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Abstract. Consider the task of secure multiparty computation (MPC) among n parties
with perfect security and guaranteed output delivery, supporting t < n/3 active corruptions.
Suppose the arithmetic circuit C to be computed is defined over a finite ring Z/qZ, for
an arbitrary q ∈ Z. It is known that this type of MPC over such ring is possible, with
communication that scales as O(n|C|), assuming that q scales asΩ(n). However, for constant-
size rings Z/qZ where q = O(1), the communication is actually O(n logn|C|) due to the need
of the so-called ring extensions. In most natural settings, the number of parties is variable
but the “datatypes” used for the computation are fixed (e.g. 64-bit integers). In this regime,
no protocol with linear communication exists.
In this work we provide an MPC protocol in this setting: perfect security, G.O.D. and t < n/3
active corruptions, that enjoys linear communication O(n|C|), even for constant-size rings
Z/qZ. This includes as important particular cases small fields such as F2, and also the ring
Z/2kZ. The main difficulty in achieving this result is that widely used techniques such as
linear secret-sharing cannot work over constant-size rings, and instead, one must make use
of ring extensions that add Ω(logn) overhead, while packing Ω(logn) ring elements in each
extension element in order to amortize this cost. We make use of reverse multiplication-
friendly embeddings (RMFEs) for this packing, and adapt recent techniques in network
routing (Goyal et al. CRYPTO’22) to ensure this can be efficiently used for non-SIMD
circuits. Unfortunately, doing this naively results in a restriction on the minimum width of
the circuit, which leads to an extra additive term in communication of poly(n) · depth(C).
One of our biggest technical contributions lies in designing novel techniques to overcome this
limitation by packing elements that are distributed across different layers. To the best of our
knowledge, all works that have a notion of packing (e.g. RMFE or packed secret-sharing)
group gates across the same layer, and not doing so, as in our work, leads to a unique set of
challenges and complications.

1 Introduction

In secure multiparty computation, or MPC for short, a set of parties P1, . . . , Pn, each having an
input xi, want to compute a function of their inputs y = f(x1, . . . , xn) in such a way that only
the output y is produced, and nothing additional about the parties’ inputs is revealed. This can
be done assuming a trusted party that receives the inputs, computes the function and returns the
output while promising to leak nothing else, but the goal in MPC is to achieve the same guarantees
without relying on such trusted party, using only communication among the parties. MPC protocols
are resilient against a potential coalition of corrupted parties that cooperate, coordinated by an
adversary, in order to break the remaining parties’ privacy. Several MPC protocols have been
proposed through time, leading to practical constructions seen in recent years and even some
real-world applications and deployments (e.g. see https://mpc.cs.berkeley.edu/).

MPC protocols are typically characterized by the amount of corrupted parties t they can tol-
erate, with three notable settings being t < n/3, t < n/2 and t < n. Protocols with t ≥ n/3
must allow for some negligible statistical error (if t < n/2), or even make use of cryptographic
assumptions (if t ≥ n/2). In the t < n/3 case several results are known: not only we can obtain
perfectly secure MPC [BOGW88], which safeguards the parties’ inputs regardless of the computa-
tional power of the adversary, but we can do so with several appealing features such as guaranteed
output delivery (G.O.D., which ensures the successful completion of the protocol in spite of any
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adversarial misbehavior), and a communication complexity that requires each party to send in
average an amount of messages that is independent of the total number of parties, and depends
only on the circuit size of the function f (here we omit additive terms that are independent of the
circuit size but only depend on the number of parties) [GLS19]. More precisely, we can represent
the function f as an arithmetic circuit C comprised of input, output, addition and multiplication
gates over some finite ring Z/qZ of integers modulo an integer q, and if |C| denotes the number of
multiplication gates, it is possible to obtain perfectly secure MPC over Z/qZ with G.O.D. where
the total communication complexity is O(n|C|) ring elements, which we refer to as linear com-
munication complexity. A common choice is taking q to be a prime, but this claim holds for any
arbitrary integer q: the Chinese remainder theorem reduces the general case to moduli of the form
q = pk, for a prime p and an integer k, and works such as [ACD+19] show that perfectly secure
MPC with G.O.D. over these moduli is possible, with linear communication complexity. It is rele-
vant to study the general modulus case as it contains several relevant cases such as q = 2, 232 or
264, which have received considerable attention in recent works due to practical benefits [DEF+19].

Unfortunately, the claim of linear communication is not entirely accurate. Shamir secret-sharing
is a core technique to enable these results, and for this scheme to work over Z/pkZ, p must be
strictly larger than n. Once n becomes larger than p, a so-called Galois ring extension of de-
gree Ω(log n) must be used. It is still true that the communication is O(n|C|) ring elements,
but this time each ring element is Ω(log n) bits long. Hence, asymptotic communication is truly
O(n log n|C|). In [CCXY18], the authors partially address this issue relying on the technique of
reverse multiplication-friendly embeddings (RMFEs), which allow them to remove the log n over-
head when computing many copies of the same circuits, i.e., a SIMD circuit. However, for general
circuits, directly applying their techniques does not work as we will discuss in Section 1.3. This
leads to the following question:

Can we design perfectly secure MPC protocols for general circuits over a constant-size ring Z/qZ
whose asymptotic communication complexity scales as O(n|C|)?

Again, all current solutions have communication that scales as O(n|C|) ring elements, but
assuming that either the ring bit-size scales as log n or the underlying circuit is a SIMD circuit.
For fixed-size rings (which is the natural setting in practice) and general circuits, ring extensions
must be used, which leads to a communication of O(n log n|C|). Recall that this affects the very
practically-motivated settings of binary computation (i.e. circuits over Z2), and also the int32

and int64 cases (i.e. circuits over Z/2kZ for k = 32 and k = 64).

1.1 Our Contribution

In this work we give an answer in the affirmative to the aforementioned question. We provide an
MPC protocol with the following desirable features:

– Perfect security against an active adversary corrupting t < n/3 parties

– Securely computes circuits over Z/qZ for any constant q

– The total number of elements in Z/qZ communicated scales as O(|C|·n+c·n·log n+n3 ·log2 n),
where c is the number of clients

– Guaranteed output delivery

As we have previously discussed, via CRT this task reduces to the task of computation over a
ring Z/pkZ with constant p. For the sake of presentation we focus on p = 2, that is, computation
over Z/2kZ, but the ideas presented directly work for more general p.

Remark 1 (On communication complexity). In our protocol, the communication complexity scales
as O(|C| · n) only when |C| = Ω(c log n+ n2 log2 n).

Remark 2 (On security with abort). We note that even removing the G.O.D. condition, and settling
with security with abort only, obtaining a protocol with the other properties is not simple, and is
on its own a relevant and challenging open question. In this work we aim for the stronger notion
of G.O.D.
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Remark 3 (Cost of addition gates). In our work, (a linear amount of) communication is required for
every addition gate, which is not the case if one settles for O(n log n|C|) complexity (where addition
gates are for free in terms of communication). Looking ahead, this occurs due to a technique
called network routing, originated in [GPS22,GPS21], which is used to exploit some notion of
packing while routing values through the circuit correctly. The work of [GPS22] (which is set in
a different context than ours) also suffers from communication per addition gates, and avoiding
this overhead in our work would likely lead to improvements to [GPS22]. If the circuit does not
have substantially many more addition gates than multiplication gates (a reasonable setting in
practice), then this condition becomes immaterial for our asymptotic O(n|C|) claim.

1.2 Related Work

Perfectly secure MPC for t < n/3 with linear communication and G.O.D. has been studied in
multiple works such as the one by Goyal, Liu, and Song [GLS19] and Beerliová-Trub́ıniová and
Hirt [BTH08]. These are set specifically in the context of finite fields Fpd , where pd = Ω(n). The
work of Abspoel et al. [ACD+19] generalizes this to the ring Z/pkZ by using Galois ring extensions
of degree d = Ω(n). Unfortunately, as we have pointed out, these techniques are not suitable for
constant-sized rings since they add an Ω(log n) overhead.

If it is known that t is far from n/3, that is, t < n( 13−ϵ) for any constant ϵ > 0, then it is possible
to obtain perfectly fully secure MPC with a communication of O(|C|) (independent of n) for fields
Fpd with pd = Ω(n), and O(log n|C|) for constant-sized fields [DIK10]. These techniques extend
naturally to the case of Z/pkZ by using ring extensions as in [ACD+19], and to arbitrary Z/qZ via
CRT. This is better than our linear communication O(n|C|), but it assumes the aforementioned
gap ϵ > 0. Our protocol works for the case ϵ = 0: t < n/3, and n can be as small as n = 3t+ 1.

In the t < n/2 case with statistical security, a similar situation exists: most protocols with
G.O.D. that achieve linear communication complexity require a ring Z/pkZ with p > n [BFO12],
[GSZ20,ACD+19]. This state of affairs changed for the case of Fp and security with abort for
constant p in the recent work of [PS21]. The same ideas in [PS21] extend naturally to Z/pkZ for
constant p. However, it is not clear how to extend the ideas in [PS21] to G.O.D. since, in the
t < n/2 regime, the techniques used to achieve full security are considerably much more complex
than these for t < n/3 (which are already quite intricate). The core difference is that in t < n/2
setting the central idea to achieve G.O.D. , dispute control, differs from player elimination—in
spite of sharing some similarities: unlike player elimination, in t < n/2 this pair cannot be removed
because one may be inadvertently removing one of the t + 1 honest parties, and t honest parties
alone cannot have enough joint information to finish the computation.

Finally, we note that if one only wants to achieve statistical security (rather than perfect
security) in the G.O.D. setting for t < n/3, [IKP+16] has achieved O(poly(log(n))|C|) elements
of communication if t < n(1/2 − ϵ), for any constant ϵ > 0, which is even better than linear
communication.

1.3 Overview of our Techniques

We begin by highlighting the difficulties that existing works face when considering MPC over
constant-size rings. Perfectly secure MPC with linear communication (for non-constant fields) was
first proposed in [BTH08], and it was later improved in [GLS19] to remove a term dependent
on the circuit depth. These ideas can be generalized to rings such as Z/pkZ [ACD+19], again
with the same complexity if p = Ω(n). This complexity comes from the use of Shamir secret-
sharing, which requires enough interpolation points to operate, and hence it requires a ring of
large enough characteristic. Shamir’s is not the only linear secret-sharing scheme one could use,
but it is unlikely there exist other schemes that somehow reduce this secret/share size requirement,
since this is highly connected to the MDS conjecture (see for example [FR22, Lemma 1]). Since
Shamir secret-sharing seems unavoidable, our core idea is to use the ring extensions needed for
it, while packing multiple entries in a single ring extension secret-shared value, so that the cost
per single share is ultimately linear. Ultimately, the challenges lie on efficiently making use of this
packing, which is our focus in this overview.

As we have mentioned previously, here and for the rest of our paper we focus on the case
Z/2kZ. Furthermore, for the sake of this introduction only we focus on security with abort (which,
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as mentioned previously, is already a challenging task on its own). We highlight towards the
end of the section how to tackle the G.O.D. case. Our work makes use of several techniques
in the literature such as player elimination [BTH08], reverse multiplication-friendly embeddings
(RMFEs) [CCXY18], network routing [GPS22,GPS21], among others. In this section we provide a
high level overview of how these ideas are put together in order to obtain our protocol. First, we
introduce some notation, with further details given in Section 2 and beyond. We let GR(2k,m) be
a Galois ring extension of Z/2kZ of degree m, which can be seen as the ring of polynomials over
Z/2kZ modulo a monic polynomial irreducible mod 2 of degree m (for more details see Section 2
or [Wan03]). We can perform Shamir secret-sharing over this ring if m = ⌈log n⌉ + 1 [ACD+19],
and we denote degree-d sharings of x ∈ GR(2k,m) by [x]d. An RMFE is a pair of Z/2kZ-linear
homomorphisms (ϕ : (Z/2kZ)ℓ → GR(2k,m), ψ : GR(2k,m) → (Z/2kZ)ℓ) satisfying ψ(ϕ(x) ·
ϕ(y)) = x ⋆ y for every x,y ∈ (Z/2kZ)ℓ. Such objects exist, with ℓ = Θ(m) [CCXY18,ELXY23],
and in fact we can also take them such that ϕ(1) = 1 [ELXY23]. This ensures that ψ(ϕ(x)) =
ψ(ϕ(x)ϕ(1)) = x ⋆ 1 = x.

Embedding using RMFEs. We may take as a starting point the approach in [CCXY18] in
order to secret-share elements of Z/2kZ efficiently using Shamir secret-sharing via RMFEs. Recall
that one (naive) way of secret-sharing an element x ∈ Z/2kZ using Shamir SS is to embed it
in GR(2k,m), and then secret-sharing over GR(2k,m), which results in an undesired overhead of
m ≈ log n. Instead, one may secret-share m elements simultaneously by interpreting them as an
element of GR(2k,m), removing the overhead of m in an amortized sense (i.e. after dividing by
the number of secrets m), but unfortunately this approach does not interact well with the MPC
setting since one cannot easily multiply elements this way.

RMFEs are introduced in [CCXY18] as a solution to this problem. Instead of secret-sharing m
elements by thinking of them as an element of GR(2k,m), ℓ elements x = (x1, . . . , xℓ) ∈ (Z/2kZ)ℓ
are shared together by first mapping them as ϕ(x) ∈ GR(2k,m), and sharing [ϕ(x)]t instead. This
has an overhead of m for ℓ secrets, which is m/ℓ = Θ(1) amortized. Furthermore, the multiplicative
property of RMFEs turns out to enable products on secret-shared data, making this embedding
particularly suitable for MPC. In fact, this is used in [CCXY18] to remove the log n overhead of
perfect security in the context in which the circuit C is structured as ℓ copies of the same function,
run on possibly different inputs. Our goal however is to enable a more general class of circuits that
have no specific structure in terms of their wiring, and hence this approach is insufficient.

To illustrate the main challenge, let us discuss how the approach from [CCXY18] works, for
ℓ copies of the same circuit. The invariant the parties maintain is that, for every set of ℓ values
x = (x1, . . . , xℓ) ∈ (Z/2kZ)ℓ corresponding to the same wire across the ℓ copies, the parties have
sharings [ϕ(x)]t. Given ℓ copies of a multiplication gate with inputs x and y, the invariant is
maintained by using a triple ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t), where c = a ⋆ b. Assuming the parties have
[ϕ(x)]t and [ϕ(y)]t, they can locally compute [ϕ(x) + ϕ(a)]t and open this as ϕ(u), and similarly
open ϕ(v) where v = y + b. Crucially, since this is Shamir reconstruction, this can be done with
error correction/detection, ensuring no errors are introduced. Now, the parties compute locally

[z]t = ϕ(u) · ϕ(v)− ϕ(v) · [ϕ(a)]t − ϕ(u) · [ϕ(b)]t + [ϕ(c)]t,

which satisfies ψ(z) = x ⋆y, thanks to the properties of RMFEs. Finally, the parties can execute a
simple re-encoding protocol that applies ϕ◦ψ : GR(2k,m)→ GR(2k,m) to [z]t, yielding [ϕ(x⋆y)]t,
hence preserving the desired invariant.

Now, if the circuit is non-SIMD, it could easily happen that, say, a value encoded in position 1
must be multiplied (or even added) with a value encoded in position 2. The properties of RMFEs
only allow for the computation of x⋆y = (x1y1, . . . , xℓyℓ), but they fall short if one somehow needs
products that are “not aligned”, such as (x1y2, x2y1, x3y3, . . .). SIMD circuits do not present such
misalignments, which is why the techniques in [CCXY18] work in that setting.

Network routing. To alleviate this issue, we may resort to network routing, a general technique
introduced in [GPS22,GPS21] to ensure the sharings of output groups can be rearranged in such
a way that they are “aligned” when fed as inputs to future groups of gates. In these works,
such “wiring” issues appeared in the context of packed secret-sharing where, as in our setting,
parties have shares whose underlying secrets are vectors that can somehow be added or multiplied
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component-wise, but cannot be re-routed easily. In our work we show that such techniques can
also be used in our context, where the “packing” is done with RMFEs. For the sake of keeping
this overview as lightweight as possible, we will not dive into the details on how this is done, and
instead we will refer the reader to Sections 3.4 and E where details are provided. For now, it suffices
to say that there is an efficient method for the parties to obtain sharings [ϕ(x)]t for every input
group in a given layer, starting from packed sharings of every output group of the previous layers.

For simplicity in the exposition we will assume from now on that the circuit only has multi-
plication gates, without any addition operation. We discuss at the end of this overview why this
is convenient, and how to handle the case of addition gates as well. Naturally, our main protocols
include the general case.

On the dependency on circuit width. Using the network routing techniques mentioned above,
together with the protocol sketched earlier, we would obtain the desired result: perfectly secure
MPC for t < n/3 over Z/2kZ with G.O.D. and linear communication O(n). However, this result
hides an assumption on the circuit structure: it requires each layer to contain at least Ω(nℓ)
multiplication gates. This is because every layer requires parallel reconstructions for each of its
multiplication gates, and robust reconstruction of Shamir sharings with linear communication
(i.e. instead of all parties sending their shares to each other, which would be quadratic) requires
Ω(n) reconstructions to be done in parallel [DN07]. On top of this each such Shamir sharing
“packs” ℓ ≈ O(log n) values, which results in a requirement of nℓ secrets to be reconstructed (per
layer!) to obtain the communication gains.

The above results in a total communication that is not O(n|C|), but rather O(n|C| + n2ℓ ·
depth(C)). For circuits C such that depth(C) ≫ |C|/n (e.g. “skinny” circuits), this extra term
dominates communication. In contrast, for the case of MPC over Fp for large p, it is known that
the n2ℓ ·depth(C) term can be eliminated, resulting in true linear communication O(n|C|) [GLS19].
This leaves a gap between what we know over (large) fields (which can be generalized for Z/pkZ
for large p), and the case of Z/2kZ. What follows is dedicated to discuss how we address this
complexity gap.

Computing the circuit optimistically with additive secret-sharing. We first reduce the
term n2ℓ·depth(C) to nℓ·depth(C) via the following core idea—also used in [GLS19]: derive additive
sharings from Shamir sharings and use the additive sharings to compute the circuit (which enables
cheating but can be done with linear communication without any minimum batch size requirement),
and only use the Shamir sharings for a final verification check (which involves reconstructing many
robust sharings in parallel and hence can be done with linear communication complexity). For
the optimistic computation of the circuit we will make use of additive secret-sharing, which we
denote by ⟨x⟩ for x ∈ Z/2kZ (we also extend this notation naturally to vectors over Z/2kZ). For
input gates, each client having a group of inputs x ∈ (Z/2kZ)ℓ secret-shares [ϕ(x)]t towards the
parties (the parties perform degree checks that ensure the degree is indeed ≤ t), and then the
parties locally derive ⟨x⟩ from [ϕ(x)]t. This is done by first locally converting [ϕ(x)]t to ⟨ϕ(x)⟩
(a standard procedure involving each party multiplying locally by certain Lagrange coefficients),
followed by a local application of the mapping ψ, to obtain ⟨ψ(ϕ(x)) = x⟩. Now, the parties
optimistically compute the circuit. For every pair of values to be multiplied ⟨x⟩ and ⟨y⟩, letting
i ∈ [ℓ] be the index of this gate in its group, the parties can use the triple ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t)
associated to this group to locally derive the additively shared triple (⟨ai⟩, ⟨bi⟩, ⟨ci⟩), which they
can use to multiply ⟨x⟩ and ⟨y⟩: open ui = x + ai and vi = y + bi (with linear communication
without any minimum batch size restriction), and compute ⟨xy⟩ = ui · vi − vi · ⟨a⟩ − ui · ⟨b⟩+ ⟨c⟩.

