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Abstract. Cryptographic primitives are often validated through rigorous security
proofs, but insecure implementations or software-level attacks can compromise control
flows, potentially undermining these guarantees. To address this issue, we introduce a
new security notion, IND-CFA, which formalizes decryption security in the presence
of adversarially controlled execution flows. Using this notion, we investigate the
control flows under which a cryptographic scheme remains secure, providing insights
into secure implementation practices. We revisit the Encrypt-then-MAC paradigm,
underscoring the crucial role of operation sequencing in ensuring the security of
authenticated encryption schemes built using this method. Additionally, we provide
a detailed analysis of the Encode-then-Encipher (EtE) paradigm, a widely adopted
approach for constructing robust AE schemes, revealing its vulnerability to adversarial
control flows that can enable attackers to infer low-entropy values in the presence of
multiple failure conditions.
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1 Introduction

1.1 Background and Motivation
Cryptographic primitives generally undergo rigorous formal proofs to establish their
security, but their implementation can introduce weaknesses. When the execution flow
of cryptographic algorithms is poorly implemented or adversarially controlled, it can
undermine their security properties. In AEAD schemes, manipulation of execution flow can
lead to leaked error messages or temporary values, especially when multiple failures exist.
Vaudenay’s padding oracle attack [Vau02] is a classic example, with similar vulnerabilities
exploited in SSL/TLS [CHVV03, PRS11] and IPsec [DP07, DP10].

Although many security notions [HKR15, ABL+14, BDPS14, BPS15] have been pro-
posed to address security under decryption leakage, there has been limited work on what
execution flow may incur such unexpected leakage. Thus, our goal is to propose a notion
to formalize the decryption security of AEAD schemes under adversarially-controlled
execution flows, and determine how to securely implement such schemes to prevent these
vulnerabilities.

1.2 Related Work
To the best of our knowledge, there is limited work that directly formalizes security in the
presence of chosen control flow attacks. While symbolic execution and formal methods,
such as those facilitated by tools like Cryptol [GKM+04], EasyCrypt [BGHZ11], and
CryptoHOL [BLS20], may offer indirect analyses, these approaches do not fully address
the intricacies of such attacks, and the use of these tools generally requires a background
knowledge of formal verification. Given that control flow attacks result in decryption
leakages that can provide adversaries with significant information, we draw connections to
established notions that model security in the face of decryption leakage.

In [HKR15], Hoang et al. introduced the notion of robust authenticated encryption
(RAE), with security defined through the concept of pseudorandom injection (PRI),
ensuring the indistinguishability of any leaked plaintext. While this approach safeguards
the confidentiality of leaked plaintext, it does not thoroughly examine the impact of
descriptive errors arising during decryption.

Boldyreva et al., in [BDPS14], examined scenarios where encryption schemes could
yield multiple error messages. They proposed the IND-CVA notion, which provides an
IND-CPA adversary with access to an additional oracle for verifying queried ciphertexts.
Furthermore, they introduced the error invariance (INV-ERR) notion, ensuring that no
efficient adversary can generate more than one distinct error message. However, this notion
can be misleading when it comes how to handle errors securely. Simply outputting a
non-specific error message for all types of failures may trivially achieve INV-ERR security,
but real-world implementations remain susceptible to side-channel attacks. For instance,
the timing-based Lucky13 attack [AFP13] allows adversaries to infer whether the encoding
is correct, even when only a generic error message is provided as output. This highlights
the importance of analyzing the verification process itself, rather than focusing solely on
the error messages.

Andreeva et al. presented the notion of release-of-unverified-plaintext (RUP) in [ABL+14],
linking it to ciphertext integrity (INT) and plaintext awareness (PA) to address confidential-
ity of leaked plaintext. In their notion, the decryption algorithm always outputs a bitstring
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M , bypassing any failure checks. As noted in [ABL+14], plaintext awareness appears
overly stringent, as most schemes fail to achieve it, except for the Encode-then-Encipher
paradigm [BR00]. Rather than striving for maximal security guarantees, we approach
the problem from a different angle, focusing on the degree of security retained under
adversarial control flow, providing insights into the secure implementation of encryption
schemes.

In [BPS15], Barwell et al. introduced the concept of subtle AE, integrating the
notion of error indistinguishability (ERR-CCA) alongside IND-CPA and INT-CTXT. The
ERR-CCA notion incorporates a leakage function that discloses any information leaked
during decryption. While this approach allows scheme designers the flexibility to define
what constitutes leakage, we argue that such broad generalizations could lead to the
oversight of specific vulnerabilities.

Moreover, these notions often overlook a crucial aspect: they typically discuss either
leaked plaintext or error messages in isolation, without considering the relationship between
the two. What remains underexplored is how specific plaintext values lead to successful or
failed verification, a factor that enables more potent attacks than simply relying on either
the plaintext or error messages alone.

1.3 Our Contribution
In this work, we focus on the security of AEAD decryption, as the decryption process
usually involves a more complex execution flows that are more susceptible to manipulation
due to the presence of multiple verification steps. We conduct a security analysis to examine
the level of protection that can be preserved under adversarially-controlled execution flows.
Specifically, our contributions are outlined as follows:

– New Security Notions: We analyze the implementation of an AEAD scheme’s
decryption algorithm in a structured manner as a sequence of operations, which may
leak text values, and condition predicates, which may leak descriptive errors. We
introduce a novel security notion, IND-CFA, that allows for a non-adaptive adversary
to influence the control flow during decryption. This enables us to assess whether
an AEAD scheme remains secure under such manipulated control flows. Instead of
focusing on the strongest possible security, we pose the question:

Under what control flow is security still guaranteed?

This approach helps us provide guidance on how to securely implement cryptographic
primitives and offers insights into software-level protections, such as maintaining
control flow integrity when an AEAD scheme is vulnerable under adversarial control.
Building on this, we compose our notion with IND-CPA to introduce AE-CFA
security, demonstrating that our new notion is sufficient for AE security. We also
compare our notion with existing security notions to highlight its relevance and
advantages.

