueHanzlik(sk,pkR,nonce) outputs the presignature as (psig′ ,nonce′) where (psig′ ,nonce′) ←
IssueOurs(sk,pkR;FK (nonce,pkR)).
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A vacuous NIBS scheme. Consider a NIBS scheme where the Issue algorithm is deterministic
and it always outputs the same nonce value (or, following Hanzlik’s notation, the Issue al-
gorithm ignores the nonce value entirely). Such a NIBS scheme clearly does not satisfy any
meaningful notion of reusability, since for each receiver’s public key a signer generates at
most one presignature. Unfortunately, this is still a valid NIBS scheme as per existing def-
initions, and furthermore, it satisfies the nonce blindness property [Han23, Definition 17]
vacuously, i.e. even if the adversary outputs (psig0,nonce0) , (psig1,nonce1) it would still
not be able to distinguish for (µb,σb). The main issue is that the existing definitions do not
disallow schemes where the Issue and Obtain algorithms ignore the nonce parameter.

A simple and sound approach to capture reusability. Our proposal is to simply define reusabil-
ity of NIBS schemes directly. Rather than making the nonce parameter explicit, we view it as
a portion of the signer’s random coins. Thus, we define reusability of a NIBS scheme as the
property that any receiver can obtain two distinct messages (along with valid signatures) for
two randomly generated presignature-nonce pairs (for the same receiver’s public key) with
all but negligible probability. Formally:

Definition 4.2 (Reusability). A NIBS scheme S satisfies the reusability property, if there exists a
negligible function negl(·) such that for every λ ∈N, the following holds:

Pr

 nonce0 = nonce1
∨ µ0 = µ1

:

pp←$ Setup(1λ)
(sk,vk)←$ KeyGenS(pp), (skR,pkR)←$ KeyGenR(pp)

∀b ∈ {0,1} : (psigb,nonceb)←$ Issue(sk,pkR)
∀b ∈ {0,1} : (µb,σb)←$ Obtain(skR,vk, (psigb,nonceb))

 ≤ negl(λ).

Next, we provide the standard notion of one-more unforgeability for blind signatures, special-
ized for the NIBS setting [Han23].12

Definition 4.3 (One-more unforgeability). A NIBS scheme S satisfies one-more unforgeability, if
for every stateful admissible PPT adversary A, there exists a negligible function negl(·) such that
for every λ ∈N, the following holds:

Pr


∧

i∈[ℓ+1]Verify(vk,µi ,σi) = 1
∧

(∧
i,j∈[ℓ+1]µi , µj

) :
pp←$ Setup(1λ)

(sk,vk)←$ KeyGenS(pp){
(µi ,σi)

}ℓ+1
i=1 ←$AOsk(·)(vk)

 ≤ negl(λ),

where Osk(·) takes as input a receiver’s public key pkRi
, and outputs a presignature-nonce pair

(psigi ,noncei) by running Issue(sk,pkRi
), and A is an admissible adversary iff A makes at most ℓ

queries to Osk.

In this work, we propose stronger notions of inter/intra-receiver blindness for NIBS schemes.
The existing approaches to capture blindness for NIBS do not allow an adversary to learn any
correlation between presignature-nonce pairs and their corresponding blind signature-message
pairs. Unfortunately, if a server learns the receiver’s identity for just one blind signature, then

12We want to remark that in [Han23], in the one-more unforgeability security experiment, the adversary can select
nonce during each Issue query. In our definition, the challenger samples nonce since it is treated as randomness of
Issue. However, both definitions are equivalent since a signer can use a PRF to generate the actual randomness from
an input nonce as described in Remark 4.1.
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existing definitions are insufficient in providing any notion of blindness from such attacks. In
order to protect from such advanced attackers that can bypass the blindness property for receivers
on some selected blind signatures, we introduce stronger notions of inter/intra-receiver blindness
properties that we refer to as strong receiver/nonce blindness.

Definition 4.4 (Strong receiver blindness). A NIBS scheme S satisfies strong receiver blindness, if
for every stateful admissible PPT adversary A, there exists a negligible function negl(·) such that
for every λ ∈N, the following holds:

Pr



AOskR0 ,skR1
(·,·,·)

(µb̂,σb̂,µ1−b̂,σ1−b̂) = b̂ :

pp←$ Setup(1λ), b̂←$ {0,1},
∀b ∈ {0,1} : (skRb

,pkRb
)←$ KeyGenR(pp)

(vk, (psigb,nonceb)b)←$AOskR0 ,skR1
(·,·,·)

(pkR0
,pkR1

)
∀b ∈ {0,1} : (µb,σb)←$ Obtain(skRb

,vk, (psigb,nonceb))


≤ 1

2
+negl(λ),

where oracle OskR0
,skR1

, on the i-th query (b(i),vk(i), (psig(i),nonce(i))), outputs Obtain(skR
b(i)
,vk(i),

(psig(i),nonce(i))). That is, OskR0
,skR1

providesA oracle access to the Obtain algorithm w.r.t. skR0
,skR1

.
We say that A is an admissible adversary iff:

– σ0,σ1 ,⊥ (i.e., Obtain algorithm does not abort), and

– nonce0 , nonce(i) and nonce1 , nonce(i) for all i. (That is, A cannot make an Obtain query
with nonce value to be either of the challenge nonce values.)

Definition 4.5 (Strong nonce blindness). A NIBS scheme S satisfies nonce blindness, if for every
stateful admissible PPT adversary A, there exists a negligible function negl(·) such that for every
λ ∈N, the following holds:

Pr


AOskR

(·,·)(µb̂,σb̂,µ1−b̂,σ1−b̂) = b̂ :

pp←$ Setup(1λ), (skR,pkR)←$ KeyGenR(pp)
(vk, (psigb,nonceb)b)←$AOskR

(·,·)(pkR), b̂←$ {0,1}
∀b ∈ {0,1} : (µb,σb)←$ Obtain(skR,vk, (psigb,nonceb))

 ≤
1
2

+negl(λ),

where oracle OskR , on the i-th query (vk(i), (psig(i),nonce(i))), outputs Obtain(skR,vk
(i), (psig(i),nonce(i))).

That is, OskR provides A oracle access to the Obtain algorithm w.r.t. skR. We say that A is an ad-
missible adversary iff:

– σ0,σ1 ,⊥ (i.e., Obtain algorithm does not abort), and

– nonce0 , nonce(i) and nonce1 , nonce(i) for all i. (That is, A cannot make an Obtain query
with nonce value to be either of the challenge nonce values.)

5 NIBS from Circuit Private LHE

The unforgeability and blindness definitions discussed thus far have been defined in the general
chosen-key model where the attacker can specify arbitrary (possibly malformed) receiver and
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verification keys. In this section, we will consider definitions under the knowledge of secret keys
(KOSK) model [MOR01, Bol03] as define next. We point out that any NIBS scheme satisfying
one-more (strong) unforgeability, (strong) receiver blindness, and (strong) nonce blindness in the
KOSK model can be generically upgraded into another NIBS scheme satisfying the same security
properties by using a non-interactive zero-knowledge argument of knowledge (NIZKAoK) scheme
(cf. Appendix B).

5.1 Knowledge of secret keys model

In the knowledge of secret keys (KOSK) model for NIBS, we require the attacker to specify the
corresponding secret keys along with the respective verification/public keys. That is, the attacker
supplies the receiver’s secret key in unforgeability experiment and the signer’s signing key in
blindness experiments, respectively.

Definition 5.1 (strong receiver blindness in KOSK). Recall the strong receiver blindness secu-
rity experiment from Definition 4.4. Consider another security experiment where A additionally
provides a secret key sk(i) along with its corresponding vk(i) at the time of each oracle query. More-
over, A provides a secret key sk along with vk when declaring the challenge presignature-nonce
pairs. We say A is admissible if sk(i) (sk) is a valid secret key for vk(i) (vk, respectively). Note that
admissibility can be checked efficiently as the secret key sk(i) can be regarded as the random coins
of the setup algorithm.

A NIBS scheme S satisfies strong receiver blindness in the KOSK model if no admissible PPT
adversary A wins in the above adapted security experiment with non-negligible probability.

Definition 5.2 (strong nonce blindness in KOSK). A NIBS scheme S satisfies strong nonce blind-
ness in the KOSK model if no admissible PPT adversaryAwins in the adapted security experiment
similar to in Definition 5.1 with non-negligible probability. Briefly, the adaptation is that the
adversary provides a valid secret key associated with each verification key it outputs.

Definition 5.3 (One-more unforgeability in KOSK). A NIBS scheme S satisfies one-more unforge-
ability in the KOSK model if no admissible PPT adversary A wins in the adapted security exper-
iment similar to in Definition 5.1 with non-negligible probability. Briefly, the adaptation is that
the adversary provides a valid secret key associated with each receiver key it outputs.

5.2 Construction

We now describe our NIBS scheme from circuit-private LHE. The resulting construction has
optimal-size signatures and strong security.

Tools required. The construction relies on a pseudorandom function F, a signature scheme S =
(S.Setup,S.Sign,S.Verify), a leveled homomorphic encryption scheme LHE = (LHE.Setup,LHE.Enc,
LHE.Eval,LHE.Dec) and a NIZKAoK proof system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) for
the following language:
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Language L1
Instance: Each instance x is interpreted as an LHE evaluation key lhe.ek, LHE ciphertexts ct
and ĉt and randomness r ∈ {0,1}λ.
Witness: Witness ω consists of a secret signing key sk and randomness ρ.
Membership: Let Csk,r encode the circuit S.Sign(sk,F·(r)) for a public pseudorandom function
F. Then ω is a valid witness for x if the following is satisfied:

– ĉt is the homomorphic evaluation of the ciphertext ct over the circuit Csk,r , ie., ĉt =
LHE.Eval(lhe.ek,Csk,r ,ct;ρ).

Below we describe our NIBS from circuit private LHE.

Setup(1λ)→ pp. It runs the setup algorithms for NIZK (for language L1):

nizk.crs←$ NIZK.Setup(1λ),

and outputs pp = nizk.crs.

KeyGenS(pp)→ (sk,vk). The signer’s setup algorithm runs the setup algorithm for the signature
scheme S. Namely, it generates keys as (sk,vk)←$ S.Setup(1λ).

KeyGenR(pp)→ (skR,pkR). The receiver’s setup algorithm first samples a LHE key pair (lhe.sk,
lhe.ek) ←$ LHE.Setup(1λ,1d), and random PRF key K ←$ {0,1}λ. (Here depth d is defined
during the issue algorithm.) Next, it encrypts K as ct ←$ LHE.Enc(lhe.sk,K). Finally, it
outputs receiver’s secret key and public key as skR B (lhe.sk,K) and pkR B (lhe.ek,ct).

Issue(sk,pkR)→ (psig,nonce). The issue algorithm first samples a random message r ←$ {0,1}λ.
Let Csk,r(·) be the following circuit (with key sk and message r hardwired) — Csk,r(K) def=
S.Sign(sk,FK (r)). That is, Csk,r runs the PRF function using the circuit input as the PRF key
on message r, and then runs the signing algorithm to sign the output of the PRF. Let d denote
the depth of the circuit Csk,r . (This is the depth we set during the setup of the LHE scheme.)

The algorithm runs the homomorphic evaluation algorithm under uniformly random ρ←$

{0,1}λ13, and (lhe.ek,ct)B pkR, as follows:

ĉt← LHE.Eval(lhe.ek,Csk,r ,ct;ρ),

and creates a NIZK proof π for the language L1 as

π←$ NIZK.Prove(nizk.crs,x = (pkR, ĉt, r),ω = (sk,ρ))

Finally, it outputs the presignature psigB (ĉt,π) and nonce nonceB r.

Obtain(skR,vk,psig,nonce)→ (µ,σ ). The receiver parses (ĉt,π)B psig and runs the NIZK verifier
as NIZK.Verify(nizk.crs,x = (pkR, ĉt,nonce),π) and aborts if it outputs 0. Otherwise it con-
tinues by computing the message as µ = FK (r), where (lhe.sk,K) B skR and nonce B r. It

13This randomness is needed for circuit privacy.
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then runs LHE decryption algorithm to compute the signature σ ←$ LHE.Dec(lhe.sk, ĉt), and
it runs the signature verification algorithm to check that σ is a valid signature for µ under
vk. That is, S.Verify(vk,µ,σ ) = 1. If the check fails, then it aborts. Otherwise, it outputs µ
and σ as the corresponding message-signature pair.

Verify(vk,µ,σ )→ {0,1}. The verification algorithm runs the signature scheme verifier and outputs
whether S.Verify(vk,µ,σ ) = 1.

We now state the main theorem for this construction. The proof is given in the full version of
this article.

Completeness. We have by definition, that circuit Csk,r(·) is a signature on the PRF evaluation of
F under key K . Thus, by correctness of the signature scheme and the PRF, Csk,r(K), computes the
signature on the FK (r) and, further, by completeness of the NIZK proof system, ĉt is the encryption
of the (homomorphically evaluated) signature on FK (r) under sk, for uniformly random r. Finally,
by correctness of LHE, ĉt correctly decrypts to a signature σ such that S.Verify(vk,FK (r),σ ) accepts.

Reusability. Notice that for b ∈ {0,1}, if a signer issues presignature-nonce pairs ((ĉtb,πb), rb) to a
given receiver with a secret PRF key K then,

Pr[r0 = r0 ∨µ0 = µ1] = Pr[µ0 = µ1] + Pr[r0 = r1]−Pr[µ0 = µ1 | r0 = r1] ·Pr[r0 = r1]

= Pr[FK (r0) = FK (r1)] + Pr[r0 = r1]−Pr[FK (r0) = FK (r1) | r0 = r1] ·Pr[r0 = r1]

= Pr[FK (r0) = FK (r1)] + Pr[r0 = r1]−Pr[r0 = r1] = Pr[FK (r0) = FK (r1)] .

The probability that for uniformly sampled values r0, r1 ∈ {0,1}λ, we have that r0 = r1 is negli-
gible in λ. Additionally, if r0 , r1, then the probability that FK (r0) = FK (r1) also negligibly small
for a secure PRF F, and hence also the probability above is overall negligible. So the construction
is reusable.

5.3 One-more unforgeability

We first consider the one-more unforgeability of this protocol.

Theorem 5.4. If NIZK satisfies zero knowledge, LHE is a circuit private LHE and S is a secure
signature scheme, then Construction 5.2 is one-more unforgeable NIBS protocol in the KOSK
model.

Proof. We define the following hybrids:

Hybrid0 This corresponds to the real one-more unforgeability experiment in the KOSK model.

1. After generating the public parameters pp of the protocol, the challenger runs the setup
algorithm for the signature scheme S, generates keys as (sk,vk) ←$ S.Setup(1λ) and sends
vk to the adversary.

2. In the ith query, the adversary chooses a valid pkRi
,skRi

pair and requests a presignature using
it. For each such query, the challenger replies with a presignature psigi that it computes as
follows:
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(a) It parses pkRi
as (lhe.eki ,cti) and skRi

as (lhe.ski ,Ki).

(b) It checks whether Ki = LHE.Dec(lhe.ski ,cti). If the check fails, the challenger aborts and
continues otherwise.14

(c) It samples a random ri ←$ {0,1}λ.

(d) Then, for circuit Csk,ri (Ki)
def= S.Sign(sk,FKi

(ri)), the challenger runs the homomorphic
evaluation algorithm with randomness ρi to obtain ĉti as

ĉti ←$ LHE.Eval(lhe.eki ,Csk,ri ,cti ;ρi) .

(e) It creates a NIZK proof for the language L1 as

πi ←$ NIZK.Prove(nizk.crs,xi = (pkRi
ĉti , ri),ωi = (sk,Csk,ri ,ρi))

(f) Sets psigi B (ĉti ,πi) and nonceB ri .

The adversary repeats this step for a total of ℓ queries.

3. Adversary outputs k message and signature pairs ((µ1,σ1), . . . , (µk ,σk)). Adversary wins if µi ,
µj for 1 ≤ i < j ≤ k, Verify(vk,µi ,σi) = 1 for all i ∈ [k], and k > ℓ.

Hybridi For i ∈ [ℓ] each Hybridi is the same as Hybridi−1, except that on ith presignature query,
instead of honestly generating the NIZK proof πi , the challenger simulates it without any witness.

2. (e) It sets statement xi to be (pkRi
ĉti , ri) and, without setting any witness, generates πi using

NIZK simulator.

Hybridℓ+i For i ∈ [ℓ] each Hybridℓ+i is the same as Hybridℓ+i−1, except that on the ith presignature
query, instead of homomorphically evaluating the circuit, it simulates the ciphertext generation
using the LHE simulator.

2. (c) Then, for circuit Csk,ri (Ki)
def= S.Sign(sk,FKi

(ri)), the challenger computes σi ←$ S.Sign(sk,
FKi

(ri)). It then runs the LHE simulator as ĉti ←$ Sim(lhe.eki ,σi).

Let AdvjA denote the security advantage of an adversaryA in the one-more unforgeability game
in Hybridj . Then, the following must hold:

Lemma 5.5. Assuming zero-knowledge property of NIZK, it holds that for all PPT adversaries A,
|Advi−1

A −Adv
i
A| = negl(λ) for i ∈ [ℓ].

Proof. For any i ∈ [ℓ], consider Hybridi in which, the challenger, responds to the ith presignature
query by simulating the NIZK proof according to the statement xi = (pkRi

ĉti , ri). Concretely, let A
be a PPT attacker such that |Advi−1

A −Adv
i
A| is non-negligible, we design a reduction algorithm B

that breaks the zero-knowledge property of NIZK with non-negligible advantage.
The NIZK challenger starts by sampling b∗←$ {0,1}. If b∗ = 0, it sets nizk.crs←$ NIZK.Setup(1λ).

Otherwise it runs the simulator nizk.crs ←$ S(1λ). It sends nizk.crs to the reduction algorithm

14Note that this can be done without loss of generality in the KOSK model as this does not affect any change to the
adversary’s point of view.
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B, which in turn forwards it to A as pp. After generating the public parameters of the proto-
col, B runs the setup algorithm for the signature scheme S to generate the key pair (sk,vk) ←$

S.Setup(1λ). It sends vk toA, who is then allowed to make a series of presignature queries. To an-
swer the ith query, B computes xi = (pkRi

ĉti , ri),ωi = (sk,Csk,ri as the signer would, and queries the
NIZK challenger with (xi ,ωi) who replies with a proof πi . B then sets psigi B (ĉti ,πi) and nonceB
ri , and forwards it to A. The attacker A outputs k message signature pairs ((µ1,σ1), . . . , (µk ,σk)). If
µi′ , µj for 1 ≤ i′ < j ≤ k, Verify(vk,µi′ ,σi′ ) = 1 for 1 ≤ i′ ≤ k, and k > ℓ, then B sends 0 as its guess
(i.e., πi is a simulated proof), otherwise it sends 1 as its guess (i.e., πi is honestly generated from
NIZK.Prove(nizk.crs,xi ,ωi)).

Note that if the NIZK challenger honestly generates proof the πi using NIZK.Prove (nizk.crs,xi ,ωi),
then B perfectly simulates the experiment of Hybridi−1 for adversary A. Otherwise it simulates
the experiment of Hybridi . As a result, if |Advi−1

A −Adv
i
A| is non-negligible, then B breaks the zero-

knowledge property of NIZK with non-negligible advantage. Thus the lemma holds for i which is
general, so it holds for all i ∈ [ℓ].

Lemma 5.6. If LHE is a circuit private LHE, then for all PPT adversaries A, |Advℓ+i−1
A −Advℓ+i

A | =
negl(λ) for j ∈ [ℓ].

Proof. For any i ∈ [ℓ], consider the hybrid Hybridℓ+i in which, the challenger, responds to the ith

presignature query by simulating the ciphertext generation using the LHE simulator instead of
homomorphically evaluating the circuit. Concretely, for circuit Csk,ri (Ki)

def= S.Sign(sk,FKi
(ri)), the

challenger leverages its knowledge of the secret key to compute σi ←$ S.Sign(sk,FKi
(ri)). It then

runs the LHE simulator as ĉti ←$ Sim(lhe.eki ,σi). By circuit privacy of LHE, we have that for such
a PPT algorithm Sim, in particular, the following holds:(

lhe.ek,LHE.Eval(lhe.ek,Csk,ri ,cti),cti
)
≈c

(
lhe.ek,Sim(lhe.ek,Csk,ri (Ki)),cti

)
It further follows by construction that σi is a valid signature on FKi

(ri). So, Csk,ri (Ki) = σi
and thus, a PPT adversary has negligible advantage in distinguishing ĉti produced as the output
of LHE.Eval(lhe.ek,Csk,ri ,cti) and that produced by the LHE Simulator Sim(lhe.ek,σi). Thus the
lemma holds for i which is general, so it holds for all i ∈ [ℓ].

Lemma 5.7. Assuming the signature scheme S is secure under existential unforgeability (Defini-
tion 3.14), adversary A can have at most negligible advantage in Hybrid2ℓ.

Proof. We reduce to the unforgeability of the underlying signature scheme. Suppose there exists
a PPT attacker A that wins the one-more unforgeability game with non-negligible probability
ϵ = ϵ(λ). It outputs k message and signature pairs ((µ1,σ1), . . . , (µk ,σk)), and wins if and only if
µi , µj for 1 ≤ i < j ≤ k, Verify(vk,µi ,σi) = 1 for 1 ≤ i ≤ k, and k > ℓ. Also recall that in the KOSK
model, the attacker must output a valid pkR, skR such that Ki = LHE.Dec(lhe.ski ,ct) and cti =
LHE.Enc(lhe.ski ,Ki). It then follows by correctness of the underlying scheme that any ciphertext
ĉti must decrypt uniquely under lhe.sk.

Consider, then, a reduction algorithm B that, given access toA, breaks the security of signature
scheme S. To begin, the Unf challenger generates a (sk,vk) pair using its S.Setup algorithm, and
sends vk to B who then forwards it toA. For every presignature query it receives for Ri , B ensures
admissibility by itself computing the key-pair (pkRi

,skRi
) (recall in KOSK model, the secret key

can be viewed as random coins of the setup algorithm), and aborts ifA is inadmissible. Otherwise,
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after parsing the key-pair as lhe.eki ,cti and lhe.ski ,Ki respectively, it samples a value ri ←$ {0,1}λ
uniformly at random, computes µi = FKi

(ri). The reduction algorithm, B, then sends µi as a signing
query to the challenger and receives a signature σi in response. It computes ĉti ←$ Sim(lhe.ek,σi)
and sends (ĉti , ri) as the ith presignature to A. After ℓ such queries, A outputs k > ℓ forgeries
{µ∗i ,σ

∗
i }

k
i=1 such that for all i ∈ k, Verify(vk,µ∗i ,σ

∗
i ) = 1 and µ∗i are all different.

Since A makes ℓ presignature queries, as does the reduction algorithm make ℓ signature
queries to the challenger. However, all the k > ℓ messages µ∗i are different. So it follows by a
simple pigeonhole argument that at least one of them was never queried by the attacker (and thus
by the reduction). Let µ∗ be such a message, and σ ∗ its corresponding signature. The reduction
algorithm, B, then simply gives (µ∗,σ ∗) as a forgery to the challenger, thus breaking the security
of signature scheme S.