For the check, recall that the parties have Shamir sharings of [ϕ(x)]t for every group x in
the input layer. Consider a multiplication group in the first layer having as inputs x,y. Using
network routing, the parties can obtain Shamir sharings [ϕ(x)]t, [ϕ(y)]t, so they can compute
[ϕ(u)]t = [ϕ(x)]t + [ϕ(a)]t and [ϕ(v)]t = [ϕ(y)]t + [ϕ(b)]t, hence obtaining robust versions of the
reconstructed values u,v when these gates were computed optimistically. Furthermore, the parties
can compute locally [z]t = ϕ(u) · ϕ(v) − ϕ(v) · [ϕ(a)]t − ϕ(u) · [ϕ(b)]t + [ϕ(c)]t, and apply the
re-encoding protocol from [CCXY18] to obtain [ϕ(x ⋆ y)]t. Doing this for all groups in the first
layer ensures that the parties obtain robust sharings [ϕ(z)]t of all output groups z in the first layer.
This process can be iterated: the parties use network routing to obtain robust sharings of all input
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groups in the second layer, obtain robust sharings of all reconstructed values u and v during the
optimistic computation of this layer, and then compute robust sharings of the outputs groups in
this layer. This is repeated until the output layer is reached. Before reconstructing the outputs,
however, the parties robustly reconstruct in parallel all Shamir sharings [u]t and [v]t corresponding
to all multiplication groups, cross checking with the values reconstructed optimistically.5 The key
point is that this robust reconstruction involves enough values as to be able to enjoy amortized
linear communication complexity.

Packing across different multiplication layers. Using additive SS optimistically during the
circuit computation shaves a factor of n in the term n2ℓ ·depth(C), but it still leaves us with a term
nℓ · depth(C), since we still need to RMFE-pack ℓ gates across the same layer. To address this we
allow groups to contain gates spanning over potentially different layers, with the only restriction
being that the set of groups must form a DAG (we say there is an edge from group A to group
B if at least one gate in A connects to one gate in B; in Section 3.1 we show that such grouping
can always be done for any circuit—without any width restrictions). For notational convenience
we assume that the gates in every group are indexed in increasing topological order, meaning that
if a gate indexed by i in a group depends on the output of another gate indexed by j in the same
group, then j < i. As before, we still group each client’s input wires into batches of size ℓ each,6

and we also let each client secret-shares a group of inputs x as [ϕ(x)]t.

Careful observation reveals that such relaxation in grouping does not really affect the optimistic
computation using additive SS: the parties can still derive additive SS triples (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) and
use these to perform multiplications. However, complications will arise at the verification stage. To
illustrate this, let us consider the first multiplication group in topological order, and let us denote
its inputs as x and y. If it was the case that all of the multiplications in the group belonged to the
first layer, then the parties could perform network routing as before to obtain [ϕ(x)]t and [ϕ(y)]t.
Unfortunately, since we are packing across different layers, it can happen that, say, the left input
xi to the i-th gate is equal to the output xjyj of the j-th gate in the same group, with j < i. This
prevents us from determining [ϕ(x)]t from the input layer alone.

Determining [ϕ(x)]t for the first multiplication group. For illustration, let us keep our focus on the
first multiplication group. Our goal is to show how the parties can obtain robust sharings [ϕ(x)]t,
which, as illustrated above, cannot be derived from the input layer alone since the left input xi
to get i depends on the j-th output xjyj of gate j < i. First, recall that the parties have opened
⟨u⟩ = ⟨x⟩+⟨a⟩ and ⟨v⟩ = ⟨y⟩+⟨b⟩, in the process of processing this group optimistically. However,
due to the non-robustness of additive SS, these reconstructions may have resulted in u′ = u + δ
and v′ = v + ϵ, for some possibly non-zero δ and ϵ. Using these reconstructions, the parties can
compute locally [ϕ(x+δ)]t = ϕ(u′)− [ϕ(a)]t and [ϕ(y+ϵ)]t = ϕ(v′)− [ϕ(b)]t, which correspond to
robust sharings of the inputs x and y, but potentially incorrect. Now we let the parties execute any
correct multiplication protocol (we borrow the protocol from [BTH08,ACD+19] for this purpose)
to compute the product [ϕ(x+δ) ·ϕ(y+ϵ)]t, followed by re-encoding as in [CCXY18] (i.e. applying
ϕ ◦ ψ) to obtain [ϕ((x+ δ) ⋆ (y + ϵ))]t.

For simplicity let us assume that i is the only index in this group whose corresponding gate
depends on other outputs from the same group, with all the other gates receiving inputs directly
from the input layer. In particular, both xj and yj come from the input layer. Recall that the goal
is to obtain [ϕ(x)]t using network routing. Since the parties have robust sharings of all groups in
the input layer, they have almost all the pieces needed to obtain [ϕ(x)]t, with the only missing
part being robust sharings that contain the output of the j-th gate, since this is needed for the
i-th left input xi. Our idea is to use, for the missing j-th output, the sharings [ϕ((x+δ)⋆ (y+ϵ))]t
computed above, which contain the j-th output xjyj + γ, where γ = xjϵj + yjδj + δjϵj , in the j-th
entry. In other words, the parties perform network routing on the sharings from the input layer and
the sharing [ϕ((x+ δ) ⋆ (y + ϵ))]t to obtain [ϕ(x)]t. However, since the i-th entry corresponds to

5 As shown in [GLS19], certain care is needed to ensure that security is not broken by delaying verification.
We omit these details in this overview.

6 We assume each client has Ω(ℓ) = Ω(n) inputs. Otherwise there is a minor overhead due to packing,
but this is only restricted to the input layer.
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xi + γ, the actual secret is [ϕ(x+ γei)]t. In other words, the parties do not obtain robust sharings
of the correct x, but instead, the i-th entry is shifted by γ.

This may raise a red flag at first sight: recall we are using the sharing [ϕ(x+γei)]t to verify the
multiplications in the first group, in particular, verifying that ⟨u⟩ = ⟨x⟩+⟨a⟩ was opened correctly.
However, we are using an incorrect [ϕ(x+γei)]t, so it may be the case that this somehow helps the
adversary reconstruct ⟨u⟩ incorrectly. For example, the adversary may be able to reconstruct ⟨u⟩
as u+ γei, which is consistent with the robust sharings held by the parties [ϕ(x+ γei) + ϕ(a)]t,
and hence the check will pass, in spite of ⟨u⟩ being reconstructed incorrectly. Yet, observe that this
is an attack only if γ is non-zero, for which it must be the case that either δj or ϵj is not zero; say
for simplicity δj ̸= 0. Fortunately, this will be caught in the check: the parties have the sharings
[ϕ(x + γei) + ϕ(a)]t, which are incorrect in position i but, crucially, are correct in position j, so
the adversary will not be able to conceal the fact that the j-th entry was modified.

Determining [ϕ(x)]t for every input group. The principle above applies more generally. After
performing optimistic computation using additive secret-sharing, the parties perform the following
for every multiplication group with inputs x,y. Let ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t) be the Shamir triple
associated to the group, and recall that the parties reconstructed (potentially incorrectly) u and v
as part of the optimistic multiplications. The parties compute locally [ϕ(x)]t = ϕ(u)− [ϕ(a)]t and
[ϕ(y)]t = ϕ(v)−[ϕ(b)]t, and then they compute the product [ϕ(x⋆y)]t using a secure multiplication
protocol followed by re-encoding, as illustrated earlier. At this point, for every set of outputs x of a
given group, the parties hold [ϕ(x)]t. Moreover, the following crucial property holds: if no cheating
occurred up to (and including) the optimistic evaluation of the gate at index i, then x[i] holds the
correct wire value.

Now, the parties apply network routing to map all the packed sharings of the output groups
into packed sharings of input groups [ϕ(x)]t, [ϕ(y)]t for every multiplication group with inputs
x,y. Importantly, due to the property above, if no cheating has occurred prior to the computation
of, say, the i-th gate in a group with inputs x,y, then we know that the sharings [ϕ(x)]t, [ϕ(y)]t
derived from the network routing satisfy that the i-th entries xi and yi are correct. This way, if
cheating occurs for the first time in this gate, by reconstructing incorrect u′i = xi + ai + δi and
v′i = yi + bi + ϵi (which may result in more errors in other entries of the vectors [ϕ(x)]t, [ϕ(y)]t,
but only with indices j > i, not for j ≤ i), the parties can use [ϕ(x)]t, [ϕ(y)]t (together with the
associated triple ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t)) to check the correctness of the reconstructed u′i and v

′
i.

Dealing with Addition Gates. Recall we assumed for simplicity that the circuit did not have
any addition gates. We briefly comment how the general case is handled. First, both addition and
multiplication gates are grouped in sets of ℓ gates each (where the gates within each group are of
the same type). The optimistic computation phase remains the same: the parties handle addition
gates by simply adding their (additive) shares together, locally. For the verification step, however,
we need the parties to communicate for every group of addition gates. To see why this is the case,
consider a group of addition gates with inputs ⟨x⟩, ⟨y⟩, and imagine that every output of these
gates is later each fed to a multiplication gate. The parties can of course add locally ⟨x⟩, ⟨y⟩,
but recall that for the network routing phase to work, we need the parties to have packed Shamir
sharings of the outputs, like [ϕ(x+y)]t, but it is not clear how they can obtain these from ⟨x⟩, ⟨y⟩
alone.

For the case of multiplication gates, this was achieved with the help of the (packed) triple that
was used for the product. For the case of addition gates, we will use a similar idea: we make use of
an additive triple ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t), where c = a + b, ask the parties to open u ← ⟨x + a⟩
and v ← ⟨y+ b⟩, and compute [ϕ(x+ y)]t = (u+ v)− [ϕ(c)]t. This can also be seen as adding an
extra step that first converts ⟨x⟩ to [ϕ(x)]t using the “double sharing” (⟨a⟩, [ϕ(a)]t) (and similarly
for y), and then add these sharings together.

On Guaranteed Output Delivery. Finally, we comment on how the protocol sketched here is
extended to G.O.D., without blowing communication. We use the player elimination framework
from [BTH08], in which the parties not only perform a check but, in case of failure, identify a so-
called semi-corrupted pair in the process, which is a pair of parties that is guaranteed to contain at
least one corrupted party. At this point, the pair can be safely removed from the computation (which
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preserves the t < n/3 ratio), and the computation can be restarted. Restarting the computation
many times can cause communication to blow up by a large factor. To address this, the circuit is
split into segments of certain size, and the check described here is performed at the end of each such
segment, rather than at the end of the whole circuit. Setting segment sizes appropriately reduces
the size of the repeated computations, which keeps communication within O(n|C|). There are
subtle issues, like part of the output of a group of a given segment being fed to the same segment,
while some other part is fed to a future segment. This is mostly inconvenient notation-wise, but it
does not add heavy technical complications.

To give a more complete picture, it remains to describe more clearly how the parties can identify
a semi-corrupted pair during our check. Recall that our verification consists, in essence, of opening
sharings of the form [ϕ(z)]t, and comparing against a previously opened set of values z′. How
should the parties react in case some mismatch is found? The core idea is to pinpoint to the party
who announced an incorrect (additive) sharing in the first place. The main challenge with this
is that, even though the parties have a robust version of the underlying secrets z, they do not
necessarily have a robust version of the additive sharings that each party should have sent when
reconstructing z, so it is not obvious how to identify which party sent an incorrect additive share.
Fortunately, as it turns out, it is indeed possible to derive robust sharings that somehow commit
the parties to the additive shares they should send at reconstruction. For this, we introduce a
notion of extended additive sharings, which expands additive SS with the necessary information
to check whether a party sent a correct additive share. We provide details in Sections ?? in the
Appendix.

Remark 4 (On sharings of zero). We remark that our overview here is a simplified version of our
actual protocol, which must use of several other ingredients not discussed here. One of these is
that, in several places, the parties need to re-randomize certain sharings using shares of zero,
which is crucial for, among different purposes, preventing leakage of sensitive information when
reconstructing optimistically, as in [GLS19].

1.4 Outline of the Document

We begin by presenting several important preliminaries in Section 2. This is followed by Section 3,
which contains our protocols for optimistically evaluating a segment (Section 3.2), as well as ver-
ifying the computation is performed correctly (Section 3.5). This includes the network routing
needed to compute robust sharings of groups in the circuit (Section 3.4), as well as our method
to identify semi-corrupted parties once an attack has been detected (Section 3.6). We also discuss
in detail how the circuit is partitioned into groups and segments (Section 3.1). Section 4 uses the
building blocks from the previous sections to present our main MPC perfectly secure protocol with
G.O.D. over constant-size rings, with linear communication complexity.

Our work makes use of several functionalities and protocols. To help the reader navigate, we
provide in Section G in the Appendix a list with all of our functionalities and protocols, and their
location within the text.

2 Preliminaries

In this work, we focus on functions that can be written as an arithmetic circuit C over the ring
Z/2kZ with input, addition, multiplication and output gates. Let |C| denote the size of the circuit
C. We will make use of the client-server model for secure multiparty computation, in which clients
can provide inputs and receive outputs to/from the servers, who are the parties who execute
the actual MPC protocol. Note that, if every party plays a single client and a single server, this
corresponds to a protocol in the standard MPC model. We assume that every pair of parties, either
client and/or server, is connected via a secure (private and authentic) synchronous channel. We
measure communication complexity as the total number of bits sent via private channels.7

Let c denote the number of clients, n denote the number of servers, and t denote the upper
bound of the number of corrupted servers. In this work we focus on the 1/3-corruption setting, i.e.

7 Since we consider constant-sized rings, this is asymptotically the same as measuring the number of ring
elements.
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3t + 1 = n. In this work, we design an MPC protocol where all clients and servers compute the
functionality FMain with perfect security. Our definition of perfect security is based on the standard
simulation-based security which is shown in the work [Can00].

Functionality 1: FMain(C)

1. Let x denote the input and C denote the circuit. FMain receives the input from all clients.
2. FMain computes C(x) and distributes the output to all clients.

2.1 Party-Elimination Framework

We make use of the party elimination framework by Hirt, Maurer, and Przydatek [HMP00], which
constitutes a general strategy to achieve perfect security with G.O.D. with linear communication
complexity. The basic idea is to let the parties perform checks that evaluate the correctness of the
computation, identifying a pair of parties (with the help of BA for consensus) that contains at least
one corrupted party in case of failure; such pair is referred to as a semi-corrupted pair. This pair
of parties is then eliminated (i.e. removed from the computation), and the protocol is restarted.
To avoid the overhead of re-executing as many times as potential eliminated pairs—which is upper
bounded by t—the computation is divided into segments, and the check is performed at the end
of each segment. This way, the extra cost of re-running is—in the worst case—t times the cost of
each segment, so by keeping segments of appropriate size one can obtain efficient protocols with
G.O.D.

We use Pactive to denote the set of parties which are active in the current segment, that is,
that have not been eliminated. We use Cactive ⊂ Pactive for the set of active corrupted parties. Let
n′ be the size of Pactive. We use t′ for the maximum possible number of the corrupted parties in
Pactive. Each time a semi-corrupted pair is identified, these two parties are removed from Pactive
and hence Cactive. It results in n′ := n′ − 2 and t′ := t′ − 1. Initially we have n = n′, t = t′. Let
T = n′ − 2t′. Therefore, T remains unchanged during the whole protocol.

2.2 Finite Rings

Basic notation. Let Z denote the ring of integers. For q ∈ Z, let qZ denote the ideal {q ·n : q ∈ Z}
and let Z/qZ denote the quotient ring, which is the ring of integers modulo q. For a ring S, let
S[X] denote the ring of polynomials in the variable X with coefficients in S. Also, let S∗ denote
the multiplicative subgroup of invertible elements in S.

Galois Rings. We adopt the notion of Galois rings that contains the quotient ring Z/2kZ from
[ACD+19].

Definition 1 (Galois Ring [ACD+19]). A degree-d Galois ring of Z/2kZ is a ring of the form

(Z/2kZ)[X]/g(X),

where k is a positive integer, and g(X) ∈ (Z/2kZ)[X] is a non-constant degree-d polynomial such
that its reduction modulo 2 is an irreducible polynomial in the field F2[X]. We use GR(2k, d) to
denote degree-d Galois ring of Z/2kZ.

In order to interpolate polynomials in a Galois ring, we rely on the following lemma.

Lemma 1 ([ACD+19]). Let GR(2k, d) be a Galois ring with degree d. There exists a length 2d

sequence of distinct elements in GR(2k, d) denoted by α1, . . . , α2d , such that for any x1, . . . , x2d ∈
GR(2k, d), there exists a unique interpolating polynomial of degree at most (2d − 1) such that
f(αi) = xi for all i ∈ {1, 2, . . . d}.

Using this lemma, we can define necessary components such as Shamir secret sharings and hyper-
invertible matrices over Galois rings. In the following, we will use a Galois ring of Z/2kZ denoted
by R := GR(2k,m). Note that the size of R is 2m·k. We select m such that 2m ≥ 2n+ 1 so that it
is possible to interpolate degree-2n polynomials in R.
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2.3 Secret Sharing Schemes

Shamir Secret Sharing. We will use the standard Shamir secret sharing scheme [Sha79] in this
work. For the Galois ring R = GR(2k,m), suppose (αi)

n
i=1, β are n+ 1 distinct points, which can

be used to interpolate polynomials according to Lemma 1. A degree-d Shamir sharing of x ∈ R
among n′ ≤ n parties is a vector (s1, s2, . . . , sn′) ∈ Rn′

that satisfies the property that there exists
a polynomial f(·) ∈ R≤d[x] with f(β) = x and f(αi) = si,∀i ∈ [n′]. The share held by party Pi is
si. With any (d+ 1) different shares of the same sharing the secret x can be reconstructed.

A degree-d Shamir sharing of x ∈ R is denoted as [x]d. The following two properties hold for
Shamir sharings:

– For all x, y ∈ R, [x+ y]d = [x]d + [y]d.

– For all x, y ∈ R and for all d1, d2 subject to d1 + d2 < n, we have [x · y]d1+d2 = [x]d1 · [y]d2 .

Our protocol also rely heavily on the following property of Shamir sharings. Suppose after some
party elimination steps we have n′ parties where a maximum t′ of them can be malicious.

Lemma 2 ([BTH08]). Suppose n′ parties share a degree-d Shamir sharing [x]d, and at most t′

of the shares may be incorrect.