– Revisiting Encode-then-Encrypt-then-MAC (EEM): We revisit two key ap-
proaches to defining decryption within the Encode-then-Encrypt-then-MAC (EEM)
paradigm. The first, introduced in [BN00], adopts a “decryption-first” strategy, as
implemented in PyCryptodome [Leg]. The second, presented in [BDPS14], follows a
“verification-first” approach, which is employed in TLS [MP14]. Through our security
notion, we demonstrate that these two execution sequences provide distinct levels
of security. We highlight the critical importance of the “verification-first” approach
from [BDPS14], which ensures that decryption does not proceed if authentication
fails. Furthermore, we stress the necessity of preserving control flow integrity within
this scheme to guarantee strong security.
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– Analysis on Encode-then-Encipher: We provide a concrete analysis of the secu-
rity of the Encode-then-Encipher (EtE) paradigm [BR00], a widely used approach for
constructing robust authenticated encryption. Although EtE is proven secure under
strong security models such as Robust Authenticated Encryption (RAE) [HKR15],
we demonstrate that it has a vulnerability where an adversary can control the order
of condition predicates to infer the values of low-entropy inputs to these predicates
when multiple condition predicates are involved. However, we also observe that EtE
has the capability to validate multiple failure conditions with a single predicate,
making it a cost-free patch for better security.

2 Preliminaries

2.1 Notation
We introduce the following notations that will be used throughout the paper. Let N =
{1, 2, . . .} denote the set of natural numbers. For each n ∈ N, we define the set [n] :=
{1, . . . , n}. Given a set S, we use the notation S≥n :=

⋃
i≥n S

i to denote the set of
all non-empty sequences of length at least n over S, and we define S+ := S≥1. Let
x = (x1, · · · , xℓ) ∈ S+ with ℓ ∈ N be a sequence. We denote the length of x by |x| := ℓ.
For y = (y1, . . . , yℓ′) ∈ S′ with ℓ′ ∈ N, we define the concatenation of x and y as
x||y = (x1, . . . , xℓ, y1, . . . , yℓ′). When S = {0, 1}, we refer to such sequences as bit strings.
Let i ∈ {0, 1, . . .}, we denote the ℓ-bit string representation of i as [i]ℓ. We let notation
S[a..b] represent the substring of S that includes indices ranging from a to b. We use ε to
denote empty string where |ε| = 0.

Let S be a finite set. We define the notation x ←$ S to represent the selection of a
value from the set S uniformly at random, which we then assign to the variable x. For
an algorithm A, we use the notation y ← AO1,O2,... to denote running A given access to
oracles O1,O2, . . ., and then assigning of the output of A to y.

2.2 Game-Based Proof
We follow the code-based game-playing framework of Bellare and Rogaway [BR06]. This
framework utilizes a game G that consists of an Initialization procedure (Init), a Fi-
nalization procedure (Finalize), and a set of oracle procedures, number of which varies
depending on the specific game. An adversary A interacts with the oracles, which return
responses to the queries made by the adversary via return statements specified in the
oracles’ codes.

A game G is initiated with the Init procedure, followed by the adversary’s interaction
with the oracle. After a number of oracle queries, the adversary halts and outputs an
adversary output. The procedure Finalize is then executed to generate a game output.
If a finalization procedure is not explicitly defined, we consider the adversary output as
the game output. We denote Pr[AInit,O1,O2,··· ⇒ b] as the probability that the adversary
A outputs a value b after the Init procedure and queries to the oracle O1,O2, · · · . We
denote Pr[G(A)⇒ b] as the probability that a game G outputs b when the adversary A
plays game G. For simplicity, we define Pr[G(A)] := Pr[G(A)⇒ 0]. For notion simplicity,
we interchangeably use the notation ∆A (OL; OR) and

∆A

(
OL

OR

)
:= Pr[AOL ⇒ 0]− Pr[AOR ⇒ 0]

to denote A’s advantage in distinguishing between the oracles OL and OR.
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We let Advx
Π(Ax) denote adversary Ax’s advantage in breaking security notion X

of a scheme Π. We say security notion X implies security notion Y, denote X → Y, if
Advy

Π(Ay) ≤ c ·Advx
Π(Ax) for some constant c > 0.

2.3 Authenticated Encryption with Associated Data (AEAD)
Definition 1 (Nonce-Based AEAD). A nonce-based AEAD scheme is a tuple AEAD =
(Enc, Dec) specifies two algorithms

Enc : K ×N ×AD × N×M→ C

and
Dec : K ×N ×AD × N× C →M∪ {⊥}

where K ⊆ {0, 1}∗ is the space of keys, N ⊆ {0, 1}∗ is the space of nonces, M⊆ {0, 1}∗ is
the space of plaintexts, C ⊆ {0, 1}∗ is the space of ciphertexts, and AD ⊆ {0, 1}∗ is the
space of associated data. The encryption algorithm Enc takes a four-tuple (K,N,A,M) ∈
K×N ×AD×N×M, returns a ciphertext C ← AEAD.EncN,AK (M) such that C ∈ C. The
decryption algorithm Dec takes a four-tuple (K,N,A,C) ∈ K ×N ×AD × C, and returns
a message M ← AEAD.DecN,A,τK (C) such that M ∈M∪ {⊥}. If there is no M ∈M such
that C = AEAD.EncN,AK (M), then AEAD.DecN,AK (C) = ⊥.

3 Security under Adversarial Control Flow

3.1 Implementation of A Scheme
In contrast to previous works that define leakage through a simulator function, we propose
a more concrete approach by directly analyzing the implementation itself, treating the full
execution trace as the leakage for a more precise interpretation. Specifically, we model
the implementation of a decryption algorithm as a sequence of operations and condition
predicates, as outlined in Definition 2.

Definition 2. An AEAD decryption implementation is a Turing machine Impl with tape
alphabet Γ = ({0, 1}∗)+∪{true, false}∪{#} where ({0, 1}∗)+ is space of tuples of bitstrings
of arbitrary length and # is a special end-of-input marker such that:

– Input: On input (K,N,A,C) ∈ K ×N ×AD × C, the tuple is written to the input
tape of the machine. A working tape T is initalized as an empty tape.

– Transition: The machine proceeds through a sequence of operations and condition
predicates as transition functions that write results to the working tape T of the
machine.

– An operation πi : {0, 1}∗ → {0, 1}∗ takes the bitstring from the current state,
writes the result Mi to the working tape T, and transitions to the next state.

– A condition predicate ωi : {0, 1}∗ → {true, false} checks the validity of the
current bitstring. If ωi detects a valid input, it writes true to the working tape
T and proceeds to the next state. If ωi detects an invalid input, it writes false
to the working tape, then the machine then halts, and outputs the current state
of the working tape T including all intermediate results up to that point.

A sequence of transitions consists of any number of operations πi and condition
predicates ωi in an arbitrary order, executed in sequence, for example, F = (π1, π2, ω1)
or F = (π1, π2, ω1, π3, ω2). We call such a sequence a control flow.
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– Output: If the machine does not halt due to any condition predicate ωi, it means
that all predicates have been successfully passed, and the current working tape T is
output as the result. Otherwise, if any ωi fails, the working tape up to that point is
output. We call the output working tape T a transcript.