This completes the proof for one-more unforgeability of Construction 5.2 in the KOSK model.

5.4 Strong receiver blindness

Theorem 5.8. If NIZK is a NIZKAoK, LHE is a IND-CPA secure encryption scheme and F is a secure
pseudorandom function, then Construction 5.2 is a strong receiver-blind NIBS protocol.

Proof. We define the following hybrids:

Hybrid0 This corresponds to the real receiver blindness experiment.

1. The challenger, after generating the public parameters pp of the protocol, runs the receiver
key generation algorithm for each b ∈ {0,1} as follows:

(a) It samples an LHE key pair (lhe.skb, lhe.ekb)←$ LHE.Setup(1λ,1d) and random PRF key
Kb←$ {0,1}λ.

(b) It encrypts Kb as ctb←$ LHE.Enc(lhe.skb,Kb), and sets receiver secret and public keys as
skRb

B (lhe.skb,Kb) and pkRb
B (lhe.ekb,ctb).

It then sends pkR0
and pkR1

to the attacker.

2. At any point in the protocol, the adversary is allowed to make a series of κ = κ(λ) queries for
κ polynomially bounded in λ. For any i ∈ [κ], the ith query is explained as follows:

(a) In the ith query, the adversary chooses a bit b(i), a verification key vk(i), a presignature
(ĉt(i),π(i)) and a nonce r(i).

(b) The challenger runs the NIZK verifier as NIZK.Verify(nizk.crs,x(i) = (pkR
b(i) , ĉt

(i), r(i)),π(i))
and aborts if it outputs 0.

(c) Continuing otherwise, the challenger computes the message as µ(i) = FK
b(i) (r

(i)).

(d) It then runs LHE decryption algorithm to compute the signature σ (i)← LHE.Dec(lhe.skb(i) , ĉt
(i)).

(e) Finally it calls the signature verification algorithm S.Verify(vk(i),µ(i),σ (i)). If the output
is 0, the check fails and it aborts. It continues otherwise.

The challenger then sends the message-signature pair µ(i) and σ (i) to the attacker.
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3. For attacker’s signature query (vk, ((ĉt0,π0), r0), ((ĉt1,π1), r1)), the challenger computes two
message-signature pairs, one for each b ∈ {0,1}, as follows:

(a) It runs the NIZK verifier as NIZK.Verify(nizk.crs,xb = (pkRb
, ĉtb, rb),πb) and aborts if it

outputs 0.

(b) It computes the message as µb = FKb
(rb).

(c) It then runs LHE decryption algorithm to compute the signature σb← LHE.Dec(lhe.skb, ĉtb)

(d) Finally it calls the signature verification algorithm S.Verify(vk,µb,σb). If the output is
0, the check fails and it aborts. It continues otherwise.

4. The challenger samples a bit b̂←$ {0,1} and sends (µb̂,σb̂,µ1−b̂,σ1−b̂) to the attacker.

5. The attacker, who continues to have Obtain oracle access, outputs a bit b′.

An admissible adversary A wins if b′ = b̂.

Hybrid1 This is the same as Hybrid0, except that the challenger uses a uniformly sampled value
τ←$ {0,1}λ to generate nizk.crs.

1. The challenger samples τ ←$ {0,1}λ, generates nizk.crs ← NIZK.Setup(1λ;τ) and sets pp =
nizk.crs. It then runs the receiver key generation algorithm for each b ∈ {0,1} (same as be-
fore).

Hybrid2 This is the same as Hybrid1, except that for every Obtain query, instead of running the
LHE decryption algorithm to obtain the signature, it runs the NIZKAoK extractor to extract the
secret signing key (as part of the witness) and uses the signing algorithm under sk(i) to obtain the
signature on message µ(i) = FK

b(i) (r
(i)) for all i ∈ [κ], i.e.,

2. (d) Challenger extracts (sk(i),ρ(i)) B E(τ,x(i) B (pkR
b(i)
, ĉt(i), r(i)),π(i)), and uses it to compute

the signature σ (i)←$ S.Sign(sk(i),µ(i)).

Hybrid3 This is the same as Hybrid2, except instead of running the LHE decryption algorithm to
obtain the signature, it runs the NIZKAoK extractor to extract the secret signing key (as part of
the witness) and uses the signing algorithm under sk to obtain the signature on message µb for
each b ∈ {0,1}.

3. (c) Challenger extracts (sk,ρb)B E(τ,xb B (pkRb
, ĉtb, rb),πb) and uses it to compute the signa-

ture σb←$ S.Sign(sk,µb).

Hybrid4 This is the same as Hybrid3, except that for each b ∈ {0,1}, instead of generating ctb ←$

LHE.Enc(lhe.skb,Kb), the challenger sets ctb as LHE.Enc(lhe.skb,0
λ).

1. (b) It computes ctb ←$ LHE.Enc(lhe.skb,0
λ) and sets receiver secret and public keys as skRb

B
(lhe.skb,Kb) and pkRb

B (lhe.ekb,ctb).

Hybrid5 This is the same as Hybrid4, except instead of computing message µb as the PRF evaluation
of rb under Kb, the challenger samples it uniformly at random. for each b ∈ {0,1}.
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3. (b) It samples message µb←$ {0,1}λ uniformly at random.

Let Adv
j
A denote the security advantage of an adversary A in the strong receiver blindness

game in Hybridj . Then, the following must hold:

Lemma 5.9. For all PPT adversaries A, |Adv0
A −Adv

1
A| = 0.

Proof. Notice that the only difference between Hybrid0 and Hybrid1 is that the randomness τ of
the CRS generation algorithm is chosen by the challenger. Since τ is chosen uniformly by the
challenger, this affects no change from the adversaries perspective.

Lemma 5.10. If NIZK is a NIZKAoK, then for all PPT adversaries A, |Adv1
A −Adv

2
A| = negl(λ).

Proof. Suppose for contradiction that ∃i ∈ [κ] for which the lemma does not hold. Then one of
two cases must hold during Hybrid2 against A:

• Case 1: ω(i) B (sk(i),ρ(i)) is not a valid witness for π(i) with respect to the instance x(i).

• Case 2: ω(i) is a valid witness for π(i) with respect to the instance x(i).

In the former case we have that ω(i) is not a valid witness, but also due to the previous step
NIZK.Verify(nizk.crs,x(i),π(i)) = 1 since otherwise the challenger would have aborted the protocol.
By definition of knowledge extraction, we know the probability of this event to be negligible. In
the latter case it must have been that (vk(i),sk(i)) was an invalid signature key pair, in which case
S.Verify(vk(i),FK

b(i) (r
(i)),σ (i)) , 1 and the protocol is aborted. Thus the lemma holds for i, which is

general, so it holds for all i ∈ [κ].

Lemma 5.11. If NIZK is a NIZKAoK, for all PPT adversaries A, |Adv2
A −Adv

3
A| = negl(λ).

Proof. Let us consider an intermediate step between Hybrid2 and Hybrid3. In the intermediate
step, everything remains the same in Hybrid2, except for the following:

3. (c) Challenger extracts (sk,ρ0)B E(τ,x0 B (pkR0
, ĉt0, r0),π0) and uses it to compute the signa-

ture σ0←$ S.Sign(sk,µ0). It also computes σ1←$ LHE.Dec(lhe.sk1, ĉt1).

Define adversaryA’s advantage on the intermediate step as Adv2.5
A . Proceeding exactly as in the

previous proof, suppose for contradiction that the adversary wins with non-negligible probability
ϵ = ϵ(λ). Then one of two cases must hold in the intermediate experiment against A:

• Case 1: ω0 B (sk,ρ0) is not a valid witness for π0 with respect to the instance x0.

• Case 2: ω0 is a valid witness for π0 with respect to the instance x0.

In the former case we have that ω0 is not a valid witness, but also due to the previous step
NIZK.Verify(nizk.crs,x0,π0) = 1 since otherwise the challenger would have aborted the protocol.
By definition of knowledge extraction, we know the probability of this event to be negligible. In
the latter case it must have been that (vk,sk) was an invalid signature key pair, in which case
S.Verify(vk,FK0

(r0),σ0) , 1 and the protocol is aborted. Therefore, |Adv2
A − Adv

2.5
A | = negl(λ). By a

similar argument we can show that |Adv2.5
A −Adv

3
A| = negl(λ) and thus the lemma follows.
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Lemma 5.12. If LHE is an IND-CPA secure encryption scheme, then for all PPT adversaries A,
|Adv3

A −Adv
4
A| = negl(λ).

Proof. Let us consider an intermediate step between Hybrid2 and Hybrid3. In the intermediate
step, everything remains the same in Hybrid3, except for the following:

1. (b) The challenger computes ct0←$ LHE.Enc(lhe.sk0,0
λ) and

ct1 ←$ LHE.Enc(lhe.sk1,K1), and sets receiver secret and public keys as skRb
B (lhe.skb,Kb)

and pkRb
B (lhe.ekb,ctb).

Define adversary A’s advantage on the intermediate step as Adv2.5
A , and suppose there exists

such a PPT attacker A, such that |Adv3
A − Adv

3.5
A | = ϵ(λ). We design a reduction algorithm B that

breaks the security of LHE with advantage ϵ(λ).
The IND-CPA challenger first samples a secret key and evaluation key pair (lhe.sk0, lhe.ek0) us-

ing LHE.Setup and sends lhe.ek0 to the reduction algorithm B. The reduction algorithm then gen-
erates the public parameters of the protocol pp and then samples an LHE key pair (lhe.sk1, lhe.ek1)←$

LHE.Setup(1λ,1d) and random PRF key Kb ←$ {0,1}λ for each b ∈ {0,1}. It sends 0λ and K0 to
the challenger and receives a ciphertext ct0 as the encryption of either 0λ or K0. It computes
ct1←$ LHE.Enc(lhe.sk1,K1), and sets receiver secret key as skR1

B (lhe.sk1,K1) and the public keys
as pkRb

B (lhe.ekb,ctb). The reduction algorithm then forwards pkR0
and pkR1

toA. The rest of the

protocol proceeds identically to Hybrid3. At the end, B samples b̂←$ {0,1} uniformly at random
and sends ((µb̂,σb̂), (µ1−b̂,σ1−b̂)) to A who outputs its guess b′. If b′ = b̂, B sends 0 as its guess (i.e.,
ct0 is an encryption of 0λ), otherwise it sends 1 as its guess (i.e., ct0 is an encryption of K0).

Note that if ct0 is an encryption of string K0, then B perfectly simulates the experiment of
Hybrid3 for adversary A. Otherwise it simulates the intermediate step. As a result, if |Adv3

A −
Adv3.5

A | is non-negligible, then B breaks the IND-CPA security LHE with non-negligible advantage.
Similarly, we have |Adv3.5

A −Adv
4
A| ≤ negl(λ) and thus |Adv3

A −Adv
4
A| ≤ negl(λ)

Lemma 5.13. If F is a pseudorandom function, then for all PPT adversaries A, |Adv4
A − Adv

5
A| =

negl(λ).

Proof. Let us consider an intermediate step between Hybrid5 and Hybrid6. In the intermediate
step, everything remains the same in Hybrid5, except for the following:

3. (a) Challenger samples message µ0←$ {0,1}λ uniformly at random, and evaluates µ1 = FK1
(r1).

Define adversary A’s advantage on the intermediate step as Adv4.5
A . Suppose there exists such

a PPT attacker A, such that |Adv4
A −Adv

4.5
A | = ϵ(λ). We design a reduction algorithm B that breaks

the pseudorandomness property of F with advantage ϵ(λ).
The reduction algorithm B generates the public parameters of the protocol pp and then sam-

ples an LHE key pair (lhe.skb, lhe.ekb)←$ LHE.Setup(1λ,1d) and random PRF key Kb←$ {0,1}λ for
each b ∈ {0,1}. It computes ctb←$ LHE.Enc(lhe.ek1,0λ), and sets receiver secret and public keys as
skRb

B (lhe.skb,Kb) and pkRb
B (lhe.ekb,ctb). B then forwards pkR0

and pkR1
to A. For each i ∈ [κ],

let (b(i),vk(i),sk(i), ĉt(i), r(i)) be A’s ith Obtain query. If b(i) = 0 (resp. 0), B queries the first (resp.
second) PRF challenger on r(i), who responds with string yb(i) ∈ {0,1}λ, which is either a PRF eval-
uation of r(i) or a uniformly random string, and sets µ(i) = yb(i) . WhenA outputs a signature query
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(vk,sk, (ĉt0, r0), (ĉt1, r1)), B again queries the oracle for r0, receives a response y0 and sets µ0 = y0.
It also evaluates µ1 = FK1

(r1). The rest of the protocol proceeds identically to Hybrid5. At the end,
B samples b̂ ←$ {0,1} uniformly at random and sends ((µb̂,σb̂), (µ1−b̂,σ1−b̂)) to A who outputs its
guess b′. If b′ = b̂, B sends 0 as its guess (i.e., PRF challenges are pseudorandom), otherwise it
sends 1 as its guess (i.e., PRF challenges are truly random).

Recall that we require A to be an admissible adversary ie., in particular, A must not have
queried r0 or r1 in an Obtain query. Then, if PRF challenges are pseudorandom, then B perfectly
simulates the experiment of Hybrid4 for adversaryA. Otherwise it simulates the intermediate step.
As a result, if |Adv4

A − Adv
4.5
A | is non-negligible, then B breaks the presudorandomness property

of F with non-negligible advantage. Similarly, we have |Adv4.5
A −Adv

5
A| ≤ negl(λ) and thus |Adv4

A −
Adv5

A| ≤ negl(λ).

Observe that the adversary has 0 advantage under Hybrid5. From the above lemmas, it follows
that Construction 5.2 satisfies strong recipient blindness.

5.5 Strong nonce blindness

Theorem 5.14. If NIZK is a NIZKAoK, LHE is a IND-CPA secure encryption scheme and F is a
secure pseudorandom function, then Construction 5.2 is a strong nonce blind NIBS protocol.

Proof. We define the following hybrids:

Hybrid0 This corresponds to the real nonce blindness experiment.

1. The challenger, after generating the public parameters pp of the protocol, runs the receiver
key generation algorithm as follows:

(a) It samples an LHE key pair (lhe.sk, lhe.ek)←$ LHE.Setup(1λ,1d) and random PRF key
K ←$ {0,1}λ.

(b) It encrypts K as ct ←$ LHE.Enc(lhe.sk,K), and sets receiver secret and public keys as
skR B (lhe.sk,K) and pkR B (lhe.ek,ct).

It then sends pkR to the attacker.

2. At any point in the protocol, adversary is allowed to make a series of κ = κ(λ) queries for κ
polynomially bounded in λ. For any i ∈ [κ], the ith query is explained as follows:

(a) In the ith query, the adversary chooses a verification key vk(i), a presignature (ĉt(i),π(i))
and a nonce r(i).

(b) The challenger runs the NIZK verifier as NIZK.Verify(nizk.crs,x(i) = (pkR, ĉt
(i), r(i)),π(i))

and aborts if it outputs 0.

(c) The challenger computes the message as µ(i) = FK (r(i)).

(d) It then runs LHE decryption algorithm to compute the signature σ (i)←$ LHE.Dec(lhe.sk, ĉt(i)).

(e) Finally it calls the signature verification algorithm S.Verify(vk(i),µ(i),σ (i)). If the output
is 0, the check fails and it aborts. It continues otherwise.

The challenger then sends the message-signature pair µ(i) and σ (i) to the attacker.
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3. For attacker’s signature query (vk, ((ĉt0,π0), r0), ((ĉt1,π1)r1)), the challenger computes two
message-signature pairs, one for each b ∈ {0,1}, as follows:

(a) It runs the NIZK verifier as NIZK.Verify(nizk.crs,xb = (pkR, ĉtb, rb),πb) and aborts if it
outputs 0.

(b) It computes the message as µb = FK (rb).

(c) It then runs LHE decryption algorithm to compute the signature σb←$ LHE.Dec(lhe.sk, ĉtb)

(d) Finally it calls the signature verification algorithm S.Verify(vk,µb,σb). If the output is
0, the check fails and it aborts. It continues otherwise.

4. The challenger samples a bit b̂←$ {0,1} and sends µb̂,σb̂,µ1−b̂,σ1−b̂ to the attacker.

5. The attacker, who continues to have oracle access, outputs a bit b′.

An admissible adversary A wins if b′ = b̂.

Hybrid1 This is the same as Hybrid0, except that the challenger provides a uniformly sampled
value τ←$ {0,1}λ to generate nizk.crs.

1. The challenger samples τ ←$ {0,1}λ, generates nizk.crs ← NIZK.Setup(1λ;τ) and sets pp =
nizk.crs. It then runs the receiver key generation algorithm for each b ∈ {0,1} (same as be-
fore).

Hybrid2 This is the same as Hybrid1, except that for every Obtain query, instead of running the
LHE decryption algorithm to obtain the signature, it runs the NIZKAoK extractor to extract the
secret signing key (as part of the witness) and uses the signing algorithm under sk(i) to obtain the
signature on message µ(i) for all i ∈ [κ], ie.,

2. (d) Challenger extracts (sk(i),ρ(i))B E(τ,x(i) B (pkR, ĉt
(i), r(i)),π(i)), and uses it to compute the

signature σ (i)←$ S.Sign(sk(i),µ(i)).

Hybrid3 This is the same as Hybrid2, except instead of running the LHE decryption algorithm to
obtain the signature, it runs the NIZKAoK extractor to extract the secret signing key (as part of
the witness) and uses the signing algorithm under sk to obtain the signature on message µb for
each b ∈ {0,1}.

3. (c) Challenger extracts (sk,ρb)B E(τ,xb B (pkR, ĉtb, rb),πb) and uses it to compute the signature
σb←$ S.Sign(sk,µb).

Hybrid4 This is the same as Hybrid3, except that for each b ∈ {0,1}, instead of generating ctb ←$

LHE.Enc(lhe.skb,Kb), the challenger sets ctb as LHE.Enc(lhe.skb,0
λ).

1. (b) It computes ct ←$ LHE.Enc(lhe.sk,0λ) and sets receiver secret and public keys as skR B
(lhe.sk,K) and pkR B (lhe.ek,ct).

Hybrid5 This is the same as Hybrid4, except instead of computing message µb as the PRF evaluation
of rb under K , the challenger samples it uniformly at random. for each b ∈ {0,1}.
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3. (b) It samples message µb←$ {0,1}λ uniformly at random.

Let Adv
j
A denote the security advantage of an adversary A in the strong receiver blindness

game in Hybridj . Then, the following must hold:

Lemma 5.15. For all PPT adversaries A, |Adv0
A −Adv

1
A| = 0.

Proof. (omitted) identical to the proof of Lemma 5.9.

Lemma 5.16. If NIZK is a NIZKAoK, then for all PPT adversaries A, |Adv1
A −Adv

2
A| = negl(λ).

Proof. (omitted) identical to the proof of Lemma 5.10.

Lemma 5.17. If NIZK is a NIZKAoK, for all PPT adversaries A, |Adv2
A −Adv

3
A| = negl(λ).

Proof. (omitted) almost identical to the proof of Lemma 5.11 without needing an intermediate
step.

Lemma 5.18. If LHE is an IND-CPA secure encryption scheme, then for all PPT adversaries A,
|Adv3

A −Adv
4
A| = negl(λ).

Proof. (omitted) identical to the proof of Lemma 5.12.

Lemma 5.19. If F is a pseudorandom function, then for all PPT adversaries A, |Adv4
A − Adv

5
A| =

negl(λ).

Proof. (omitted) identical to the proof of Lemma 5.13.

Observe that the adversary has 0 advantage under Hybrid5. From the above lemmas, it follows
that Construction 5.2 satisfies strong nonce blindness.

6 The Randomized One-more ISIS Assumption

In this work, we introduce a new variant of the OM-ISIS assumption with two goals — (i) protect
from attackers that can ask for preimage queries on the same target vector more than once, and
(ii) allow for re-randomization of the target vectors before answering the preimage query phase
to make the assumption more robust. As discussed in [AKSY22, § 4.5], there are polynomial time
attacks on the OM-ISIS assumptions for certain parameter regimes. At its core, all cryptanalysis
efforts on OM-ISIS exploit the fact that the attacker can submit any target vector of its choice as a
preimage query. Thus, an attacker can potentially request for preimage queries for short vectors,
and use those to create an approximate trapdoor. However, the quality of trapdoor computed
this way is much worse than the actual trapdoor, thus if the parameter β is set appropriately (i.e.,
sufficiently small), then an attacker cannot break the assumption since the approximate trapdoor
will not give as short preimage vectors.

While existing cryptanalytic efforts do not succeed in breaking the assumption for the desired
parameter regimes, we view the combinatorial and lattice-based attacks provided by [AKSY22]
as partial evidence of existing assumption not being as robust. Moreover, we believe that while
OM-ISIS is a very natural step towards defining lattice-analogue of the one-more-RSA assump-
tion by Bellare et al. [BNPS03], there exists more robust instantiations for a family of one-more
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assumptions in lattice-based cryptography. To that end, we propose a strengthening of the OM-
ISIS assumption that we call as randomized OM-ISIS (or, rOM-ISIS for short) assumption.

Our intuition is to draw more inspiration from GPV signatures. Recall that in GPV signatures,
a signature is computed as a preimage of the output of a hash function (modeled as a random
oracle). While modeling the hash function as a random oracle enables a reduction to plain ISIS
by a standard RO programming argument, usage of any specific hash function (such as SHA-3) is
not known to enable any efficient attacks. At a high level, the hash function protects the signer
from simple algebraic manipulations of multiple preimage vectors to create a new valid preimage
vector for a fresh hash output. A little more abstractly, this means that given preimage vectors
{ti = A−1

ς (H(µi))}i , it is unclear how to find short coefficients αi s.t.
∑
αiti = A−1

ς (H(µ∗)). That is,
the hash function prevents from creating a valid preimage to the hash function which is a short
linear combination of other hash values.

Inspired by the intuitive structural guarantee provided by a hash function, we propose the
following generalization of the OM-ISIS assumption.

Assumption 6.1 (randomized OM-ISIS). Let q,n,m,ς,β be functions of security parameter λ. Con-
sider the following experiment:

1. The challenger uniformly samples two matrices A,B ∈Zn×m
q , and sends A,B to adversary A.

2. A adaptively makes queries of the following types to the challenger, in any order.

Syndrome queries. A requests for a challenge vector, to which the challenger replies with
a uniformly sampled vector t←$ Zn

q . We denote the set of received vectors by S.

Preimage queries. A queries a vector t̂ ∈ Zn
q , to which the challenger replies with a short

vector x̂ ∈ Zm
q and a ±1 vector ŷ ∈ {±1}m such that A · x̂ + B · ŷ = t̂ and ∥̂x∥ ≤ ς

√
m. Let ℓ

denote the total number of preimage queries.

3. Finally, A outputs ℓ + 1 tuples of the form
{
(xj ,yj ,tj )

}
j∈[ℓ+1]

. A wins if

∀j ∈ [ℓ + 1], A · xj + B · yj = tj , and
∥∥∥xj

∥∥∥ ≤ β,yj ∈ {±1}m and tj ∈ S.

The rOM-ISISq,n,m,ς,β assumption states that for every PPT adversary A, the probability that A
wins is negl(λ).