– If t′ < (n′−d)/2, then [x]d is correctable after receiving all the shares, e.g. by Berlekamp-Welch
Algorithm.

– If t′ < n′ − d, then whether [x]d is inconsistent is detectable after receiving all the shares. This
is due to the fact that two different degree-d polynomials agree on at most d points.

2.4 Reverse Multiplication Friendly Embeddings

Definition 2 (RMFE over Ring [CRX21,ELXY23]). Let ℓ,m, k be positive integers. Let
R = GR(2k,m) denote the degree-m Galois ring of Z/2kZ. A pair of mappings (ϕ : (Z/2kZ)ℓ →
R, ψ : R → (Z/2kZ)ℓ) is called an (ℓ,m)2k -reverse multiplication friendly embedding (RMFE) if,
for all x,y ∈ (Z/2kZ)ℓ, it holds that

ψ(ϕ(x) · ϕ(y)) = x ⋆ y.

Without loss of generality we can assume that ψ(ϕ(1)) = 1, which ensures ψ(ϕ(x)) = x for all
x ∈ (Z/2kZ)ℓ.

Defining the Z/2kZ-Linear Map val(·) [PS21]. To compute the summation of all entries of ψ(y)
from y ∈ R, we define an Z/2kZ-linear map val(·) : R → Z/2kZ as follows:

– For an input y, suppose ψ(y) = (y1, y2, . . . , yℓ).

– val(y) is defined to be
∑ℓ

i=1 yi.

Let ei be a vector in (Z/2kZ)ℓ such that all entries are 0 except that the i-th entry is 1, and let
x be a vector in (Z/2kZ)ℓ of which the i-th entry is xi. According to the definition of RMFEs, we
have ei ⋆ x = ψ(ϕ(ei) · ϕ(x)). Therefore, we can access xi by computing xi = val(ϕ(ei) · ϕ(x)).

Existence of Constant Rate RMFEs over ring Z/2kZ [ACE+21]. In [ACE+21] it has been shown
that constant rate RMFEs exist, as summarized in Theorem 1.

Theorem 1. There exists a family of constant rate (ℓ,m)2k -RMFE where m = Θ(ℓ).

In this work, we will use (ℓ,m)2k -RMFE such that m = O(log n) and ℓ = O(log n). The Galois
ring R = GR(2k,m) satisfies 2m ≥ 2n+ 1.
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2.5 Useful Building Blocks

Reconstructing Shamir Sharings. The functionality FOpenPub takesN degree-d (d ≤ t) Shamir secret
sharings over R as input, and it outputs the reconstructed secrets to all parties. We assume that for
each input degree-d sharing, the shares of all active honest parties lie on a degree-d polynomial.8

The full description of FOpenPub appears in Section A in the Appendix. An instantiation of this func-
tionality for our ring case can be easily generalized from the field-case construction in [ACD+19],
which has communication complexity of O(N · n + n2) elements in R (i.e. O(N · n ·m + n2 ·m)
elements in Z/2kZ).

Secure Multiplication. The functionality FMult takes two tuples of N degree-t Shamir sharings over
R as input, which are denoted by ([x1]t, . . . , [xN ]t) and ([y1]t, . . . , [yN ]t). The output of FMult is
the tuple of degree-t Shamir sharings of the results ([x1 · y1]t, . . . , [xN · yN ]t). We assume that
for each input degree-t Shamir sharing, the shares of all active honest parties lie on a degree-t
polynomial. The full description of FMult appears in Section A in the Appendix. An instantiation
of this functionality for our ring case can be easily generalized from the field-case construction in
[BTH08]. Also, another instantiation of this functionality is implied in [ACD+19]. The protocol
generalized from [BTH08] has communication complexity of O(N · n+ n2 · |S|) elements in R (i.e.
O(N · n ·m+ n2 ·m · |S|) elements in Z/2kZ), where S is the set of eliminated parties.

Performing Re-Encode. In our construction, we will need to transform a degree-t Shamir sharing
over R from [x]t to [ϕ ◦ψ(x)]t in order to evaluate multiplication gates in the circuit. This process
is called re-encode. The functionality FReEncode takes N degree-t Shamir sharings over R as input,
which are denoted by [x1]t, . . . , [xN ]t. The output of FReEncode are N degree-t Shamir sharings of
the re-encoded result [ϕ ◦ψ(x1)]t, . . . , [ϕ ◦ψ(xN )]t. We assume that for each input degree-t Shamir
sharing, the shares of all active honest parties lie on a degree-t polynomial. The full description of
FReEncode appears in Section A in the Appendix. An instantiation of this functionality for our ring
case can be easily generalized from the field-case construction in [CCXY18]. The instantiation has
communication complexity of O(N · n + n2 · |S|) elements in R (i.e. O(N · n · m + n2 · m · |S|)
elements in Z/2kZ), where S is the set of eliminated parties.

Verifying Consistency of Unreliable Broadcast Values. In our protocol, we will ask a dealer D to
distribute several values that are supposed to be all the same, towards all parties. We do this
over point-to-point channel to save the communication. The functionality FVerifyBC receives from
all parties N such unreliable broadcast values dealt by a dealer D, and verifies whether all parties
indeed received the same values. The output of this functionality to each party is either consistent
or (inconsistent, E), where E is a semi-corrupted pair of parties. The full description of FVerifyBC

appears in Section A in the Appendix. An instantiation of this functionality for our ring case
can be easily generalized from the field-case construction in [BTH08], which has communication
complexity of O(N · n+ n2) elements in R (i.e. O(N · n ·m+ n2 ·m) elements in Z/2kZ).

Input Gates for Shamir Sharings. We introduce the functionality FInputShamir, where a client Client
with N inputs in R shares its inputs to the active parties using Shamir secret sharing. The full de-
scription of FInputShamir appears in Section A in the Appendix. An instantiation of this functionality
for our ring case can be easily generalized from the field-case construction in [BTH08]. The instanti-
ation has a communication complexity of O(N ·n+n2 ·|S|) elements inR (i.e. O(N ·n·m+n2 ·m·|S|)
elements in Z/2kZ), where S is the set of eliminated parties.

2.6 Preparing Correlated Randomness

Our protocol relies on different forms of correlated randomness shared by all parties, and these are
prepared independently of the inputs of the clients. We give a brief description of the correlations
we require below.

8 If this is not the case, we ask the functionality to send the active honest parties’ inputs to the adversary
and allow the adversary to decide the output of active honest parties. Essentially, we give up the security
if the shares of active honest parties do not lie on degree-d polynomials.

11



Random Shamir Sharings. The functionality FRandShamir enables all parties to prepare N random
degree-t Shamir sharings in the form of [ϕ(r)]t, where r is a random vector in (Z/2kZ)ℓ. The
description and the instantiation of FRandShamir can be found in Section B.3 in the Appendix. The
total communication complexity for the instantiation of FRandShamir to generate N random Shamir
sharings is O(N · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ, where S is the set of eliminated parties.

Random Zero Additive Sharings. Once Beaver triples are prepared in the preprocessing phase,
parties only need to do reconstructions in the online phase. To protect the shares held by honest
parties, for each reconstruction, we will prepare a random additive sharing of 0 among the first t+1
parties. The functionality FRandZeroAdditive enables all parties to prepare N random zero additive
sharings. The description and the instantiation of FRandZeroAdd can be found in Section B.3 in the
Appendix. The total communication complexity for the instantiation of FRandZeroAdd to generate
N zero additive sharings is O(N · n · m + n2 · m · |S|) elements in Z/2kZ, where S is the set of
eliminated parties.

Random Parity Sharings. For an element p ∈ R, we say that p is parity element if val(p) = 0,
and a parity sharing is a degree-t Shamir sharing of a parity element. When localizing a fault
within a circuit segment, uniformly random parity sharings will be used as masks so that it is
possible to check the correctness of the reconstruction. The functionality FRandParity enables all
parties to prepare N random parity sharings. The description and instantiation of FRandParity can
be found in Section B.3 in the Appendix. The total communication complexity for the instantiation
of FRandParity to generate N random parity sharings is O(N ·n ·m+n2 ·m2 · |S|) elements in Z/2kZ,
where S is the set of eliminated parties.

Beaver Triples. To evaluate addition gates and multiplication gates, all parties will prepare Beaver
triples in the form of ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t), where a+b = c when the Beaver triple is additive and
a ⋆ b = c when the Beaver triple is multiplicative. We introduce two functionalities FTripleAdd and
FTripleMult. FTripleAdd enables all parties to prepare N random additive Beaver triples, and FTripleMult

enables all parties to prepare N random multiplicative Beaver triples. The descriptions and the
instantiations of both FTripleAdd and FTripleMult can be found in Section B.3 in the Appendix. The
total communication complexity for the instantiation of either FTripleAdd or FTripleMult to generate
N Beaver Triples is O(N ·n ·m+n2 ·m2 · |S|) elements in Z/2kZ, where S is the set of eliminated
parties.

3 Segment Evaluation and Verification

Our protocol first splits the circuit into segments, and then assigns gates of each type within a
segment into gate groups. This is discussed in Section 3.1. Then, in Section 3.2 we show how
the parties evaluate the gates of a given circuit optimistically, that is, without checking that the
computation was carried out correctly. The verification is discussed in Section 3.3

3.1 Groups and Segments

We need to split the circuit into n segments in order to apply packing effectively. We assume that
the circuit C satisfies the following conditions:

1. Circuit Segment Conditions:
– Because C is a Directed Acyclic Graph (DAG), there exists a topological ordering among

all addition and multiplication gates. We require that each segment consists of addition
and multiplication gates whose topological orders are consecutive.

– The size of each segment should be O(n ·m2 + |C|/n).
2. Gate Number Conditions:

– In the input and output layers, the number of input gates belonging to each client and the
number of output gates belonging to each client are multiples of ℓ.

– The number of addition and multiplication gates within each circuit segment are multiples
of ℓ.

3. Gate Grouping Conditions:
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– During the computation, gates that have the same type (i.e., input gates belonging to the
same client, output gates belonging to the same client, multiplication gates in the same
circuit segment, addition gates in the same circuit segment) are organized into gate groups
of size ℓ.

– For the output wires of each gate group, the number of times that those wires are used as
input wires in other gates is a multiple of ℓ.

In Section E.1 in the Appendix we show that, if C does not satisfy these properties, then it
can be transformed into a circuit C ′ that does satisfy the properties without affecting our linear
communication claim. Based on the conditions above, we can split each segment into gate groups
consisting of either ℓ multiplication gates (in which case the group is a multiplication group), or ℓ
addition gates (in which case the group is an addition group). A set of ℓ wires corresponding to
the left or right inputs of a given gate group is referred to as an input group, and output groups are
defined similarly, but with output wires. The transformed circuit has size |C ′| = O(|C|+ℓ·c+n2·m2).

3.2 Segment Evaluation

The focus of this section is to show how the parties can evaluate optimistically a given segment seg.
The overall idea is to use additive secret-sharing with multiplication triples derived from packed
triples. However, we consider an “enhanced” version of additive secret-sharing that allows for fault
detection in case of cheating. This is described below.

Extended additive sharings. Let (ϕ, ψ) be an (ℓ,m)2-RMFE. Recall that n denotes the number
of parties and ϕ : (Z/2kZ)ℓ → R is an Z/2kZ-linear map. Also, R = GR(2k,m) such that 2m ≥
2n + 1. Therefore, Shamir secret sharing is well-defined in R. In our construction, we will use ϕ
to encode a vector of secrets x = (x(1), x(2), . . . , x(ℓ)) ∈ (Z/2kZ)ℓ. All parties will hold a degree-t
Shamir sharing of ϕ(x), denoted by [ϕ(x)]t. For x ∈ Z/2kZ, we use ⟨x⟩ to denote an additive
sharing of x among the first t+1 parties in Z/2kZ. Recall that n′ denotes the number of remaining
parties after the previous party elimination steps. Specifically, the additive sharing of x is ⟨x⟩ =
(x1, . . . , xn′) where party Pi holds the share xi ∈ Z/2kZ such that

∑t+1
i=1 xi = x and xt+2, . . . , xn′

are all 0. Recall that ψ : R → (Z/2kZ)ℓ and val(·) : R → Z/2kZ are both Z/2kZ-linear. The
parties have extended additive sharings of x ∈ Z/2kZ, denoted by LxM, if they have a degree-t
Shamir sharing [y]t in R such that val(y) = x. We write LxM := [y]t. It is clear that these sharings
are additive.

We note that we can derive extended additive sharings of x ∈ Z/2kZ from Shamir sharings
[ϕ(z)]t, where the j-th element of z is x. To see this, observe that, by the property of RMFE, we
have that ψ(ϕ(ej) ·ϕ(z)) = ej ⋆z. Therefore, val(ϕ(ej) ·ϕ(z)) = x. To obtain LxM, all parties locally
compute LxM = ϕ(ej) · [z]t. In addition, it is easy to obtain sharings ⟨x⟩ from LxM by using Lagrange
coefficients; we give the details in Section C in the Appendix, where we describe at length the
notion of extended sharings, together with their properties.

Optimistically evaluating a segment. For a circuit segment seg, we use Protocol ΠEval(seg)
to optimistically evaluate this segment. We evaluate its addition and multiplication gates using
extended additive sharings and Beaver triples. A Beaver triple ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t) can be used
to evaluate ℓ addition gates or ℓ multiplication gates. We assume that all parties have computed
Shamir sharings of all gate group outputs of the previous circuit segments. This means that for an
i-th element of any [ϕ(z)]t used as a gate input in seg, all parties can locally compute the extended
additive sharing LxM := ϕ(ei) · [ϕ(z)]t.

For each gate with extended additive input sharings LxM, LyM, we will use the Beaver triple
associated to the gate group containing this gate. Suppose the gate is the j-th gate within the gate
group, and suppose ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t) is the Beaver triple corresponding to the gate group.
All parties compute the extended additive sharings LajM := ϕ(ej) · [ϕ(a)]t, LbjM := ϕ(ej) · [ϕ(b)]t
and LcjM := ϕ(ej) · [ϕ(c)]t. Then all parties derive the additive sharings ⟨x⟩, ⟨y⟩, ⟨aj⟩, ⟨bj⟩ from the
extended additive sharings using the method described previously.

The next step is reconstructing ⟨x⟩+ ⟨aj⟩ and ⟨y⟩+ ⟨bj⟩, for which a fixed dealer D will receive
all shares, and then sends the reconstructed value to all parties. However, a subtle issue is that
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all parties must protect the redundancy in their sharings by preparing two random zero additive
sharing ⟨o1⟩, ⟨o2⟩, which can be done with Functionality FRandZeroAdd. Then, all parties send their
shares of ⟨x⟩+ ⟨aj⟩+ ⟨o1⟩ and ⟨y⟩+ ⟨bj⟩+ ⟨o2⟩ to the dealer D, who reconstructs u := x+ aj and
v := y + bj , and sends the result to all other parties.

If the gate is an addition gate, all parties locally compute the output extended additive sharing

LzM := (u+ v) · ϕ(ej)− LcjM.

If the gate is a multiplication gate, all parties locally compute the output extended additive sharing

LzM := (u · v) · ϕ(ej)− u · LbjM− v · LajM + LcjM.

We describe ΠEval in full detail below, and we show that the communication cost of ΠEval is
O(n3 ·m2) elements in Z/2kZ.

Protocol 1: ΠEval(seg)

1. Suppose seg has nadd · ℓ addition gates and nmult · ℓ multiplication gates. All parties select
the active party with the smallest index as the dealer of this segment seg. Let D denote the
dealer.

2. All parties call FRandZeroAdd to prepare 2 · (nadd + nmult) · ℓ random additive zero sharings. All
parties also receive a set of eliminated parties denoted by S1. All parties update Pactive :=
Pactive − S1.

3. All parties call FTripleAdd(nadd · ℓ) to generate the additive Beaver triples for the segments.
All parties receive a set of eliminated parties denoted by S2. All parties update Pactive :=
Pactive − S2.
All parties call FTripleMult(nmult ·ℓ) to generate the multiplicative Beaver triples for the segments.
All parties receive a set of eliminated parties denoted by S3. All parties update Pactive :=
Pactive − S3.

4. All parties locally get all the extended additive sharings for the gate inputs of seg that are
collected from previous layers. For the gate input connected to the i-th wire of the Shamir
sharing [ϕ(z)]t, all parties locally derive the extended additive sharing by ϕ(ei) · [ϕ(z)]t.

5. All parties evaluate the multiplication gates and addition gates within seg according to topo-
logical ordering. For each gate with input extended additive sharings LxM and LyM, we sup-
pose it corresponds to the j-th entry of the Beaver triple ([ϕ(a)]t, [ϕ(b)]t, [ϕ(c)]t), denoted
by (aj , bj , cj). All parties consume two unused random additive sharings prepared in Step 2,
denoted by ⟨o1⟩ and ⟨o2⟩. Then all parties perform the following steps:
(a) All parties locally derive the extended additive sharing for aj , bj , cj with LajM = ϕ(ej) ·

[ϕ(a)]t, LbjM = ϕ(ej) · [ϕ(b)]t and LcjM = ϕ(ej) · [ϕ(c)]t.
(b) All parties locally computes ⟨x⟩+ ⟨aj⟩+ ⟨o1⟩ and ⟨y⟩+ ⟨bj⟩+ ⟨o2⟩, and send their shares

to D.
(c) D reconstructs u := x+ aj and v := y + bj . Then D sends u and v to all parties.
(d) If the gate is an addition gate, all parties locally compute the output extended additive

sharing
LzM := (u+ v) · ϕ(ej)− LcjM.

If the gate is a multiplication gate, all parties locally compute the output extended additive
sharing

LzM := (u · v) · ϕ(ej)− u · LbjM − v · LajM + LcjM.

6. All parties output the eliminated set of parties S := S1 ∪ S2 ∪ S3.

Cost of ΠEval. Recall that each circuit segment has O(|C|/n + n2 ·m2) gates, so we have nadd =
O(|C|/(n · ℓ)+n2 ·m2/ℓ) and nmult = O(|C|/(n · ℓ)+n2 ·m2/ℓ). It follows that the communication
complexity of Step 2, Step 3, and Step 5 are all O(|C|+n2 ·m2 · |S|) elements in Z/2kZ. Therefore,
the communication complexity of ΠEval is O(|C|+ n2 ·m2 · |S|) elements in Z/2kZ.

3.3 A First (Inefficient) Verification Protocol

For a given segment seg, once the parties have executed ΠEval(seg), they have obtained extended
additive sharings of every intermediate wire value of the circuit. However, a corrupted party may

14



have cheated during this protocol, perhaps by sending incorrect sharings to the dealer D, and/or
D itself sends incorrect reconstructions to the parties. The purpose of this section is discussing
how the parties can check whether such cheating indeed took place or not. The parties do this
before they proceed to the next segment evaluation. Our strategy, as outlined in Section 1.3, is
to get Shamir sharings of all input groups in seg, which will be used to verify that the openings
are done correctly. These sharings are derived from Shamir sharings of the output groups in the
previous segments, and possible of seg itself. In order to achieve this, we must apply network
routing techniques, which are developed in the works of [GPS21,GPS22].