Let T represent the output of the AEAD decryption implementation Impl, executed under
the control flow F with the input (K,N,A,C). We denote this as T ← ImplF(K,N,A,C).

Example 1. We show two examples of the outputs of the machine Impl as follows.

1. Encrypt-then-MAC (EtM) [BN00]: We follow the definition in [BDPS14], where no
decryption is performed if the MAC verification fails. This leads to the following
sequence of operations F = (ω1, π1) where ω1 := "r ← MAC.VfyKm

(C, T )" for
r ∈ {true, false}, and π1 := "M ← SE.DecNKe

(C)". The working tuple T initially
starts as an empty tape. If authentication check fails i.e., r = false, then ω1 write
false to T and Impl halts to return T = [false] as the output. Otherwise if r = true,
we first write true to T, and then append the decrypted message M to T. The final
output is T = [true,M ].

2. Encode-then-Encrypt-then-MAC (EEM) [BKN04]: In this paradigm, the plaintext is
first encoded using, for instance, PKCS padding [Hou09]. In this case, we consider
a control flow F = (ω1, π1, ω2, π3) where ω1 := "r ← MAC.VfyKm

(C, T )", π1 :=
"M∗ ← SE.DecNKe

(C)", ω2 checks whether M∗ follows the correct encoding, and π2
decodes M∗. Then for a valid ciphertext, the transcript T = [true,M∗, true,M ]. For
a ciphertext with a valid tag but decrypted to a bitstring with invalid encoding,
the transcript T = [true,M ′, false]. For a ciphertext with invalid tag, the transcript
T = [false].

3.2 IND-CFA Security
We propose a new notion, Indistinguishability (of Decryption) under Chosen (Control)
Flow Attack, denoted by IND-CFA, for AEAD schemes, as shown in Figure 1. In this
game, we allow the adversary to non-adaptively select a control flow, which is then executed
by Impl in the oracle Dec, and the complete execution trace (transcript) is revealed to
the adversary.

Definition 3 (IND-CFA). An AEAD scheme is ε-IND-CFA secure with respect to a
adversarial-chosen control flow F if for any PPT adversary A, it has AdvIND-CFA

AEAD,F (A) ≤ ε
where

AdvIND-CFA
AEAD,F (A) := Pr[GIND-CFA-0

AEAD (A)]− Pr[GIND-CFA-1
AEAD (A)]

Observation on the Notion. We adopt the real-or-ideal oracle model for Dec. The
adversary’s objective is to distinguish between the real transcript TR ← ImplF(K,N,A,C),
produced by the AEAD decryption implementation under an adversary-controlled flow F,
and an ideal transcript TI corresponding to the same control flow F.

Let F∗ represent the original control flow defined by the AEAD scheme, and let F

be the control flow chosen by the adversary. We assume that for all δ ∈ F, it holds that
δ ∈ F∗. This implies that the adversary can modify the order of operations and condition
predicates in the control flow, or omit an operation or condition predicate, but cannot
introduce new operations or predicates. Additionally, we assume that the adversary does
not query a flow F = (. . . , ωi, . . . , πi, . . . , πj , . . .) where ωi requires the output of πi or πj
as input, or πi requires the output of πj as input.

To simplify the handling of deterministic operations, we assumed deterministic steps,
such as parsing or hashing, are merged into the randomness-inducing operations. Essentially,
these steps can be treated as sub-steps of a broader operation that eventually produces
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GIND-CFA-0
AEAD GIND-CFA-1

AEAD

procedure Init
1 : K ←$ K
2 : Qd ← ∅
3 : F ← A(·)

procedure Enc(N,A,M)
1 : C ← AEAD.EncN,A

K (M)
2 : return C

procedure Fin
1 : b← AEnc,Dec(·)
2 : return b

procedure Dec(N,A,C)
1 : if (N, A, C) ∈ Qd then
2 : return  
3 : T ← ImplF(K, N, A, C)

4 : 1 : (π1, . . . , πt, ω1, . . .)← F

2 : for i = 1 . . . t do

3 : mi ←$ {0, 1}|πi(·)|

4 : T ← [m1, . . . , mt, false]

5 : Qd ← Qd ∪ (N, A, C)
6 : return T

Figure 1: IND-CFA games for a nonce-based AEAD scheme. The dot-boxed parts are
exclusive to GIND-CFA-1

AEAD .

random-looking output. We prohibit the adversary from repeating the query with the
same tuple (N,A,C) since it produces an identical result, yielding trivial distinguishing.

Given an adversary-chosen control flow F = (π1, . . . , πt, ω1, . . .), we define the ideal
transcript with respect to F as TI = [m1, . . . ,mt, false], where each mi ←$ {0, 1}|πi(·)|

is a random bitstring of the same length as the output of πi, and the output of the
first condition predicate ω1 is false. By comparing with such an ideal tuple, the security
requirement is that: even under adversary-controlled execution flows,

1. no more information other than the length of the intermediate values produced during
the execution is disclosed

2. the first condition predicate is not satisfied and no more execution after failure.

Role of Intermediate Values. Importantly, our notion also reveals intermediate
values, such as a reconstructed IV, alongside the final plaintext, and require the indistin-
guishability of these values as well. This requirement becomes crucial in attacks like the
one targeting RIV [AFL+16], which is proven SAE-secure [BPS15] under the assumption
that the only final plaintext M is considered as leakage.

Specifically, RIV constructs the IV as IV ← FK(N,H,C) ⊕ T for a PRF F , where
M ← SE.DecIVKe

(C) is the plaintext. Given two distinct pairs (C, T ) and (C ′, T ′), the
adversary can control when they produce the same IV. In CTR mode, this allows the
adversary to distinguish based on C1 ⊕ C ′

1 = M1 ⊕M ′
1, where C1 and M1 represent the

first block of ciphertext and plaintext, respectively.
Notably, this attack would not be feasible if the IV remained hidden, as the output of

the PRF F would appear random and the adversary has negligible advantage is “guessing”
when IV matches.

Composition for AE Security. It is straightforward to see how IND-CFA security
can be composed with IND-CPA security to align with established security notions for
authenticated encryption (AE), such as the IND-CCA3 notion introduced by Shrimpton
[Shr04], as well as the combination of IND-CPA and INT-CTXT [BN00].