Intuitively, the new assumption says an attacker does not receive preimages for arbitrary target
vectors t̂ that it selects, but for publicly re-randomized vector t′ = t̂−B ·y, where y is a random ±1
vector (chosen by the challenger). We even provide the attacker with the vector y. The point is that
the ability to re-randomize the target vector, gives the challenger more flexibility in answering
preimage queries. Now an attacker can win as long as it creates preimage vectors for any re-
randomization of the random syndrome vectors. That is, we allow the attacker to also select any
arbitrary ±1 vector and use it to re-randomize each syndrome vector. The only constraint is that
the vectors yj are ±1 vectors.

Unlike [AKSY22], we do not make any additional parameter restrictions. This is primarily due
to the fact that we have been unable to find any practical attacks for any standard ISIS parameter
regimes for the rOM-ISIS assumption. In our perspective, the condition that yj must be ±1 vectors
prevents the algebraic attacks that were mounted on the OM-ISIS assumption. Additionally, one
could view the B · y term as enforcing a structural property, on the target vectors, that a hash
function enforces for GPV signatures. We provide some preliminary cryptanalysis next.
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6.1 Cryptanalysis of the rOM-ISIS assumption

We analyse the robustness of the randomized one-more ISIS assumption. In order to do so, we
consider the two categories of attacks presented against the one-more ISIS assumption by Agrawal
et al. [AKSY22], and show that each of these attacks is in fact harder in the randomized one-more
ISIS setting. First, let us recall the two types of attacks presented in [AKSY22].

6.1.1 Recalling attacks on the one-more ISIS assumption

Lattice-based attack. The attacker can find a solution to the one-more ISIS problem in polynomial
time as follows:

1. The attacker makes Θ(m2) preimage queries for ti = 0 to the OM-ISIS oracle.

2. Of the Θ(m2) preimages, m of them will be linearly independent with non-zero probabil-
ity [Reg05] with norm Θ(

√
m ·ς) [BF11]. Using this fact, one can find m linearly independent

vectors that span the subspace of rank n. These m vectors can be used to form a basis E for
Λ⊥q (C) such that the corresponding Gram-Schmidt basis Ẽ has norm

√
m · ς.

3. From here, the attacker simply runs Babai’s Nearest Plane Algorithm on (E,u) where vector
u ∈ Zq is a general solution to the OM-ISIS challenge, t. The output v of the algorithm is

such that |u− v| ≤ 1
2

√∑
i∈[m]∥ẽi∥2 which is at most mς with overwhelming probability.

Since v is a point on the lattice, it follows that (u− v) is a valid solution to OM-ISIS with norm
bound β = Θ(mς). A tighter bound of β = Θ(

√
mn logq) is also shown for an exponential time

attack leveraging a shortest vector problem solver for the vector u.

Combinatorial attack. The attacker can find a solution to the one-more ISIS problem in polyno-
mial time as follows:

1. The attacker constructs a set A = {a·ei | ∀i ∈ [n], a ∈Zq} of size nq, where ei ’s are the canonical
n-dimensional basis vectors.

2. It then queries the OM-ISIS oracle for a preimage of each vector in A.

3. Since any vector in Z
n
q can be expressed as the sum of at most n vectors in A, a preimage z

for any challenge t can be found by simply adding up the preimages corresponding to the
vectors in A that sum to t.

Given that with all but negligible probability, the original preimages have norms bounded by√
m ·ς (Lemma 3.1), it follows that z is a valid solution to OM-ISIS with norm bound β = Θ(

√
nm ·ς)

with overwhelming probability. In [AKSY22], a slightly more specialised version of this attack is

presented for Q ≥ nq preimage queries and β = Θ

(√
m ·

(
1 + n logq

log(Q/n2)

)
· ς

)
.

Remark 6.2. We also observe that an even faster attack is possible at just a small cost to the norm
bound. Specifically, the attacker can instead construct the set A =

{
2j · ei | ∀i ∈ [n], j ∈ [

⌊
logq

⌋
]
}
,

query each vector in the set as before. The observation is that t =
[
t1 t2 · · · tn

]T
can be expressed
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as
∑

i∈[n] ei ·
∑

j∈Ji 2j , where each Ji ⊆ [
⌊
logq

⌋
] is the set of indices where the binary decomposition

of ti is 1. Thus, by taking the sum of at most n
⌊
logq

⌋
preimages of vectors in A (and making

just as many queries), an attacker can construct a valid solution to OM-ISIS, with norm bound
β = Θ(

√
nm logq · ς) with overwhelming probability.

6.1.2 Attacking the rOM-ISIS assumption

We now consider variations of these attack strategies against our randomized one-more ISIS as-
sumption.

Lattice-based attack strategy

Let us begin by considering the lattice-based attack strategy against the rOM-ISIS assumption. We
will argue that under this assumption, it is hard for an attacker to even efficiently construct a good
basis for Λ⊥q (C).

1. Following the same first step as the lattice attack above, suppose the attacker makes Q
preimage queries for ti = 0 to the rOM-ISIS oracle and receives {(zi ,yi)}i∈[Q] such that for
each i ∈ [Q], C · zi + B · yi = 0, zi is short and yi ∈ {±1}m.

Here, we make the following observation:

Observation 6.3. If there exist a1, a2, . . . , aQ ∈Zq such that B ·
∑

i∈[Q](ai ·yi) = 0, then αB
∑

i∈[Q](ai ·
zi) is a vector on the lattice Λ⊥q (C). Further, for γ such that |ai | ≤ γ for all i ∈ [Q] we have

(i) α has norm bounded above by Qγ
√
m · ς with all but negligible probability; and

(ii)
∥∥∥∑i∈[Q](ai · yi)

∥∥∥
2
≤Qγ

√
m = ∥α∥2/ς

At this stage, we identify two types of potential attackers:

• Type 1: This type of attacker is able to find a collection a1, a2, . . . , aQ ∈ Zq as defined in
Observation 6.3 such that |ai | ≤ γ for all ai . It can use this to construct a short basis for
Λ⊥q (C) and proceed as in step 3 of the lattice attack above.

• Type 2: This type of attacker is unable to find a collection a1, a2, . . . , aQ ∈ Zq of bounded
length, and instead proceeds in some other way.

Claim 6.4. Assuming the hardness of SISq,n,m,β′ for β′ = Qγ
√
m, a type 1 attacker exists with

negligible probability.

Proof. This follows by recalling that B ∈Zn×m
q is a random matrix, and observing that

∑
i∈[Q](ai ·yi)

is a solution to SISq,n,m,β′ where β′ = ∥α∥/ς = Qγ
√
m.

Essentially, to match the norm bound on the lattice basis as in [AKSY22] we require ∥α∥ =√
m · ς, which suggests that finding even one such collection of ai ’s is at least as hard as solving

SISq,n,m,β′ for β′ = Θ(
√
n logq). Next, while it is evident that a type 2 attacker cannot proceed ac-

cording to the lattice-based attack strategy of [AKSY22], it is less clear how else the attacker might
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proceed. In particular, we find that the process of constructing a good basis would ultimately in-
volve taking some combination of the preimage queries. However, any such combination that does
not satisfy the type 1 condition will also result in a larger norm on the solutions. We leave further
cryptanalysis and discovery of an alternative lattice-based attack strategy as an interesting open
problem.

A more generalized attack. We can generalize this attack a little further by slightly modifying
the first step:

1. Suppose the attacker makes Q preimage queries for any ti ∈ Zn
q to the rOM-ISIS oracle and

receives {(zi ,yi)}i∈[Q] such that for each i ∈ [Q], C · zi + B · yi = ti .

Now, one strategy could be to guess yi and set the query ti = B · yi , but the probability of
guessing correctly is negligible. Alternatively, the attacker can try to find a1, a2, . . . , aQ ∈ Zq such
that B ·

∑
i∈[Q](ai ·yi) =

∑
i∈[Q] ai · ti as in the previous case, then too αB

∑
i∈[Q](ai ·zi) is a vector on

the lattice Λ⊥q (C). Indeed, a similar analysis shows that the attack makes Q queries, solves at least

m instances of ISISq,n,m,β′ for β′ = ∥α∥/ς, and outputs a solution to rOM-ISIS for β = Θ
(√

m · ∥α∥
)
.

Beyond these attacks, we could not find any efficient (sub-exponential time) lattice attacks against
our new assumption.

Combinatorial attack strategy

Turning now to the combinatorial attack, we notice that extending the previous strategy of [AKSY22]
— i.e., solving for a preimage of the challenge by adding the preimages corresponding to the
scaled canonical basis that sum to the challenge — no longer works. This is because every query
response to a member of the set A now additionally contains a uniformly chosen vector yi ∈ {±1}m.
Instead, consider an attacker that does the following:

1. The attacker constructs the set A = {a ·ei + B · (y′j −1) | ∀i ∈ [n], ∀j ∈ [Q], a ∈Zq} where ei ’s are
the canonical n-dimensional basis vectors, and each y′j ∈ {±1}m.

2. It then queries the rOM-ISIS oracle for a preimage of each vector in A.

3. Consider any challenge vector t ∈Zn
q . The attacker finds a collection of n vectors of the form

ai · ei such that they sum to n · t where each ai ∈Zq.

4. Let (zi,j ,yi,j ) be the oracle response for query ai · ei + B · (y′j − 1). For each i ∈ [n], the next
step is to find any j ∈Q such that y′j = yi,j . For every i, the probability that such a j exists is

1− (1− 2−m)Q ≈ 1− e−Q/2m
, which is bounded away from zero for Q > 2m.

5. Let set I contain all such pairs (i, j), and set J contain the corresponding j. Then, the follow-
ing holds

C ·
∑

(i,j)∈I
zi,j + B ·

∑
(i,j)∈I

yi,j =
∑
i∈[n]

aiei + B ·
∑
j∈J

(y′j − 1) .

Which upon simplifying gives C ·
(∑

(i,j)∈I zi,j
)
/n+ B · 1 = t.
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Recall that with all but negligible probability the original preimages zi,j have norms bounded

by
√
m · ς (Lemma 3.1). Thus,

((∑
(i,j)∈I zi,j

)
/n,1

)
is a valid rOM-ISIS solution for β = Θ

(√
m/n · ς

)
with overwhelming probability. Notably, this attack is computationally intractable for any PPT
adversary making polynomially many queries, as the probability of finding set I (and J) goes to
zero when Q = o(2m).

Summary. Our preliminary cryptanalysis suggests that our new assumption is relatively more
robust than the OM-ISIS assumption against the same class of attacks. More precisely,

• For the lattice-based attack strategy, we are able to show a partial reduction to SIS (under
certain conditions).

• For the combinatorial attack strategy, we give an exponential time algorithm for β = Θ
(√

m/n · ς
)
.

In contrast, the OM-ISIS assumption has (i) a Ω(nq) time algorithm for β = Θ

(√
m ·

(
1 + n logq

log(Q/n2)

)
· ς

)
;

and (ii) a Ω(n
⌊
logq

⌋
) time algorithm for β = Θ(

√
nm logq · ς).

We leave the challenges of further cryptanalysis and formally proving security of the rOM-ISIS
assumption as potential future directions.

7 Lattice-based NIBS

We begin this section by describing our NIBS scheme that we prove secure under the rOM-ISIS
assumption.

Let parameters n,m,ς,β = ς
√
m, a prime number q be functions of the security parameter λ

such that the randomized one-more ISIS instance rOM-ISISq,n,2m,ς,3
√

2β is hard. These parameters
must satisfy the following constraints:

n = poly(λ), m > n logq+λ, ς/m = Ω(1), β < mς (1)

Tools required. Our construction relies on a public key encryption scheme PKE = (KeyGen,Enc,
Dec), a lattice trapdoor bLT = (TrapGen,SamplePre), and a NIZK proof system NIZK = (Setup,
Prove,Verify) for the following language:

Language L2
Instance: Each instance x is interpreted matrices C,A and B, PKE public key pke.pk, ciphertext
ct, vector w and random string δ.
Witness: Witness ω consists of a secret vector x, nonce vector y, presignature vector z and
randomness r.
Membership: ω is a valid witness for x if the following are satisfied:

– ∥z∥ ≤
√

2β and ∥x∥ ≤
√

2β/m and y ∈ {±1}2m.

– ct is an encryption of x||y||z using randomness r, s.t. ct = PKE.Enc(pke.pk,x||y||z;r)

– C · z + B · y = A · x +H(δ) and w = AL · x⊥ + AR · z⊥
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7.1 Construction

Below we describe our non-interactive blind signature scheme.

Setup(1λ,n,m,q,ς,H)→ pp. It samples A,B←$ Zn×2m
q . Next, it runs the key generating algorithm

of PKE and generates the public and secret key pair as

(pke.pk,pke.sk)←$ PKE.KeyGen(1λ).

Next, it generates nizk.crs←$ NIZK.Setup(1λ) and outputs:

ppB (A,B,pke.pk,nizk.crs).

Note that H is the hash function which we model as a random oracle.

KeyGenS(pp)→ (sk,vk). Runs the setup algorithm of lattice trapdoor and obtains

(TC,C)←$ bLT.TrapGen(1λ,n,2m,q).

It outputs signer’s secret key and verification key as skB TC and vkB C.

KeyGenR(pp)→ (skR,pkR). It samples x←$D
Z

2m
q ,ς/m and δ←$ {0,1}λ. Next, it computes

t = A · x +H(δ).

It outputs user’s secret key and public key as (skR B (x,δ),pkR B t).

Issue(sk,pkR)→ (psig,nonce). The issue algorithm samples a random ±1 vector y←$ {±1}2m. Next,
using the signing key sk = TC and the receiver’s public key pkR = t, it generates

z← bLT.SamplePre(C,TC,t−B · y,ς),

and outputs the presignature psigB z, and nonce as nonceB y.

Obtain(skR,vk,psig,nonce)→ (µ,σ ). It parses skR as (x,δ). Then, assigns C B vk, z B psig, and
yB nonce. It checks if C · z + B · y = A · x +H(δ), ∥z∥ ≤

√
2β and y ∈ {±1}2m. If any check fails

it aborts and outputs ⊥.

Otherwise, it generates
ct← PKE.Enc(pke.pk,x||y||z;r)

from uniformly sampled randomness r←$ {0,1}λ. The obtain algorithm sets w as w = A·
[
x⊥
z⊥

]
,

where x⊥,z⊥ ∈Zm
q and generates NIZK proof

π← NIZK.Prove
(
nizk.crs,xB (C,A,B,pke.pk,ct,w,δ),ωB (x,y,z, r)

)
Finally, it outputs message µB (w,δ) and signature σ B (π,ct).

Verify(vk,µ,σ )→ {0,1}. It parses µ as (w,δ) and σ as (π,ct). The verification algorithm accepts and
outputs 1 if and only if

NIZK.Verify
(
nizk.crs,xB (C,A,B,pke.pk,ct,w,δ),π

)
= 1.

Otherwise, it outputs 0.
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We now state the main theorem for this construction. The proof is given in the full version of
this article.

Completeness. Observe that by correctness of bLT.SamplePre, z is a presignature on A ·x +H(δ)−
B · y, ie., C · z = A · x + H(δ) − B · y such that ∥z∥ ≤

√
2β and yi ∈ {±1} for all i ∈ [2m] where yi

is the ith element of y. Since, it further holds by construction that w = AL · x⊥ + AR · z⊥, ct =
PKE.Enc(pke.pk,x||y||z;r), and (by Lemma 3.1) ∥x∥ ≤

√
2β/m, we have that π is a valid NIZK proof

for the language L2. It therefore follows from the completeness of the underlying NIZK that
Construction 7.1 is complete.

Reusability. Notice that for b ∈ {0,1}, if a signer issues presignature-nonce pairs (zb,yb) to a given
receiver with secret vector x then,

Pr[y0 = y1 ∨µ0 = µ1] = Pr[µ0 = µ1] + Pr[y0 = y1]

= Pr[(w0,δ) = (w1,δ)] + Pr[y0 = y1]

= Pr
[
A ·

[
0

z0,⊥ − z1,⊥

]
= 0

]
+negl(λ) .

The probability that z0,⊥ = z1,⊥ is negligible in λ, otherwise conditioned on z0,⊥ , z1,⊥, we have
a short solution for SIS. Thus the overall probability is negligible and our construction satisfies
the reusability property.

7.2 One-more unforgeability

Consider first, the one-more unforgeability of this protocol.

Theorem 7.1. Assume that NIZK proof system NIZK satisfies soundness, lattice trapdoor bLT sat-
isfies well-distributedness, and the rOM-ISIS assumption holds, then our Construction 7.1 is one-
more unforgeable.

Proof. Let us define the following hybrids:

Hybrid0 This is the actual one-more unforgeability game for NIBS:

1. Challenger samples A,B←$ Zn×2m
q uniformly at random, pke.pk←$ PKE.KeyGen(1λ), nizk.crs←$

NIZK.Setup(1λ) and sets pp as (A,B,pke.pk,nizk.crs). Next, it samples (TC,C)←$ bLT.TrapGen(
1λ,n,2m,q) and sets skB TC, vkB C. Challenger sends pp and vk to the adversary.

2. Adversary chooses pkR and requests a presignature, to which the challenger replies with
(psig,nonce)←$ Issue(sk,pkR). The adversary repeats this step a total of ℓ times.

3. Adversary outputs k (k = ℓ + 1) message and signature pairs ((µ1,σ1), . . . , (µk ,σk)). It wins if
µi , µj for 1 ≤ i < j ≤ k, Verify(vk,µi ,σi) = 1 for all i ∈ [k].

Hybrid1 This is the same as Hybrid0 aside from one key difference that instead of uniformly sam-
pling the matrix A, it is chosen by first sampling a matrix R ←$ {0,1}2m×2m and then setting
A = C ·R.
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1. Challenger samples R←$ {0,1}2m×2m uniformly at random, samples (TC,C)←$ bLT.TrapGen(
1λ,n,2m,q), and sets A = C ·R. Challenger then samples B←$ Zn×2m

q , pke.pk←$ PKE.Setup(1λ),
nizk.crs ←$ NIZK.Setup(1λ), and sets pp as (A,B,pke.pk,nizk.crs). Next, it sets sk B TC,
vkB C. Challenger sends pp and vk to the adversary.

Let AdvjA denote the security advantage of an adversaryA in the one-more unforgeability game
in Hybridj , then the following must hold:

Lemma 7.2. For all PPT adversaries A, |Adv0
A −Adv

1
A| ≤ negl(λ).

Proof. Note that R←$ {0,1}2m×2m, and thus H∞ (R) = 4m2. As 4m2 > 2m ·n logq+λ. It follows from
Leftover Hash Lemma (Corollary 3.8) that the following distributions are statistically indistin-
guishable:

{(C′ ,C′ ·R) : C′←$ Z
n×2m
q ,R←$ {0,1}2m×2m} ≈s {(C′ ,A) : C′←$ Z

n×2m
q ,A←$ Zn×2m

q }.

In the above equation, C′ is sampled from Z
n×2m
q uniformly at random. By Definition 3.3, the Well

Distributedness property implies that the statistical distance between C′ and C is within 2−Ω(λ).
Thus,

{(C,C ·R) : (TC,C)←$ bLT.TrapGen(1λ,n,2m,q),R←$ {0,1}2m×2m} ≈s
{(C,A) : C←$ Z

n×2m
q ,A←$ Zn×2m

q }.

Lemma 7.3. Assuming that NIZK argument is sound and the randomized one-more ISIS assump-
tion holds, adversary A can have at most negligible advantage in Hybrid1.

Proof. This follows from a case by case reduction algorithm. Suppose there exists a PPT attacker
A that wins the one-more unforgeability game with non-negligible probability ϵ = ϵ(λ). It outputs
k message and signature pairs ((µ1,σ1), . . . , (µk ,σk)), and wins if and only if µi , µj for 1 ≤ i < j ≤ k,
Verify(vk,µi ,σi) = 1 for 1 ≤ i ≤ k, and k = ℓ + 1. We divide the potential attacker into the following
cases:

• Type 1: Consider that we parse inputs and signatures (µi ,σi) fromA’s output as ((wi ,δi), (πi ,cti))
for all i ∈ [k]. For type 1 attacker A, there exists some index j ∈ [k] such that NIZK.Verify(
x∗ B (C,A,B,pke.pk,ctj ,wj ,δj ),πj

)
= 1 and x∗ is not a valid instance for language L2.

• Type 2: Consider cti as encryptions of xi , yi , and zi , such that PKE.Enc(pke.pk,xi ||yi ||zi ;r) =
cti and xi ,yi ,zi ∈Z2m

q . For type 2 attackerA, there exists some j ∈ [k], such that C·zj +B·yj =
A · xj +H(δj ) and the attacker never queries random oracle H using input δj .

• Type 3: For all i ∈ [k], xi B (C,A,B,pke.pk,cti ,wi ,δi) is a valid instance for language L2, and
it makes at least one hash query H(δi) using input δi .

Claim 7.4. Assuming that NIZK satisfies soundness property, then type 1 attacker A has at most
negligible advantage.
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Proof. Assume that type 1 attackerA has non-negligible advantage ϵ = ϵ(λ), we design a reduction
algorithm B that breaks soundness of nizk.

The NIZK soundness challenger starts by sampling and outputting nizk.crs←$ NIZK.Setup(1λ).
With nizk.crs, B then generates TC,C,A,B,pke.pk according to Hybrid 1, and sets pp B (A,B,
pke.pk,nizk.crs). It sends pp and vk to A. Next, B responses to A’s ℓ presignature queries. A then
outputs k message and signature pairs where there exists some j such that NIZK.Verify

(
nizk.crs,x∗,πj

)
=

1 and x∗ is not a valid instance for L2, as explained above. If type 1 adversaryA has non-negligible
advantage ϵ(λ), thenB univormly randomly samples j ′←$ [k] and outputs x′ B (C,A,pke.pk,ctj ′ ,wj ′ ,δj ′ ,πj ′ ).
B breaks NIZK soundness game with a non-negligible probability ϵ(λ)/k.

Claim 7.5. Type 2 attacker A has at most negligible advantage.

Proof. Since type 2 attacker A never queries H(δj ), value of H(δj ) is not defined and is completely
random in the view of A, as H is used as a random oracle. Such attacker A can have at most
negligible advantage because it must hold that H(δj ) = C · zj + B · yj −A · xj .

Claim 7.6. Assuming that rOM-ISIS assumption holds, type 3 adversary A has at most negligible
advantage.

Proof. Assume that type 3 attackerA has non-negligible advantage ϵ = ϵ(λ), we design a reduction
algorithm B that breaks the rOM-ISIS assumption.

The rOM-ISIS challenger starts by sampling and outputting a matrix C,B ∈ Zn×2m
q uniformly

at random. Reduction algorithm B then samples R←$ {0,1}2m×2m and sets A as A = C ·R. Next, B
generates (pke.pk,pke.sk) and nizk.crs. B outputs ppB (A,B,pke.pk,nizk.crs) and verification key
vkB C.