We begin by presenting a version of our verification protocol that does not yet satisfy the
linear communication complexity claim, but is structurally very close to our actual protocol while
requiring little preliminaries on network routing for a clear understanding.

Network routing. Consider a segment seg, and suppose that the parties have sharings [ϕ(z)]t for
every output group z of each segment prior to seg, and also of seg itself. Now, let x be an input
group in seg. Each entry xi in x is the output of a previous gate, which appears in an output group
of either seg, or a prior segment. Network routing is a set of techniques that enables the parties
to obtain, from the sharings of all previous groups [ϕ(z)]t, sharings [ϕ(x)]t of the input group x in
seg. This is crucial for our verification protocol, and it is achieved by Protocol ΠNetworkRouting(seg)
(Protocol 2 in p. 17). The construction of ΠNetworkRouting(seg) is a natural adaptation to the RMFE
setting of the network routing techniques from [GPS21,GPS22], which are originally set in the
packed secret-sharing context.

For our first verification protocol, we will use ΠNetworkRouting as a “black-box”. Doing so results
in a verification protocol with super-linear communication, stemming from the fact that all the
calls to ΠNetworkRouting(seg) across all segments seg redo a lot of computation that can be done
only once if one “opens the box”. Later in the section we dig into the details of ΠNetworkRouting(seg),
identifying these steps that are repeated across calls so that they are called only once, avoiding
unnecessary repetition and hence achieving the desired linear communication complexity.

Fault detection. We need to introduce one more tool before we present our first (inefficient) ver-
ification protocol. Our verification ultimately boils down to ensuring that extended secret-shared
values, that have been opened non-robustly using additive shares through a dealer, have actually
been opened correctly. If this is not the case, the parties should be able to identify a semi-corrupted
pair. This is achieved by means of a protocol ΠFaultDetection that takes as input an inconsistent pair
of extended additive sharing LsM and the masked additive sharing ⟨s⟩+⟨o⟩ corresponding to it. At a
high level, in this protocol the dealer will open the shares of the extended additive sharing and the
masked additive sharing to find out a dispute between parties. We refer the readers to Section 3.6
for more details.

Inefficient verification. Consider a segment seg. Let ([ϕ(a(i))]t, [ϕ(b
(i))]t, [ϕ(c

(i))]t) denote the
Beaver triple corresponding to the i-th gate group in seg, and let x(i) and y(i) denote the left and
right inputs of the gate group. Note that before the verification of seg, each party locally holds

the values u
(i)
j = x

(i)
j +a

(i)
j and v

(i)
j = y

(i)
j + b

(i)
j sent by D for i ∈ [N ], j ∈ [ℓ]. All parties first check

the consistency of the values sent by D by calling FVerifyBC. If the values are consistent, all parties
can get “temporary” input group sharings [ϕ(x)]t and [ϕ(y)]t from with u(i), v(i) and the Beaver
triple ([ϕ(a(i))]t, [ϕ(b

(i))]t, [ϕ(c
(i))]t), and they use FMult and FReEncode to obtain [ϕ(x(i) ⋆ y(i))]t.

After getting all output Shamir sharings in seg, the parties use ΠNetworkRouting to obtain Shamir
sharings of all the input groups [ϕ(x(i))]t and [ϕ(y(i))]t. The parties robustly reconstruct [ϕ(x(i) +
a(i))]t and [ϕ(y(i) + b(i))]t using FOpenPub, and then they compare these outputs with the values
reconstructed in the evaluation phase u(i) and v(i). If all entries are consistent, the evaluation of

seg is correct. Otherwise, all parties can locate the first inconsistent x
(i)
j + a

(i)
j or y

(i)
j + b

(i)
j . Then

they eliminate a set of semi-corrupted parties, and re-evaluate the circuit segment afterwards.
The steps of the verification protocol are the following. We reiterate that this does not have

linear communication complexity, but only because of the calls to ΠNetworkRouting. This is addressed
in Section 3.5 after we “open the box” of network routing in Section 3.4

1. Suppose seg has N gate groups. For the i-th gate group within seg that corresponds to the
Beaver triple ([ϕ(a(i))]t, [ϕ(b

(i))]t, [ϕ(c
(i))]t) and has inputs x(i),y(i) ∈ (Z/2kZ)ℓ All parties

locally compute ϕ(x(i) + a(i)) and ϕ(y(i) + b(i)) for all i ∈ [N ].
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2. All parties call FVerifyBC with inputs {ϕ(x(i) + a(i))}i∈[N ] ∪ {ϕ(y(i) + b(i))}i∈[N ] and D. If the
result is a semi-honest pair {Pj1 , Pj2}, all parties take it as output and halt. Otherwise, run
the following steps.

3. All parties locally compute [ϕ(x(i))]t = ϕ(x(i) + a(i)) − [ϕ(a(i))]t and [ϕ(y(i))]t = ϕ(y(i) +
b(i))− [ϕ(b(i))]t for all i ∈ [N ].

4. For each additive gate group with input [ϕ(x(i))]t and [ϕ(y(i))]t, all parties locally compute
the output sharing

[ϕ(z(i))]t = [ϕ(x(i))]t + [ϕ(y(i))]t.

For all the multiplicative gate groups, suppose their indices form the set Imult. All parties call
FMult with input ([ϕ(x(i))]t)i∈Imult

and ([ϕ(y(i))]t)i∈Imult
, and get output ([w(i)]t)i∈Imult

and a
set of eliminated parties denoted by S1. All parties update Pactive := Pactive − S1.
Then all the parties call the functionality FReEncode with input ([w(i)]t)i∈Imult

and get the output
sharings ([ϕ(z(i))]t)i∈Imult

and a set of eliminated parties denoted by S2. All parties update
Pactive := Pactive − S2.

5. All parties run the protocol ΠNetworkRouting(seg) to get all Shamir sharings of seg’s gate group
inputs, denoted by {[ϕ(x̃(i))]t}i∈[N ] and {[ϕ(ỹ(i))]t}i∈[N ]. All parties also receive a set of elim-
inated parties denoted by S3. All parties update Pactive := Pactive − S3.

6. All parties call FOpenPub to reconstruct the Shamir sharings {[ϕ(x̃(i))]t + [ϕ(a(i))]t}i∈[N ] and

{[ϕ(ỹ(i))]t + [ϕ(b(i))]t}i∈[N ], and get x̃(i) + a(i) and ỹ(i) + b(i) for all i ∈ [N ].

7. Each party locally compares x̃(i)+a(i) with x(i)+a(i) and compares ỹ(i)+b(i) with y(i)+b(i)

for all i ∈ [N ]. If there are any differences, all parties do the following: let S := S0∪S1∪S2∪S3.
If S ̸= ∅, all parties output S and incorrect and halts. Otherwise, all parties can select a

wire with inconsistent value that has the smallest topological order, denoted by x
(i0)
j0

+ a
(i0)
j0

or y
(i0)
j0

+ b
(i0)
j0

. Let ⟨s⟩ + ⟨o⟩ denote its corresponding additive sharing for reconstruction in
the protocol ΠEval, and let LsM denote its extended additive sharing. Then all parties run the
protocol ΠFaultDetection(D, ⟨s⟩ + ⟨o⟩, LsM), and get a set of eliminated parties S4 as output. All
parties update Pactive := Pactive − S4, and output S ∪ S4 and incorrect.

3.4 Details on Network Routing

In this section we describe in detail how network routing works in order to identify the pieces
that can be re-used from one call to ΠNetworkRouting to the next, and then we present our actual
verification protocol with linear communication in Section 3.5.

Fan-Out Operations. The first ingredient of network routing is a functionality FFanOut, which we
describe in detail as Functionality 18 in Section E.4 in the Appendix. FFanOut takes as input a list of

sharings [ϕ(z(1))]t, . . . , [ϕ(z
(N))]t, and also n

(i)
j ∈ Z+ for every i ∈ [N ] and j ∈ [ℓ] where ℓ divides∑ℓ

j=1 n
(i)
j . The functionality outputs, for each i ∈ [N ], sharings [ϕ(x

(i)
j )]t for j ∈ [m(i)] where

m(i) :=
(∑ℓ

j=1 n
(i)
j

)
/ℓ, such that each z

(i)
j appears exactly n

(i)
j times in [x

(i)
1 ∥ · · · ∥x

(i)

m(i) ]. Jumping

ahead, fan-out will be used to copy each output wire as many times as it is used subsequently in
the circuit.

The protocol ΠFanOut that implements FFanOut can be found in Section E.4 in the Appendix,
and its communication complexity of the protocol to generate a total of M fan-out sharings is
O(M · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ, where S is the set of eliminated parties.

Secret Collection. The second crucial operation that is needed in network routing is, given a series
of Shamir sharings ([ϕ(x1)]t, . . . , [ϕ(xN )]t), obtain another set of sharings ([ϕ(y1)]t, . . . , [ϕ(yN )]t),
where (y1∥ · · · ∥yN ) is a permutation of (x1∥ · · · ∥xN ). We refer to this operation as secret collection.
To gain some intuition on how this helps in network routing, suppose that FFanOut has been applied
to all wires in the circuit, copying them as many times as they appear in future gates, and let
x = (x1, . . . ,xN ) be the all the vectors output by FFanOut. Let y = (y1, . . . ,yN ) consist of all input
groups to all circuit segments, and also to the output layer. We have then that y is a permutation
of x. Using secret collection, the parties can obtain sharings of each input group [ϕ(yi)]t, which is
precisely what is needed for network routing.

The following theorem from [GPS21] is useful for implementing this secret collection function-
ality.
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Theorem 2 ([GPS21]). Suppose x = (x1, . . . ,xN ) and y = (y1, . . . ,yN ) satisfy P ·x = y where
P is a permutation matrix. There exists two sets of permutations p1, . . . , pN and q1, . . . , qN that
permute vectors in (Z/2kZ)ℓ, such that after applying pi to xi and qj to yj for all i, j ∈ [N ], the
following property holds for an arbitrary qh · yh:

– Suppose that qh · yh = (y′1, . . . , y
′
ℓ). Then, for all w ∈ [ℓ], there exists vh,w ∈ [ℓ] such that y′w is

equal to the w-th entry in pvh,w
· xvh,w

.

Following this theorem, we can obtain y = (y1, . . . ,yN ) by first permuting each [ϕ(xi)]t as

[ϕ(pi ·xi)]t. Then, for each h ∈ [N ] parties compute locally
∑ℓ

w=1 ϕ(ew) · [ϕ(pvh,w
·xvh,w

)]t, which
creates a vector whose w-th entry is the w-th entry of pvh,w

· xvh,w
. Thanks to the theorem, this

is precisely qh · yh, so the parties can obtain [ϕ(qh · yh)]t by applying FReEncode. Finally, to obtain
the desired [ϕ(yh)]t for each h ∈ [N ], the parties can apply the inverse permutation q−1

h of qh to
the sharing [ϕ(qh · yh)]t.

The permutations above are done with a functionality FPermute, which we define and instantiate
with Protocol ΠPermute in Section E.4 in the Appendix, involving a communication complexity of
O(N · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ, where S is the set of eliminated parties. The aggre-

gation
∑ℓ

w=1 ϕ(ew) · [ϕ(pvh,w
·xvh,w

)]t followed by the re-encoding with FReEncode is abstracted as a
functionality FCollect, which we implement with a protocol ΠCollect in Section E.4 in the Appendix.
The communication complexity of ΠCollect is O(N · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ, where
S is the set of eliminated parties.

Network Routing for a Circuit Segment. Consider a segment seg. We can finally describe Protocol
ΠNetworkRouting(seg), which computes sharings [ϕ(x)]t for every input group x of the segment seg.
In a nutshell, the protocol proceeds exactly as sketched above: (1) FFanOut is used to copy wires,
and (2) Secret collection is performed by calling FPermute → FCollect → FPermute. However, for our
“non-black-box” optimization, suppose that ΠNetworkRouting(seg

′) was called for the segment seg′

that goes right before seg. In this case, FFanOut has been performed on all output groups prior to
segment seg, and therefore we only need to do it for these output groups in seg. Even more, since
ΠNetworkRouting is called to verify the inputs of seg, we only need to use FFanOut in these output
wires of seg that are fed as inputs to seg itself. Later, if the check passes, then we apply FFanOut to
the remaining wires. A similar optimization happens with the first call to FPermute, which is done
on the output groups.

The description of ΠNetworkRouting appears in Protocol 2. If z(1), . . . ,z(N) are the output groups

of seg, we denote by ñ
(i)
j for j ∈ [ℓ], i ∈ [N ] the number of times that wire z

(i)
j is used inside seg

itself. Protocol ΠNetworkRouting assumes that the protocol has been called for the previous segment,
so these are the only remaining copies needed for getting the input groups of seg. After this, the
FPermute → FCollect → FPermute sequence is applied.

Protocol 2: ΠNetworkRouting(seg)

1. All parties call FFanOut on all the output sharings of seg and {ñ(i)
j }j∈[ℓ],i∈[N ], where the j-th

wire of z(i) is copied ñ
(i)
j times (this is the number of times this wire is used in seg itself). All

parties receive the fan-out sharings which are used for this segment’s gate inputs, and a set of
eliminated parties denoted by S1. All parties update Pactive := Pactive − S1.

2. All parties call FPermute with the fan-out sharings and the desired permutations as input. All
parties receive the permuted fan-out Shamir secret sharings, and a set of eliminated parties
denoted by S2. All parties update Pactive := Pactive − S2.

3. All parties call FCollect to get the collected Shamir sharings of seg’s gate group inputs. All parties
also receive a set of eliminated parties denoted by S3. All parties update Pactive := Pactive−S3.

4. All parties call FPermute with the collected Shamir sharings as input, and get all Shamir sharings
of seg’s gate group inputs, denoted by {[ϕ(x̃(i))]t}i∈[N ] and {[ϕ(ỹ(i))]t}i∈[N ]. All parties also
receive a set of eliminated parties denoted by S4.

5. All parties output S := S1 ∪ S2 ∪ S3 ∪ S4 and all the input Shamir sharings {[ϕ(x̃(i))]t}i∈[N ]

and {[ϕ(ỹ(i))]t}i∈[N ].
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3.5 Efficient Verification

Now we are ready to “patch” the verification protocol from Section 3.3 to get linear communication.
The full protocol, ΠVerify, is given in Section D in the Appendix, and here we only discuss the core
differences with respect to the protocol from before. As before, we do call ΠNetworkRouting in step 5,
except that this time we take into account the fact that FFanOut and FPermute have been called for
all previous segments, and hence only need to be computed for the current segment (as described
in ΠNetworkRouting). Second, recall that the FFanOut and FPermute calls in ΠNetworkRouting are only
performed to the output groups needed for the input groups in the current segment seg. If step
7 succeeds, then the parties need to apply FFanOut and FPermute to the remaining output groups in
seg in preparation to the call to ΠNetworkRouting for the next segment.

Protocol ΠVerify is given in Section D in the Appendix. In that section we analyze its commu-
nication, verifying that it indeed grows linearly with n.

3.6 Fault Localization

Finally, we have focused so far in how the parties detect that cheating occurred, but we have not
discussed how to react to that, identifying a semi-corrupted pair so that the segment can be re-run.
Recall that a parity element p ∈ R is an element that satisfies val(p) = 0. To mask the shares of
extended additive sharing LsM when the dealer D opens all shares, all parties will prepare a random
degree-t Shamir sharing of a random parity element, denoted by [p]t. Then all parties will send
their shares of LsM + [p]t to D.

We note that it is enough for D to localize a semi-corrupted pair just by opening the two
sharings LsM+ [p]t and ⟨s⟩+ ⟨o⟩, so we introduce the following steps to let all parties disclose to D
the randomness masks that they have distributed and received. We first observe that, due to the
way all parties prepare random sharings (see Section B.2 in the Appendix), ⟨o⟩ can be written as

⟨o⟩ =
∑n′

i=0⟨oi⟩, and [p]t can be written as [p]t =
∑n′

i=0[pi]t, where ⟨oi⟩ is the zero additive sharing
distributed by Pi and [pi]t is the parity sharing distributed by the party Pi. Each parity sharing

[pi]t corresponds to an additive sharing whose secret is 0, denoted by ⟨o′i⟩. Let ⟨o′⟩ :=
∑n′

i=1⟨o′i⟩.
Note that D can locally compute ⟨o⟩ − ⟨o′⟩, and ⟨o⟩ − ⟨o′⟩ =

∑n′

i=1⟨oi⟩ − ⟨o′i⟩.
Following the idea in [BFO12], in order to protect the shares of ⟨oi⟩ − ⟨o′i⟩ (which may leak

information), each party Pi distributes another additive zero sharing ⟨o′′i ⟩ as a mask. Then Pi

reveals to D all the shares of ⟨oi⟩ − ⟨o′i⟩ + ⟨o′′i ⟩, and also the share of ⟨oj⟩ − ⟨o′j⟩ + ⟨o′′j ⟩ that Pi

received from another party Pj . Given this information, D is able to identify disputes between
parties.

We summarize the full protocol ΠFaultDetection in Section C.2 in the Supplementary Material.

4 Main Protocol

In the previous section we saw how to evaluate each segment in the circuit, and how to check if the
execution was correct, identifying a semi-corrupt pair if this was not the case. In this section we show
how to put together these protocols in order to evaluate the entire circuit with G.O.D., essentially
by making use of the player elimination framework by Beerliová-Trub́ıniová and Hirt [BTH08], in
which the parties that remain after a semi-corrupted pair is removed re-run the failed segment.
This is described in Section 4.3. No MPC protocol would be complete without describing how
input and output gates are handled. This is explained in Sections 4.1 and 4.2, respectively.

4.1 Input Gates

Since we are in the client-server model, all the inputs belong to the clients. Recall that we assume
that the number of inputs for each client is a multiple of ℓ. In this part, we introduce a protocol
ΠInput, which enables all client to share their inputs to all parties, and then properly performs
fan-out and permutations to input sharings to prepare them for later use. We describe the protocol
ΠInput below.
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Protocol 3: ΠInput

1. For each client Client, suppose its inputs are {x(1)i , . . . , x
(ℓ)
i }Ni=1. All parties and Client perform

the following steps:
(a) Let xi := (x

(1)
i , . . . , x

(ℓ)
i ) ∈ (Z/2kZ)ℓ. Client locally computes ϕ(xi) for all i ∈ [N ].

(b) All parties call FInputShamir with the inputs ϕ(x1), . . . , ϕ(xN ) from Client. All parties get the
output [y1]t, . . . , [yN ]t and a set of eliminated parties denoted by S1. All parties update
Pactive := Pactive − S1.

(c) All parties call FRandShamir(N) to prepareN random degree-t Shamir secret sharings denoted
by [ϕ(r1)]t, . . . , [ϕ(rN )]t. All parties also receive a set of eliminated parties denoted by S2.
All parties update Pactive := Pactive − S2.

(d) All parties call FOpenPub(N) to reconstruct [y1]t + [ϕ(r1)]t, . . . , [yN ]t + [ϕ(rN )]t and get the
secrets y1 + ϕ(r1), . . . , yN + ϕ(rN ).