In Definition 4, we introduce a new security notion called AE Security under Chosen
(Control) Flow Attack, denoted by AE-CFA. For notation simplicity, we abuse the notation
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slightly by using EncK to represent the oracle Enc depicted in Figure 1 but the adversary
is not allowed to repeat a query with the same (N,A,M) tuple, and $Enc denotes the
process of sampling a random bitstring C ←$ {0, 1}ψ(|M |) where ψ is a function dependent
on the plaintext length |M |. We use ImplRF to refer to the execution that generates the
real transcript, and ImplIF for the execution that generates the ideal transcript.

Definition 4 (AE-CFA Advantage).

AdvAE-CFA
AEAD,F (A) := ∆A

(
EncK , ImplRF
$Enc, ImplIF

)

for K ←$ K and under a control flow F.

Theorem 1. AE-CFA implies IND-CPA and IND-CFA. Specifically, for any AE-CFA
adversary Aae, there is an IND-CPA adversary Acpa and an IND-CFA adversary Acfa
such that

AdvAE-CFA
AEAD,F (Aae) ≤ AdvIND-CPA

AEAD (Acpa) + AdvIND-CFA
AEAD,F (Acfa)

Proof. We write the advantage as

AdvAE-CFA
AEAD,F (Aae) = ∆Aae

(
EncK , ImplRF
$Enc, ImplIF

)

= ∆A1

(
EncK , ImplRF
EncK , ImplIF

)
+ ∆A2

(
EncK , ImplIF
$Enc, ImplIF

)

= AdvIND-CFA
AEAD,F (Acfa) + ∆A3

(
EncK , ImplIF
$Enc, ImplIF

)

Note that for any tuple (N,A,C), the oracle ImplIF always replies with a transcript of
random bitstrings and false. This can be perfectly simulated by an IND-CPA adversary
Acpa. Thus we have that

∆A3

(
EncK , ImplIF
$Enc, ImplIF

)
≤ AdvIND-CPA

AEAD (Acpa)

which concludes the proof.

To show that our notion is sufficient to capture AE security, we show that IND-CFA
implies INT-CTXT in Proposition 1, which leads to the result that AE-CFA implies AE
security in Corollary 1.

Proposition 1. IND-CFA implies INT-CTXT.

Proof. We fix F to be the original control flow. Let A be an INT-CTXT adversary. Let
(N,A,C) be A’s query such that AEAD.DecN,AK (C) = M ̸= ⊥. In this case, an IND-CFA
adversary B queries such a tuple, yielding a transcript T ending with M and no false
in T be distinguished from the ideal tuple. Thus we have that AdvINT-CTXT

AEAD (A) ≤
AdvIND-CFA

AEAD,F (B).

Corollary 1. AE-CFA implies AE.

Proof. The proof follows by combining Theorem 1 and Proposition 1.
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3.3 Comparison with Existing Notions
We briefly compare our notion with established ones to highlight its advantages. To our
knowledge, there has been limited work addressing the security of symmetric cryptographic
primitives under control flow attacks. However, since our notion captures a comprehensive
security model that considers both descriptive errors and candidate plaintexts that may
be leaked when decryption fails, we focus our comparison with notions that address these
aspects.

3.3.1 Error Invariance (INV-ERR).

In [BDPS14], Boldyreva et al. explored the situation where a decryption scheme generates
multiple error messages and introduced the error invariance (INV-ERR) notion such that
an adversary should not see ⊥j ∈ S⊥ other than a predefined error ⊥i ∈ S⊥.

Definition 5 (INV-ERR Advantage).

AdvINV-ERR
AEAD,⊥i

(A) := Pr[AEnc,Dec ⇒ ⊥j ∈ S⊥ | ⊥j ̸= ⊥i]

An AEAD scheme is considered INV-ERR secure if there exists a ⊥i ∈ S⊥ such that
AdvINV-ERR

AEAD,⊥i
(A) ≤ negl.

However, the composition of S⊥ is not clearly defined, as it may refer to either the
output of the decryption algorithm or the result of each condition predicate. As noted
in [BDPS14], a scheme is trivially INV-ERR secure if |S⊥| = 1. However, this can lead
to the misconception that simply outputting a generic error message for all types of
failures is sufficient for security. In reality, side-channel attacks, such as those described in
[AFP13], can still infer whether a specific error has been triggered, rendering this approach
ineffective.

INV-ERR can be seen as a variant of our notion where an adversary queries with the
original control flow F and any value produced by the execution of the decryption is not
disclosed to the adversary. In Proposition 2, we show that IND-CFA is strictly stronger
than INV-ERR.

Proposition 2. IND-CFA implies INV-ERR under the original control F.

Proof. (IND-CFA→ INV-ERR) Assuming the error space |S⊥| ≥ 2, let A be an INV-ERR
adversary, and fix ⊥1 as the error corresponding to the first condition predicate ω1 that is
to be distinguished. We can now construct an IND-CFA adversary B as follows: for each
decryption query (N,A,C) made by A, we let B forwards it to its oracle Dec with the
tuple (N,A,C). Notably, A eventually queries a tuple (N,A,C) that results in an error
other than ⊥1. In this case, the real transcript observed by B is TR = [m1, . . . ,mt, true, . . .],
which must be distinguished from the ideal transcript TI = [m1, . . . ,mt, false]. Thus we
have that AdvINV-ERR

AEAD,⊥1
(B) ≤ AdvIND-CFA

AEAD,F (A).
(INV-ERR ̸→ IND-CFA) Encode-then-Encrypt-then-MAC with “decryption first” con-

figuration as a counterexample. Details are discussed in Section 4.

3.3.2 Plaintext Awareness (PA) and RUP.

Plaintext Awareness. In [ABL+14], Andreeva et al. introduced plaintext awareness
(for symmetric encryption) to capture the indistinguishability of the plaintext where the
ciphertext is always decrypted and no check is not involved at all. Particularly, we consider
the stronger version of PA2 security. In the original work, PA2 is defined by comparing the
actual decryption function and a decryption simulator. For simplicity and to better align
with our notion, we consider the indistinguishability of plaintext as a random bitstring.
We define it as in Definition 6.
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Definition 6 (PA2 Advantage). Let D̃ be the decryption function without any check for
failure such that D̃ always output a plaintext, then

AdvPA2
AEAD(A) := ∆A

(
EncK , D̃ecK ; EncK , $D̃ec

)
for key K ←$ K.

As also highlighted by Andreeva et al. in [ABL+14], the PA2 notion is particularly
strong. Many schemes, such as OCB [RBBK01], GCM [MV04], and SIV [RS06], generally
fail to meet this security, with Encode-then-Encipher (EtE) [BR00] being an exception.
This observation underscores our approach of not pursuing the strongest level of security,
but rather examining how a scheme performs under various control flow scenarios to
determine its robustness.