Next, A is allowed to make a series of hash queries and presignature queries (in any order).
On each fresh hash query that A provides an input δ, B simply makes a syndrome query to the
challenger. B forwards challenger’s output to A as the output of H(δ). Meanwhile, B keeps a
recording of all hash queries from A. For each presignature query on input t′ from A, B makes a
preimage query to the challenger using the same input t′. Then, B forwards challenger’s output
z′ and y′ to A such that C · z′ + B · y′ = t′. A makes a total of ℓ such presignature queries. To win
the one-more unforgeability game, A outputs k message and signature pairs ((µ1,σ1), . . . , (µk ,σk))
such that µi , µj for 1 ≤ i < j ≤ k, Verify(pp,vk,µi ,σi) = 1 for all i ∈ [k], and k = ℓ + 1.

For all i ∈ [k], B parses µi as (wi ,δi) and σi as (πi ,cti). B obtains xi ∈ Z2m
q , yi ∈ {±1}2m, and

zi ∈Z2m
q by decrypting cti , where xi ||yi ||zi = PKE.Dec(pke.sk,cti). Thus for all i ∈ [k],

H(δi) = C · zi + B · yi −A · xi = C · zi + B · yi −C ·R · xi = C · (zi −R · xi) + B · yi .

Recall that ∥zi∥ ≤
√

2β, ∥xi∥ ≤
√

2β/m and since R ∈ {0,1}2m×2m is a binary matrix,

∥zi −R · xi∥ ≤ 3
√

2β.

Note that µi , µj , for 1 ≤ i < j ≤ k. Then there are two cases:

Case 1: There exist 1 ≤ i < j ≤ k, δi = δj and yi = yj . Since H(δi) = C · zi + B · yi −A · xi we have:

C · (zi − zj ) = A · (xi − xj ) ,
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Further, for A = C ·R, this equivalently means

zi − zj = R · (xi − xj ) .

We show that this happens with negligible probability.

Claim 7.7. The probability Pr
[
zi − zj = R · (xi − xj )

]
, taken over the adversary’s output dis-

tribution and the randomness of R, is negligible.

Proof. We have by the leftover hash lemma, that (C,A) is statistically close to (C,C ·R). As a
result, the distribution of the adversary’s outputs (xi ,zi ,xj ,zj ) where the reduction algorithm
B generates A uniformly at random is statistically close to the distribution of the adversary’s
output when reduction algorithm B generates AB C ·R. Thus, with all but negligible prob-
ability, the adversary’s output is statistically independent from the choice of R. So it follows
that with all but negligible probability, zi −R · xi , zj −R · xj .

Case 2: δi , δj . Then with all but negligible probability, we have H(δi) , H(δj ), which implies
that C · (zi −R ·xi) + B ·yi , C · (zj −R ·xj ) + B ·yj . Thus, either zi −R ·xi , zj −R ·xj , or yi , yj .

Case 3: δi = δj and yi , yj . Since yi , yj , the analysis directly follows in this case.

As a result, B wins the rOM-ISIS game by sending back zi −R · xi , yi , and H(δi) for i ∈ [k].

Note that any successful one-more unforgeability attacker A must be one of type 1, 2 and 3.
Combining the above arguments, the lemma follows.

This completes the proof of our main theorem.

7.3 Receiver blindness

Next, we show that this protocol satisfies receiver blindness property.

Theorem 7.8. Assume that NIZK proof system NIZK satisfies zero knowledge property, and public
key encryption scheme PKE is IND-CPA secure, then our construction 7.1 is receiver blind.

Proof. We prove the theorem through the following hybrids:

Hybrid0 This corresponds to the real experiment.

1. Challenger samples A,B ←$ Zn×2m
q uniformly at random, pke.pk ←$ PKE.KeyGen(1λ), and

nizk.crs←$ NIZK.Setup(1λ). Challenger then sets ppB (A,B,pke.pk,nizk.crs,H) and sends pp
to the adversary.

2. Next, challenger samples (skRb
,pkRb

)← KeyGenR(pp), for b ∈ {0,1}. The challenger sends pkR0
and pkR1

to A.

3. The adversary outputs a matrix C ∈ Zn×2m
q as the verification key vk, and issues two presig-

natures and nonces (psig0,nonce0) and (psig1,nonce1).
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4. The challenger then generates message and signature pairs:

(a) For b ∈ {0,1}, challenger sets zb as psigb, yb as nonceb, and parses skRb
as (xb,δb). It then

checks whether C · zb + B · yb = A · xb +H(δb) and ∥zb∥ ≤
√

2β and yb ∈ {±1}2m. If any of
the checks fails, challenger outputs ⊥ and aborts.

(b) Otherwise, for b ∈ {0,1}, challenger continues to generate ctb← PKE.Enc(pke.pk,xb||yb||zb;rb)
with freshly sampled randomness r0 and r1.

(c) For b ∈ {0,1}, it computes wb = A ·
[
xb,⊥
zb,⊥

]
, sets statement xb as (C,A,B,pke.pk,ctb,wb,δb),

witness ωb as (xb,yb,zb, rb), and generates proof πb← NIZK.Prove(nizk.crs,xb,ωb).

(d) Next, challenger sets message µb as (wb,δb) and signature σb as (πb,ctb). Finally, chal-
lenger samples b̂←$ {0,1} uniformly at random and sends (µb̂,σb̂,µ1−b̂,σ1−b̂) to the ad-
versary.

5. Adversary sends a bit b′ and wins if b̂ = b′.

Hybrid1 Instead of honestly generating the NIZK proofs π0 and π1, the challenger simulates π0
and π1 without any witness.

4.(c) For b ∈ {0,1}, it computes wb = A ·
[
xb,⊥
zb,⊥

]
and sets statement xb as (C,A,B,pke.pk,ctb,wb,δb).

Without setting any witnesses, challenger generates πb using NIZK simulator.

Hybrid2 This is the same as Hybrid1, except that for b ∈ {0,1}, instead of generating ctb← PKE.Enc(
pke.pk,xb||yb||zb;rb), challenger sets ctb as PKE.Enc(pke.pk,0;rb).

4.(b) Challenger generates ct0 ← PKE.Enc(pke.pk,0;r0) and ct1 ← PKE.Enc(pke.pk,0;r1) with
freshly sampled randomness r0 and r1.

Hybrid3 This the same as Hybrid2, except that the challenger samples pkR0
and pkR1

uniformly at
random.

2. When generating pkRb
for b ∈ {0,1}, instead of setting it as A · xb +H(δb), the challenger sets it

as a uniformly sampled vector, such that pkRb
←$ Zn

q .

Hybrid4 This is the same as Hybrid3, except that the challenger samples vectors w0,w1 uniformly
at random.

4.(c) For b ∈ {0,1}, it samples wb uniformly at random, sets statement xb as (C,A,B,pke.pk,ctb,wb,δb),
and generates πb using NIZK simulator.

Let AdvjA denote the security advantage of an adversary A in the NIBS blindness game in Hybridj .
Then, the following must hold:

Lemma 7.9. Assuming zero-knowledge property of NIZK, it holds that for all PPT adversaries A,
|Adv0

A −Adv
1
A| ≤ negl(λ).
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Proof. We set the following intermediate step for the proof. In the intermediate step, everything
remains the same as Hybrids 0 and 1, except for the following:

4.(c) For b ∈ {0,1}, it computes wb = A ·
[
xb,⊥
zb,⊥

]
and sets statement xb as (C,A,B,pke.pk,ctb,wb,δb).

Challenger only sets witness ω1 as (x1,y1,z1, r) without assigning the witness for statement
x0. Challenger generates π0 using NIZK simulator and π1← NIZK.Prove(nizk.crs,x1,ω1).

Define adversaryA’s advantage on the intermediate step as Adv0.5
A . Suppose there exists a PPT

attacker A such that |Adv0
A − Adv

0.5
A | = ϵ(λ), we design a reduction algorithm B that breaks the

zero-knowledge property of NIZK with advantage ϵ(λ).
Challenger starts by outputting nizk.crs. Reduction algorithm B samples A,B ∈ Z

n×2m
q and

pke.pk, and simply outputs pp = (A,B,pke.pk,nizk.crs). A then outputs its verification key vk.
Next, B samples (skRb

,pkRb
) ← KeyGenR(pp) for b ∈ {0,1}. B outputs pkR0

and pkR1
. Attacker

A then sends its presignatures and nonces (psig0,nonce0) and (psig1,nonce1). Subsequently, B
simulates the Obtain algorithm: For b ∈ {0,1}, B sets zb as psigb, y as nonceb, parses skRb

as

(xb,δb), and checks if C · zb + B · yb = A · xb + H(δb) and yb ∈ {±1}2m and ∥zb∥ ≤
√

2β. If any of
these checks fails, B outputs ⊥ and aborts. Otherwise, for b ∈ {0,1}, it continues to generate
ctb ← PKE.Enc(pke.pk,xb||yb||zb;rb) with freshly sampled randomness rb. B then computes wb =

A ·
[
xb,⊥
zb,⊥

]
and sets statement xb as (C,A,B,pke.pk,ctb,wb,δb), witness ωb as (xb,yb,zb, rb). Next,

B queries the NIZK challenger with (x0,ω0) and challenger returns proof π0. B generates π1 =
NIZK.Prove(nizk.crs,x1,ω1) by itself. Next, B sets message µb as (wb,δb) and signature σb as (πb,ctb)
for b ∈ {0,1}. B then samples b̂← {0,1} uniformly at random. Finally, B sends (µb̂,σb̂,µ1−b̂,σ1−b̂) to
A. A outputs its guess b′. If b′ = b̂, B sends 0 as its guess (i.e., π0 is a simulated proof), otherwise
it sends 1 as its guess (i.e., π0 is honestly generated from NIZK.Prove(nizk.crs,x0,ω0)).

Note that if the NIZK challenger honestly generates proof the π0 using NIZK.Prove (nizk.crs,x0,ω0),
then B perfectly simulates the experiment of Hybrid0 for adversary A. Otherwise it simulates
the intermediate step for A. As a result, if |Adv0

A − Adv
0.5
A | is non-negligible, then B breaks the

zero-knowledge property of NIZK with non-negligible advantage. Similarly, |Adv0.5
A −Adv

1
A| is also

negligible, and thus |Adv0
A −Adv

1
A| ≤ negl(λ).

Lemma 7.10. If public key encryption scheme PKE is an IND-CPA secure public key encryption
scheme, then for all PPT adversaries A, |Adv1

A −Adv
2
A| ≤ negl(λ).

Proof. Consider the following intermediate step between Hybrids 1 and 2. In the intermediate
step, everything remains the same in Hybrids 1 and 2, except for the following:

4.(b) B generates ct0← PKE.Enc(pke.pk,0;r0) and ct1← PKE.Enc(pke.pk,x1||y1||z1;r1) with freshly
sampled randomness r0 and r1.

Define adversaryA’s advantage on the intermediate step as Adv1.5
A . Suppose there exists a PPT

attacker A such that |Adv1
A − Adv

1.5
A | = ϵ(λ), we design a reduction algorithm B that breaks the

security of PKE with advantage ϵ(λ).
Challenger first samples and outputs pke.pk from PKE.KeyGen. Reduction algorithm B then

samples A,B←$ Zn×2m
q and nizk.crs←$ NIZK.Setup(1λ), and outputs pp as (A,B,pke.pk,nizk.crs).
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Next, A outputs its verification key vk. For b ∈ {0,1}, B randomly samples key pairs (skRb
,pkRb

)←
KeyGenR(1λ,pp). B sends pkR0

and pkR1
to A. Adversary A then sends its presignatures and

nonces (psig0,nonce0) and (psig1,nonce1). Subsequently, for b ∈ {0,1}, B sets zb as psigb, yb as
nonceb, and parses skRb

as (xb,δb). B checks if C · zb + B · yb = A · xb +H(δb) and if ∥zb∥ ≤
√

2β for
b ∈ {0,1}. If any of the checks fails, B outputs ⊥ and aborts. Otherwise, it queries the challenger
with the all zeros string 0 and the string x0||y0||z0. Challenger returns ciphertext ct0 (which is an
encryption of either 0 or x0||z0). Then B generates ct1← PKE.Enc(pke.pk,x1||y1||z1;r) with freshly

sampled randomness r. It computes wb = A ·
[
xb,⊥
zb,⊥

]
, sets statement xb as (C,A,B,pke.pk,ctb,wb,δb),

and generates πb as a simulated proof for b ∈ {0,1}. Next, B sets message µb as (wb,δb) and sig-
nature σb as (πb,ctb) for b ∈ {0,1}. Finally, B samples b̂ ← {0,1} uniformly at random and sends
(µb̂,σb̂,µ1−b̂,σ1−b̂) to A. A outputs its guess b′. If b′ = b̂, B sends 0 as its guess (i.e., ct0 is an
encryption of 0), otherwise it sends 1 as its guess (i.e., ct0 is an encryption of string x0||z0).

Note that if ct0 is an encryption of string x0||z0, then B perfectly simulates the experiment of
Hybrid1 for adversaryA. Otherwise it simulates the intermediate step. As a result, if |Adv1

A−Adv
1.5
A |

is non-negligible, then B breaks the security of public key encryption scheme PKE with non-
negligible advantage. Similarly, |Adv1.5

A −Adv
2
A| ≤ negl(λ) and thus |Adv1

A −Adv
2
A| ≤ negl(λ).

Lemma 7.11. For all PPT adversaries A, |Adv2
A −Adv

3
A| ≤ negl(λ).

Proof. Since x⊤ ←$ D
Z

m
q ,ς/m, we have H∞

(
x0,⊤

)
,H∞

(
x1,⊤

)
≥ m. As m = n logq + λ, it follows from

Leftover Hash Lemma (Corollary 3.8) that the following distributions are statistically indistin-
guishable:

{(AL,AL · x0,⊤,AL · x1,⊤) : AL←$ Z
n×m
q ,x0,⊤←$D

Z
m
q ,ς/m,x1,⊤←$D

Z
m
q ,ς/m}

≈s {(AL,ρ0,ρ1) : AL←$ Z
n×m
q ,ρ0←$ Zn

q ,ρ1←$ Zn
q }

Thus for b ∈ {0,1}, vector A ·xb +H(δb) = AL ·xb,⊤+ AR ·xb,⊥+H(δb) is statistically indistinguishable
from a random vector in Z

n
q .

Lemma 7.12. For all PPT adversaries A, |Adv3
A −Adv

4
A| ≤ negl(λ).

Proof. Note that x0,⊥,x1,⊥←$D
Z

m
q ,ς/m, we have H∞

(
x0,⊥

)
,H∞

(
x1,⊥

)
≥m. As m = n logq+λ. Again,

it follows from Leftover Hash Lemma (Corollary 3.8) that:

{(AL,AL · x0,⊥,AL · x1,⊥) : AL←$ Z
n×m
q ,x0,⊥←$D

Z
m
q ,ς/m,x1,⊥←$D

Z
m
q ,ς/m}

≈s {(AL,ρ0,ρ1) : AL←$ Z
n×m
q ,ρ0←$ Zn

q ,ρ1←$ Zn
q }

As a result, for b ∈ {0,1} and any µ ∈ Zn
q , vector wb = µ+ AL · xb,⊥ is statistically indistinguishable

from a random vector in Z
n
q .

Finally, note that any adversary has 0 advantage in Hybrid4. From the above lemmas, it follows
that the above NIBS construction satisfies recipient blindness.
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7.4 Efficiency of lattice-based NIBS

We use the same basic building blocks as Agrawal et al. [AKSY22] to instantiate the protocol in
Construction 7.1. For each block, we identify the similarities to their scheme and then provide
details on key differences in, both, our specific instantiation as well as the choice of parameters.
We appropriately modify the Python script in [AKSY22] to obtain parameter estimates for our
scheme.

Trapdoor generation and preimage sampling.We instantiate Falcon-512 [FHK+17] over the ring
R512 = Z[x]/(qF,x512 + 1). The Falcon modulus, qF is chosen to be a prime greater than 212.8, that
is congruent to 5 (mod 8) in order to simplify the linear relations proven in the zero-knowledge
proof later. Although the smallest such prime, 7213, would be the natural choice, it turns out that
to satisfy certain bounds on qPKE, a higher prime is needed. We set qF = 7349 and carry over the
other Falcon parameters nF = 512, mF = 1024,ς and β = 1.1 · ς · √mF from [AKSY22].

An important distinction in our construction is the use of the Bonsai trick [CHKP10] to gen-
erate a short preimage for t − b · y1 + y2, where the receiver’s public key t, the public polynomial
b, and the signer generated y1 and y2 are all polynomials in R512. For NTRU lattices, the signer

computes this preimage by sampling polynomials y1,y2,z′1,z
′
2 ∈ R512 such that

∥∥∥∥[z′1 | z′2]∥∥∥∥ is small,
and the coefficients of y1 and y2 are in {±1}. It then uses its NTRU secret trapdoor to sample short
polynomials z1,z2 ∈ R512 such that

c · z1 + z2 = t−b · y1 − y2 − c · z′1 − z′2
The presignature is then (z1,z′1,z

′
2) and the nonce is (y1,y2). Given this, the Receiver can

recover z2. We require that
∥∥∥∥[z′1 | z′2]∥∥∥∥∞ ≤ 2 so as to extract short preimages in the randomized

one-more ISIS game. Using this, we estimate the size of the presignature to be ≈ 1 KB. We note
that the Receiver’s first message (here the public key value t) is computed identically to [AKSY22],
i.e.,

t = a′ · x1 + x2 +H(δ), (2)

where polynomial a′ and hash function H are specified in the protocol’s public parameters,

and x1,x2 are sampled from R512 such that
∥∥∥∥[x1 | x2

]∥∥∥∥∞ ≤ 2 and δ←$ {0,1}λ. The Receiver’s secret

key is
([

x1 | x2

]
,δ

)
.

IND-CPA secure PKE.The Regev style public key encryption scheme from [LPS10] is instantiated
over R128 = Z[x]/(qPKE,x128 + 1). Here, we chose qPKE = qF · 8933 = 65648617 and the integer
p = 61583 under the same constraints as listed in [AKSY22]. In our case, the Receiver must
encrypt (xT1 | xT2 | yT

1 | zT1 | zT2 | z′1
T | z′2

T) ∈ (R4
128)7 � R28

128. Concretely, we must encrypt four
additional polynomials over [AKSY22], which results in a ciphertext of 14.6 KB. Reducing the
size of this ciphertext is left as an open problem.

Zero-knowledge proof.Subject to the instantiation listed above, the receiver must prove knowl-
edge of polynomials x1,x2,y1,y2,z1,z2,z′1,z

′
2 ∈ R512 satisfying

c · z1 + z2 + c · z′1 + z′2 + b · y1 + y2 − a · x1 − x2 = H(δ)

and the coefficients of y1 and y2 are in {±1}15. The receiver must also prove that part of the
15For each yi , we must prove the linear relation yi = 2y′i − 1 and the quadratic relation y′i · (y

′
i − 1) = 0.
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message, w = a · z1 + x2. It must further prove that it knows encryption randomness s,e1 ∈ R8
128

and e2 ∈ R28
128 such that the ciphertext ct is an encryption of (xT1 | x

T
2 | y

T
1 | z

T
1 | z

T
2 | z

′
1
T | z′2

T) under
pke.pk. Lastly, it needs to prove that the following bounds hold

(i)
∥∥∥∥[z1 | z2

]∥∥∥∥
2
≤ β (ii)

∥∥∥∥[z′1 | z′2]∥∥∥∥2
≤ 2 ·

√
2 · 512

(iii)
∥∥∥∥[x1 | x2

]∥∥∥∥
2
≤ 2 ·

√
2 · 512 (iv)

∥∥∥∥[s | e1 | e2

]∥∥∥∥
2
≤ τ ·

√
(2 · 8 + 28) · 128

Since all our relations are linear or proving norm bounds, we are able to leverage the efficient
zero-knowledge proof framework of [LNP22b]. For specific details concerning the implementa-
tion, we direct the reader to confer [LNP22b] and remark only that we must prove just one extra
norm bound (and two additional quadratic relations for coefficients of yi) over [AKSY22] and the
one extra relation pertaining the message w can be proven essentially for free. The proof can then
be further compressed using [DKL+18], in effect cutting low-order bits of the commitment.

The process for selecting the parameters is the same as in [AKSY22] so we only highlight the
main differences. We set the modulus qZK = qF · qPKE · 99901 = 6558362486917 ≈ 242.5, we chose
m2 = 35 so that Module-LWE problem underlying the zero-knowledge protocol is hard, and the
length of the committed vector over R128 is

m1 = 10 · 4︸︷︷︸
x1,x2,y1,y2,y′1,y

′
2,z1,z2,z′1,z

′
2

+ 2 · 8︸︷︷︸
s,e1

+ 28︸︷︷︸
e2

+ 4︸︷︷︸
ℓ2-norms

+ 2︸︷︷︸
y′i coefficients

= 90 .

The final proof size after the cut is 53.1 KB and the signature is therefore 67.7 KB. We believe
that further reduction in size may be possible using the recent optimizations given in [LN22]
although we do not attempt to do so here.

Concrete security.We also estimate the concrete security of the given instantiation using the
script. Our observations are summarized in Table 3.

Security Property Assumption
Bit security

(Core-SVP Hardness)
Key recovery (Falcon) NTRU 135 bits
Unforgeability (Falcon) MSIS 121 bits
Hiding for pkR and w MLWE 122 bits
Secret key and ciphertext
security (Encryption)

MLWE 117 bits

Zero-knowledge proof MSIS and MLWE 108 and 120 bits (resp.)

Table 3: Overall security of our protocol.

8 Lattice-based NIBS with Nonce Blindness

The NIBS scheme from Section 7 can be upgraded to satisfy nonce blindness with a slight modifi-
cation. As hinted at in the technical overview, the main idea is to “smudge-out” the presignature
information from the signed message by using a large noise that was committed in the receiver’s
verification key. We elaborate on this below.
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Let parameters n,m,ς,β = ς
√
m and prime q be such that the randomized one-more ISIS in-

stance rOM-ISISq,n,2m,ς,β′ is hard for β′ = (2λ/2 + 2
√

2 + 2) · β. These parameters must satisfy the
constraints in (1).

Tools required. The construction relies on a secure hash function H (modeled as a random oracle),
a public key encryption scheme PKE = (KeyGen,Enc,Dec), a lattice trapdoor bLT = (TrapGen,SamplePre),
and a NIZK scheme NIZK = (Setup,Prove,Verify) for the following language:

Language L3
Instance: Each instance x is interpreted as a matrix C with a secret trapdoor, random matrices
A and B, PKE public key pke.pk, ciphertext ct, vector w and random string δ.
Witness: Witness ω consists of a secret vector x, nonce vector y, presignature vector z, a bit
θ, and randomness r.
Membership: ω is a valid witness for x if the following are satisfied:

– ∥z∥ ≤
√

2β and ∥x∥ ≤
(
1 + 2(λ/2−1)

)
· β/m and y ∈ {±1}2m.

– ct is an encryption of x||y||z||θ using randomness r, s.t. ct = PKE.Enc(pke.pk,x||y||z||θ;r)

– C · z + B · y = A ·
[
x
θ

]
+H(δ), (1− 2θ) ·w = z⊥ − x⊥, and θ(1−θ) = 0

8.1 Construction

Below we describe our non-interactive blind signature scheme.

Setup(1λ,n,m,q,ς,H)→ pp. Instead of a matrix in Z
n×2m
q , it samples the matrix A←$ Z

n×(2m+1)
q .