(e) For all i ∈ [N ], All parties locally check if ϕ ◦ ψ(yi + ϕ(ri)) = yi + ϕ(ri). If the equation
does not hold, all parties set [yi]t to [0]0. Note that after this step, each sharing [yi]t can
be written as [yi]t = [ϕ(x′

i)]t, where x′
i = ψ(yi).

(f) All parties take [ϕ(x′
1)]t, . . . , [ϕ(x

′
N )]t as the shared inputs of Client.

2. All parties call FFanOut with the input sharings from all clients, and get the set of eliminated
parties denoted by S3 and the resulting fan-out sharings. All parties update Pactive := Pactive−
S3.

3. All parties call FPermute to permute all the fan-out sharings with the desired permutations. All
parties get the set of eliminated parties denoted by S4, and the resulting permuted sharings.
All parties update Pactive := Pactive − S4.

4. Let S be the set of eliminated parties in the previous steps. All parties output the resulting
permuted sharings in the previous step.

Cost of ΠInput. To get input from a client with N ·ℓ inputs in Z/2kZ, the communication complexity
is O(N ·n ·m+n2 ·m2 · (|S1|+ |S2|)) elements in Z/2kZ. The communication complexity of Step 2
is O(M · n ·m+ n2 ·m2 · |S3|) elements in Z/2kZ, and the communication complexity of Step 3 is
O(M ·n·m+n2 ·m2 ·|S4|) elements in Z/2kZ. SinceM is bounded by O(|C ′|/ℓ), andm, ℓ = O(log n),
the total communication complexity of ΠInput is O(|C| · n + c · n · m + n2 · m2 · |S|) elements in
Z/2kZ.

4.2 Output Gates

We introduce the protocol ΠOutput that reconstructs all outputs towards all clients. In this protocol,
all parties first perform network routing to generate the output Shamir sharings, and then they
send the shares of the output sharing to each client. The description of ΠOutput appears below.

Protocol 4: ΠOutput

1. All parties call FCollect to collect secrets for Shamir sharings of the output layer, and all parties
receive a set of eliminated parties denoted by S1. All parties update Pactive := Pactive − S1.

2. All parties call FPermute with the collected Shamir sharings and the desired permutations as
input. All parties get all output Shamir sharings as output, and get a set of eliminated parties
denoted by S2. All parties update Pactive := Pactive − S2.

3. For each client Client that has output Shamir sharings [ϕ(z1)]t, . . . , [ϕ(zN )]t, all parties send
their shares of [ϕ(zi)]t to Client for all i ∈ [N ]. Then Client reconstructs the secrets z1, . . . ,zN .

Cost of ΠOutput. In Step 1, the communication complexity is bounded by calling FCollect that
outputs |C ′|/ℓ sharings, so the communication complexity is bounded by O((|C|+ ℓ · c+ n2 ·m2) ·
n ·m/ℓ+n2 ·m2 · |S1|) elements in Z/2kZ. In step 2, the communication complexity is bounded by
O((|C| ·n+ ℓ · c+n2 ·m2) ·n ·m/ℓ+n2 ·m2 · |S2|) elements in Z/2kZ. Since m, ℓ are both O(log n),
the total communication complexity of ΠOutput is O(|C| ·n+ c ·n ·m+n3 ·m2) elements in Z/2kZ.

4.3 Main Protocol

Given the above protocols, the main protocol that implements the ideal functionality FMain follows
in a straightforward way. The main protocol is introduced in ΠMain.

19



Protocol 5: ΠMain(C)

1. Let C denote the circuit. All parties transform C to C′. All parties agree on the gate group-
ing, and they order of the circuit segments according to topological ordering. All parties set
Pactive := P.

2. All parties run the protocol ΠInput.
3. All parties evaluate the circuit segments according to their ordering. For each circuit segment

denoted by seg:
(a) All parties run the protocol ΠEval(seg). All parties get the set of eliminated parties denoted

by S.
(b) All parties run the protocol ΠVerify(seg, S). If the output is incorrect, all parties repeat

step 3.(a) and 3.(b) to evaluate seg. Otherwise, all parties continue to evaluate the next
circuit segment.

4. All parties run the protocol ΠOutput.

Cost of ΠMain. In Step 2, the cost of ΠInput is In Step 3, each time ΠEval or ΠVerify is repeated, the
communication complexity is O(|C|+ n2 ·m2 · |S|) elements in Z/2kZ.

In Step 3, when no circuit segment is repeated, the total communication complexity of ΠEval

and ΠVerify is ∑
seg

(
O(|C|) +O(n2 ·m2 · |S|) +O(Mseg · n ·m)

)
.

We note that
∑

segMseg is bounded by O(|C ′|/ℓ), and that
∑

seg |S| is bounded by 2t = O(n). So

the total communication complexity of Step 3 when no circuit segment is repeated is O((|C ′|/ℓ) ·
n ·m+ |C| · n+ n3 ·m2).

Recall that m, ℓ = O(log n). Also note that the sum of all |S| is bounded by 2t = O(n).
Therefore, the overall communication complexity of ΠMain is

O(|C| · n+ c · n · log n+ n3 · log2 n)

elements in Z/2kZ. Here |C| is the size of the circuit in both addition and multiplication gates.
Notice that this is linear, as desired.

Lemma 3. Protocol ΠMain securely computes FMain in the (FInputShamir, FRandShamir, FRandZeroAdd,FRandParity,
FOpenPub, FReEncode, FMult, FTripleAdd, FTripleMult, FVerifyBC, FFanOut, FPermute, FCollect)-hybrid model
with perfect security against a fully malicious adversary who controls t < n/3 parties.

The proof of Lemma 3 can be found in Section F.3 in the Appendix. This leads to the following
Theorem, which is the main result of our work.

Theorem 3. In the client-server model, let c denote the number of clients, and n = 3t+1 denote
the number of parties (servers). Let k be a constant positive integer and let Z/2kZ be a finite ring
of constant size. For an arithmetic circuit C over Z/2kZ, let |C| denote the size of the circuit.
There exists an information-theoretic MPC protocol which securely computes the arithmetic circuit
with perfect security in the presence of a fully malicious adversary controlling up to c clients and
t parties. The communication complexity of this protocol is O(|C| · n + c · n · log n + n3 · log2 n)
elements in Z/2kZ.
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Appendix

A Full Description of Building Block Functionalities

Full Description of FOpenPub. The full description of FOpenPub appears in Functionality 2.

Functionality 2: FOpenPub(N)

1. Let [x1]d, [x2]d, . . . , [xN ]d denote the input sharings.
2. For all i ∈ [N ], FOpenPub receives from the active honest parties their shares of [xi]d. Then

FOpenPub reconstructs the secrets xi. FOpenPub further computes the shares of [xi]d held by
active corrupted parties, and sends the shares to the adversary.

3. For all i ∈ [N ], FOpenPub sends the reconstructed xi to all active parties.

Full Description of FMult. The full description of FMult appears in Functionality 3.

Functionality 3: FMult(N)

1. Let [x1]t, . . . , [xN ]t and [y1]t, . . . , [yN ]t denote the input sharings. FMult receives from active
honest parties their shares of [x1]t, . . . , [xN ]t and [y1]t, . . . , [yN ]t. Then FMult reconstructs the
secrets x1, . . . , xN and y1, . . . , yN . FMult further computes the shares of [x1]t, . . . , [xN ]t and
[y1]t, . . . , [yN ]t held by active corrupted parties and send the shares to the adversary.

2. FMult receives from the adversary a set of even number of parties S ⊂ Pactive such that |S|/2 ≤
|S∩Cactive|. FMult updates Pactive := Pactive−S. FMult then sends S to all active honest parties.

3. FMult computes x1 · y1, . . . , xN · yN , and then FMult receives from the adversary the shares of
active corrupted parties of [x1 · y1]t, . . . , [xN · yN ]t.

4. FMult samples the whole sharings [x1 · y1]t, . . . , [xN · yN ]t so that they are compatible with the
active corrupted parties’ shares. For each active honest party Ph, FMult sends Ph’s shares of
[x1 · y1]t, . . . , [xN · yN ]t to Ph.

Full Description of FReEncode. The full description of FReEncode appears in Functionality 4.

Functionality 4: FReEncode(N)

1. Let [x1]t, . . . , [xN ]t denote the input sharings. FReEncode receives from active honest parties their
shares of [x1]t, . . . , [xN ]t. Then FReEncode reconstructs the secrets x1, . . . , xN . FReEncode further
computes the shares of [x1]t, . . . , [xN ]t held by active corrupted parties and send the shares to
the adversary.

2. FReEncode receives from the adversary a set of even number of parties S ⊂ Pactive S such that
|S|/2 ≤ |S∩Cactive|. FReEncode updates Pactive := Pactive−S. FReEncode then sends S to all active
honest parties.

3. FReEncode computes ϕ ◦ψ(x1), . . . , ϕ ◦ψ(xN ), and then FReEncode receives from the adversary the
shares of active corrupted parties of [ϕ ◦ ψ(x1)]t, . . . , [ϕ ◦ ψ(xN )]t.

4. FReEncode samples the whole sharings [ϕ ◦ ψ(x1)]t, . . . , [ϕ ◦ ψ(xN )]t so that they are compatible
with the active corrupted parties’ shares. For each active honest party Ph, FReEncode sends Ph’s
shares of [ϕ ◦ ψ(x1)]t, . . . , [ϕ ◦ ψ(xN )]t to Ph.

Full Description of FVerifyBC. The full description of FVerifyBC appears in Functionality 5.

Functionality 5: FVerifyBC(N)

1. Let D be the suspicious dealer and let N be the total number of ring elements to verify. Let
x(1), . . . , x(N) denote these elements.

2. FVerifyBC receives from active honest parties the values of x(1), . . . , x(N), and send them to the
adversary.

3. FVerifyBC receives from the adversary one of the following:
– Default string only if active honest parties shares are all consistent;
– A semi-corrupted pair {Pj1 , Pj2} where {Pj1 , Pj2} ∩ Cactive ̸= ∅.
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4. Based on what it has received, FVerifyBC does one of the following:
– On receiving default string, FVerifyBC sends consistent to active honest parties;
– On receiving a semi-corrupted pair, FVerifyBC sends (inconsistent, {Pj1 , Pj2}) to active

honest parties.

Full Description of FInputShamir. The full description of FInputShamir appears in Functionality 6.

Functionality 6: FInputShamir(N)

1. Let x1, . . . , xN ∈ R denote the inputs of the client denoted by Client.
2. FInputShamir receives from the adversary a set of even number of parties S ⊂ Pactive S such that

|S|/2 ≤ |S ∩ Cactive|. FInputShamir updates Pactive := Pactive − S. FInputShamir then sends S to all
active honest parties.

3. FInputShamir receives from the adversary one of the following:
– The shares of active corrupted parties of [x1]t, . . . [xN ]t.
– If Client is corrupted, the adversary can choose to change the inputs to x′1, . . . , x

′
N . Then

the adversary sends the shares of active corrupted parties of [x′1]t, . . . [x
′
N ]t

4. Based on what it has received, FInputShamir does one of the following:
– On receiving the shares of active corrupted parties of [x1]t, . . . [xN ]t, FInputShamir samples a

random degree-t Shamir secret sharing [x1]t, . . . [xN ]t so that they are compatible with the
active corrupted parties’ shares for all i ∈ [N ]. For each active honest party Ph, FInputShamir

sends Ph’s shares of [x1]t, . . . [xN ]t to Ph.
– On receiving a new set of inputs x′1, . . . , x

′
N and the shares of active corrupted parties of

[x′1]t, . . . [x
′
N ]t, FInputShamir samples a random degree-t Shamir secret sharing [x′1]t, . . . [x

′
N ]t

so that they are compatible with the active corrupted parties’ shares. For each active
honest party Ph, FInputShamir sends Ph’s shares of [x

′
1]t, . . . [x

′
N ]t to Ph for all i ∈ [N ].

B Preparing Random Sharings

B.1 Preliminaries

We first introduce several important tools to help us instantiate our protocols that prepare different
random secret sharings.

Byzantine Agreement. Byzantine agreement (BA) is a protocol that takes a bit from each party
as input and enables all honest parties to reach a consensus on a single bit. In the case that all
parties hold the same bit as input then the output bit coincides precisely with this input bit. In our
protocol, we use BA in a few places, like letting all parties reach a binary consensus on whether an
error happened. We also use BA to let one party broadcast one bit to all other parties consistently,
meaning all parties receive the same bit, which is the bit the party sent if this party is honest.
This is easily instantiable from BA by letting the party send the bit to all other parties, followed
by BA to reach a consensus on the bit received.

With t < n/3, both bit consensus and broadcast can be achieved by a perfect byzantine
agreement protocol communicating O(n2) bits [BGP92,CW92]. This quadratic complexity is fine
in our context since we only use this primitive a small number of times so that it does not affect
our overall linear communication.

Packed Shamir Secret Sharings. We will use the packed Shamir secret sharing scheme [FY92]
in this work to prepare randomness for network routing. For the Galois ring R = GR(2k,m),
suppose (αi)

n
i=1, (βj)

n
j=1 are 2n distinct points to interpolate polynomials according to Lemma 1.

For all 1 ≤ r ≤ n, a degree-d (d ≥ r − 1) packed Shamir sharing of x ∈ Rr is a vector
(s1, s2, . . . , sn) ∈ Rn that satisfies the property that there exists a polynomial f(·) ∈ R≤d[x] with
f(βj) = xj ,∀j ∈ [r] and f(αi) = si,∀i ∈ [n]. The share held by party Pi is si. With any (d + 1)
different shares of the same sharing, we can reconstruct the secret x. When r = 1, it corresponds
to the standard Shamir sharing.
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A degree-d packed Shamir sharing for the vector x ∈ Rr is denoted as [x]d, and a degree-d
standard Shamir sharing for the element y ∈ R is denoted as [y]d. For packed Shamir sharings, the
following two properties hold:

– For all x,y ∈ Rr, [x+ y]d = [x]d + [y]d.
– Let ⋆ denote the coordinate-wise multiplication, then for all x,y ∈ Rr and for all d1, d2 ≥ r−1

subject to d1 + d2 < n, we have [x ⋆ y]d1+d2 = [x]d1 · [y]d2 .

We note that Lemma 2 also holds for packed Shamir secret sharings.

Abstract General Linear Secret Sharing Schemes. We adopt the idea of an abstract defi-
nition of a general linear secret sharing scheme (GLSSS) in [ACD+20]. We borrow the following
notations from [ACD+20].

For two non-empty sets U and I, UI represents the indexed Cartesian product
∏

i∈I U . For
some non-empty A ⊂ I, the natural projection πA maps one tuple u = (ui)i∈I ∈ UI to the tuple
(ui)i∈A ∈ UA. We also suppose that S is a finite quotient ring.

We use the definition of arithmetic secret sharing scheme from [ACD+20].

Definition 3 (Abstract S-GLSSS [ACD+20]). The syntax of an S-arithmetic secret sharing
scheme Σ consists of the following data:

– A set of parties I = {1, . . . , n}.
– A secret space Z = Sr. r is also denoted as the number of secrets packed within Σ.
– A share space U = Sℓ. ℓ is also denoted as the share size.
– A sharing space C ⊂ UI , where UI denotes the intended Cartesian product

∏
i∈I U .

– An injective S-module homomorphism: share : Z × Sk → C, that maps a secret x ∈ Z and a
random tape ρ ∈ Sk to a sharing [[x]] ∈ C. share is also denoted as the sharing map of Σ.

– A surjective S-module homomorphism: rec : C → Z, which takes as input a sharing [[x]] ∈ C
and outputs a secret x ∈ Z. rec is also denoted as the reconstruction map of Σ.

The scheme Σ satisfies that for all x ∈ Z and ρ ∈ Rk, rec(share(x,ρ)) = x. We may refer to Σ
as the 6-tuple (n,Z, U,C, share, rec).

Definition 4 (Privacy Set and Reconstruction Set [CCXY18]). Suppose A ⊂ I is non-
empty. We say A is a privacy set if for all x0,x1 ∈ Z, and for all vector v ∈ UA,

Pr
ρ
[πA(share(x0,ρ)) = v] = Pr

ρ
[πA(share(x0,ρ)) = v].

We say A is a reconstruction set if there is an S-module homomorphism recA : πA(C) → Z,
such that for all [[x]] ∈ C,

recA(πA([[x]])) = rec([[x]]).

Intuitively, for a privacy set A, the shares of all parties in A are independent of the secret; for a
reconstruction set A, the shares of all parties in A fully determine the secret.

In [CCXY18], the interleaved GLSSS Σ×m is defined as an n-party secret sharing scheme which
corresponds to m Σ-sharings. We introduce the tensoring-up lemma from [CCXY18], which can
be easily adapted to our ring case:

Proposition 1 (Tensoring-up Lemma [CCXY18] ). Let R be a degree-m Galois ring con-
taining the quotient ring S and let Σ be a S-GLSSS. Then the m-fold interleaved S-GLSSS Σ×m

is naturally viewed as an R-GLSSS, compatible with its S-linearity.

Suppose [[x]] is a sharing in Σ, with this proposition we can define the linear operation for every
λ ∈ R such that for all [[x]] = ([[x1]], . . . , [[xm]]) ∈ Σ×m we have:

– λ · [[x]] = (λ · [[x1]], . . . , λ · [[xm]]) for all λ ∈ S,
– λ1 · [[x]] + λ2 · [[x]] = (λ1 + λ2) · [[x]] for all λ1, λ2 ∈ R and
– λ1 · (λ2 · [[x]]) = (λ1 · λ2) · [[x]] for all λ1, λ2 ∈ R.
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An Example of a GLSSS Using The Tensoring-up Lemma. We will use the standard Shamir secret
sharing scheme as an example of a GLSSS and show how to use the tensoring-up lemma. For ring S
of size |S| ≥ n+1, we may define a secret sharing scheme Σ which takes x ∈ S as input and outputs
[x]t, a degree-t Shamir sharing. The secret space and the share space of Σ are S. According to the
Lagrange interpolation, the secret x can be written as a S-linear combination of all the shares.
Therefore, the defining map of Σ is S-linear. Therefore, Σ is a S-GLSSS.

A sharing [[x]] = ([[x1]], . . . , [[xm]]) ∈ Σ×m is a vector of m sharings in Σ. Let R be a degree-m
Galois ring of S. According to the tensoring-up lemma Σ×m is a R-GLSSS. Therefore R-linear
operations can be performed to the sharings in Σ×m.

Hyper-Invertible Matrices. We adopt the definition of hyper-invertible matrices from [BTH08].

Definition 5. An r-by-c matrixM over the Galois ring R is hyper-invertible if for any index sets
R ⊆ {1, 2, . . . , r} and C ⊆ {1, 2 · · · , c} with |R| = |C| > 0, the matrix MC

R is invertible, where
MR denotes the matrix consisting of the rows i ∈ R ofM andMC denotes the matrix consisting
of the columns j ∈ C ofM, andMC

R = (MR)
C .