Note that PA2 can be viewed as a variant of IND-CFA in which the adversary queries
using a modified control flow, F = (π1, . . . , πi). This means that all operations from the
original control flow F∗ are executed in the original order, with all condition predicates are
omitted. In Proposition 3, we show that IND-CFA implies PA2 under the control flow F.

Proposition 3. IND-CFA implies PA2 under the control flow F = (π1, . . . , πi).

Proof. We fix F = (π1, . . . , πi) as the control flow to be executed in the oracle Dec in the
game IND-CFA. We consider an PA2 adversary A, and we show that we can construct
an IND-CFA adversary B. For each query (N,A,C) made by A, we let B forward such
a query. Finally, A’s query will finally yield an output M that is distinguishable from a
random bitstring. Similarly, B can observe mt = M in TR = [m1, . . . ,mt] to distinguish
from the ideal transcript. Thus we have that AdvPA2

AEAD(A) ≤ AdvIND-CFA
AEAD,F (A).

INT-RUP. In [ABL+14], Andreeva et al. also discussed the INT-RUP notion, where the
adversary goal is to forge a valid ciphertext given an encryption oracle, a decryption oracle
D̃ec that always decrypt without verification, and a verification oracle Vfy that verifies
the validity of the ciphertext.

Definition 7 (INT-RUP Advantage).

AdvINT-RUP
AEAD (A) := Pr[AEnc,D̃ec,Vfy ⇒ (N,A,C) | VfyK(N,A,C) = 1]

for key K ←$ K.

It is easy to see that our notion implies INT-RUP under the original control flow since
the full execution trace has been provided to the adversary.

Proposition 4. IND-CFA implies INT-RUP under the original control flow F.

Proof. We consider an PA2 adversary A, and we show that we can construct an IND-CFA
adversary B. For each query (N,A,C) made by A to D̃ec, we let B forward such a query
to its oracle Dec. We let T = [m1, . . . ,mt, r1, . . .] be the transcript obtained by B. Then
we let B return mt to A. For each query made by A to Vfy, we let B checks whether false
is in the returned transcript. If so, B returns false to A. Otherwise, B returns true to A.

Finally, A will query a tuple (N,A,C) such that VfyK(N,A,C) = true. By forwarding
this tuple, B will observe a transcript without false to distinguish from the ideal transcript.
Thus we have that AdvINT-RUP

AEAD (A) ≤ AdvIND-CFA
AEAD,F (A).

4 Revisiting Encode-then-Encrypt-then-MAC
We revisit the Encode-then-Encrypt-then-MAC (EEM) construction, which is generally
considered authenticated encryption (AE) secure, to demonstrate the significance of
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operation ordering. Specifically, there are two distinct approaches to defining the decryption
process in EEM. The first, as outlined in [BN00], performs decryption before verifying the
tag (Figure 2, Left), while the second, from [BDPS14], mandates that decryption should
not occur if the authentication check fails (Figure 2, Right).

EEM1.DecNKe,Km
(C)

1 : C′||T ← C

2 : M ′ ← SE.DecN
Ke

(C)
3 : if false← MAC.VfyKm

(C, T ) then
4 : return ⊥
5 : if false← Encode.Check(M ′) then
6 : return ⊥
7 : M ← Encode.Decode(M ′)
8 : return M

EEM2.DecNKe,Km
(C)

1 : C′||T ← C

2 : if false← MAC.VfyKm
(C, T ) then

3 : return ⊥
4 : M ′ ← SE.DecN

Ke
(C)

5 : if false← Encode.Check(M ′) then
6 : return ⊥
7 : M ← Encode.Decode(M ′)
8 : return M

Figure 2: Two methods of executing EEM: the left side follows the definition in [BN00],
while the right side follows [BDPS14]. The differences in control flows are highlighted.

Note that both implementations achieve error invariance (INV-ERR) when the MAC
scheme is SUF-CMA-secure, as established in [BDPS14]. Let F1 and F2 represent the
control flows of EEM1 and EEM2, respectively. In the case of F1, by simply modifying
the tag, the real transcript becomes TR1 = [M ′, false]. Here, the adversary can distinguish
this transcript from the ideal transcript TI1 by M ′. This distinction supports our proof of
Proposition 2, showing that the IND-CFA notion is strictly stronger than INV-ERR.

Also, observe that, even if M ′ is not leaked, an adversary can still manipulate the
control flow, forcing the encoding check to be executed first, since M ′ has already been
available before both of condition predicates. This would result in a transcript TR1 = [true].

Proposition 5. EEM1 is not IND-CFA secure.

On the other hand, in the case of F2, with an invalid tag, the real transcript becomes
TR2 = [false], which is indistinguishable from the ideal transcript TI2 = [false], provided
the MAC scheme is SUF-CMA-secure, as discussed in [BDPS14]. Since the encoding
check depends on M ′, it cannot be meaningfully executed when M ′ is unavailable and the
availability of M ′ depends on whether the verification of tag is successful.

Proposition 6. For any IND-CFA adversary Acfa, there is an SUF-CMA adversary such
that

AdvIND-CFA
EEM2,F2

(Acfa) ≤ AdvSUF-CMA
MAC (Asuf )

Remark 1 (Comment on Control Flow Integrity). From the discussion above, it is evident
that the order of execution affects the security guarantees of cryptographic schemes.
The intuition behind our notion is to assess whether a scheme remains secure when its
control flow is either incorrectly implemented or manipulated by an adversary, and to
offer guidance on secure implementation practices. If the scheme fails to maintain security
under such conditions, software developers should implement additional techniques to
safeguard the control flow’s integrity or address the risks of leaked values from a software
security standpoint.

5 Security of Encode-then-Encipher
The Encode-then-Encipher (EtE) paradigm, introduced by Bellare and Rogaway in [BR00],
is widely recognized as a leading method for constructing authenticated encryption due
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to its robustness against decryption leakage and nonce misuse. This approach has been
adopted in various studies [HKR15, ST13] to develop robust authenticated encryption.

We provide a proof of the security of EtE when applied with a tweakable VIL cipher,
examining its control flow to reveal a potential vulnerability where the adversary can change
the order of condition predicates to infer low-entropy values under multiple condition
predicates. Additionally, we demonstrate that EtE allows for a single condition predicate
to address multiple failure conditions, thereby mitigating the security issues arising from
the use of multiple condition predicates.