Then, acting exactly as the Setup algorithm for Construction 7.1, it outputs the public pa-
rameters as ppB (A,pke.pk,nizk.crs,n,m,q,ς,H).

KeyGenS(pp)→ (sk,vk). Acting exactly as the KeyGenS algorithm for Construction 7.1, it outputs
signer’s secret key and verification key as skB TC and vkB C respectively.

KeyGenR(pp)→ (skR,pkR). It samples the two halves of x ∈ Z
2m
q as x⊤ ←$ D

Z
m
q ,ς/m, and x⊥ ←$[

−2(λ/2−1)

m
√
m

β, 2(λ/2−1)

m
√
m

β
]m

, δ←$ {0,1}λ as well as a bit θ←$ {0,1}. Using these, where it previously

computed t as A · x + H(δ), it computes t = A ·
[
x
θ

]
+ H(δ) and outputs user’s secret key and

public key as skR B (x,δ,θ) and pkR B t respectively.

Issue(sk,pkR)→ (psig,nonce). Identically to the Issue algorithm of Construction 7.1, it generates
z ← bLT.SamplePre(C,TC,t − B · y,ς) for receiver’s public key given by t, and outputs the
presignature psigB z, nonceB y.

Obtain(skR,vk,psig,nonce)→ (µ,σ ). It parses skR as (x,θ,δ). Then, for C B vk, z B psig, and

yB nonce, it checks if C · z + B ·y = A ·
[
x
θ

]
+H(δ) and ∥z∥ ≤

√
2β and y ∈ {±1}2m. If any check

fails it aborts and outputs ⊥.
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Otherwise, it creates the ciphertext ct ← PKE.Enc(pke.pk,x||y||z||θ;r) using uniformly sam-
pled randomness r ←$ {0,1}λ. The algorithm then, where in Construction 7.1 it set w as A ·[
x⊥
z⊥

]
, it now sets w = (1−2θ)(z⊥−x⊥). It generates NIZK proof π as π← NIZK.Prove

(
nizk.crs,xB

(C,A,B,pke.pk, ct,w,δ),ω B (x,y,z,θ, r)
)
. Finally, it outputs message µ B (w,δ) and signa-

ture σ B (π,ct).

Verify(vk,µ,σ )→ {0,1}. It parses µ as (w,δ) and σ as (π,ct). The verification algorithm accepts and
outputs 1 if and only if NIZK.Verify

(
nizk.crs,x B (C,A,B,pke.pk,ct,w,δ),π

)
= 1. Otherwise,

it outputs 0.

Efficiency. We estimate that the resulting proof size for an instantiation similar to the one given
in Section 7.4 is about a factor of λ larger. A concrete analysis is left open as future work. We also
believe that it may be possible to achieve smudging bounds using a similar technique as applied
in [BdMW16] although we do not attempt to do so here, leaving it instead as a possible future
direction.

Fully blind TNIBS. We remark that a fully blind TNIBS protocol can be obtained from Construc-
tion 8.1 in the same way as the receiver blind TNIBS construction C.2 was obtained from NIBS
construction 7.1. Concretely, it requires a second hash function, H2 that the signer’s Issue algo-
rithm uses to set t = pkR +H2(τ) given tag τ as input. The signer then sends the tag along with the
presignature and the nonce to the receiver, whose Obtain algorithm must now also include the tag
τ in the NIZK instance when producing the proof π.

Completeness. As before, we have from the correctness of bLT.SamplePre that z is a presignature

on A ·
[
x
θ

]
+H(δ) such that ∥z∥ ≤

√
2β. Furthermore, we have by construction that w = (1−2θ)(z⊥ −

x⊥), ct is an encryption of (x||z||θ) under public key pke.pk and randomness r, and that ∥x∥ ≤(
1 + 2(λ/2−1)

)
· β/m. Therefore, π is a valid NIZK proof for the language L3 described above. It

follows from the completeness of the underlying NIZK that Construction 8.1 is complete.

Reusability. Notice that for b ∈ {0,1}, if a signer issues presignature-nonce pairs (zb,yb) to a given
receiver with secret vector x and secret bit θ then,

Pr[y0 = y1 ∨µ0 = µ1] = Pr[µ0 = µ1] + Pr[y0 = y1]

= Pr[(w0,δ) = (w1,δ)] + Pr[y0 = y1]

= Pr
[
(1− 2θ)(z0,⊥ − z1,⊥) = 0

]
+negl(λ) .

Since, θ ∈ {0,1}, this is simply the probability that z0,⊥ = z1,⊥, which is negligible in λ by
construction. Thus the construction is reusable.

8.2 Nonce blindness

We begin by proving nonce blindness of this construction.

Theorem 8.1. Assume that NIZK proof system NIZK satsifies zero-knowledge property, and public
key encryption scheme PKE is IND-CPA secure, then the NIBS construction 8.1 is nonce blind.
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Proof. We have the following hybrids:

Hybrid0 This corresponds to the real experiment.

1. Challenger samples A←$ Z
n×(2m+1)
q , B←$ Zn×2m

q uniformly at random, pke.pk←$ PKE.KeyGen(1λ),
and nizk.crs←$ NIZK.Setup(1λ). Challenger then sets pp as (A,pke.pk,nizk.crs) and sends pp
to the adversary.

2. Next, challenger samples (skR,pkR)← KeyGenR(pp) and sends pkR to A.

3. The adversary sends a matrix C ∈Zn×2m
q as the verification key, and issues two presignatures

and nonces (psig0,nonce0) and (psig1,nonce1).

4. The challenger then generates message and signature pairs as follows:

(a) For b ∈ {0,1}, challenger sets zb as psigb, yb as nonceb, and parses skR as (x,δ). Then it

checks whether C · zb + B ·yb = A ·
[
x
θ

]
+H(δ) and ∥zb∥ ≤

√
2β and yb ∈ {±1}2m. If the any

of the checks fails, challenger outputs ⊥ and aborts.

(b) Otherwise, for b ∈ {0,1}, challenger generates ctb← PKE.Enc(pke.pk,x||yb||zb||θ;rb) with
freshly sampled randomness r0 and r1.

(c) For b ∈ {0,1}, it computes wb = (1 − 2θ)(zb,⊥ − x⊥), sets statement xb as (C,A,B,pke.pk,
ctb,wb,δ), witness ωb as (x,yb,zb,θ, rb), and generates NIZK proof πb ← NIZK.Prove(
nizk.crs,xb,ωb).

(d) Next, challenger sets message µb as (wb,δ) and signature σb as (πb,ctb). Finally, chal-
lenger samples b̂←$ {0,1} uniformly at random and sends (µb̂,σb̂,µ1−b̂,σ1−b̂) to the ad-
versary.

5. Adversary sends a bit b′ and wins if b̂ = b′.

Hybrid1 This is the same as Hybrid0, except that instead of generating the NIZK proofs π0 and π1,
the challenger simulates it without any witnesses.

4.(c) For b ∈ {0,1}, it computes wb = (1 − 2θ)(zb,⊥ − x⊥), sets statement xb as (C,A,B,pke.pk,ctb,
wb,δb). Without setting any witnesses, challenger generates πb using NIZK simulator.

Hybrid2 This is the same as Hybrid1, except that for b ∈ {0,1}, instead of generating ctb← PKE.Enc(
pke.pk,x||yb||zb||θ;rb), challenger sets ctb as PKE.Enc(pke.pk,0;rb),

4.(b) Challenger generates ct0 ← PKE.Enc(pke.pk,0;r0) and ct1 ← PKE.Enc(pke.pk,0;r1) with
freshly sampled randomness r0 and r1.

Hybrid3 This the same as Hybrid2, except that the challenger samples pkR uniformly at random.

2. When generating pkR, instead of setting it as A ·
[
x
θ

]
+H(δ), the challenger sets it as a uniformly

sampled vector, such that pkR←$ Zn
q .
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let Adv
j
A denote the security advantage of an adversary A in the NIBS blindness game in

Hybridj . Then, the following must hold:

Lemma 8.2. Assuming zero-knowledge property of NIZK, then for all PPT adversaries A, |Adv0
A −

Adv1
A| ≤ negl(λ).

Proof. We set the following intermediate step for the proof. In the intermediate step, everything
remains unchanged in Hybrid0 and Hybrid1, except for the following:

4.(c) For b ∈ {0,1}, it computes wb = (1−2θ)(zb,⊥−x⊥) and sets statement xb as (C,A,B,pke.pk,ctb,
wb,δ). Challenger only sets witness ω1 as (x,y1,z1,θ, r1) without assigning the witness for
statement x0. Challenger generates π0 using NIZK simulator and π1← NIZK.Prove(nizk.crs,x1,ω1).

Define adversaryA’s advantage on the intermediate step as Adv0.5
A . Suppose there exists a PPT

attacker A such that |Adv0
A − Adv

0.5
A | = ϵ(λ), we design a reduction algorithm B that breaks the

zero-knowledge property of NIZK with advantage ϵ(λ).

Challenger starts by outputting nizk.crs. Reduction algorithm B samples A ∈ Zn×(2m+1)
q , B ∈

Z
n×2m
q and pke.pk, and simply outputs pp = (A,B,pke.pk,nizk.crs). A then outputs its verifica-

tion key vk. Next, B samples (skR,pkR)← KeyGenR(pp) and outputs pkR. Attacker A then sends
two presignatures and nonces (psig0,nonce0) and (psig1,nonce1). Subsequently, B simulates the
Obtain algorithm: for b ∈ {0,1}, B sets zb as psigb, yb as nonceb, parses skR as (x,δ), and checks if

C·zb+B·yb = A·
[
x
θ

]
+H(δ) and ∥zb∥ ≤

√
2β and yb ∈ {±1}2m. If any of these checks fails, B outputs⊥

and aborts. Otherwise, for b ∈ {0,1}, it continues to generate ctb ← PKE.Enc(pke.pk,x||yb||zb||θ;rb)
with freshly sampled randomness rb. B then computes wb = (1−2θ)(zb,⊥ − x⊥) and sets statement
xb as (C,A,B,pke.pk,ctb,wb,δ), witness ωb as (x,yb,zb,θ, rb). Next, B queries the NIZK challenger
with (x0,ω0) and challenger returns proof π0. B generates π1 = NIZK.Prove(nizk.crs,x1,ω1) by it-
self. Next, B sets message µb as (wb,δ) and signature σb as (πb,ctb) for b ∈ {0,1}. B then samples
b̂← {0,1} uniformly at random. Finally, B sends (µb̂,σb̂,µ1−b̂,σ1−b̂) to A. A outputs its guess b′. If
b′ = b̂, B sends 0 as its guess (i.e., π0 is a simulated proof), otherwise it sends 1 as its guess (i.e., π0
is honestly generated from NIZK.Prove(nizk.crs,x0,ω0)).

Notice, if the NIZK challenger honestly generates proof π0 using NIZK.Prove (nizk.crs,x0,ω0),
then B perfectly simulates the experiment of Hybrid0 for adversary A. Otherwise it simulates
the intermediate step for A. As a result, if |Adv0

A − Adv
0.5
A | is non-negligible, then B breaks the

zero-knowledge property of NIZK with non-negligible advantage. Similarly, |Adv0.5
A −Adv

1
A| is also

negligible, and thus |Adv0
A −Adv

1
A| ≤ negl(λ).

Lemma 8.3. If public key encryption scheme PKE is a secure public key encryption scheme, then
for all PPT adversaries A, |Adv1

A −Adv
2
A| ≤ negl(λ).

Proof. Consider the following intermediate step for the proof. In the intermediate step, everything
remains unchanged in Hybrid1 and Hybrid2, except for the following:

4.(b) B generates ct0 ← PKE.Enc(pke.pk,0;r0) and ct1 ← PKE.Enc(pke.pk, x||y1||z1||θ;r1) with
freshly sampled randomness r0 and r1.
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Define adversaryA’s advantage on the intermediate step as Adv1.5
A . Suppose there exists a PPT

attacker A such that |Adv1
A − Adv

1.5
A | = ϵ(λ), we design a reduction algorithm B that breaks the

security of PKE with advantage ϵ(λ).
Challenger first samples and outputs pke.pk from PKE.KeyGen. Reduction algorithm B then

samples A ∈ Z
n×(2m+1)
q and nizk.crs ←$ NIZK.Setup(1λ), and outputs pp as (A,pke.pk,nizk.crs).

Next,A outputs its verification key vk. B randomly samples a key pair (skR,pkR)← KeyGenR(1λ,pp)
and sends pkR to A. Adversary A then sends two presignatures and nonces (psig0,nonce0) and
(psig1,nonce1). Subsequently, for b ∈ {0,1}, B sets zb as psigb yb as nonceb, and, after parsing

skR as (x,δ), it checks if C · zb + B · yb = A ·
[
x
θ

]
+ H(δb) and if ∥zb∥ ≤

√
2β for b ∈ {0,1}. If any of

the checks fails, B outputs ⊥ and aborts. Otherwise, it queries the challenger with the all zeros
string 0 and string x||y0||z0||θ. Challenger returns ciphertext ct0 (which is an encryption of ei-
ther 0 or x||y0||z0||θ). Then B generates ct1← PKE.Enc(pke.pk,x||y1||z1||θ;r1) with freshly sampled
randomness r. It computes wb = (1− 2θ)(zb,⊥ − x⊥), sets statement xb as (C,A,B,pke.pk,ctb,wb,δ),
and generates πb as a simulated proof for each b ∈ {0,1}. Next, B sets message µb as (wb,δ) and
signature σb as (πb,ctb) for b ∈ {0,1}. Finally, B samples b̂← {0,1} uniformly at random and sends
(µb̂,σb̂,µ1−b̂,σ1−b̂) to A. A outputs its guess b′. If b′ = b̂, B sends 0 as its guess (i.e., ct0 is an
encryption of 0), otherwise it sends 1 as its guess (i.e., ct0 is an encryption of string x||y0||z0||θ).

Note that if ct0 is an encryption of string x||y0||z0||θ, then B perfectly simulates the experiment
of Hybrid1 for adversary A. Otherwise it simulates the intermediate step. As a result, if |Adv1

A −
Adv1.5

A | is non-negligible, then B breaks the security of public key encryption scheme PKE with
non-negligible advantage. Similarly, |Adv1.5

A −Adv
2
A| ≤ negl(λ) and thus |Adv1

A−Adv
2
A| ≤ negl(λ)

Lemma 8.4. For all PPT adversaries A, |Adv2
A −Adv

3
A| ≤ negl(λ).

Proof. Since x⊤ ←$ D
Z

m
q ,ς/m, H∞ (x⊥) ≥ m > n logq + ω(logn), and we have by the Leftover Hash

Lemma (Corollary 3.8) that the following distributions are statistically indistinguishable:

{(AL,AL · x⊤) : AL←$ Z
n×m
q ,x⊤←$D

Z
m
q ,ς/m}

≈s {(AL,ρ) : AL←$ Z
n×m
q ,ρ←$ Zn

q }

Thus the vector A ·
[
x
θ

]
+ H(δ) = AL · x⊤ + AR · x⊥ + θa + H(δb) is statistically indistinguishable

from a random vector in Z
n
q .

Lemma 8.5. For all PPT adversaries A, Adv3
A ≤ 1/2 +negl(λ).

Proof. We will argue the statistical indistinguishability. To see this, first observe that in step 4.
(a), the challenger always checks for each b ∈ {0,1} whether ∥zb∥ ≤

√
2β and aborts if it is not. So

at step 4. (c), it must hold that ∥zb∥ ≤
√

2β and consequently every entry in zb ∈ Z
2m
q is in the

range [−β,β]. Thus every entry in zb,⊥+z1−b,⊥
2 ∈ Zm

q is in the range [−β,β]. Recall further that, by

construction, the integer vector x⊥ is uniformly sampled over
[
−2(λ/2−1)

m
√
m

β, 2(λ/2−1)

m
√
m

β
]m

. Therefore,

β
2(λ/2−1)

m
√
m

β
=

m
√
m

2λ/2−1
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is at most negligible, and the smudging lemma (Lemma 3.9) applies. Then, for x⊥←$

[
−2(λ/2−1)

m
√
m

β, 2(λ/2−1)

m
√
m

β
]m

,

zb,⊥,z1−b,⊥ ∈ [−β,β]m,θ←$ {0,1}, we have:{
(1− 2θ)(z0,⊥ − x⊥), (1− 2θ)(z1,⊥ − x⊥),z0,⊥,z1,⊥

}
≈s

{
(1− 2θ)(

z0,⊥ − z1,⊥
2

− x⊥), (1− 2θ)(
z1,⊥ − z0,⊥

2
− x⊥),z0,⊥,z1,⊥

}
.

Next, since x⊥ is uniformly sampled from
[
−2(λ/2−1)

m
√
m

β, 2(λ/2−1)

m
√
m

β
]m

,{
(1− 2θ)(

z0,⊥ − z1,⊥
2

− x⊥), (1− 2θ)(
z1,⊥ − z0,⊥

2
− x⊥),z0,⊥,z1,⊥

}
≡

{
(1− 2θ)(

z0,⊥ − z1,⊥
2

+ x⊥), (1− 2θ)(
z1,⊥ − z0,⊥

2
+ x⊥),z0,⊥,z1,⊥

}
.

Since θ←$ {0,1},{
(1− 2θ)(

z0,⊥ − z1,⊥
2

+ x⊥), (1− 2θ)(
z1,⊥ − z0,⊥

2
+ x⊥),z0,⊥,z1,⊥

}
≡

{
(1− 2θ)(

z1,⊥ − z0,⊥
2

− x⊥), (1− 2θ)(
z0,⊥ − z1,⊥

2
− x⊥),z0,⊥,z1,⊥

}
.

Again by smudging,{
(1− 2θ)(

z1,⊥ − z0,⊥
2

− x⊥), (1− 2θ)(
z0,⊥ − z1,⊥

2
− x⊥),z0,⊥,z1,⊥

}
≈s

{
(1− 2θ)(z1,⊥ − x⊥), (1− 2θ)(z0,⊥ − x⊥),z0,⊥,z1,⊥

}
.

The above equations imply that w0 is statistically indistinguishable from w1 in Hybrid 3. Mean-
while, by definition of Hybrid 3, π0 and π1, ct0 and ct1 are also indistinguishable. Thus our
lemma follows.

From the lemmas above, it follows that NIBS construction 8.1 satisfies nonce blindness assum-
ing that NIZK satisfies zero-knowledge property and PKE is secure.

8.3 Receiver blindness

Next, we show that this construction also satisfies receiver blindness.

Theorem 8.6. Assume that NIZK proof system NIZK satisfies zero-knowledge property and public
key encryption scheme PKE is IND-CPA secure, then the NIBS construction 8.1 is receiver blind.

Proof. We prove the theorem through the following hybrids:

Hybrid0 This corresponds to the real experiment.

1. Challenger samples A←$ Z
n×(2m+1)
q , B←$ Zn×2m

q uniformly at random, pke.pk←$ PKE.KeyGen(1λ),
and nizk.crs ←$ NIZK.Setup(1λ). Challenger then sets pp as (C,A,B,pke.pk,nizk.crs) and
sends pp to the adversary.
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2. Next, challenger samples (skRb
,pkRb

)← KeyGenR(pp), for b ∈ {0,1}. The challenger sends pkR0
and pkR1

to A.

3. The adversary sends a matrix C ∈Zn×2m
q as the verification key, and issues two presignatures

psig0 and psig1.

4. The challenger then generates message and signature pairs:

(a) For b ∈ {0,1}, challenger sets zb as psigb, yb as nonceb, parses skRb
as (xb,δb), and then

checks whether C · zb + B · yb = A ·
[
xb
θb

]
+ H(δb) and ∥zb∥ ≤

√
2β and yb ∈ {±1}2m. If the

any of the checks fails, challenger outputs ⊥ and aborts.

(b) Otherwise, for b ∈ {0,1}, challenger continues to generate ctb← PKE.Enc(pke.pk,xb||yb||zb||θb;rb)
with freshly sampled randomness r0 and r1.

(c) For b ∈ {0,1}, it computes wb = (1− 2θ)(zb,⊥ − xb,⊥), sets statement xb as (C,A,B,pke.pk,
ctb,wb,δb), witness ωb as (xb,yb,zb,θb, rb), and generates NIZK proof πb← NIZK.Prove(
nizk.crs,xb,ωb).

(d) Next, challenger sets message µb as (wb,δb) and signature σb as (πb,ctb). Finally, chal-
lenger samples b̂←$ {0,1} uniformly at random and sends (µb̂,σb̂,µ1−b̂,σ1−b̂) to the ad-
versary.

5. Adversary sends a bit b′ and wins if b̂ = b′.

Hybrid1 This is the same as Hybrid0, except that instead of generating the NIZK proofs π0 and π1,
the challenger simulates it without any witnesses.

4.(c) For b ∈ {0,1}, it computes wb = (1− 2θ)(zb,⊥ − xb,⊥), sets statement xb as (C,A,B,pke.pk,ctb,
wb,δb). Without setting any witnesses, challenger generates πb using NIZK simulator.

Hybrid2 This is the same as Hybrid1, except that for b ∈ {0,1}, instead of generating ctb← PKE.Enc(
pke.pk,xb||yb||zb||θb;rb), challenger sets ctb as PKE.Enc(pke.pk,0;rb), ie.,

4.(b) Challenger generates ct0 ← PKE.Enc(pke.pk,0;r0) and ct1 ← PKE.Enc(pke.pk,0;r1) with
freshly sampled randomness r0 and r1.

Hybrid3 This the same as Hybrid2, except that the challenger samples pkR0
and pkR1

uniformly at
random.

2. When generating pkRb
for b ∈ {0,1}, instead of setting it as A ·

[
xb
θb

]
+H(δb), the challenger sets

it as a uniformly sampled vector, such that pkRb
←$ Zn

q .

Now, let AdvjA denote the security advantage of an adversary A in the NIBS blindness game in
Hybridj . Then, the following must hold:

Lemma 8.7. Assuming zero-knowledge property of NIZK, then for all PPT adversaries A, |Adv0
A −

Adv1
A| ≤ negl(λ).
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Proof. (omitted) follows by extending the proof of Lemma 7.9 to Construction 8.1.

Lemma 8.8. If public key encryption scheme PKE is a secure public key encryption scheme, then
for all PPT adversaries A, |Adv1

A −Adv
2
A| ≤ negl(λ).

Proof. (omitted) follows by extending the proof of Lemma 7.10 to Construction 8.1.

Lemma 8.9. For all PPT adversaries A, |Adv2
A −Adv

3
A| ≤ negl(λ).

Proof. (omitted) follows by the proof of Lemma 8.4 repeated each b ∈ {0,1}.