We note that an n-by-n hyper-invertible matrix exists if the degree of the Galois ring R =
GR(2k,m) satisfies 2m ≥ 2n + 1 [ACD+19]. In our work, we will use n-by-n hyper-invertible
matrices over R.

B.2 Preparing Random Sharings for Z/2kZ-GLSSS

In this section, we present the protocol for preparing random sharings for a given general Z/2kZ-
GLSSS scheme, denoted by Σ. Our protocol is adapted from [PS21], while we introduce party
elimination framework to ensure perfect security. Let [[x]] denote a sharing in Σ of secret x. For a
set A ⊂ I, recall that πA([[x]]) refers to the share of [[x]] held by parties in A. We assume that Σ
satisfies the following property:

– Given a set A ⊂ I and a set of shares {ai}i∈A for the parties in A, let

Σ(A, (ai)i∈A) := {[[x]] | [[x]] ∈ Σ and πA([[x]]) = (ai)i∈A}.

Then, there is an efficient algorithm that outputs either that Σ(A, (ai)i∈A) = ∅ or a random
sharing [[x]] in Σ(A, (ai)i∈A).

The functionality FRand is described in Functionality 7. Essentially, FRand allows the adversary
to specify the shares held by active corrupted parties or to generate a valid semi-corrupted pair.
In the first case, based on these shares FRand generates a random sharing in Σ and distributes the
shares to active honest parties. Note that when the set of active corrupted parties is a privacy
set, the secret is independent of the shares chosen by the adversary. In the second case, the semi-
corrupted pair will be eliminated from the active parties.

Functionality 7: FRand(N)

1. FRand receives from the adversary one of the following:
– The shares of active corrupted parties (s

(j)
i )i∈Cactive where Σ(Cactive, (s(j)i )i∈Cactive) ̸= ∅ for

all j ∈ [N ];
– A semi-corrupted pair {Pj1 , Pj2} where {Pj1 , Pj2} ∩ Cactive ̸= ∅.

2. Based on what it has received, FRand does one of the following:
– On receiving (s

(j)
i )i∈Cactive for all j ∈ [N ], FRand randomly samples [[r]] ∈

Σ(Cactive, (s(j)i )i∈Cactive) for all j ∈ [N ]. For each honest party Pi ∈ Hactive, FRand sends the
i-th share of [[r(j)]] to Pi for all j ∈ [N ].

– On receiving {Pj1 , Pj2}, FRand sends {Pj1 , Pj2} to all active honest parties.

We follow the idea in [BTH08] to design a protocol that prepares random sharings in Σ. To
sum up, firstly each party generates a random sharing in Σ×m. Each sharing [[x]] in Σ×m is a
vector of m sharings denoted by ([[x1]], [[x2]], . . . , [[xm]]), and according to Proposition 1 Σ×m is a
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R-GLSSS. Secondly, all parties apply a hyper-invertible matrix over R to transform the sharings
for fault detection. Next, some selected parties will verify that a subset of the transformed sharings
have the correct form. Finally, all parties take the other transformed sharings as the output.

Protocol 6: ΠRand(N)

1. All parties agree on a hyper-invertible matrix M over R of size n′-by-n′.
2. Each party in Pactive uniformly randomly samples ⌈ N

m·T ⌉ different sharings in Σ×m. Let [[s
(j)
i ]]

denote the j-th sharing sampled by Pi. Then each party in Pactive distributes the shares to all
the other parties in Pactive.

3. For all j ∈ {1, 2, . . . , ⌈ N
m·T ⌉}, all parties in Pactive locally compute

([[r
(j)
1 ]], [[r

(j)
2 ]], . . . , [[r

(j)

n′ ]]) = M · ([[s(j)
1 ]], [[s

(j)
2 ]], . . . , [[s

(j)

n′ ]])

4. For all j ∈ {1, 2, . . . , ⌈ N
m·T ⌉}, and for ℓ ∈ {T +1, . . . , n′}, all parties in Pactive send their shares

of [[r
(j)
ℓ ]] to Ph. Ph checks if the sharing [[r

(j)
ℓ ]] is a valid sharing in Σ×m. If not, Ph sets its

happy-bit to unhappy.
5. Fault Detection Phase:

(a) All players broadcast their happy-bits using the byzantine agreement protocol.
(b) For each party, if it receives at least one unhappy then sets his or her happy-bit to unhappy.
(c) All players run a consensus protocol on their happy-bits. If the consensus is happy, all

parties output the output of π and terminate the procedure. Otherwise, they proceed to
the following steps.

6. Fault Localization Phase:
(a) All players agree the party with the smallest index in PA as the dealer D. All other players

send all their generated values and communication to D.
(b) On receiving all the information, D simulates π and the fault detection phase itself. D

either prepares the message (Pi, corrupt) if Pi failed to follow the protocol, or the message
(Pj1 , Pj2 , idx, b, b

′, disputed) if the idx-th bit b that Pj1 sends to Pj2 is inconsistent with
Pj2 ’s bit b

′ that Pj2 claims to have received. Then D broadcasts the prepared message to
all players.

(c) If (Pi, corrupt) is received, all players set the eliminating set E = {D,Pi}.
Otherwise, if (Pj1 , Pj2 , idx, b, b

′, disputed) is received, Pj1 and Pj2 will broadcast if they
agree with this message. If Pj1 does not agree, all players set the eliminating set E =
{D,Pj1}; otherwise if Pj2 does not agree, all players set the eliminating set E = {D,Pj2};
otherwise all players set the eliminating set E = {Pj1 , Pj2}.

(d) All players update Pactive := Pactive − E and halt.

7. For all j ∈ {1, 2, . . . , ⌈ N
m·T ⌉} and for all i ∈ [T ], all active parties separate the sharing [[r

(j)
i ]]

into m sharings in Σ, and take them as outputs.

Lemma 4. In Step 4 of Protocol 6, either at least one active honest party has unhappy happy-bit
or all active corrupted parties has dealt consistent shares to active honest parties in Σ×m in Step 2

of ΠRand, i.e. Σ(Hactive, ([[s
(j)
ℓ ]]i)i∈Hactive

) ̸= ∅ where [[s
(j)
ℓ ]]i denotes party Pi’s share of the sharing

[[s
(j)
ℓ ]].

Proof. If all actives honest parties are happy, then at least t′ active parties have verified that

[[r
(j)
ℓ ]] is valid for all j ∈ ⌈ N

m·T ⌉, and we suppose without loss of generality that [[r
(j)
ℓ ]] is valid for

ℓ ∈ {T + 1, . . . , T + t′}. And also we suppose without loss of generality that [[s
(j)
i ]] is valid for

i ∈ {1, . . . , n′ − t′}. Then we have that

([[r
(j)
T+1]], . . . , [[r

(j)
T+t′ ]]) =MHactive

· ([[s(j)1 ]], . . . , [[s
(j)
n′−t′ ]]) +MCactive

· ([[s(j)n′−t′+1]], . . . , [[s
(j)
n ]]),

whereMHactive
=M{1,...,n′−t′}

{T+1,...,T+t′} andMCactive
=M{n′−t′+1,...,n′}

{T+1,...,T+t′} . BecauseM is a hyper-invertible

matrix, MC is an invertible matrix. Therefore, the shares of [[s
(j)
n′−t′+1]], . . . , [[s

(j)
n′ ]] held by active

honest parties are also consistent.

It follows Lemma 4 that if all active honest parties are happy then the shares of [[r
(j)
ℓ ]] held by

active honest parties are consistent for all ℓ ∈ {1, . . . , n′}, and all active honest parties hold ⌈N/m⌉
consistent sharings in Σ×m.
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Cost of Protocol 6. Suppose the share size of a sharing in Σ is sh ring elements in Z/2kZ. Then the
share size of a sharing in Σ×m is m · sh ring elements in Z/2kZ. It follows that the communication
complexity of ΠRand(N) is O(N · n · sh+ n2 ·m · sh).

Lemma 5. The protocol ΠRand computes FRand with perfect security when |Cactive| < |Pactive|/3.

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors of
honest parties for the adversary. Recall that Cactive denotes the active corrupted parties and that
Hactive denotes the active honest parties.

Simulation for ΠRand. Sim simulates the protocol ΠRand as follows:

1. In Step 2, for each honest party, Sim generates random shares of active corrupted parties in
Σ×m. Then Sim sends these shares of active corrupted parties on behalf of active honest parties
to A. For each corrupted party, Sim receives the active honest parties’ shares of the active
corrupted parties’ sharings from A. Suppose that the sharings generated by active corrupted

parties are ([[s
(j)
i ]])i∈Cactive

for all j ∈ {1, 2, . . . , ⌈ N
m·T ⌉}. In this step, Sim only receives from A

the shares of active honest parties of these shares.
2. In Step 4, to simulate the happy-bit, Sim computes the shares held by active honest parties

for each sharing generated by the corrupted party. Next, Sim can compute the active honest

parties’ shares according toMCactive

{T+1,...,n′} · ([[s
(j)
n′−t′+1]], . . . , [[s

(j)
n′ ]]). Suppose the result sharing is

denoted by ([[w
(j)
T+1]], . . . , [[w

(j)
n′ ]]). Then Sim receives from A the shares of ([[w

(j)
T+1]], . . . , [[w

(j)
n′ ]])

that the active corrupted parties send to the active honest parties. For ℓ ∈ {T + 1, . . . , n′}, if
Ph is an honest party, Sim checks if the sharing [[w

(j)
ℓ ]] is a valid sharing in Σ×m. If not, Sim

sets Ph’s happy-bit to be unhappy on behalf of Ph.
If Ph is corrupted, Sim does nothing.

3. In Fault Detection Phase, Sim faithfully follows the byzantine agreement protocol using active
honest parties’ happy-bits.

4. If proceeds to Fault Localization Phase, Sim randomly samples the sharings distributed by
active honest parties in Step 2 of ΠRand so that the sampled sharings are consistent with the
shares of active corrupted parties. Then Sim faithfully follows the protocol.

5. In Step 7, Sim compute the shares of [[r
(j)
i ]] held by active corrupted parties for all i ∈ [T ] and

j ∈ [⌈ N
m·T ⌉], and Sim sends the shares of the first N sharings held by active corrupted parties

to FRand.

Hybrid Arguments. We show that Sim perfectly simulates the behaviors of honest parties.
Hybrid0: The execution in the real world.
Hybrid1: In Step 2, for each i ∈ Hactive, instead of receiving the entire share from Pi, Sim only

samples the active corrupted parties’ shares. This will not change the distribution of the shares
held by active honest parties. The distribution is identical to the distribution of Hybrid0.

Hybrid2: In Step 4, Sim simulates the happy-bits of active honest parties. Because the happy-
bit of some honest parties only depends on the consistency of the active corrupted parties’ shares,
Sim can perfectly simulate active honest parties’ happy-bits. The distribution is identical to the
distribution of Hybrid1.

Hybrid3: In Fault Detection Phase, Sim simulates the active honest parties’ behavior using the
simulated active honest parties’ happy-bits instead. Because the two sets of active honest parties’
happy-bits are identical, the distribution of this hybrid is identical to the distribution of Hybrid2.

Hybrid4: Sim simulates Fault Localization Phase by sampling random sharings that are com-
patible with active corrupted parties shares for active honest parties in Step 2. Note that the
Σ×m sharings sampled by Sim have the same distribution as the actual sharings sampled by active
honest parties. Also note that it will not affect the output distribution, since the semi-corrupted
pair is only related to the corrupted parties’ messages. Therefore, the distribution of this hybrid is
identical to the distribution of Hybrid3.

Hybrid5: According to Lemma 4, if Sim proceeds to Step 7 in ΠRand then all active honest par-
ties have been dealt consistent sharings from active corrupted parties in Step 2. With these sharings,

A locally holds the shares of ([[s
(j)
i ]])i∈Cactive

that are consistent with the shares of active honest
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parties. Specifically, active corrupted parties hold consistent ([[s
(j)
i ]])i∈Cactive

for all j ∈ [⌈ N
m·T ⌉],

where [[s
(j)
i ]] ∈ Σ(Hactive, (s

(j)
i )i∈Hactive

) for i ∈ Cactive. We have

([[r
(j)
i ]])Ti=1 =M[T ] · ([[s

(j)
i ]])n

′

i=1 =MHactive

[T ] · ([[s(j)i ]])i∈Hactive
+MCactive

[T ] · ([[s(j)i ]])i∈Cactive
.

Sim computes the active corrupted parties’ shares of ([[r
(j)
i ]])Ti=1 using this equation and gets

(r
(j)
i )r∈Cactive

for all j ∈ [⌈ N
m·T ⌉]. Sim sends (r

(j)
i )r∈Cactive

for all j ∈ [⌈ N
m·T ⌉] to FRand.

According to the property of Σ, the shares of ([[s
(j)
i ]])i∈Hactive

held by active corrupted parties are

independent of the sharings ([[s
(j)
i ]])i∈Cactive

, and are also independent of the shares of ([[s
(j)
i ]])i∈Hactive

held by active honest parties. Because |Hactive| ≥ T , ([[r(j)i ]])Ti=1 corresponds to ([[r
(j)
i ]])i∈Hactive

and

has no correlation. It follows that the active honest parties’ shares of ([[r
(j)
i ]])Ti=1 are independent

of the view of A and are uniformly random. Therefore, the distribution of this hybrid is identical
to the distribution of Hybrid4.

Note that Hybrid5 is the execution in the ideal world.

B.3 Instantiating Functionalities

A Robust Version of FRand. To instantiate functionalities, we first define a functionality
FRandRobust to prepare random sharings for a Z/2kZ-GLSSS Σ with guaranteed output delivery.
The description of FRandRobust appears in Functionality 8.

Functionality 8: FRandRobust(N)

1. FRandRobust receives from the adversary a set of even number of parties S ⊂ Pactive such that
|S|/2 ≤ |S ∩ Cactive|. FRandRobust updates Pactive := Pactive − S. FRandRobust then sends S to all
active honest parties.

2. FRandRobust receives from the adversary the shares of active corrupted parties (s
(j)
i )i∈Cactive where

Σ(Cactive, (s(j)i )i∈Cactive) ̸= ∅ for all j ∈ [N ].

3. FRandRobust randomly samples [[r]] ∈ Σ(Cactive, (s(j)i )i∈Cactive) for all j ∈ [N ]. For each honest
party Ph ∈ Hactive, FRandRobust sends the h-th share of [[r(j)]] to Ph for all j ∈ [N ].

We show the protocol that implements FRandRobust as follows.

Protocol 7: ΠRandRobust(N)

1. All parties set S := ∅.
2. All parties call FRand(N). If the result is N random Σ sharings {[[r(i)]]}Ni=1, all parties output

these sharings and S. Otherwise, if the result is a semi-corrupted pair E, all parties update
Pactive := Pactive − E and S := S ∪ E, and then repeat this step.

3. All parties output S.

Suppose the share size of a sharing in Σ is sh ring elements in Z/2kZ. The cost of this protocol
is O(N · n · sh+ n2 ·m · |S| · sh) elements in Z/2kZ.

Lemma 6. The protocol ΠRandRobust computes FRandRobust with perfect security in the FRand-hybrid
model when |Cactive| < |Pactive|/3.

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors
of honest parties for the adversary. In Step 2, Sim faithfully emulates FRand. Because there is no
other communication, the distribution of the real world is the same as the distribution of the ideal
world.

Random Shamir Secret Sharings. The functionality FRandShamir enables all parties to prepare
N random degree-t Shamir sharings in the form of [ϕ(r)]t, where r is a random vector in (Z/2kZ)ℓ.
The description of FRandShamir appears in Functionality 9.
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Functionality 9: FRandShamir(N)

1. FRandShamir receives from the adversary a set of even number of parties S ⊂ Pactive such that
|S|/2 ≤ |S ∩ Cactive|. FRandShamir updates Pactive := Pactive − S. FRandShamir then sends S to all
active honest parties.

2. FRandShamir receives from the adversary the shares of active corrupted parties (s
(j)
i )i∈Cactive where

s
(j)
i ∈ R for all i ∈ Cactive and for all j ∈ [N ].

3. FRandShamir randomly samples N vectors r(j) in (Z/2kZ)ℓ for all j ∈ [N ]. Then FRandShamir

generates N degree-t Shamir sharings ([(ϕ(r(j)))]t)
N
j=1 such that the shares of Pi ∈ Cactive are

(s
(j)
i )Nj=1. For each Ph ∈ Hactive, FRandShamir sends the i-th share of [(ϕ(r(j)))]t to Ph for all

j ∈ [N ].

The instantiation of FRandShamir can be found in the next part where we describe the instantiation
of the functionality that prepares random packed Shamir sharings.

Random Packed Shamir secret sharings. The functionality FRandShamir enables all parties
to prepare N random degree-t Shamir sharings in the form of [ϕ(r)]t, where r is a random vec-
tor in (Z/2kZ)ℓ. The description of FRandShamir appears in Functionality 9. We introduce the
functionality to let all parties prepare random degree-d packed Shamir sharings in the form of
[(ϕ(r1), ϕ(r2), . . . , ϕ(rh))]d, where r1, r2, . . . , rh are h random vectors in (Z/2kZ)ℓ. The descrip-
tion of FRandShPacked appears in Functionality 10.

Functionality 10: FRandShPacked(d, h,N)

1. FRandShPacked receives from the adversary a set of even number of parties S ⊂ Pactive S such
that |S|/2 ≤ |S ∩ Cactive|. FRandShPacked updates Pactive := Pactive − S. FRandShPacked then sends S
to all active honest parties.

2. FRandShPacked receives from the adversary the shares of active corrupted parties (s
(j)
i )i∈Cactive

where s
(j)
i ∈ R for all i ∈ Cactive and for all j ∈ [N ].

3. FRandShPacked randomly samples N · h vectors r
(j)
q in (Z/2kZ)ℓ for q ∈ [h] and j ∈ [N ]. Then

FRandShPacked generates N degree-d Shamir sharings ([(ϕ(r
(j)
1 ), ϕ(r

(j)
2 ), . . . , ϕ(r

(j)
h ))]d)

N
j=1 such

that the shares of Pi ∈ Cactive are (s
(j)
i )Nj=1. For each Pi ∈ Hactive, FRandShPacked sends the i-th

share of [(ϕ(r
(j)
1 ), ϕ(r

(j)
2 ), . . . , ϕ(r

(j)
h ))]d to Pi for all j ∈ [N ].

We use FRandRobust to instantiate FRandShPacked. Consider a secret sharing scheme Σ which takes
h vectors r1, r2, . . . , rh ∈ (Z/2kZ)ℓ as input and outputs a degree-d packed Shamir sharing of
(ϕ(r1), ϕ(r2), . . . , ϕ(rh)) in R, i.e. [(ϕ(r1), ϕ(r2), . . . , ϕ(rh))]d. Because packed Shamir sharings are
linear in R and ϕ is Z/2kZ-linear, Σ is an Z/2kZ-GLSSS. To use FRandRobust to prepare random
sharings in Σ, we need to show that:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm
which outputs either Σ(A, (ai)i∈A) = ∅ or a random sharing [(ϕ(r1), ϕ(r2), . . . , ϕ(rh))]d ∈
Σ(A, (ai)i∈A).