5.1 EtE with Tweakable Cipher

We consider a tweakable cipher Ẽ : K × T ×M → C as described in [LRW02]. Here we
set the tweak space T = N ×AD × N. We define an EtE construction EtE = (Enc, Dec)
as follow Let C = EtE.EncN,A,τK (M) = ẼK;N,A,τ (M ||0τ ) and return C as ciphertext. Let
M∗ = Ẽ−1

K;N,A,τ (C). Then if M∗ ends with τ zeros, EtE.DecN,A,τK (C) returns M∗ excluding
ending τ zeros as plaintext. Otherwise, EtE.DecN,A,τK (C) returns ⊥.

The security of a tweakable block cipher is defined as (strong) indistinguishability from
tweakable random permutation ((±)P̃RP), which is a random permutation parameterized
by tweak T . To adapt this notion to a VIL cipher, we introduce an additional length
parameter. Let P̃ℓ represent the set of all tweakable permutations on {0, 1}ℓ. For each
pair (T, ℓ) ∈ T × N, we define Π̃T (·) as a tweakable permutation sampled independently
and uniformly at random from P̃ℓ.

Lemma 1 (TRP/RND Switching Lemma). Let A be an adversary that queries a distinct
tweak T each time. Then, for any ℓ ≥ 0, we have

Pr
[
AΠ̃T (·) ⇒ 0

]
− Pr

[
A$(·) ⇒ 0

]
= 0,

where Π̃T denotes an oracle implementing a tweakable random permutation Π̃T : {0, 1}ℓ →
{0, 1}ℓ, and $ denotes an oracle that samples a bitstring uniformly at random from {0, 1}ℓ.

Proof. We first consider $(·) i.e., the oracle that outputs a uniformly random bitstring in
{0, 1}ℓ upon each query. The probability that any specific bitstring L ∈ {0, 1}ℓ is output
by this oracle upon a query is 1

2ℓ .
For the tweakable random permutation oracle Π̃T , given that each tweak T used by A

is unique, a fresh permutation is sampled uniformly at random for each distinct tweak.
This results in the probability that any input M ∈ {0, 1}ℓ is mapped to any specific output
L ∈ {0, 1}ℓ at each query being 1

2ℓ as well.
Since both oracles, under the conditions specified, produce outputs with identical

distributions, the adversary A has 0 advantage in distinguishing between the tweakable
random permutation oracle and the oracle outputting random bits.

5.2 Proof of Security
We show that EtE with a tweakable is AE-CFA secure, highlighting it as a promising way
to construct robust AE. We provide a generalized result assuming the tweakable cipher is
a blackbox thus omitting the possible intermediate values used in a specific construction
e.g. a constructed IV in PIV [ST13].

Lemma 2. For any IND-CPA adversary A against the EtE making q encryption queries,
there is a P̃RP adversary Atprp against the tweakable VIL cipher Ẽ such that

AdvIND-CPA
EtE (A) ≤ AdvP̃RP

Ẽ
(Atprp) + q2

2ℓ
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where ℓ = arg min(N,A,M,τ)∈Q{|C| : C = EtE.EncN,A,τK (M)} and Q is the set of encryption
queries made by A.

Proof. We consider three games G0 – G2 where adversary’s queries are answered with the
tweakable VIL cipher Ẽ, a tweakable random permutation Π̃, and a random bitstring of
length |M |+ τ respectively. We have that

AdvIND-CPA
EtE (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)].

We first bound Pr[G0(A)]− Pr[G1(A)] by a P̃RP adversary Atprp.
Following Lemma 1, we know that the adversary has 0 advantage in distinguishing

between G1 and G2 if each queried tweak is distinct. Now we assume the adversary fix
(N,A, τ) but query with different M . This means we have a fixed permutation. Thus the
behaviors of G1 and G2 differ when G2 samples a repeated bitstring, which happens with
probability at most q2−q

2ℓ ≤ q2

2ℓ .

Following the definition in Section 5.1, we can then consider the implementation of
an EtE with a tweakable VIL cipher Ẽ as the following components: π1 := "M∗ ←
Ẽ−1
K;N,A,τ (C)" and ω1 := "M∗[ℓ−τ −1 . . . ℓ] = 0τ" for ℓ = |M∗|. Thus the only meaningful

control flow is F = (π1, ω1) since ω1 depends on π1. In Lemma 3, we show that EtE is
IND-CFA secure.

Lemma 3. For any IND-CFA adversary A against the EtE making q decryption queries,
there is a P̃RP adversary Atprp against the tweakable VIL cipher Ẽ such that

AdvIND-CFA
EtE,F (A) ≤ AdvP̃RP

Ẽ
(Atprp) + q2

2ℓ + q + 1
2τ

where ℓ = arg min(N,A,C,τ)∈Q{|M∗| : M∗ = Ẽ−1
K;N,A,τ (C)} and Q is the set of decryption

queries made by A, under the control F = (π1, ω1) where π1 := "M∗ ← Ẽ−1
K;N,A,τ (C)" and

ω1 := "M∗[ℓ− τ − 1 . . . ℓ] = 0τ".

Proof. We consider three games G0 – G2. In G0, we let Enc answer the query with Ẽ
and let Dec answer with the transcript T = [M∗, r] where M∗ and r ∈ {true, false} are
written by the π1 and v1 respectively. In G1, we replace Ẽ and Ẽ−1 in Enc and Dec
with a tweakable random permutation Π̃ and Π̃−1 respectively. In G2, we return the ideal
transcript T = [M∗, false] where M∗ ←$ {0, 1}|C|. Thus we have that

AdvIND-CFA
EtE,F (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)].

Similarly, we can bound Pr[G0(A)]− Pr[G1(A)] by a P̃RP adversary Atprp.
We first assume the adversary does not fix (N,A, τ), which means each tweak queried

to Dec is distinct. By Lemma 1, the adversary has 0 advantage in distinguish from
M∗. Thus the transcript T1 generated in G1 and the transcript T2 generated in G2 only
differs if T1 contains a true, meaning M∗ ends with τ zeros. Since we have a fresh random
permutation at each query, this happens with probability at most 1

2τ .
Now we assume the adversary fix (N,A, τ) for tweak but query with different C. Then

the behavior of G1 and G2 happens if one of the following two events happens. In the first
event, the transcript from G1 yields T2 = [M∗, true], which happens with probability at
most q

2τ given that G1 implements a fixed random permutation this time. In the second
case, the M∗ sampled in G2 repeats, which happens with probability q2

2ℓ . By Union Bound,
we obtain the bound above.
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Theorem 2. For any AE-CFA adversary A against the EtE making qe encryption queries
and qd decryption queries, there is a ±̃PRP adversary Astprp against the tweakable VIL
cipher Ẽ such that

AdvAE-CFA
EtE (A) ≤ 2 ·Adv±̃PRP

Ẽ
(Astprp) + qe

2ℓ1
+ qd

2ℓ2
+ qd + 1

2τ

where ℓ1 = arg min(N,A,M,τ)∈Q{|C| : C = EtE.EncN,A,τK (M)} and ℓ2 = arg min(N,A,C,τ)∈Q{|M∗| :
M∗ = Ẽ−1

K;N,A,τ (C)}.