Finally, will once more leverage the smudging lemma (Lemma 3.9) to argue that for each
b ∈ {0,1} (the distributions over) wb = (1 − 2θb)(zb,⊥ − xb,⊥) is statistically indistinguishable from
uniform. As, in step 4. (a), the challenger always checks for each b ∈ {0,1} whether ∥zb∥ ≤

√
2β

and aborts if it is not, it must hold that ∥zb∥ ≤
√

2β after that step, and consequently every entry in
zb ∈Z2m

q is in the range [−β,β]. Thus every entry in zb,⊥ ∈Zm
q is in the range [−β,β]. Further each

xb,⊥ is uniformly sampled over
[
−2(λ/2−1)

m
√
m

β, 2(λ/2−1)

m
√
m

β
]m

by construction. Therefore we have that the

ratio

β
2(λ/2−1)

m
√
m

β
=

m
√
m

2(λ/2−1)

is negligible in λ, so that the lemma applies and zb,⊥ − xb,⊥ is statistically indistinguishable
from xb,⊥. Since xb,⊥ and θb are uniformly chosen, the claim holds.

Therefore, any adversary has negligible advantage under Hybrid3. From the above lemmas, it
follows that NIBS construction 8.1 satisfies receiver blindness assuming that NIZK satisfies zero-
knowledge property and PKE is secure.

Lastly we give the following theorem concerning the one-more unforgeability of this construc-
tion.

8.4 One-more unforgeability

Theorem 8.10. Assume that NIZK proof system NIZK satisfies soundness, lattice trapdoor bLT
satisfies well-distributedness, and the rOM-ISIS assumption holds, then our construction 8.1 is
one-more unforgeable.

Proof. Consider the following hybrids:

Hybrid0 This is the actual one-more unforgeability game for NIBS:

1. Challenger samples A←$ Z
n×(2m+1)
q , B←$ Zn×2m

q uniformly at random, pke.pk←$ PKE.KeyGen(1λ),
nizk.crs←$ NIZK.Setup(1λ) and sets pp as (A,B, pke.pk,nizk.crs). Next, it samples TC,C←$

bLT.TrapGen(1λ,n,2m,q) and sets skB TC, vkB C. Challenger sends pp and vk to the adver-
sary.

2. Adversary chooses pkR and requests a presignature, to which the challenger replies with
(psig,nonce)B Issue(sk,pkR). The adversary repeats this step a total of ℓ times.

62



3. Adversary outputs k message and signature pairs ((µ1,σ1), . . . , (µk ,σk)). Adversary wins if µi ,
µj for 1 ≤ i < j ≤ k, Verify(vk,µi ,σi) = 1 for all i ∈ [k], and k = ℓ + 1.

Hybrid1 This is the same as Hybrid0 aside from one key difference that instead of uniformly sam-
pling the matrix A, it is chosen by first sampling a matrix R ←$ {0,1}2m×(2m+1) and then setting
A = C ·R.

1. Challenger samples R←$ {0,1}2m×(2m+1) uniformly at random and sets A = C ·R. Challenger
then samples B←$ Zn×2m

q , pke.pk←$ PKE.Setup(1λ), nizk.crs←$ NIZK.Setup(1λ), and sets pp
as (A,B,pke.pk,nizk.crs). Next, it samples TC,C←$ bLT.TrapGen(1λ,n,2m,q) and sets sk B
TC, vkB C. Challenger sends pp and vk to the adversary.

Let AdvjA denote the security advantage of an adversaryA in the NIBS one-more unforgeability
game in Hybridj . Then, the following must hold:

Lemma 8.11. For all PPT adversaries A, |Adv0
A −Adv

1
A| ≤ negl(λ).

Proof. Omitted as it is identical to the proof of Lemma 7.2 but with matrices R ∈ {0,1}2m×(2m+1)

and A ∈Zn×(2m+1)
q , and the divergence over the distribution of R scaled accordingly.

Lemma 8.12. Assuming that NIZK argument is sound and the rOM-ISIS assumption holds, the
one-more-unforgeability adversary A can have at most negligible advantage in Hybrid1.

Proof. Suppose there exists a PPT attacker A that wins the one-more unforgeability game with
non-negligible probability ϵ = ϵ(λ). It outputs k message and signature pairs ((µ1,σ1), . . . , (µk ,σk)),
and wins if and only if µi , µj for 1 ≤ i < j ≤ k, Verify(vk,µi ,σi) = 1 for 1 ≤ i ≤ k, and k > ℓ. As
before, we parse inputs and signatures (µi ,σi) from A’s output as ((wi ,δi), (πi ,cti)) for all i ∈ [k].
Let us divide the potential attacker into the following cases,

• Type 1: This is same as the type 1 attacker from Lemma 7.3 extended to NIZK, the NIZK for
language L3.

• Type 2: This is same as the type 2 attacker from Lemma 7.3 except for this attacker, there

is at least one tuple of (xj ,yj ,zj ,θj ) for some j ∈ [k], such that C · zj + B · yj = A ·
[
xj
θj

]
+H(δj )

where the attacker never queries the random oracle H on δj .

• Type 3: It is exactly the same as the type 3 attacker from Lemma 7.3.

Claim 8.13. Assuming that NIZK satisfies soundness property, then type 1 attacker A has at most
negligible advantage.

Proof. (omitted) follows by extending the proof of Claim 7.4 to Construction 8.1.

Claim 8.14. Type 2 attacker A has at most negligible advantage.

Proof. By the same token as the proof of Claim 7.5, H(δ∗) is not defined by the random oracle and
is completely random in the view of A so that it has at most negligible advantage in finding δ∗

such that H(δ∗) = C · zj −A ·
[
xj
θj

]
.
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Claim 8.15. Assuming that the rOM-ISIS assumption holds, type 3 adversary A has at most negli-
gible advantage.

Proof. Assume that type 3 attackerA has non-negligible advantage ϵ = ϵ(λ), we design a reduction
algorithm B that breaks the randomized one-more ISIS assumption.

The rOM-ISIS challenger starts by sampling and outputting a matrix C,B ∈ Zn×2m
q uniformly

at random. Reduction algorithm B then samples R←$ {0,1}2m×(2m+1) and sets A as A = C ·R. Next,
B generates (pke.pk,pke.sk) and nizk.crs. B outputs ppB (A,pke.pk,nizk.crs) and verification key
vkB C.

Next, A is allowed to make a series of hash queries and presignature queries (in any order).
On each fresh hash query that A provides an input δ, B simply makes a syndrome query to the
challenger. B forwards challenger’s output to A as the output of H(δ). Meanwhile, B keeps a
recording of all hash queries from A. For each presignature query on input t′ from A, B makes a
preimage query to the challenger using the same input t′. Then, B forwards challenger’s output
z′ and y′ to A such that C · z′ + B · y′ = t′. A makes a total of ℓ such presignature queries. To win
the one-more unforgeability game, A outputs k message and signature pairs ((µ1,σ1), . . . , (µk ,σk))
such that µi , µj for 1 ≤ i < j ≤ k, Verify(pp,vk,µi ,σi) = 1 for all i ∈ [k], and k = ℓ + 1.

For all i ∈ [k], B parses µi as (wi ,δi) and σi as (πi ,cti). B obtains xi ∈Z2m
q , yi ∈ {±1}2m, zi ∈Z2m

q ,
and θi by decrypting cti , where xi ||yi ||zi ||θi = PKE.Dec(pke.sk,cti). Thus for all i ∈ [k],

H(δi) = C · zi + B · yi −A ·
[
xi
θi

]
= C ·

(
zi −R ·

[
xi
θi

])
+ B · yi .

Moreover, since R is a binary matrix, ∥zi∥ ≤
√

2β, and ∥xi∥ ≤
(
1 + 2(λ/2−1)

)
· β/m∥∥∥∥∥∥zi −R ·

[
xi
θi

]∥∥∥∥∥∥ ≤ (2λ/2 + 2
√

2 + 2) · β = β′

Note that µi , µj , for 1 ≤ i < j ≤ k. There are two cases:

Case 1: For some 1 ≤ i < j ≤ k, δi = δj . By definition of type 4 attacker, we have yi , yj .

Case 2: δi , δj . Then with all but negligible probability, we have H(δi) , H(δj ), which implies

that C ·
(
zi −R ·

[
xi
θi

])
+ B · yi , C ·

(
zj −R ·

[
xj
θj

])
+ B · yi . Thus, either zi −R ·

[
xi
θi

]
, zj −R ·

[
xj
θj

]
,

or yi , yj .

As a result, B wins the rOM-ISIS game by sending back zi −R ·
[
xi
θi

]
and yi for i ∈ [k].

Note that any successful one-more unforgeability attacker A must be one of type 1, 2, and 3.
Thus, combining the above arguments, the lemma follows.

This completes the proof for one-more unforgeability of Construction 8.1.
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A Equivalence of Two NIBS Formalizations

Let us first recall the syntax of non-interactive blind signatures given by (NIBS) [Han23]. For-
mally, a non-interactive blind signature scheme consists of the following polynomial-time algo-
rithms:

KeyGenS(1λ)→ (sk,vk). On input parameter λ, it samples a public-secret key pair (sk,vk).

KeyGenR(1λ)→ (skR,pkR). On input parameter λ, it samples a public-secret key pair (skR,pkR).

Issue(sk,pkR,nonce)→ psig. It takes as input the signer’s secret key sk, receiver’s public key pkR
and a nonce nonce. It then outputs a presignature psig.

Obtain(skR,vk, (psig,nonce))→ (µ,σ ). Given the receiver’s secret key skR as an input, along with a
verification key vk and presignature-nonce pair (psig,nonce), it outputs a message-signature
pair (µ,σ ) or aborts (in which case it outputs ⊥).

Verify(vk,µ,σ )→ {0,1}. This is the signature scheme verification algorithm that takes as input a
verification key and message-signature pair, and outputs 0/1.

Correctness. A non-interactive blind signature scheme satisfies correctness if for every security
parameter λ ∈N, (sk,vk)←$ KeyGenS(1λ), (skR,pkR)←$ KeyGenR(1λ), the following holds:

Pr[Verify(vk,Obtain(skR,vk, Issue(sk,pkR,nonce),nonce)) = 1] = 1,

where the probability is taken over the random coins of Issue and Obtain.

Definition A.1 (One-more unforgeability). A NIBS scheme S satisfies one-more unforgeability, if
for every stateful admissible PPT adversary A, there exists a negligible function negl(·) such that
for every λ ∈N, the following holds:

Pr


∧

i∈[ℓ+1]Verify(vk,µi ,σi) = 1
∧

(∧
i,j∈[ℓ+1]µi , µj

) :
pp←$ Setup(1λ)

(sk,vk)←$ KeyGenS(pp){
(µi ,σi)

}ℓ+1
i=1 ←$AOsk(·,·)(vk)

 ≤ negl(λ),

where Osk(·, ·) takes as input a receiver’s public key pkRi
and a nonce noncei , and outputs a pres-

ignature psigi by running Issue(sk,pkRi
,noncei), and A is an admissible adversary iff A makes at

most ℓ queries to Osk.

Definition A.2 (Receiver blindness). A NIBS scheme S satisfies receiver blindness, if for every
stateful admissible PPT adversary A, there exists a negligible function negl(·) such that for every
λ ∈N, the following holds:

Pr



A(µb̂,σb̂,µ1−b̂,σ1−b̂) = b̂ :

pp←$ Setup(1λ), b̂←$ {0,1},
∀b ∈ {0,1} : (skRb

,pkRb
)←$ KeyGenR(pp)

(vk, (psigb,nonceb))←$A(pkR0
,pkR1

)
∀b ∈ {0,1} : (µb,σb)←$ Obtain(skRb

,vk, (psigb,nonceb))


≤ 1

2
+negl(λ),

where A is an admissible adversary iff σ0,σ1 ,⊥ (i.e., Obtain algorithm does not abort).
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Definition A.3 (Nonce blindness). A NIBS scheme S satisfies nonce blindness, if for every stateful
admissible PPT adversary A, there exists a negligible function negl(·) such that for every λ ∈ N,
the following holds:

Pr


A(µb̂,σb̂,µ1−b̂,σ1−b̂) = b̂ :

pp←$ Setup(1λ), (skR,pkR)←$ KeyGenR(pp) b̂←$ {0,1}
∀b ∈ {0,1} : (vk, (psigb,nonceb))←$A(pkR),

∀b ∈ {0,1} : (µb,σb)←$ Obtain(skR,vk, (psigb,nonceb))

 ≤
1
2

+negl(λ),

where A is an admissible adversary iff σ0,σ1 ,⊥ (i.e., Obtain algorithm does not abort).

As we previously noted, our definition and that given by [Han23], where the nonce is an ex-
plicit parameter to the Issue algorithm, are equivalent. Let us now expand on the the formal
transformation. To that end, first, let NIBS′ = (KeyGen′S ,KeyGen

′
R, Issue

′ ,Obtain′ ,Verify′) be a NIBS
scheme according to our definition in Section 4. Then, given a pseudorandom function F, we show
how to build a NIBS scheme NIBS = (KeyGenS ,KeyGenR, Issue,Obtain,Verify) according to the def-
inition of [Han23].

KeyGenS(1λ)→ (sk,vk). The signer’s setup algorithm creates (sk′ ,vk′) ←$ KeyGen′S(1λ) and also
samples a PRF key K ←$ {0,1}λ. It sets skB (sk′ ,K) and vkB vk′.

KeyGenR(1λ)→ (skR,pkR). The receiver’s setup algorithm creates (sk′R,pk
′
R)←$ KeyGen′R(1λ) and

sets skR B sk′R and pkR B pk′R.

Issue(sk,pkR,nonce)→ psig. The issue algorithm parses sk as (sk′ ,K). It then computes r B
FK (nonce,pkR) and then generates psig′ ,nonce′ ← Issue′(sk′ ,pkR;r). It then outputs psigB
(psig′ ,nonce′).

Obtain(skR,vk, (psig,nonce))→ (µ,σ ). The obtain algorithm parses psig as (psig′ ,nonce′). It then
generates (µ,σ )←$ Obtain′(skR,vk, (psig

′ ,nonce′)) and outputs it.

Verify(vk,µ,σ )→ {0,1}. The verification algorithm runs Verify′(vk,µ,σ ) and returns its output.

Both receiver and nonce blindness follow from that of the underlying NIBS scheme. We now
sketch out the proof for one-more unforgeability. More precisely, given an attacker against the
one-more unforgeability (per Definition A.1) of NIBS we must build a reduction that breaks the
one-more unforgeability (per Definition 4.3) of NIBS′. The essential aspect of the reduction is that
it must simulate the oracle Osk (per Definition A.1) to the attacker, who can choose both the pkR
and nonce parts of the input. In order to do so, the reduction must internally maintain a state of
all queries (pkRi

,noncei) made by the attacker along with the response psigi . Then, on each oracle
query it first checks if it was previously queried and if so it returns the corresponding psigi .
Otherwise, it in turn queries the one-more unforgeability challenger (per Definition 4.3) for pkRi

and returns the response (psig′i ,nonce
′
i) as the psigi to the attacker (also storing it with the query).

Since for every unique query (pkRi
,noncei), the output of FK (noncei ,pkRi

) is indistinguishable
from uniform, the reduction is able to succesfully simulate Osk to the adversary. Finally, the
reduction simply outputs the attacker’s forgery as its own.

Conversely let NIBS′ = (KeyGen′S ,KeyGen
′
R, Issue

′ ,Obtain′ ,Verify′) be a NIBS scheme according
to the definition of [Han23]. We show how to build a NIBS scheme NIBS = (KeyGenS ,KeyGenR,
Issue,Obtain,Verify) according to our definition in Section 4.

72



KeyGenS(1λ)→ (sk,vk). The signer’s setup algorithm creates (sk′ ,vk′) ←$ KeyGen′S(1λ) and sets
skB sk′ and vkB vk′.

KeyGenR(1λ)→ (skR,pkR). The receiver’s setup algorithm creates (sk′R,pk
′
R)←$ KeyGen′R(1λ) and

sets skR B sk′R and pkR B pk′R.

Issue(sk,pkR)→ (psig,nonce). The issue algorithm samples nonce uniformly from the appropri-
ate domain and then generates psig′ ←$ Issue′(sk,pkR,nonce). It then sets psigB psig′ and
nonceB nonce′, and outputs them.

Obtain(skR,vk, (psig,nonce))→ (µ,σ ). The obtain algorithm generates (µ,σ ) ←$ Obtain′(skR,vk,
(psig,nonce) and outputs it.

Verify(vk,µ,σ )→ {0,1}. The verification algorithm runs Verify′(vk,µ,σ ) and returns its output.

Given an attacker against the one-more unforgeability (per Definition 4.3) of NIBS we sketch
out a reduction that breaks the one-more unforgeability (per Definition A.1) of NIBS′. This turns
out to be even more straightforward. In order to simulate the oracle Osk (per Definition 4.3) to the
attacker, who chooses the input psigi , the reduction simply samples a nonce noncei uniformly,
forwards the query (pkRi

,noncei) to the challenger. It returns the challenger’s oracle response
psig′i as the corresponding psigi along with noncei to the attacker. At the end the reduction
outputs the attacker’s forgery as its own.

B Knowledge of Secret Key Assumption

Our claim is that any NIBS scheme that is secure in the KOSK model can be generically upgraded
to a fully secure scheme, ie., one without the KOSK assumption using a NIZKAoK. We show this
formally by building a secure NIBS scheme (without KOSK) given a NIBS scheme, NIBS′ = (Setup′ ,
KeyGen′S ,KeyGen

′
R, Issue

′ ,Obtain′ ,Verify′) that is secure in the KOSK model.

Language L′
Instance: Each instance x is interpreted as a public key pk′ and a bit b ∈ {0,1}.
Witness: Witness ω consists of a secret key sk′, and randomness ρ ∈ {0,1}λ.
Membership: Let C0,C1 be two circuits encoding KeyGen′S(pp′ ,1λ; ·) and KeyGen′R(pp′ ,1λ; ·)
respectively. Then ω is a valid witness for x if the following is satisfied:

– (sk′ ,pk′) = Cb(ρ)

Setup(1λ)→ pp. The setup algorithm generates pp′ ←$ Setup′(1λ), and then runs the setup algo-
rithms for NIZK (for language L′) to generate nizk.crs←$ NIZK.Setup(pp′ ,1λ) and outputs it
as the public parameter pp of the protocol.

KeyGenS(pp)→ (sk,vk). The signer’s setup algorithm samples a random value rS ←$ {0,1}λ and
runs (sk′ ,pk′)← KeyGen′S(pp′ ,1λ;rS ). It creates a NIZK proof πS ←$ NIZK.Prove(nizk.crs,xB
(pk′ ,0),ωB (sk′ , rS )) for the language L′. It outputs skB sk′ and vkB (pk′ ,πS ).
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KeyGenR(pp)→ (skR,pkR). The receiver’s setup algorithm samples a random value rR ←$ {0,1}λ
and runs (sk′ ,pk′) = KeyGen′R(pp′ ,1λ;rR). It creates a NIZK proof πS ←$ NIZK.Prove(nizk.crs,
xB (pk′ ,1),ωB (sk′ , rR)) for the language L′. It outputs skB sk′ and vkB (pk′ ,πR).

Issue(sk,pkR)→ (psig,nonce). The issue algorithm parses the receiver’s public key as (pk′ ,π) B
pkR and runs the NIZK verifier NIZK.Verify(nizk.crs,xB (pk′ ,1),π). If the verifier outputs 0,
the signer aborts. Otherwise it continues to execute the issue algorithm.

Obtain(skR,vk,psig,nonce)→ (µ,σ ). The obtain algorithm parses the signer’s public key as (pk′ ,π)B
vk and runs the NIZK verifier NIZK.Verify(nizk.crs,xB (pk′ ,0),πS ). If the verifier outputs 0,
the receiver aborts. Otherwise it continues to execute the obtain algorithm.

Verify(vk,µ,σ )→ {0,1}. The verification algorithm runs Verify′(vk,µ,σ ) and outputs whatever it
outputs.

It is intuitively obvious that if NIBS′ is a secure NIBS in the KOSK model and NIZK is an argu-
ment of knowledge, then the above construction NIBS = (Setup,KeyGenS ,KeyGenR, Issue,Obtain,
Verify) is secure in the standard model. Essentially, in the security proof, instead of receiving the
adversary’s secret key (as in the KOSK model), the challenger must now run the NIZK extractor
to obtain the adversary’s secret. The rest of the proof would then proceed identically to that of
NIBS′.

C Lattice-based Tagged NIBS

Let us begin this section by recalling the security definitions for TNIBS.

C.1 Tagged NIBS definitions

We also recall the definition for a tagged non-interactive blind signature (TNIBS) scheme. A
TNIBS scheme has the same set of algorithms as a regular NIBS scheme, except with the following
differences:

Setup,KeyGenS ,KeyGenR are defined as for a regular NIBS scheme.

Issue(sk,pkR, τ)→ (psig,nonce). The issue algorithm now takes a tag τ ∈ T as an additional input,
rest is as before.

Obtain(skR,vk, (psig,nonce), τ)→ (µ,σ ). The obtain algorithm also takes a tag τ as an additional
input, with the rest of the syntax being same as before.

Verify(vk,µ,τ,σ )→ {0,1}. The verification algorithm also takes a tag τ as an additional input.

As with a NIBS scheme, tagged NIBS is required to satisfy the following security properties.

Definition C.1 (One-more unforgeability). A TNIBS scheme S satisfies one-more unforgeability,
if for every stateful admissible PPT adversary A, there exists a negligible function negl(·) such that
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for every λ ∈N, the following holds:

Pr


∧

i∈[ℓ+1]Verify(vk,µi , τi ,σi) = 1
∧

(∧
i,j∈[ℓ+1]µi , µj

) :
pp←$ Setup(1λ)

(sk,vk)←$ KeyGenS(pp)
(
{
(τi ,µi ,σi)

}ℓ+1
i=1 )←$AOsk(·,·)(vk)

 ≤ negl(λ),

where Osk(·, ·) takes as input a receiver’s public key pkRi
and a tag τ , and outputs a presignature-

nonce pair (psigi ,noncei) by running Issue(sk,pkRi
, τ), and A is an admissible adversary iff A

makes at most ℓ queries to Osk.

Definition C.2 (Receiver blindness). A TNIBS scheme S satisfies receiver blindness, if for every
stateful admissible PPT adversary A, there exists a negligible function negl(·) such that for every
λ ∈N, the following holds:

Pr



A(µb̂,σb̂,µ1−b̂,σ1−b̂) = b̂ :

pp←$ Setup(1λ), b̂←$ {0,1},
∀b ∈ {0,1} : (skRb

,pkRb
)←$ KeyGenR(pp)

(vk, (psigb,nonceb), τ)←$A(pkR0
,pkR1

)
∀b ∈ {0,1} : (µb,σb)←$ Obtain(skRb

,vk, (psigb,nonceb), τ)


≤ 1

2
+negl(λ),

where A is an admissible adversary iff σ0,σ1 ,⊥ (i.e., Obtain algorithm does not abort).

Definition C.3 (Reusability). A TNIBS scheme S satisfies the reusability property, if there exists
a negligible function negl(·) such that for every λ ∈N, every tag τ ∈ T , the following holds:

Pr

µ0 = µ1 :

pp←$ Setup(1λ)
(sk,vk)←$ KeyGenS(pp), (skR,pkR)←$ KeyGenR(pp)
∀b ∈ {0,1} : (psigb,nonceb)←$ Issue(sk,pkR, τ)

∀b ∈ {0,1} : (µb,σb)←$ Obtain(skR,vk, (psigb,nonceb), τ)

 ≤ negl(λ).