Depending on the size of A, there are three cases:

– If |A| ≥ d + 1, by the property of packed Shamir secret sharing scheme, the set of shares
{ai}i∈A can fully determine the whole sharing if exists. The algorithm checks whether the
shares and the secrets lie on a polynomial f(·) of degree at most d. If not, the algorithm
outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm checks whether the secret of this Shamir
sharing, denoted by w1, . . . , wℓ, is in the image of ϕ. This can be done by checking whether
ϕ(ψ(wi)) = wi holds for all i = 1, . . . , ℓ. If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅.
Otherwise, the algorithm outputs the Shamir sharing determined by {ai}i∈A.

– If d−h+2 ≤ |A| ≤ d, the set of shares {ai}i∈A may not be independent because of the structure
of the secret space. Recall that the secret space is Z ⊂ Rh, and Z is R-linear. Suppose Z is
defined by the linear mapping B : (Z/2kZ)ℓ·h → (Z/2kZ)m·h. Since packed Shamir secret
sharing scheme is also R-linear, given the shares {ai}i∈A the secret space can be defined as
the image of the mapping L : (Z/2kZ)(d−|A|+2)·h → (Z/2kZ)m·h, and L can be written in the
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form that L(a) = C · a + b, where the matrix C ∈ (Z/2kZ)(m·h)×((d−|A|+2)·h) and the vector
b ∈ (Z/2kZ)m·h are determined by the shares {ai}i∈A. It is clear that Σ(A, (ai)i∈A) ̸= ∅ if and
only if B ·x = C · y+ b has solution. This can be determined easily by solving if the following
linear equation has solutions

(B,C) ·
(
−x
y

)
= b,

and this can be done by solving the null space of the matrix (B,C). If the null space is
empty, the algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm picks random
(−x0,y0)

T in the null space. Suppose the secrets corresponding to the sampled vector y0 are
ϕ(r1), . . . , ϕ(rℓ). Then, based on the secrets ϕ(r1), . . . , ϕ(rℓ) and the shares {ai}i∈A, the algo-
rithm reconstructs the whole packed Shamir sharing [(ϕ(r1), ϕ(r2), . . . , ϕ(rh))]d and outputs
[(ϕ(r1), ϕ(r2), . . . , ϕ(rh))]d.

– If |A| ≤ d − h + 1, by the property of packed Shamir secret sharing scheme the set of shares
{ai}i∈A are independent, soΣ(A, (ai)i∈A) ̸= ∅. The algorithm randomly samples r1, r2, . . . , rℓ ∈
(Z/2kZ)ℓ and randomly samples (d+ 1− h− |A|) elements in R as the shares of the first (d+
1−h−|A|) parties in I\A. Then, based on the secrets ϕ(r1), ϕ(r2), . . . , ϕ(rh), the shares of the
first (d+1−h−|A|) parties in I\A and the shares {ai}i∈A, the algorithm reconstructs the whole
packed Shamir sharing [(ϕ(r1), ϕ(r2), . . . , ϕ(rh))]d and outputs [(ϕ(r1), ϕ(r2), . . . , ϕ(rh))]d.

Therefore, FRandShPacked can be instantiated by FRandRobust with the secret sharing scheme Σ
defined above. Note that the share size of Σ is sh = m elements in Z/2kZ. It follows that when using
ΠRand(N) to instantiate FRandRobust the total communication complexity to generate N random
sharings in Σ is O(N · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ.

We note that FRandShamir is a special case of this functionality when d = t and h = 1, and
therefore FRandShamir can be instantiated by FRandRobust. Also note that all parties can run the
protocol ΠRand to prepare N random packed Shamir sharings.

Random Zero Additive Sharings. The description of FRandZeroAdd appears in Functionality 11.

Functionality 11: FRandZeroAdd(N)

1. FRandZeroAdd receives from the adversary a set of even number of parties S ⊂ Pactive such that
|S|/2 ≤ |S ∩ Cactive|. FRandZeroAdd updates Pactive := Pactive − S. FRandZeroAdd then sends S to all
active honest parties.

2. FRandZeroAdd receives from the adversary the shares of active corrupted parties
(s

(j)
i )i∈Cactive∩{1,2,...,t+1} where s

(j)
i ∈ Z/2kZ for all i ∈ Cactive ∩ {1, 2, . . . , t + 1} and for

all j ∈ [N ].
3. FRandZeroAdd randomly samples N additive sharings (⟨oj⟩)Nj=1 such that oj = 0 for all j ∈ [N ].

For each Ph ∈ Hactive ∩ {1, 2, . . . , t + 1}, FRandZeroAdd sends the h-th share of ⟨oj⟩ to Ph for all
j ∈ [N ].

We will use FRandRobust to instantiate FRandZeroAdd. Consider a secret sharing scheme Σ which
outputs an additive sharing of 0 in Z/2kZ among the first t + 1 parties, and the shares of the
remaining parties are fixed to be 0. It is shown in [PS21] that the following properties holds for Σ:

– Σ is an Z/2kZ-GLSSS.
– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm

which outputs either Σ(A, (ai)i∈A) = ∅ or a random sharing ⟨o⟩ ∈ Σ(A, (ai)i∈A).

Therefore, FRandZeroAdd can be instantiated by FRandRobust with the secret sharing scheme Σ
defined above. Note that the share size of Σ is sh = 1 element in Z/2kZ. It follows that when using
ΠRand(N) to instantiate FRandRobust the total communication complexity to generate N random
sharings in Σ is O(N · n+ n2 ·m · |S|) elements in Z/2kZ.

Random Zero Packed Shamir Sharings. When we prepare randomness needed for sharing
transformation, all parties need to prepare random degree-d packed Shamir sharings whose secrets

are 0. More specifically, all parties need to prepare sharings in the form of ([(o
(j)
1 , o

(j)
2 , . . . , o

(j)
h )]d)

N
j=1,
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where oi is an element in R that satisfies ψ(oi) = 0 ∈ (Z/2kZ)ℓ for all i ∈ [h] and for all j ∈ [N ].
We add constraints to d and h such that d−h+1 ≥ t′ and d ≤ n′−1. The description of FRandZeroSh

appears in Functionality 12.

Functionality 12: FRandZeroSh(d, h,N)

1. FRandZeroSh receives from the adversary one of the following:
– The shares of active corrupted parties (s

(j)
i )i∈Cactive where s

(j)
i ∈ R for all i ∈ Cactive and

for all j ∈ [N ];
– A semi-corrupted pair {Pj1 , Pj2} where {Pj1 , Pj2} ∩ Cactive ̸= ∅.

2. Based on what it has received, FRandZeroSh does one of the following:
– On receiving (s

(j)
i )i∈Cactive for all j ∈ [N ], FRandZeroSh generates N degree-d Shamir sharings

([(o
(j)
1 , o

(j)
2 , . . . , o

(j)
h )]d)

N
j=1 such that the shares of Pi ∈ Cactive are (s

(j)
i )Nj=1. For each Pi ∈

Hactive, FRandZeroSh sends the i-th share of [(o
(j)
1 , o

(j)
2 , . . . , o

(j)
h )]d to Pi for all j ∈ [N ].

– On receiving {Pj1 , Pj2}, FRandZeroSh sends {Pj1 , Pj2} to all active honest parties.

We use FRandRobust to instantiate FRandZeroSh. Consider a secret sharing scheme Σ which outputs
a degree-d packed Shamir sharing of (o1, o2, . . . , oh) in R, i.e. [(o1, o2, . . . , oh)]d. Let V denote
the set of all elements o in R such that ψ(o) = 0 ∈ (Z/2kZ)ℓ. Recall that ψ(·) is Z/2kZ-linear.
Therefore, for all o1, o2 ∈ V and for all α, β ∈ Z/2kZ, we have

ψ(α · o1 + β · o2) = α · ψ(o1) + β · ψ(o2) = 0

which implies that α · o1 + β · o2 ∈ V . Therefore, V is a Z/2kZ-subspace. Since packed Shamir
sharings are linear in R, Σ is an Z/2kZ-GLSSS.

Also, there exists an efficient algorithm to sample a uniformly random element in V . Let 1 be a
vector in (Z/2kZ)ℓ such that all entries are 1 ∈ Z/2kZ. The algorithm random samples x ∈ R and
computes y := ψ(x). Then, the algorithm outputs x− ϕ(1) · ϕ(y). Note that ψ(x− ϕ(1) · ϕ(y)) =
ψ(x)− 1 ⋆ y = 0. Therefore, x− ϕ(1) · ϕ(y) ∈ V . Also note that for all o ∈ V , o will be output by
the algorithm only when x satisfies that o+ ϕ(1) · ϕ(y) = x for some y ∈ (Z/2kZ)ℓ. Because x is
uniformly random in R, the probability that the algorithm outputs o is |(Z/2kZ)ℓ|/|R|. Therefore,
the algorithm outputs a uniformly random element in V .

To use FRandRobust to prepare random sharings in Σ, we need to show that:

– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm
which outputs either Σ(A, (ai)i∈A) = ∅ or a random sharing [(o1, o2, . . . , oh)]d ∈ Σ(A, (ai)i∈A).

To this property, depending on the size of A, there are two cases:

– If |A| ≥ d + 1, by the property of packed Shamir secret sharing scheme, the set of shares
{ai}i∈A can fully determine the whole sharing if exists. The algorithm checks whether the
shares and the secrets lie on a polynomial f(·) of degree at most d. If not, the algorithm
outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm outputs the Shamir sharing determined
by {ai}i∈A.

– If d−h+2 ≤ |A| ≤ d, the set of shares {ai}i∈A may not be independent because of the structure
of the secret space. Recall that the secret space is V ⊂ Rh, and V is R-linear. Suppose V is
defined by the linear mapping B : (Z/2kZ)m·h → (Z/2kZ)m·h. Since packed Shamir secret
sharing scheme is also R-linear, given the shares {ai}i∈A the secret space can be defined as
the image of the mapping L : (Z/2kZ)(d−|A|+2)·h → (Z/2kZ)m·h, and L can be written in the
form that L(a) = C · a + b, where the matrix C ∈ (Z/2kZ)(m·h)×((d−|A|+2)·h) and the vector
b ∈ (Z/2kZ)m·h are determined by the shares {ai}i∈A. It is clear that Σ(A, (ai)i∈A) ̸= ∅ if and
only if B ·x = C · y+ b has solution. This can be determined easily by solving if the following
linear equation has solutions

(B,C) ·
(
−x
y

)
= b,

and this can be done by solving the null space of the matrix (B,C). If the null space is empty,
the algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm picks random (−x0,y0)

T

in the null space. Suppose the secrets corresponding to the sampled vector y0 are o1, o2, . . . , oh.
Then, based on the secrets o1, o2, . . . , oh and the shares {ai}i∈A, the algorithm reconstructs
the whole packed Shamir sharing [(o1, o2, . . . , oh)]d and outputs [(o1, o2, . . . , oh)]d.
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– If |A| ≤ d − h + 1, by the property of packed Shamir secret sharing scheme, the set of shares
{ai}i∈A is independent, so Σ(A, (ai)i∈A) ̸= ∅. The algorithm randomly samples (d+1−h−|A|)
elements in R as the shares of the first (d + 1 − h − |A|) parties in I\A. Then, based on the
secrets o1, . . . , oh, the shares of the first (d+1−h−|A|) parties in I\A and the shares {ai}i∈A,
the algorithm reconstructs the whole packed Shamir sharing [(o1, o2, . . . , oh)]d and outputs
[(o1, o2, . . . , oh)]d.

Therefore, FRandZeroSh can be instantiated by FRandRobust with the secret sharing scheme Σ
defined above. Note that the share size of Σ is sh = m elements in Z/2kZ. It follows that when
using ΠRandRobust(N) to instantiate FRandRobust the total communication complexity to generate N
random sharings in Σ is O(N · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ.

Random Parity Sharings. The functionality FRandParity that prepares random parity sharings is
shown in Functionality 13.

Functionality 13: FRandParity(N)

1. FRandParity receives from the adversary a set of even number of parties S ⊂ Pactive such that
|S|/2 ≤ |S ∩ Cactive|. FRandParity updates Pactive := Pactive − S. FRandParity then sends S to all
active honest parties.

2. FRandParity receives from the adversary the shares of active corrupted parties (u
(j)
i )i∈Cactive where

s
(j)
i ∈ R for all i ∈ Cactive and for all j ∈ [N ].

3. FRandParity randomly samples N parity elements p1, . . . , pN ∈ R. Then FRandParity generates N

degree-t Shamir sharing ([pj ]t)
N
j=1 such that the shares of Pi ∈ Cactive are (u

(j)
i )Nj=1. For each

Ph ∈ Hactive, FRandParity sends the i-th share of [pj ]t to Ph for all j ∈ [N ].

Next we show that we can use ΠRand to instantiate FRandRobust. Consider a secret sharing scheme
Σ which takes a parity element p and outputs a Shamir sharing of p in R.

It is shown in [PS21] that the following properties hold for Σ:

– Σ is an Z/2kZ-GLSSS.
– Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm

which outputs either Σ(A, (ai)i∈A) = ∅ or a random sharing [p]t ∈ Σ(A, (ai)i∈A).

Therefore, FRandParity can be instantiated by FRandRobust with the secret sharing scheme Σ defined
above. Note that the share size of Σ is sh = m elements in Z/2kZ. It follows that when using
ΠRand(N) to instantiate FRandRobust the total communication complexity to generate N random
sharings in Σ is O(N · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ.

Random Additive Beaver Triples. The functionality FTripleAdd that prepares random additive
Beaver triples is shown in Functionality 14.

Functionality 14: FTripleAdd(N)

1. FTripleAdd receives from the adversary a set of even number of parties S ⊂ Pactive such that
|S|/2 ≤ |S ∩Cactive|. FTripleAdd updates Pactive := Pactive−S. FTripleAdd then sends S to all active
honest parties.

2. FTripleAdd receives from the adversary the shares of active corrupted parties

(u
(j)
i , v

(j)
i , w

(j)
i )i∈Cactive where u

(j)
i , v

(j)
i , w

(j)
i ∈ R and w

(j)
i = u

(j)
i + v

(j)
i for all i ∈ Cactive and

for all j ∈ [N ].
3. FTripleAdd randomly samples N random triples (a1, b1, c1), . . . , (aN , bN , cN ), where each triple

entry is in (Z/2kZ)ℓ and each triple (aj , bj , cj) satisfies aj + bj = cj . Then FTripleAdd generates
3N degree-t Shamir sharing ([ϕ(aj)]t, [ϕ(bj)]t, [ϕ(cj)]t)

N
j=1 such that the shares of Pi ∈ Cactive

are (u
(j)
i , v

(j)
i , w

(j)
i )Nj=1. For each Pi ∈ Hactive, FTripleAdd sends the i-th share of the sharings in

the triple ([ϕ(aj)]t, [ϕ(bj)]t, [ϕ(cj)]t) to Pi for all j ∈ [N ].

The protocol ΠTripleAdd realizes FTripleAdd. The description of ΠTripleAdd appears in Protocol 8.
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Protocol 8: ΠTripleAdd(N)

1. All parties invoke FRandShamir(2N) to prepare 2N regular degree-t Shamir secret sharings in the
form of ([ϕ(ai)]t, [ϕ(bi)]t)

N
i=1. All parties also receive a set of eliminated parties denoted by S.

All parties update Pactive := Pactive − S.
2. All parties locally compute [ϕ(ci)]t = [ϕ(ai)]t + [ϕ(bi)]t fro all i ∈ [N ]. All parties output S

and ([ϕ(ai)]t, [ϕ(bi)]t, [ϕ(ci)]t)
N
i=1.

The communication complexity of calling FRandShamir(2N) is O(N ·n ·m+n2 ·m2 · |S|) elements
in Z/2kZ. Therefore, the communication complexity of ΠTripleAdd(N) is O(N · n ·m+ n2 ·m2 · |S|)
elements in Z/2kZ.

Lemma 7. The protocol ΠTripleAdd computes FTripleAdd with perfect security in the FRandShamir-hybrid
model when |Cactive| < |Pactive|/3.

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors
of honest parties for the adversary. In Step 1, Sim faithfully emulates FRandShamir. Because there is
no other communication, the distribution of the real world is the same as the distribution of the
ideal world.

Random Multiplicative Beaver Triples. The description of FTripleMult appears in Functionality
15.

Functionality 15: FTripleMult(N)

1. FTripleMult receives from the adversary a set of even number of parties S ⊂ Pactive such that
|S|/2 ≤ |S∩Cactive|. FTripleMult updates Pactive := Pactive−S. FTripleMult then sends S to all active
honest parties.

2. FTripleMult receives from the adversary the shares of active corrupted parties

(u
(j)
i , v

(j)
i , w

(j)
i )i∈Cactive where u

(j)
i , v

(j)
i , w

(j)
i ∈ R for all i ∈ Cactive and for all j ∈ [N ].

3. FTripleMult randomly samples N random triples (a1, b1, c1), . . . , (aN , bN , cN ), where each triple
entry is in (Z/2kZ)ℓ and each triple (aj , bj , cj) satisfies aj ⋆ bj = cj . Then FTripleMult generates
3N degree-t Shamir sharing ([ϕ(aj)]t, [ϕ(bj)]t, [ϕ(cj)]t)

N
j=1 such that the shares of Pi ∈ Cactive

are (u
(j)
i , v

(j)
i , w

(j)
i )Nj=1. For each Ph ∈ Hactive, FTripleMult sends the ℓ-th share of the sharings in

the triple ([ϕ(aj)]t, [ϕ(bj)]t, [ϕ(cj)]t) to Ph for all j ∈ [N ].

The protocol ΠTripleMult realizes FTripleMult. The description of ΠTripleMult appears in Protocol 9.

Protocol 9: ΠTripleMult(N)

1. All parties invoke FRandShamir(2N) to prepare 2N regular degree-t Shamir secret sharings in the
form of ([ϕ(ai)]t, [ϕ(bi)]t)

N
i=1. All parties also receive a set of eliminated parties denoted by S1.

All parties update Pactive := Pactive − S1.
2. All parties invoke FMult(N) with input ([ϕ(ai)]t)

N
i=1 and ([ϕ(bi)]t)

N
i=1. They get the output

([zi]t)
N
i=1 and a set of eliminated parties denoted by S2. All parties set Pactive := Pactive − S2.

We have for all i ∈ [N ], zi = ϕ(ai) · ϕ(bi).
3. All parites invoke FReEncode(N) with inputs ([zi]t)

N
i=1. They get the output ([ϕ◦ψ(zi)]t)Ni=1 and

a set of eliminated parties denoted by S3. All parties set Pactive := Pactive − S3. Let ci denote
ψ(zi) for all i ∈ [N ]. All parties take S := S1 ∪ S2 ∪ S3 and ([ϕ(ai)]t, [ϕ(bi)]t, [ϕ(ci)]t)

N
i=1 as

output.