Proof. The proof follows by combining Theorem 1 with Lemmas 2 and 3.

Verification for Existing Redundancy. One key feature of EtE paradigm is its
ability to leverage existing redundancy in the plaintext. For example, if the plaintext has
been encoded prior to stretching or follows a specific format, such redundancy can be
utilized to enhance authenticity. We define the density of message space M to measure
how redundant the message space is as in Definition 8.

Definition 8 (δ-dense). Let vδ : {0, 1}ℓ → {true, false} be a predicate for ℓ ∈ N. We say
M⊆ {0, 1}ℓ is δ-dense with respect to the predicate v if

Pr[ ∀M ∈M : vδ(M) = true ] ≤ δ.

In this case, we need to consider two condition predicates where ω1 := "M∗[ℓ− τ −
1 . . . ℓ] = 0τ" and ω2 := "vδ(M∗[0 . . . ℓ − τ − 1])". for ℓ = |M∗|. Then we can obtain
two control flows by manipulating the order of ω1 and ω2. We let F1 = (π1, ω1, ω2) and
F2 = (π1, ω2, ω1). Based on F1 and F2, we obtain two different IND-CFA advantages.

Corollary 2. Assuming the message spaceM is δ-dense, then for any IND-CFA adversary
A against EtE, there is a ±̃PRP adversary Astprp against the tweakable VIL cipher Ẽ such
that

AdvIND-CFA
EtE,F1

(A) ≤ Adv±̃PRP
Ẽ

(Astprp) + q2

2ℓ + q + 1
2τ

for F1 = (π1, ω1, ω2), and

AdvIND-CFA
EtE,F2

(A) ≤ Adv±̃PRP
Ẽ

(Astprp) + q2

2ℓ + (q + 1)δ

for F2 = (π1, ω2, ω1), where ω1 = "M∗[ℓ − τ − 1 . . . ℓ] = 0τ" and ω2 = "vδ(M∗[0 . . . ℓ −
τ − 1])".

Remark 2 (Correlating Conditions and Values). From Lemma 3, we observe that different
control flows provide varying levels of advantage to the adversary. If a condition predicate
that offers a greater advantage is evaluated before one with a smaller advantage, it becomes
easier for the adversary to distinguish between the real and ideal world.

We broaden the definition of “encoded parts” to encompass any values passed to a
condition predicate during decryption. For instance, this could involve verifying the CVV
digits of a credit card. We represent such a condition predicate as ω = "Dict[id] =
M∗[i . . . j]" for some publicly known identifier id and secret dictionary Dict. In scenarios
where a scheme is poorly implemented or the adversary takes control of the decryption
flow, they may be able to infer these values by evaluating such a condition predicate and
correlating the leaked plaintext with the error flag.

This risk exists because, even if the plaintext from a tuple (N,A,C, τ) queried by the
adversary remains indistinguishable from a random bitstring, there is still a possibility that
it “accidentally” passes the condition predicate, particularly when the value in question
has low entropy.
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Merge Condition Predicates. We observe an important property that EtE has that
can be used to resolve the issue: if the condition predicates all pertain to the same leaked
plaintext M∗, we can validate all the failure conditions with one condition predicate.
Essentially, the stretching process can be viewed as a mapping ψ :M→M∗.

We consider the two condition predicates described above. This allows us to derive a
new predicate vδ∗ :M∗ → {true, false} on the updated message space M∗, where δ∗ = δ

2τ .
This allows us to obtain the single valid control flow F = (π, vδ∗), which leads us to the
result in Lemma 4. In this case, an adversary can no long choose to first evaluate the
condition predicates that may discloses information.
Lemma 4. For any IND-CFA adversary A against the EtE making q decryption queries,
there is a P̃RP adversary Atprp against the tweakable VIL cipher Ẽ such that

AdvIND-CFA
EtE,F (A) ≤ Adv±̃PRP

Ẽ
(Atprp) + q2

2ℓ + (q + 1)δ
2τ

where ℓ = arg min(N,A,C,τ)∈Q{|M∗| : M∗ = Ẽ−1
K;N,A,τ (C)} and Q is the set of encryption

queries made by A, under the control flow F = (π1, ω1) where ω1 = "M∗[ℓ− τ − 1 . . . ℓ] =
0τ ∧ vδ(M∗[0 . . . ℓ− τ ])".

6 Conclusion and Future Work
In this work, we conducted a comprehensive security analysis of AEAD schemes under
adversarially-chosen control flows, with a particular focus on vulnerabilities during decryp-
tion. We introduced the new notion of IND-CFA to formalize the security of decryption
when the control flow is influenced by an adversary. This notion allows us to systematically
evaluate how much security can still be retained under such adversarial conditions, address-
ing gaps left by previous works on decryption leakage. By capturing both plaintext leakage
and descriptive errors, IND-CFA offers a more nuanced view of the security landscape.

We also revisited the Encrypt-then-MAC composition, a widely-used approach for
authenticated encryption. Our analysis emphasizes the critical role of operation order,
particularly the necessity of ensuring that decryption does not proceed if tag verification
fails. This reveals a vulnerability when execution flow is controlled by an adversary,
underscoring the importance of additional software-level protections, such as enforcing
control flow integrity or protecting memory to prevent the leakage of intermediate values.

Additionally, we provided a concrete security proof for the Encode-then-Encipher
paradigm, a prominent method for constructing robust authenticated encryption. Despite
its established security under various robustness notions, we demonstrated that Encode-
then-Encipher is susceptible to adversarial manipulation when multiple verification steps
are involved. However, we highlighted its unique ability to perform a single verification
across multiple failure conditions, offering a cost-effective patch that further strengthens
its security.