C.2 Construction

We now upgrade our NIBS scheme to a tagged NIBS. Let parameters n,m,ς,β = ς
√
m and prime

q be such that the randomized one-more ISIS instance rOM-ISISq,n,2m,ς,(3
√

2+ϵ)β is hard, where ϵ =

O(m−1/2). These parameters must satisfy the constraints in (1).

Tools required. The construction relies on a public key encryption scheme PKE = (KeyGen,Enc,
Dec), a lattice trapdoor bLT = (TrapGen,SamplePre), and a NIZK scheme NIZK = (Setup,Prove,
Verify) for the following language:
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Language L4
Instance: Each instance x is interpreted as matrices C,A and B, PKE public key pke.pk, cipher-
text ct, vector w, random string δ and the tag τ .
Witness: Witness ω consists of a secret vector x, nonce vector y, presignature vector z and
randomness r.
Membership: ω is a valid witness for x if the following are satisfied:

– ∥z∥ ≤
√

2β and ∥x∥ ≤
√

2β/m and y ∈ {±1}2m.

– ct = PKE.Enc(pke.pk,x||y||z;r)

– C · z + B · y = A · x +H1(δ) +H2(τ) and w = AL · x⊥ + AR · z⊥

Below we describe our tagged non-interactive blind signature scheme. Both, completeness and
reusability of the above construction follows from the completeness and reusability of construc-
tion 7.1.

Setup(1λ,n,m,q,ς,H1,H2)→ pp. It is exactly the same as the Setup algorithm for Construction 7.1,
except for the following: It takes as input two hash functions H1 and H2, which are used as
random oracles in the design. It outputs the public parameters as

ppB (A,B,pke.pk,nizk.crs).

KeyGenS(pp)→ (sk,vk). Signer’s key generator algorithm is exactly the same as KeyGenS in Con-
struction 7.1.

KeyGenR(pp)→ (skR,vkR). It first samples x←$ D
Z

2m
q ,ς/m and δ ←$ {0,1}λ. Next, it computes t =

A · x +H1(δ). It outputs user’s secret key and public key as (skR B (x,δ),pkR B t).

Issue(sk,pkR, τ)→ (psig,nonce). Same as the Issue algorithm in Construction 7.1, except for the
following: Instead of setting t as pkR, it sets t = pkR +H2(τ).

Next, it still sets z as bLT.SamplePre(C,TC,t−B · y,ς). It outputs presignature psigB z and
nonce nonceB y.

Obtain(skR,vk,psig,nonce, τ)→ (µ,σ ,τ). It parses skR as (x,δ). Then, it assigns CB vk, yB nonce,
and zB psig. It first checks if C ·z + B ·y = A ·x +H1(δ) +H2(τ) and ∥z∥ ≤

√
2β and y ∈ {±1}2m.

If any check fails then it aborts and outputs ⊥.

Otherwise, it generates ct← PKE.Enc(pke.pk,x||y||z;r) from uniformly sampled randomness

r ←$ {0,1}λ. The obtain algorithm sets w as w = A ·
[
x⊥
z⊥

]
, where x⊥,z⊥ ∈ Z

m
q and gener-

ates NIZK proof π as π← NIZK.Prove
(
nizk.crs,xB (C,A,B,pke.pk,ct,w,δ,τ),ωB (x,y,z, r)

)
.

Finally, it outputs message µB (w,δ), signature σ B (π,ct), and tag τ .

Verify(vk,µ,τ,σ )→ {0,1}. It parses µ as (w,δ) and σ as (π,ct). The verification algorithm accepts
and outputs 1 if and only if NIZK.Verify

(
nizk.crs,xB (C,A,B,pke.pk,ct,w,δ,τ),π

)
= 1. Oth-

erwise, it outputs 0.
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Completeness. Observe that by correctness of bLT.SamplePre, z is a presignature on A ·x+H1(δ)+
H2(τ)−B · y, ie., C · z = A · x +H1(δ) +H2(τ)−B · y such that ∥z∥ ≤

√
2β and yi ∈ {±1} for all i ∈ [2m]

where yi is the ith element of y. Since, it further holds by construction that w = AL · x⊥ + AR · z⊥,
ct = PKE.Enc(pke.pk,x||y||z;r), and (by Lemma 3.1) ∥x∥ ≤

√
2β/m, we have that π is a valid NIZK

proof for the language L4. It therefore follows from the completeness of the underlying NIZK that
Construction C.2 is complete.

Reusability. The reusability of the tagged NIBS protocol can be shown identically as that of the
(un-tagged) NIBS protocol 7.1.

C.3 One-more unforgeability

We first prove the one-more unforgeability of this protocol.

Theorem C.4. Assume that NIZK proof system NIZK satisfies soundness, lattice trapdoor bLT sat-
isfies well-distributedness, and the rOM-ISIS assumption holds, then our construction C.2 is one-
more unforgeable.

Proof. We present the following hybrids:

Hybrid0 This is the actual one-more unforgeability game for tagged NIBS:

1. Challenger samples A,B←$ Zn×2m
q uniformly at random, pke.pk←$ PKE.KeyGen(1λ), nizk.crs←$

NIZK.Setup(1λ) and sets pp as (A,B,pke.pk,nizk.crs). Next, it samples (TC,C)←$ bLT.TrapGen(
1λ,n,2m,q) and sets skB TC, vkB C. Challenger sends pp and vk to the adversary.

2. Adversary chooses pkR and tag τ , and requests a presignature, to which the challenger replies
with (psig,nonce) B Issue(sk,pkR, τ). The adversary repeats this step a total of ℓ times. In
this step, adversary is allowed to make hash queries to H1 and H2, which are considered as
random oracle queries in our design.

3. Adversary outputs tag τ and k message and signature pairs ((τ1,µ1,σ1), . . . , (τk ,µk ,σk)). Adver-
sary wins if µi , µj for 1 ≤ i < j ≤ k, Verify(vk,µi ,σi , τi) = 1 for all i ∈ [k], and k = ℓ + 1.

Hybrid1 This is the same as Hybrid0 aside from one key difference that instead of uniformly sam-
pling the matrix A, it is chosen by first sampling a matrix R ←$ {0,1}2m×2m and then setting
A = C ·R.

1. Challenger samples R←$ {0,1}2m×2m uniformly at random and sets A = C ·R. Challenger then
samples B←$ Zn×2m

q , pke.pk←$ PKE.Setup(1λ), and sets pp as (A,B,pke.pk,nizk.crs). Next, it
samples TC,C←$ bLT.TrapGen(1λ,n,2m,q) and sets sk B TC, vk B C. Challenger sends pp
and vk to the adversary.

Hybrid2 This is exactly the same as Hybrid1 except the following: Whenever Amakes a fresh hash
query to H2, instead of responding with a uniformly random output, challenger instead outputs
C · r where r←$D

Z
2m
q ,ς/m.
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2. Adversary chooses pkR and tag τ , and requests a presignature, to which the challenger replies
with (psig,nonce) B Issue(sk,pkR, τ). The adversary repeats this step a total of ℓ times.
In this step, adversary is allowed to make hash queries to H1 and H2. When adversary
makes fresh hash queries to H1, challenger replies with freshly sampled random vectors in
Z

2m
q . When adversary makes fresh hash queries to H2, challenger samples r←$D

Z
2m
q ,ς/m and

replies with C · r.

Let AdviA denote the advantage of an adversary A in the TNIBS one-more unforgeability game
in Hybridi . Then, the following must hold:

Lemma C.5. For any PPT adversary A, |Adv0
A −Adv

1
A| ≤ negl(λ)

Proof. The proof is omitted as it is identical to the proof of Lemma 7.2.

Lemma C.6. For any PPT adversary A, |Adv1
A −Adv

2
A| ≤ negl(λ)

Proof. By leftover hash lemma (Corollary 3.8), the following holds:

{(C′ ,C′ · r) : C′←$ Z
n×2m
q ,r←$D

Z
2m
q ,ς/m} ≈s (C′ ,v) : C′←$ Z

n×2m
q ,v←$ Zn

q }}

By Corollary 3.8, C′ is statistically close to C and thus C′ · r is indistinguishable from a randomly
sampled vector.

Lemma C.7. Assume that NIZK argument is sound and rOM-ISIS assumption holds, then the one-
more-unforgeability adversary A can have at most negligible advantage in Hybrid2.

Proof. Suppose there exists a PPT attacker A that wins the one-more unforgeability game with
non-negligible advantage ϵ = ϵ(λ). It outputs a signature and k message and signature pairs
((τ1,µ1,σ1), . . . , (τk ,µk ,σk)), and wins if and only if µi , µj for 1 ≤ i < j ≤ k, Verify(vk,µi , τi ,σi) = 1 for
i ∈ [k] and k = ℓ+1. Consider that we parse the input and signature pairs (µi ,σi) as ((ωi ,δi), (πi ,cti))
for all i ∈ [k]. Divide the potential attacker into the following types:

• Type 1: This is nearly identical to the type 1 attacker in the proof of Lemma 7.3, except that
instance x∗ is defined as x∗ B (C,A,B,pke.pk,ctj ,wj ,δj , τj ).

• Type 2: This is a natural extension from type 2 attacker in Lemma 7.3. For type 2 attacker,
there exists some j ∈ [k], such that C · zj + B · yj = A · xj +H1(δj ) +H2(τj ), and A only queries
at most one of H1(δj ) and H2(τj ).

• Type 3: Definition of type 3 attacker follows from type 3 attacker in Lemma 7.3. We still
require the following: For all i ∈ [k], xi B (C,A,B,pke.pk,cti ,wi ,δi , τi) is a valid instance for
language L4. A queries H1(δ) at least once for each fresh δ in the message (w,δ) it outputs.
Additionally, it makes at least one hash query to H2(τ) for each fresh tag τ .

Claim C.8. Assuming that NIZK satisfies soundness property, then type 1 attacker has at most
negligible advantage.

Proof. Omitted as it is nearly identical to the proof of Claim 7.4.

Claim C.9. Type 2 attacker A has at most negligible advantage.
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Proof. Following from the proof of Claim 7.5, H1(δj ) and H2(τj ) look random in the view of A.
Thus without querying H1(δj ) or H2(τj ),A has at most negligible advantage in finding both δj and
τj such that H1(δj ) +H2(τj ) = C · zj + B · yj −A · xj .

Claim C.10. Assuming that rOM-ISIS assumption holds, then type 3 attacker A has at most negli-
gible advantage.

Proof. If type 3 attacker A has non-negligible advantage, then we build reduction algorithm B
that breaks the rOM-ISIS security game. Here, B is nearly identical to the reduction algorithm
in the proof of Claim 7.6, except for the following: When A makes a hash query to H1 using
fresh input δ, B makes a syndrome query to the rOM-ISIS challenger. It forwards the output
from the challenger to A as the output of H1(δ). When A makes a hash query H2(τi) using fresh
input τi , B samples a random vector ri ←$D

Z
2m
q ,ς/m and sets H2(τi) as C · ri . A wins the one-more

unforgeability game by outputting ((τ1,µ1,σ1), . . . , (τk ,µk ,σk)) such that µi , µj for 1 ≤ i < j ≤ k,
and Verify(pp,vk,µi , τi ,σi) = 1 for all i ∈ [k].

Consider that for all i ∈ [k], B decrypts cti using pke.sk and obtains xi and zi following from
the proof of Claim 7.6, we have:

H1(δi) = C · zi + B · yi −A · xi −H2(τi) = C · (zi −R · xi − ri) + B · yi .

Since ∥zi∥ ≤
√

2β, ∥xi∥ ≤
√

2β/m, ∥ri∥ ≤
√

2β/m, and R ∈ {0,1}2m×2m,

∥zi −R · xi − ri∥ ≤ 3
√

2β +
√

2β/m.

Following from the case by case argument of Claim 7.6, B wins the randomized one-more ISIS
game with non-negligible advantage by sending back zi −R · xi − ri and yi for i ∈ [k].

Any successful one-more unforgeability attacker A must be one of type 1, 2, 3, 4. Thus the
lemma follows.

Combining the above lemmas, our main theorem follows.

C.4 Receiver blindness

Theorem C.11. Assume that NIZK proof system NIZK satisfies zero knowledge property, and pub-
lic key encryption scheme PKE is IND-CPA secure, then the tagged NIBS construction C.2 is receiver
blind.

Proof. Below are the hybrids:

Hybrid0 This corresponds to the real experiment.

1. Challenger samples A,B ←$ Zn×2m
q uniformly at random, pke.pk ←$ PKE.KeyGen(1λ), and

nizk.crs ←$ NIZK.Setup(1λ). Challenger then sets pp as (A,B,pke.pk,nizk.crs,H1,H2) and
sends pp to the adversary.

2. Next, challenger samples (skRb
,pkRb

)← KeyGenR(pp), for b ∈ {0,1}. The challenger sends pkR0
and pkR1

to A.
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3. The adversary outputs a matrix C ∈ Zn×2m
q as the verification key vk, two presignatures and

nonces (psig0,nonce0) and (psig1,nonce1), and tag τ .

4. The challenger then generates message and signature pairs:

(a) For b ∈ {0,1}, challenger sets zb as psigb, yb as nonceb, and parses skRb
as (xb,δb). It then

checks whether C · zb + B ·yb = A · xb +H1(δb) +H2(τ) and ∥zb∥ ≤
√

2β and yb ∈ {±1}2m. If
any of the checks fails, challenger outputs ⊥ and aborts.

(b) Otherwise, for b ∈ {0,1}, challenger continues to generate ctb← PKE.Enc(pke.pk,xb||yb||zb;rb)
with freshly sampled randomness r0 and r1.

(c) For b ∈ {0,1}, it computes wb = A·
[
xb,⊥
zb,⊥

]
, sets statement xb as (C,A,B,pke.pk,ctb,wb,δb, τ),

witness ωb as (xb,yb,zb, rb), and generates proof πb← NIZK.Prove(nizk.crs,xb,ωb).

(d) Next, challenger sets message µb as (wb,δb) and signature σb as (πb,ctb). Finally, chal-
lenger samples b̂←$ {0,1} uniformly at random and sends (µb̂,σb̂,µ1−b̂,σ1−b̂) to the ad-
versary.

Hybrid1 Instead of honestly generating the NIZK proofs π0 and π1, the challenger simulates π0
and π1 without any witness.

4.(c) For b ∈ {0,1}, it computes wb = A ·
[
xb,⊥
zb,⊥

]
and sets statement xb as (C,A,B,pke.pk,ctb,wb,δb).

Without setting any witnesses, challenger generates πb using NIZK simulator.

Hybrid2 For b ∈ {0,1}, instead of generating ctb← PKE.Enc(pke.pk,xb||yb||zb;rb), challenger sets ctb
as PKE.Enc(pke.pk,0;rb).

4.(b) Challenger generates ct0 ← PKE.Enc(pke.pk,0;r0) and ct1 ← PKE.Enc(pke.pk,0;r1) with
freshly sampled randomness r0 and r1.

Hybrid3 This the same as Hybrid2, except that the challenger samples pkR0
and pkR1

uniformly at
random.

2. When generating pkRb
for b ∈ {0,1}, instead of setting it as A ·xb +H1(δb)+H2(τ), the challenger

sets it as a uniformly sampled vector, such that pkRb
←$ Zn

q .

Hybrid4 This is the same as Hybrid3, except that the challenger samples vectors w0,w1 uniformly
at random.

4.(c) For b ∈ {0,1}, it samples wb uniformly at random, sets statement xb as (C,A,pke.pk,ctb,wb,δb, τ),
and generates πb using NIZK simulator.

Lemma C.12. Assuming zero-knowledge property of NIZK, then for all PPT adversariesA, |Adv0
A−

Adv1
A| ≤ negl(λ).

Proof. (omitted) follows by extending the proof of Lemma 7.9 to Construction C.2.
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Lemma C.13. If public key encryption scheme PKE is an IND-CPA secure public key encryption
scheme, then for all PPT adversaries A, |Adv1

A −Adv
2
A| ≤ negl(λ).

Proof. (omitted) follows by extending the proof of Lemma 7.10.

Lemma C.14. For all PPT adversaries A, |Adv2
A −Adv

3
A| ≤ negl(λ).

Proof. (ommited) follows by extending the proof of Lemma 7.11.

Lemma C.15. For all PPT adversaries A, |Adv3
A −Adv

4
A| ≤ negl(λ).

Proof. (ommited) follows by extending the proof of Lemma 7.12.

Since the adversary has 0 advantage in Hybrid4, Construction C.2 satisfies recipient blindness.

D NIBS from General Purpose NIZKs

Tools required. The construction relies on a pseudorandom function F, a perfectly binding com-
mitment scheme COM = (COM.Setup,COM.Com,COM.Verify), a standard signature scheme S =
(S.Setup,S.Sign,S.Verify), and a NIZKAoK proof system NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify)
for the following language:

Language L5
Instance: Each instance x is interpreted as a verification key vk, crs for a commitment scheme
com.crs, and a message m.
Witness: Witness ω consists of a signature s.σ , randomness r, PRF key K , and commitment
opening op.
Membership: ω is a valid witness for x if the following are satisfied:

– s.σ is a valid signature for message ‘c||r’ under key vk, where c =
COM.Com(com.crs,K ;op). Namely,

S.Verify(s.vk, c||r,s.σ ) = 1

– m is a PRF evaluation of r w.r.t. key K . Namely, m = FK (r).

D.1 Construction

Below we describe our non-interactive blind signature scheme NIBS.

Setup(1λ)→ pp. It runs the setup algorithms for NIZK (for languageL5) and COM schemes. Namely,
it generates

nizk.crs←$ NIZK.Setup(1λ), com.crs←$ COM.Setup(1λ).

It outputs pp = (nizk.crs,com.crs).
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KeyGenS(pp)→ (sk,vk). The signer’s setup algorithm runs the setup algorithm for the signature
scheme S. Namely, it generates keys as

(sk,vk)←$ S.Setup(1λ).

KeyGenR(pp)→ (skR,pkR). The receiver’s setup algorithm first samples a random PRF key K ←$

{0,1}λ and commitment randomness op←$ {0,1}λ. Next, it computes a commitment as c =
COM.Com(com.crs,K ;op). Finally, it outputs receiver’s secret key and public key as skR B
(K,op) and pkR B c.

Issue(sk,pkR)→ (psig,nonce). The issue algorithm samples a random message r ←$ {0,1}λ, and
creates a signature of message ‘pkR||r’. Namely,

s.σ ←$ S.Sign(sk,pkR||r).

Finally, it outputs the pre-signature as psigB s.σ and nonceB r.

Obtain(skR,vk,psig,nonce)→ (m,σ ). The receiver first computes the message as m = FK (r), where
(K,op)B skR, s.σ B psig, and r B nonce. It then runs the NIZK prover to create the signa-
ture σ as a NIZK proof as follows:

σ ←$ NIZK.Prove(nizk.crs,x = (vk,com.crs,m),ω = (s.σ , r,K,op)).

It sets c = COM.Com(com.crs,K ;op). If s.σ is not a valid signature for c||r, then it aborts and
outputs ⊥. Otherwise, it outputs the above message-signature/proof pair.

Verify(vk,m,σ )→ {0,1}. The verification algorithm runs the NIZK verifier and outputs whether
NIZK.Verify(nizk.crs,x = (vk,com.crs,m),σ ) = 1.

Completeness. Observe that by correctness of the signature scheme, S, s.σ is a valid (pre)signature
on pkR||r. Also, by correctness of the commitment scheme COM, pkR B c is a valid commitment
to PRF key K with respect to some fixed opening op. Similarly, correctness of the PRF F ensures
that m = FK (r). Thus, we have that σ is a valid NIZK proof for the relation language L5 described
directly above, and follows from the completeness of the underlying NIZK that Construction D.1
is complete.

Reusability. For b ∈ {0,1}, if a signer issues presignature-nonce pairs (s.σb, rb) to a given receiver
with pkR B c, then

Pr[r0 = r0 ∨µ0 = µ1] = Pr[µ0 = µ1] + Pr[r0 = r1]−Pr[µ0 = µ1 | r0 = r1] ·Pr[r0 = r1]

= Pr[c||r0 = c||r1] + Pr[r0 = r1]−Pr[c||r0 = c||r1 | r0 = r1] ·Pr[r0 = r1]

= Pr[r0 = r1] = negl(λ) .

So the construction is reusable.
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D.2 One-more unforgeability

Theorem D.1. Assume that NIZK scheme NIZK is an argument of knowledge, and the signature
scheme S is secure, then our NIBS construction D.1 is one-more unforgeable.

Proof. This follows from a case by case reduction algorithm.

• Type 1: Consider that type 1 attacker A outputs ℓ + 1 message and signature pairs ((m1,σ1),
. . . , (mℓ+1,σℓ+1)). Set xi B vk,com.crs,mi , for all i ∈ [ℓ + 1]. For type 1 attacker A, there exists
some j ∈ [ℓ + 1], such that NIZK.Verify(nizk.crs,xj ,σj ) = 1 and ω = E(τ,xj ,πj ) is not a valid
witness for some instance xj of L5.

• Type 2: Type 2 attacker is defined as the complementary of type 1 attacker, such that ω =
E(τ,xj ,πj ) is a valid witness for all j ∈ [ℓ + 1].

Claim D.2. Assuming that NIZK has a valid knowledge extractor E, type 1 attacker A has at most
negligible advantage.

Proof. Assume that type 1 adversary A has non-negligible advantage ϵ = ϵ(λ), we build a reduc-
tion algorithm B that breaks the knowledge extractor of NIZK.

Challenger starts by generating τ←$ {0,1}λ uniformly at random, and then generates nizk.crs←
NIZK.Setup(1λ;τ). It sends nizk.crs to B. B then generates com.crs ←$ COM.Setup(1λ) and out-
puts pp B (nizk.crs,com.crs). Next, B generates (sk,vk) ←$ KeyGenS(pp) and outputs vk. Next,
A makes a series of presignature queries. For each query, A sends a public key pkR to B and B
sends back (psig,nonce) = Issue(sk,pkR). Finally, A outputs ℓ + 1 message and signature pairs
((m1,σ1), . . . , (mℓ+1,σℓ+1)). Consider that we set xi B (vk,com.crs,mi), for all i ∈ [ℓ+ 1]. Then type 1
attackerA guarantees that there exists some j ∈ [ℓ+1], such that NIZK.Verify(nizk.crs,xj ,σj ) = 1 and
ω = E(τ,xj ,πj ) is not a valid witness for x ∈ L5. As such, B could break the knowledge extractor of
NIZK using the output by A.

Claim D.3. Assuming signature scheme S is secure, type 2 attacker A has at most negligible
advantage.

Assume that A has non-negligible advantage ϵ = ϵ(λ), we build a reduction algorithm B that
breaks the security of S with non-negligible advantage.

The challenger starts by generating (sk,vk) ←$ S.Setup(1λ), and it sends vk to reduction al-
gorithm B. Next, B samples com.crs←$ COM.Setup(1λ) and nizk.crs←$ NIZK.Setup(1λ). B then
outputs public parameter ppB (nizk.crs,com.crs) and signer’s verification key vk.

Next, A is allowed to make a number of ℓ presignature queries, where in each query, A sends
pkR to B. B then randomly samples r←$ {0,1}λ and sends pkR||r to the challenger. Challenger then
returns s.σ as the signature of pkR||r. B then outputs presignature psigB s.σ , r and nonceB r.

To win the one-more unforgeability game,A outputs ((m1,σ1), . . . , (mℓ+1,σℓ+1)). For all i ∈ [ℓ+1],
B sets xi as (vk,com.crs,mi). Then, B extracts witness ωi using NIZK knowledge extractor, such
that ωi = E(τ,xi ,σi). B parses ωi as (s.σi , ri ,Ki ,opi). Next, B sets ci as COM.Com(com.crs,Ki ;op).
Finally, B breaks the unforgeability property of signature scheme S by outputting message and
signature pairs (ci ||ri ,s.σi), for all i ∈ [ℓ + 1].

We argue that such reduction algorithm B, is a valid attacker against S security challenger.
Recall that type 2 attacker A guarantees that mi = FKi

(ri). For all 1 ≤ i < j ≤ ℓ + 1, A as a valid
attacker guarantees that mi ,mj , thus either Ki , Kj or ri , rj . If Ki , Kj , then the perfect binding
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property of our commitment scheme COM implies ci , cj . As a result, ci ||ri , cj ||rj . Type 2 attacker
also guarantees that for all i ∈ [ℓ+ 1], S.Verify(vk, ci ||ri ,s.σi) = 1, thus B is a successful attacker.

D.3 Strong receiver blindness

Theorem D.4. Assume that general-purpose NIZK protocol NIZK satisfies zero-knowledge, com-
mitment scheme COM is computationally hiding, and F is a secure PRF, then our NIBS construc-
tion D.1 satisfies strong receiver blindness.

Proof. Define the following hybrids: Hybrid0 This corresponds to the original experiment:

1. Challenger starts by generating nizk.crs←$ NIZK.Setup(1λ) and com.crs←$ COM.Setup(1λ). It
outputs ppB (nizk.crs,com.crs).

2. For b ∈ {0,1}, challenger samples PRF key Kb ←$ {0,1}λ and commitment randomness opb ←$

{0,1}λ. Next, it computes cb = COM.Com(com.crs,Kb;opb). Challenger sets skRb
as (Kb,opb),

and pkRb
as cb. It outputs pkR0

and pkR1
.

3. The adversary is allowed to make a series of k queries for k polynomially bounded in λ. The
i-th query is explained as the following (i ∈ [k]):

(a) In the i-th query, adversary chooses bit b(i), verifcation key vk(i), presignature psig(i) and
nonce nonce(i). Adversary sends them as the query’s input to challenger.

(b) Challenger sets s.σ (i) B psig(i) and r(i) B nonce(i). Challenger computes message as m =
FK

b(i) (r
(i)). It sets x B (vk(i),com.crs,m) and ω B (s.σ (i), r(i),Kb(i) ,opb(i)). Challenger sets

c = COM.Com(com.crs,Kb(i) ;opb(i)). Next, challenger checks if s.σ (i) is a valid signature
for message c||r(i). If the check fails, challenger outputs ⊥ and aborts.

(c) Otherwise, challenger runs NIZK prover to generate signature σ ←$ NIZK.Prove(nizk.crs,x,ω).
It outputs m and σ .

4. Adversary then does the following:

(a) Adversary chooses and outputs vk, (psigb,nonceb)b for b ∈ {0,1}.
(b) For b ∈ {0,1}. Challenger sets s.σb B psigb and rb B nonceb. Challenger computes mes-

sage as mb = FKb
(rb). It sets xb B (vk,com.crs,mb) and ωb B (s.σb, r,Kb,opb). Challenger

sets cb = COM.Com(com.crs,Kb;opb). Challenger checks if s.σb is a valid signature for
message cb||rb, for b ∈ {0,1}. If any of the checks fails, challenger outputs ⊥ and aborts.

(c) Otherwise, challenger runs NIZK prover to generate signature σb←$ NIZK.Prove(nizk.crs,
xb,ωb), for b ∈ {0,1}. Next, challenger chooses b̂. It outputs (mb̂,σb̂,m1−b̂,σ1−b̂).

5. Admissible adversary outputs bit b′ and wins if b′ = b̂.

Hybrid1 Instead of honestly generating NIZK proofs for step 3 and 4, challenger outputs simulated
proofs.

1. Challenger starts by generating nizk.crs←$ S(1λ).
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3.(c) Otherwise, challenger runs NIZK simulator to generate signature σ as a simulated proof for
instance x, such that σ = Sim(nizk.crs,x).

4.(c) Otherwise, challenger runs NIZK simulator to generate signature σb←$ Sim(nizk.crs,xb), for
b ∈ {0,1}. Next, challenger chooses b̂. It outputs (mb̂,σb̂,m1−b̂,σ1−b̂).

Hybrid2 For b ∈ {0,1}, instead of setting cb = COM.Com(com.crs,Kb;opb), challenger sets cb =
COM.Com(com.crs,0;opb).

2. For b ∈ {0,1}, challenger samples PRF key Kb←$ {0,1}λ and commitment randomness opb←$

{0,1}λ. Next, it computes cb = COM.Com(com.crs,0;opb). Challenger sets skRb
as (Kb,opb),

and pkRb
as cb. It outputs pkR0

and pkR1
.

3.(b) Challenger sets s.σ (i) B psig(i) and r(i) B nonce(i). Challenger computes message as m =
FK

b(i) (r
(i)). It sets x B (vk(i),com.crs,m). Challenger sets c = COM.Com(com.crs,0;opb(i)).

Next, challenger checks if s.σ (i) is a valid signature for message c||r(i). If the check fails,
challenger outputs ⊥ and aborts.

4.(b) For b ∈ {0,1}. Challenger sets s.σb B psigb and rb B nonceb. Challenger computes message
as mb = FKb

(rb). It sets xb B (vk,com.crs,mb). Challenger sets cb = COM.Com(com.crs,0;opb).
Challenger checks if s.σb is a valid signature for message cb||rb, for b ∈ {0,1}. If any of the
checks fails, challenger outputs ⊥ and aborts.

Hybrid3 On step 3, 4, instead of setting messages as an output of PRF F, challenger samples mes-
sages uniformly at random.

3.(b) Challenger sets s.σ (i) B psig(i) and r(i) B nonce(i). Challenger samples message as m uni-
formly at random. It sets xB (vk(i),com.crs,m). Challenger sets c = COM.Com(com.crs,0;opb(i)).
Next, challenger checks if s.σ (i) is a valid signature for message c||r(i). If the check fails, chal-
lenger outputs ⊥ and aborts.

4.(b) For b ∈ {0,1}. Challenger sets s.σb B psigb and rb B nonceb. Challenger samples message
as mb uniformly at random. It sets xb B (vk,com.crs,mb). Challenger sets cb = COM.Com(
com.crs,0;opb). Challenger checks if s.σb is a valid signature for message cb||rb, for b ∈ {0,1}.
If any of the checks fails, challenger outputs ⊥ and aborts.

Let AdvjA denote the security advantage of an adversary A in Hybridj , then the following must
hold:

Lemma D.5. Assuming that our NIZK scheme NIZK satisfies zero-knowledge property, then for
all PPT adversaries A, |Adv1

A −Adv
0
A| ≤ negl(λ).

Proof. Suppose there exists some PPT adversary A such that |Adv1
A − Adv

0
A| = ϵ(λ), we design a

reduction algorithm B that breaks the security of NIZK with non-negligible advantage.
NIZK challenger starts by sampling b∗←$ {0,1}. If b∗ = 0, it samples nizk.crs←$ NIZK.Setup(1λ).

Otherwise, it samples nizk.crs←$ S(1λ). Challenger sends nizk.crs toB. B then samples com.crs←$

COM.Setup(1λ) and outputs ppB (nizk.crs,com.crs). Next, for b ∈ {0,1}, B samples PRF key Kb←$
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{0,1}λ and commitment randomness opb ←$ {0,1}λ. B computes cb = COM.Com(com.crs,Kb;opb).
Then, B sets skRb

as (Kb,opb) and pkRb
as cb. B sends pkR0

and pkR1
to A.

A then makes a series of k queries: In the i-th query, A outputs b(i), vk(i), psig(i), and nonce(i).
B sets s.σ (i) B psig(i) and r(i) B nonce(i). B computes message as m = FK

b(i) (r
(i)). It sets x B

(vk,com.crs,m), ω B (s.σ (i), r(i),Kb(i) ,opb(i)). B also sets c = COM.Com(com.crs,Kb(i) ;opb(i)). B then
checks if s.σ (i) is a valid signature for message c||r(i). If the check fails, B outputs ⊥ and aborts.
Otherwise, B queries NIZK challenger with (x,ω) and challenger replies with signature σ . It out-
puts m and σ .

Finally,A outputs vk, (psigb,nonceb)b for b ∈ {0,1}. B sets s.σb B psigb and rb B nonceb. For b ∈
{0,1}, B computes message as mb = FKb

(rb). It sets xb B (vk,com.crs,mb) and ωb B (s.σ , r,Kb,opb).
B also sets cb = COM.Com(com.crs,Kb;opb). B checks if s.σb is a valid signature for cb||rb, for
b ∈ {0,1}. If any of the checks fails, B outputs ⊥ and aborts. Otherwise, B chooses b̂. Next, it
queries NIZK challenger with (x0,ω0) and (x1,ω1). Challenger sends back proofs σ0 and σ1. B
outputs (mb̂,σb̂,m1−b̂,σ1−b̂). A then outputs bit b′. If b′ = b̂, B outputs 0, indicating that it receives
an honestly generated proof from NIZK challenger. Otherwise, B outputs 1.

Note that if challenger uses a simulator, B then perfectly simulates Hybrid1 for A. Otherwise,
it simulates Hybrid0. Thus, if |Adv1

A−Adv
0
A| is non-negligible, B would have non-negligible advan-

tage against the NIZK security challenger.

Lemma D.6. Assume that the commitment scheme COM is secure, then for all PPT adversariesA,
|Adv2

A −Adv
1
A| ≤ negl(λ).

Proof. We set the following intermediate step for the proof. In the intermediate step, everything
remains the same as Hybrid1 and Hybrid2, except for the following:

2. For b ∈ {0,1}, challenger samples PRF key Kb ←$ {0,1}λ and commitment randomness op←$

{0,1}λ. Next, it computes c0 = COM.Com(com.crs,0;op0), and c1 = COM.Com(com.crs,K1;op1).
Challenger sets skRb

as (Kb,opb), and pkRb
as cb. It outputs pkR0

and pkR1
.

3.(b) Challenger sets s.σ (i) B psig(i) and r(i) B nonce(i). Challenger computes message as m =
FK

b(i) (r
(i)). It sets x B (vk(i),com.crs,m) and ω B (s.σ (i), r(i),Kb(i) ,opb(i)). If b(i) = 0, challenger

sets c = COM.Com(com.crs,0;opb(i)). Otherwise, challenger sets c = COM.Com(com.crs,Kb(i) ;opb(i)).
Next, challenger checks if s.σ (i) is a valid signature for message c||r(i). If the check fails, chal-
lenger outputs ⊥ and aborts.

Define adversary A’s advantage on the intermediate step as Adv1.5
A . Suppose there exists a PPT

adversary A such that |Adv1.5
A −Adv

1
A| = ϵ(λ), we design a reduction algorithm B which breaks the

hiding property of commitment scheme.
Reduction algorithm B first outputs 1n, where n is the size of PRF key K . The commit-

ment challenger starts by setting com.crs←$ COM.Setup(1λ,1n) and b∗ ←$ {0,1}. B then samples
nizk.crs ←$ S(1λ) and outputs pp B (nizk.crs,com.crs). Next, for b ∈ {0,1}, B samples PRF key
Kb←$ {0,1}λ. B then queries the challenger with Kb and 0 and the challenger replies commitment
c0. B keeps a recording of the value of c0. Next, B generates c1 = COM.Com(com.crs,K1;op1). B
sends (pkR0

B c0,pkR1
B c1) to A.

A then makes a series of k queries. In the i-th query, A sends b(i), vk(i), psig(i), and nonce(i).
B sets s.σ (i) B psig(i) and r(i) B nonce(i). B computes message as m = FK

b(i) (r
(i)). It sets x B
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(vk,com.crs,m). When b(i) = 0, B checks if s.σ (i) is a valid signature for message c0||r(i) and outputs
⊥ and aborts if the check fails. Otherwise when b(i) = 1, B randomly picks op1 and sets c1 =
COM.Com(com.crs,K1;op1). It checks if s.σ (i) is a valid signature for message c1||r(i), and outputs
⊥ and aborts if fails. Note that in this step, c0 is stored. If the check does not fail, B generates
σ ←$ Sim(nizk.crs,x). It outputs m and σ .

Finally, A outputs vk, (psigb,nonceb)b for b ∈ {0,1}. B sets s.σb B psigb and rb B nonceb.
For b ∈ {0,1}, B computes message as mb = FKb

(rb). It sets xb B (vk,com.crs,mb). B also sets c1 =
COM.Com(com.crs,K1;op1). B checks if s.σb is a valid signature for cb||rb, for b ∈ {0,1}. If any of the
checks fails, B outputs ⊥ and aborts. Otherwise, B chooses b̂. Next, it generates simulated proofs
σ0 and σ1. B outputs (mb̂,σb̂,m1−b̂,σ1−b̂). A then outputs bit b′. If b′ = b̂, B outputs 0, indicating
that c0 is a commitment of K0. Otherwise, B outputs 1, indicating that c1 is a commitment of
0. Thus, if |Adv1.5

A − Adv
1
A| is non-negligible, B would have non-negligible advantage against the

hiding property of the underlying commitment scheme. Following from this proof, we also have
|Adv2

A −Adv
1
A| to be negligible.

Lemma D.7. Assume that the PRF function F is secure, then for all PPT adversaries A, |Adv3
A −

Adv2
A| ≤ negl(λ).

Proof. We define the following intermediate step for the proof. In the intermediate step, every-
thing remains the same as Hybrid2 and Hybrid3, except for the following:

3.(b) Challenger sets s.σ (i) B psig(i) and r(i) B nonce(i). If b(i) = 0, challenger samples message as
m uniformly at random. Otherwise, it computes m = FK

b(i) (r
(i)) It sets xB (vk(i),com.crs,m).

Challenger sets c = COM.Com(com.crs,0;opb(i)). Next, challenger checks if s.σ (i) is a valid
signature for message c||r(i). If the check fails, challenger outputs ⊥ and aborts.

4.(b) For b ∈ {0,1}. Challenger sets s.σb B psigb and rb B nonceb. Challenger samples message as
m0 uniformly at random, and computes m1 = FK1

(R1). It sets xb B (vk,com.crs,mb). Chal-
lenger sets cb = COM.Com(com.crs,0;opb). Challenger checks if s.σb is a valid signature for
message cb||rb, for b ∈ {0,1}. If any of the checks fails, challenger outputs ⊥ and aborts.

Define adversaryA’s advantage on the intermediate step as Adv2.5
A . Suppose there exists a PPT

adversary A such that |Adv2.5
A −Adv

2
A| = ϵ(λ), we design a reduction algorithm B which breaks the

PRF security.
Challenger starts by sampling a PRF key K , and samples a bit b∗←$ {0,1}. Reduction algorithm

B first sets com.crs←$ COM.Setup(1λ,1n) and nizk.crs←$ S(1λ). B outputs ppB (nizk.crs,com.crs).
Next, for b ∈ {0,1}, B generates cb = COM.Com(com.crs,0;opb) using randomness opb. B sends
(pkR0

B c0,pkR1
B c1) to A.

A then makes a series of k queries. In the i-th query, A sends b(i), vk(i), psig(i), and nonce(i). B
sets s.σ (i) B psig(i) and r(i) B nonce(i). If b(i) = 0, B sends r(i) to the PRF challenger and challenger
returns m. Otherwise, B computes message as m = FK1

(r(i)). It sets x B (vk,com.crs,m). Next, B
sets c = COM.Com(com.crs,0;opb(i)). It checks if s.σ (i) is a valid signature for message c||r(i), and
outputs ⊥ and aborts if fails. Otherwise, B generates σ ←$ Sim(nizk.crs,x). It outputs m and σ .

Finally, A outputs vk, (psigb,nonceb)b for b ∈ {0,1}. B sets s.σb B psigb and rb B nonceb.
B queries the PRF challenger with r0 and the challenger replies with m0. B computes message
as m1 = FK1

(r1). For b ∈ {0,1}, it sets xb B (vk,com.crs,mb), cb = COM.Com(com.crs,0;opb). B
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checks if s.σb is a valid signature for cb||rb, for b ∈ {0,1}. If any of the checks fails, B outputs ⊥
and aborts. Otherwise, B chooses b̂. Next, it generates simulated proofs σ0 and σ1. B outputs
(mb̂,σb̂,m1−b̂,σ1−b̂). A then outputs bit b′. If b′ = b̂, B outputs 0, indicating that m0 is the output
of the PRF function. Otherwise, B outputs 1, indicating that m0 is randomly sampled. Thus, if
|Adv2.5

A −Adv
2
A| is non-negligible, B would have non-negligible advantage against the PRF security.

Following from this proof, we also have |Adv3
A −Adv

2
A| to be negligible.

Note that any adversary has 0 advantage in Hybrid3. Thus the above lemma completes the
proof of our main theorem.

D.4 Strong nonce blindness

Theorem D.8. Assume that general-purpose NIZK protocol NIZK satisfies zero-knowledge, com-
mitment scheme COM is computationally hiding, and F is a secure PRF, then our NIBS construc-
tion D.1 satisfies strong receiver blindness.

Proof. We present the hybrids as the following: Hybrid0 This corresponds to the original experi-

ment:

1. Challenger starts by generating nizk.crs←$ NIZK.Setup(1λ) and com.crs←$ COM.Setup(1λ). It
outputs ppB (nizk.crs,com.crs).

2. Challenger samples PRF key K ←$ {0,1}λ and commitment randomness op←$ {0,1}λ. Next,
it computes c = COM.Com(com.crs,K ;op). Challenger sets skR as (K,op), and pkR as c. It
outputs pkR.

3. The adversary is allowed to make a series of k queries for k polynomially bounded in λ. The
i-th query is explained as the following (i ∈ [k]):

(a) In the i-th query, adversary chooses verification key vk(i), presignature psig(i) and nonce
nonce(i). Adversary sends them as the query’s input to challenger.

(b) Challenger sets s.σ (i) B psig(i) and r(i) B nonce(i). Challenger computes message as
m = FK (r(i)). It sets x B (vk(i),com.crs,m) and ω B (s.σ (i), r(i),K,op). Challenger sets
c = COM.Com(com.crs,K ;op). Next, challenger checks if s.σ (i) is a valid signature for
message c||r(i). If the check fails, challenger outputs ⊥ and aborts.

(c) Otherwise, challenger runs NIZK prover to generate signature σ ←$ NIZK.Prove(nizk.crs,x,ω).
It outputs m and σ .

4. Adversary then does the following:

(a) Adversary chooses and outputs vk, (psigb,nonceb)b for b ∈ {0,1}.
(b) For b ∈ {0,1}. Challenger sets s.σb B psigb and rb B nonceb. Challenger computes mes-

sage as mb = FK (rb). It sets xb B (vk,com.crs,mb) and ωb B (s.σb, r,K,op). Challenger
sets cb = COM.Com(com.crs,K ;op). Challenger checks if s.σb is a valid signature for
message cb||rb, for b ∈ {0,1}. If any of the checks fails, challenger outputs ⊥ and aborts.

(c) Otherwise, challenger runs NIZK prover to generate signature σb←$ NIZK.Prove(nizk.crs,
xb,ωb), for b ∈ {0,1}. Next, challenger chooses b̂. It outputs (mb̂,σb̂,m1−b̂,σ1−b̂).
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5.Admissible adversary outputs bit b′ and wins if b′ = b̂.

Hybrid1 Instead of honestly generating NIZK proofs for step 3 and 4, challenger outputs simulated
proofs.

1. Challenger starts by generating nizk.crs←$ S(1λ).

3.(c) Otherwise, challenger runs NIZK simulator to generate signature σ as a simulated proof for
instance x, such that σ = Sim(nizk.crs,x).

4.(c) Otherwise, challenger runs NIZK simulator to generate signature σb←$ Sim(nizk.crs,xb), for
b ∈ {0,1}. Next, challenger chooses b̂. It outputs (mb̂,σb̂,m1−b̂,σ1−b̂).

Hybrid2 For b ∈ {0,1}, instead of setting cb = COM.Com(com.crs,Kb;opb), challenger sets cb =
COM.Com(com.crs,0;opb).

2. For b ∈ {0,1}, challenger samples PRF key K ←$ {0,1}λ and commitment randomness op←$

{0,1}λ. Next, it computes c = COM.Com(com.crs,0;op). Challenger sets skR as (K,op), and
pkR as c. It outputs pkR.

3.(b) Challenger sets s.σ (i) B psig(i) and r(i) B nonce(i). Challenger computes message as m =
FK (r(i)). It sets x B (vk(i),com.crs,m). Challenger sets c = COM.Com(com.crs,0;op). Next,
challenger checks if s.σ (i) is a valid signature for message c||r(i). If the check fails, challenger
outputs ⊥ and aborts.

4.(b) For b ∈ {0,1}. Challenger sets s.σb B psigb and rb B nonceb. Challenger computes message
as mb = FK (rb). It sets xb B (vk,com.crs,mb). Challenger sets c = COM.Com(com.crs,0;op).
Challenger checks if s.σb is a valid signature for message c||rb, for b ∈ {0,1}. If any of the
checks fails, challenger outputs ⊥ and aborts.

Hybrid3 On step 3, 4, instead of setting messages as an output of PRF F, challenger samples mes-
sages uniformly at random.

3.(b) Challenger sets s.σ (i) B psig(i) and r(i) B nonce(i). Challenger samples message as m uni-
formly at random. It sets xB (vk(i),com.crs,m). Challenger sets c = COM.Com(com.crs,0;op).
Next, challenger checks if s.σ (i) is a valid signature for message c||r(i). If the check fails, chal-
lenger outputs ⊥ and aborts.

4.(b) For b ∈ {0,1}. Challenger sets s.σb B psigb and rb B nonceb. Challenger samples message
as mb uniformly at random. It sets xb B (vk,com.crs,mb). Challenger sets c = COM.Com(
com.crs,0;op). Challenger checks if s.σb is a valid signature for message c||rb, for b ∈ {0,1}.
If any of the checks fails, challenger outputs ⊥ and aborts.

Lemma D.9. Assuming that our NIZK scheme NIZK satisfies zero-knowledge property, then for
all PPT adversaries A, |Adv1

A −Adv
0
A| ≤ negl(λ).

Proof. (omitted) follows by extending the proof of Lemma D.5.

Lemma D.10. Assume that the commitment scheme COM is secure, then for all PPT adversaries
A, |Adv2

A −Adv
1
A| ≤ negl(λ).
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Proof. (omitted) follows by extending the proof of Lemma D.6.

Lemma D.11. Assume that the PRF function F is secure, then for all PPT adversaries A, |Adv3
A −

Adv2
A| ≤ negl(λ).

Proof. (omitted) follows by extending the proof of Lemma D.7.

Since adversary could only have 0 advantage in Hybrid3. Thus the above lemma completes the
proof of our main theorem.
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