In this work, we focused on decryption security due to the central role verification
plays in the decryption process. Extending this analysis to encryption, where similar issues
may arise, would be a natural next step. While our focus was on symmetric primitives,
specifically AEAD schemes, control flow attacks also pose significant threats to public-key
primitives. Addressing this challenge and extending our security notions to these broader
contexts remains an important direction for future research.
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A Detailed Proofs

A.1 Proof of Lemma 2

G0 G1 G2

procedure Initalize

1 : K ←$ K

2 : 1 : for (T, ℓ) ∈ T × N do

2 : Π̃N,A,τ ←$ P̃ℓ

procedure Enc(N,A,M, τ)
1 : C ← ẼK;N,A,τ (M ||0τ )

2 : C ← Π̃N,A,τ (M ||0τ )

3 : C ←$ {0, 1}|M|+τ

4 : return C

Adversary BEnc

procedure B
1 : b← AEnc∗

(·)
2 : return b

procedure Enc∗(N,A,M, τ)
1 : C ← Enc((N, A, τ), M ||0τ )
2 : return C

Figure 3: Left: Games G0 – G2 for proof of Lemma 2. Dot-boxed code is exclusive to G1
and Frame-boxed code is exclusive to G2. Right: P̃RP adversary B for proof for proof of
Lemma 2. For notation simplicity, we let T = (N,A, τ) and we let T = N ×AD × N.

Proof. We consider three games G0 – G2 as in Figure 3 and we use a counter i as nonce. In
G0, the encryption is done with the tweakable VIL cipher Ẽ and the oracle first appends
τ zeros after M and returns ẼK;N,A,τ (M ||0τ ) as output. In G1, the oracle samples a
tweakable random permutation Π̃ and return Π̃N,A,τ (M ||0τ ) as output. In G2, the oracles
sample a bitstring uniformly at random from {0, 1}|M |+τ and returns it as output. Then
we have that

AdvIND-CPA
EtE (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)].

We can then construct a P̃RP adversary B from A as in Figure 3. We construct the
simulated encryption oracle Enc∗ for A such that for each encryption query made by A,
we let B append τ zeros after it and forward it to B’s oracle Enc, then B forwards the
response from Enc to A. We then let B return the same b that A returns. We then have
that

AdvP̃RP
Ẽ

(B) = Pr[G0(A)]− Pr[G1(A)].

Following Lemma 1, we know that the adversary has 0 advantage in distinguishing
between G1 and G2 if each queried tweak is distinct. Thus we assume the adversary fix
(N,A, τ) but query with different M . This means G1 implements a random permutation.
Thus the behaviors of G1 and G2 differ when G2 samples a repeated bitstring, which
happens with probability at most q2−q

2ℓ ≤ q2

2ℓ . Thus we have that

Pr[G1(A)]− Pr[G2(A)] ≤ q2

2ℓ
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Finally, it yields that

AdvIND-CPA
EtE (A) ≤ AdvP̃RP

Ẽ
(B) + q2

2ℓ

which concludes the proof.

A.2 Proof of Lemma 3

G0 G1 G2

procedure Initalize
1 : K ←$ K

2 : 1 : for (T, ℓ) ∈ T × N do

2 : Π̃N,A,τ ←$ P̃ℓ

procedure Enc(N,A,M, τ)
1 : C ← ẼK;(N,A,τ)(M ||0τ )

2 : C ←$ Π̃N,A,τ (M ||0τ )

3 : return C

procedure Dec(N,A,C, τ)
1 : M∗ ← Ẽ−1

K;(N,A,τ)(C)

2 : M∗ ← Π̃−1
N,A,τ (C)

3 : M∗ ←$ {0, 1}|C|

4 : ℓ← |M∗|
5 : if M∗[ℓ− τ − 1 . . . ℓ] ̸= 0τ then
6 : T ← [M∗, false]
7 : else
8 : T ← [M∗, true]

9 : T ← [M∗, false]

10 : return T

Figure 4: Game G0 – G2 for the proof of Lemma 3. Dot-boxed code is exclusive to G1.
Frame-boxed code is exclusive to G2. Doubly-boxed code is exclusively for both G1 and
G2.

Adversary BEnc,Dec

procedure B
1 : b← AEnc∗,Dec∗

(·)
2 : return b

procedure Enc∗(N,A,M, τ)
1 : C ← Enc((N, A, τ), M ||0τ )
2 : return C

procedure Dec∗(N,A,C, τ)
1 : M∗ ← Dec((N, A, τ), C)
2 : ℓ← |M∗|
3 : if M∗[ℓ− τ − 1 . . . ℓ] ̸= 0τ then
4 : T ← [M∗, false]
5 : else
6 : T ← [M∗, true]
7 : return T

Figure 5: ±̃PRP adversary B for the proof of Lemma 3.

Proof. We consider three games G0 – G2 as in Figure 4 for the proof. In G0, A’s queries
are answered with Ẽ and Ẽ−1 respectively. In G1, A’s queries are answered with Π̃
and Π̃−1 respectively. The transcripts in G0 and G1 are defined as T = [M∗, r] where
r ∈ {true, false} depends on whether M∗ ends with τ zeros. In game G2, a bitstring M∗ is
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sampled uniformly at random of length |C| and the transcript T = [M∗, false] is always
returned. In G2, we still answer A’s encryption query with Π̃. We have that

AdvIND-CFA
EtE (A) =

1∑
i=0

Pr[Gi(A)]− Pr[Gi+1(A)].

Now we show that we can construct an ±̃PRP adversary B as in Figure 5. We construct
the simulated encryption oracle Enc∗ for A such that for each encryption query made by
A, we let B append τ zeros after it and forward it to B’s oracle Enc, then B forwards the
response from Enc to A. For the simulated decryption oracle Dec∗, we let B forward the
tuple queried by A to its oracle Dec to get M∗. Depending if M∗ ends with τ zeros, we
let B return T = [M∗, true] and T = [M∗, false] respectively. We then have that We then
have that

Adv±̃PRP
Ẽ

(B) = Pr[G0(A)]− Pr[G1(A)].

We first assume the adversary does not fix (N,A, τ), which means each tweak queried to
Dec is distinct. Similarly, following Lemma 1, the adversary has 0 advantage in distinguish
from M∗. Thus the transcript T1 generated in G1 and the transcript T2 generated in G2
only differs if T1 contains a true, meaning M∗ ends with τ zeros. Since we have a fresh
random permutation at each query, this happens with probability at most 1

2τ .
Now we assume the adversary fix (N,A, τ) but query with different C. Then the

behavior of G1 and G2 happens if one of the following two events happens. In the first
event, the transcript from G1 yields T2 = (M∗, true), which happens with probability at
most q

2τ since we fix a random permutation in G1 this time. In the second case, the M∗

sampled in G2 repeats, which happens with probability q2

2ℓ . By Union Bound, we obtain
the bound

Pr[G1(A)]− Pr[G2(A)] ≤ q2

2ℓ + q

2τ + 1
2τ

Finally, we have that

AdvIND-CFA
EtE (A) ≤ Adv±̃PRP

Ẽ
(B) + q2

2ℓ + q + 1
2τ

which concludes the proof.
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