The communication complexity of calling FRandShamir(2N) is O(N ·n ·m+n2 ·m2 · |S1|) elements
in Z/2kZ. The communication complexity of the instantiation of FMult(N) is O(N · n ·m+ n2 ·m ·
|S2|) elements in Z/2kZ, and the communication complexity of the instantiation of FReEncode(N)
is O(N · n · m + n2 · m · |S3|) elements in Z/2kZ. Therefore, the communication complexity of
ΠTripleMult(N) is O(N · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ.

Lemma 8. The protocol ΠTripleMult computes FTripleMult with perfect security in the (FRandShamir,FMult,
FReEncode)-hybrid model when |Cactive| < |Pactive|/3.
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Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors
of honest parties for the adversary. In Step 1, Sim faithfully emulates FRandShamir. Because there is
no other communication, the distribution of the real world is the same as the distribution of the
ideal world.

C Extended Additive Secret Sharing

C.1 Definitions and Properties

Let (ϕ, ψ) be an (ℓ,m)2-RMFE. Recall that n denotes the number of parties and ϕ : (Z/2kZ)ℓ →
R is an Z/2kZ-linear map. Also, |R| = 2m ≥ 2n + 1. Therefore, the Shamir secret sharing
scheme is well-defined in R. In our construction, we will use ϕ to encode a vector of secrets
x = (x(1), x(2), . . . , x(ℓ)) ∈ (Z/2kZ)ℓ. All parties will hold a degree-t Shamir sharing of ϕ(x),
denoted by [ϕ(x)]t.

Defining Additive Sharings and Extended Additive Sharings. For x ∈ Z/2kZ, we use ⟨x⟩ to denote
an additive sharing of x among the first t + 1 parties in Z/2kZ. Specifically, the additive sharing

of x is ⟨x⟩ = (x1, . . . , xn′) where party Pi holds the share xi ∈ Z/2kZ such that
∑t+1

i=1 xi = x and
xt+2, . . . , xn′ are all 0.

Recall that ψ : R → (Z/2kZ)ℓ and val(·) : R → Z/2kZ are both Z/2kZ-linear. We define that
a sharing LxM is an extended additive sharing of x ∈ Z/2kZ if LxM’s shares form a degree-t Shamir
sharing [y]t in R. The secret y satisfies val(y) = x. We write LxM := [y]t. It is clear that extended
additive sharings are additive.

Generating Extended Additive Sharings. We generate generate the extended additive sharing of
x ∈ Z/2kZ from the Shamir sharing [ϕ(z)]t. Suppose the j-th element of z is x. By the property of
RMFE, we have ψ(ϕ(ej) ·ϕ(z)) = ej ·z. Therefore, val(ϕ(ej) ·ϕ(z)) = x. To obtain LxM, all parties
locally compute LxM = ϕ(ej) · [z]t.

Converting Extended Additive Sharings to Additive Sharings. Now we show how to obtain ⟨x⟩ from
LxM. We suppose that LxM is equivalent to the Shamir sharing [y]t.

Recall that the degree-t Shamir sharing [y]t corresponds to a degree-t polynomial f(·) ∈ R[X]
such that f(αi) is the share of the i-th party Pi and f(0) = y, where α1, . . . , αn are distinct
non-zero elements in R. In particular, relying on Lagrange interpolation, f(0) can be written as a
linear combination of the first t + 1 shares. For i ∈ [t + 1], let ci =

∏
j ̸=i,j∈[t+1]

αj

αj−αi
. We have

f(0) =
∑t+1

i=1 cif(αi). Therefore, the Shamir sharing [y]t can be locally converted to an additive
sharing of x among the first t+1 parties by letting Pi(i ∈ [t+1]) taking val(ci · f(αi)) as its share,
while for i /∈ [t+ 1] the party Pi takes 0 as its share. Note that

t+1∑
i=1

val(ci · f(αi)) = val(
t+1∑
i=1

ci · f(αi)) = val(y) = x,

this is indeed an additive sharing of x.

C.2 Identifying Semi-Corrupted Pairs

During the evaluation of each circuit segment, a dealer D reconstructs secret from the additive
secret sharing ⟨x⟩+ ⟨a⟩+ ⟨o⟩ or ⟨y⟩+ ⟨b⟩+ ⟨o⟩ and to send the reconstructed value to all parties,
where ⟨o⟩ is an additive sharing of 0. This process can be faulty if the corrupted parties introduce
additive errors to the additive sharing. Also, recall that during the verification the parties may find
an inconsistent reconstruction. Suppose w.l.o.g. that the inconsistent reconstruction is ⟨s⟩ + ⟨o⟩,
where ⟨s⟩ denotes ⟨x⟩ + ⟨a⟩ and ⟨s⟩ is derived from the extended additive sharing LsM. Since LsM
and ⟨s⟩+ ⟨o⟩ are inconsistent, there must be some corrupted parties that have introduced additive
errors. In this section, we describe how to find and eliminate at least one of such corrupted parties.

Protocol Full Description. We summarize the protocol ΠFaultDetection in Protocol 10. Note that the
dealer D has the shares of ⟨s⟩+ ⟨o⟩ sent by all parties at the beginning of the protocol, and ⟨s⟩ is
transformed from LsM.
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Protocol 10: ΠFaultDetection(D, ⟨s⟩+ ⟨o⟩, LsM)

1. Each party Pi prepares a random additive sharing of zero denoted by ⟨o′′i ⟩, and distribute the

shares of ⟨o′′i ⟩ to all other parties. Then all parties locally compute ⟨o′′⟩ :=
∑n′

i=1⟨o
′′
i ⟩.

2. All parties send their shares of ⟨o′′⟩ to D. Then D broadcasts whether ⟨o′′⟩ is a valid additive
sharing of 0.

3. If D broadcasts that ⟨o′′⟩ is not valid, all parties set ⟨ô⟩ :=
∑n′

i=1⟨o
′′
i ⟩ and let ⟨ôi⟩ := ⟨o′′i ⟩ for

all i ∈ [n′].
4. Otherwise, all parties call FRandParity to prepare a random parity sharing [p]t. If all parties

receive a non-empty set of eliminated parties denoted by S, all parties take S as output as
halt. Otherwise, all parties send their shares of LsM+[p]t to D. We note that [p]t can be written

as [p]t =
∑n′

i=1[pi]t, and [pi]t is distributed by the party Pi. Let ⟨o′⟩ denote the additive
sharing transformed from [p]t, and let ⟨o′i⟩ denote the additive sharing transformed from [pi]t.
All parties set ⟨ô⟩ := ⟨o⟩ − ⟨o′⟩+ ⟨o′′⟩ and let ⟨ôi⟩ := ⟨oi⟩ − ⟨o′i⟩+ ⟨o′′i ⟩ for all i ∈ [n′].

5. Let ô
(j)
i denote the share of ⟨ôi⟩ sent by Pi to Pj . Let (ô

(i)
j )′ denote the share of ⟨ôj⟩ received

by Pi from Pj . For all i ∈ [n′] and for all j ∈ [n′], Pi sends ô
(j)
i and (ô

(i)
j )′ to D.

6. Let ô(j) denote the share of ⟨ô⟩ held by Pj . If for some i, ⟨ôi⟩ that Pi claims to have sent is not

a valid additive sharing of 0, or if ô(i) ̸=
∑n′

j=1 ô
(i)
j , D broadcasts the message (Pi, incorrect).

Otherwise, if for some j1 and j2 (j1 ̸= j2), the share ô
(j2)
j1

that Pj1 claims to have sent to Pj2

is inconsistent to (ô
(j2)
j1

)′ that Pj2 claims to have received from Pj1 , D broadcasts the message

(Pj1 , Pj2 , ô
(j2)
j1

, (ô
(j2)
j1

)′, inconsistent).
7. If (Pi, incorrect) is broadcast by D, all partied set the eliminating set E := {D,Pi}. Oth-

erwise, if (Pj1 , Pj2 , ô
(j2)
j1

, (ô
(j2)
j1

)′, inconsistent) is broadcast by D, Pj1 and Pj2 will broad-
cast if they agree with this message. If Pj1 does not agree, all parties set the eliminating set
E := {D,Pj1}; otherwise if Pj2 does not agree, all parties set the eliminating set E := {D,Pj2};
otherwise all parties set the eliminating set E := {Pj1 , Pj2}. All parties take E as output.

Lemma 9 (Correctness of ΠFaultDetection). If the secrets of ⟨s⟩ + ⟨o⟩ and LsM + [p]t are not
consistent, and ⟨s⟩ is derived from LsM, then Protocol 10 can find a semi-corrupted pair E that
satisfies E ∩ Cactive ̸= ∅ when the protocol does not halt on Step 4.

The proof of Lemma 9 can be found in Section F.1.

Cost of ΠFaultDetection. The cost of Step 1 is O(n2) elements in Z/2kZ for each party to share ⟨o′′i ⟩.
The cost of Step 2 is O(n) elements in Z/2kZ for all parties to send their shares of ⟨o′′⟩ to D,
and O(n2) bits for D to broadcast if ⟨o′′⟩ is valid. The cost of Step 4 is O(n2 ·m2 · |S|) elements
in Z/2kZ for calling FRandParity. The cost of Step 5 is O(n2) elements in Z/2kZ for each party to
send ⟨ôi⟩ that they sent and received to D. The cost of Step 6 is bounded by O(n2) elements in

Z/2kZ for broadcasting ô
(j2)
j1

, (ô
(j2)
j1

)′, plus O(n2 log n) bits for broadcasting Pi or Pj1 , Pj2 . The cost

of Step 7 is bounded by O(n2) bits. Recall that m = O(log n). Therefore, the overall cost of this
protocol is O(n2 ·m2 · |S|) elements in Z/2kZ.

D Segment Verification Protocol

Protocol 11: ΠVerify(seg, S0)

1. Suppose seg has N gate groups. For the i-th gate group within seg that corresponds to the
Beaver triple ([ϕ(a(i))]t, [ϕ(b

(i))]t, [ϕ(c
(i))]t) and has inputs x(i),x(i) ∈ (Z/2kZ)ℓ All parties

locally computes ϕ(x(i) + a(i)) and ϕ(y(i) + b(i)) for all i ∈ [N ].
2. All parties call FVerifyBC with inputs {ϕ(x(i) + a(i))}i∈[N ] ∪ {ϕ(y(i) + b(i))}i∈[N ] and D. If the

result is a semi-honest pair {Pj1 , Pj2}, all parties take it as output and halt. Otherwise, run
the following steps.

3. All parties locally compute [ϕ(x(i))]t = ϕ(x(i) + a(i)) − [ϕ(a(i))]t and [ϕ(y(i))]t = ϕ(y(i) +
b(i))− [ϕ(b(i))]t for all i ∈ [N ].
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4. For each additive gate group with input [ϕ(x(i))]t and [ϕ(y(i))]t, all parties locally compute
the output sharing

[ϕ(z(i))]t = [ϕ(x(i))]t + [ϕ(y(i))]t.

For all the multiplicative gate groups, suppose their indices form the set Imult. All parties call
FMult with input ([ϕ(x(i))]t)i∈Imult and ([ϕ(y(i))]t)i∈Imult , and get output ([w(i)]t)i∈Imult and a
set of eliminated parties denoted by S1. All parties update Pactive := Pactive − S1.
Then all the parties call the functionality FReEncode with input ([w(i)]t)i∈Imult and get the output
sharings ([ϕ(z(i))]t)i∈Imult and a set of eliminated parties denoted by S2. All parties update
Pactive := Pactive − S2.

5. All parties run the protocol ΠNetworkRouting(seg). Note that during fan-out the j-th wire of

[ϕ(z(i))]t is copied ñ
(i)
j times. All parties get all Shamir sharings of seg’s gate group inputs,

denoted by {[ϕ(x̃(i))]t}i∈[N ] and {[ϕ(ỹ(i))]t}i∈[N ]. All parties also receive a set of eliminated
parties denoted by S3. All parties update Pactive := Pactive − S3.

6. All parties call FOpenPub to reconstruct the Shamir sharings {[ϕ(x̃(i))]t + [ϕ(a(i))]t}i∈[N ] and

{[ϕ(ỹ(i))]t + [ϕ(b(i))]t}i∈[N ], and get x̃(i) + a(i) and ỹ(i) + b(i) for all i ∈ [N ].

7. Each party locally compares x̃(i)+a(i) with x(i)+a(i) and compares ỹ(i)+b(i) with y(i)+b(i)

for all i ∈ [N ]. Based on whether there are any differences, all parties do the following:
(a) If for all i ∈ [N ], x̃(i)+a(i) = x(i)+a(i) and ỹ(i)+b(i) = y(i)+b(i), all parties call FFanOut

with the output sharings {[ϕ(z(i))]t}i∈[N ] and {(n(i)
j − ñ(i)

j )}i∈[N ],j∈[ℓ], where the j-th wire

of [ϕ(z(i))]t is copied n
(i)
j − ñ

(i)
j times. All parties receive the fan-out sharings, and a set

of eliminated parties denoted by S4. All parties update Pactive := Pactive − S4.
Then all parties run FPermute with the fan-out sharings and the desired permutations as
input. All parties receive the permuted fan-out sharings, and a set of eliminated parties
denoted by S5. All parties update Pactive := Pactive − S5.
All parties output correct.

(b) Otherwise, let S := S0 ∪ S1 ∪ S2 ∪ S3. If S ̸= ∅, all parties output S and incorrect

and halts. Otherwise, all parties can select a wire with an inconsistent value that has the
smallest topological order, denoted by x

(i0)
j0

+ a
(i0)
j0

or y
(i0)
j0

+ b
(i0)
j0

. Let ⟨s⟩ + ⟨o⟩ denote
its corresponding additive sharing for reconstruction in the protocol ΠEval, and let LsM
denote its extended additive sharing. Then all parties run the protocolΠFaultDetection(D, ⟨s⟩+
⟨o⟩, LsM), and get a set of eliminated parties S4 as output. All parties update Pactive :=
Pactive − S4, and output S ∪ S4 and incorrect.

Lemma 10 (Correctness of ΠVerify). In ΠVerify, either all active honest parties have got the
correct output Shamir sharings, or all parties output a set of eliminated parties where at least half
of the parties in the set are corrupted.

The proof of Lemma 10 can be found in Section F.2.

Cost of ΠVerify. The communication complexity of Step 2 for calling FVerifyBC is O(N ·n ·m+n2 ·m)
elements in Z/2kZ. The communication complexity of Step 4 for calling FMult and FReEncode is
bounded by O(N ·n ·m+n2 ·m · (|S1|+ |S2|)) elements in Z/2kZ. The communication complexity
of Step 5 for running ΠNetworkRouting is O(N · n · m + n2 · m2 · |S3|) elements in Z/2kZ, since

all parties generate
∑

i∈[N ],j∈[ℓ] ñ
(i)
j /ℓ ≤ 3N fan-out sharings in this step. The communication

complexity of Step 6 for calling FOpenPub is O(N · n ·m + n2 ·m) elements in Z/2kZ. Note that
N = O(|C|/(n·ℓ)+n·m2/ℓ) according to Theorem 4. Therefore, the total communication complexity
before Step 7 is bounded by O(|C|+ n2 ·m2 · |S|) elements in Z/2kZ.

For Step 7, will discuss the cost of ΠVerify in two different scenarios based on whether the
verification passes.

– If the verification passes, all parties will run FFanOut and FPermute that output

Mseg :=

∑
i∈[N ],j∈[ℓ] n

(i)
j − ñ

(i)
j

ℓ

Shamir sharings. Then the communication complexity of Step 7.(a) is O(Mseg · n · m + n2 ·
m2 · |S5|) elements in Z/2kZ. Therefore, the total communication complexity in this case is
O(|C|+Mseg · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ.
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– If the verification does not pass, all parties will run ΠFaultDetection. And the communication
complexity of running ΠFaultDetection is O(n2 ·m2 · |S4|) elements in Z/2kZ. Therefore, the total
communication complexity in this case is O(|C|+ n2 ·m2 · |S|) elements in Z/2kZ.

E Details on Network Routing

E.1 Circuit Transformation

The following theorem shows that we can safely assume that the circuit at hand satisfies the
grouping properties for network routing.

Theorem 4 (Circuit Transformation). Given an arithmetic circuit C over Z/2kZ with input
coming from c clients, there exists an efficient algorithm which takes C as input and outputs an
arithmetic circuit C ′ over Z/2kZ with the following properties:

– For all input x, C(x) = C ′(x).

– C ′ satisfies the Circuit Segment Conditions, the Gate Number Conditions, and the Gate Group-
ing Conditions which are stated previously.

– Circuit Size: |C ′| = O(|C|+ ℓ · c+n2 ·m2), where c is the number of clients that provide inputs.

Proof. Let Client1,Client2, . . . ,Clientc denote the clients that provide inputs. We show the algorithm
to transform the circuit C ′ from C as follows:

– Step 1:We start by creating a virtual client Client0. We will insert two new types of gates: input
gates belonging to Client0 and output gates belonging to Client0. The input gates belonging to
Client0 are used to provide constant values for the computation. The output gates belonging
to Client0 are used to collect the wires that will not be output to any clients. Initially, for each
input wire carrying a constant value in C, we insert an input gate belonging to Client0 for this
wire. Without loss of generality, we assume that each input of Client0 is only used once in the
circuit. To see this, an input of Client0 is known to all parties, and if this input is used more
than once, we can simply insert multiple input gates that take the same value. Note that the
same argument does not work for other clients since it allows a client to use different values
for its input wires in C ′ which should have the same value in C.

This step does not affect the circuit size.

– Step 2: Order all the addition gates and multiplication gates in C according to their topological
ordering. We divide |C|/n consecutive gates into one circuit segment. For each circuit segment,
let Mi and Ai denote the number of multiplication gates and the number of addition gates
in it. We insert max{⌈Mi

ℓ ⌉ · ℓ −Mi, n · ℓ2 −Mi} dummy multiplication gates and max{⌈Ai

ℓ ⌉ ·
ℓ − Ai, n · ℓ2 − Ai} dummy addition gates in this circuit segment. Each of these new dummy
gates takes two inputs from Client0 and outputs to Client0 as well. The inputs are set to be
0. In this way, we insert 2 input gates belonging to Client0 and one output gate belonging to
Client0 for each of the new dummy multiplication gates and dummy addition gates. Then we
organize ℓ consecutive addition gates into one addition gate group, and organize ℓ consecutive
multiplication gates into one multiplication gate group.

After this step, the circuit is divided into circuit segments where each circuit segment has size
O(|C|/n+n·m2), noticing that ℓ,m = O(log n). Also, the multiplication gates and the addition
gates within each circuit are organized into gate groups of size ℓ. Note that this step increases
the circuit size by O(n2 ·m2).

– Step 3: For each client Clienti (i = 0, 1, . . . , c), let Ii denote the number of input gates belonging
to Clienti. Then we insert ⌈ Iiℓ ⌉ ·ℓ−Ii dummy input gates belonging to Clienti, which will take 0
as input. We also insert the same number of dummy output gates belonging to Client0, where
each dummy output gate directly takes the input of one dummy input gate as output. Then
we divide the input gates belonging to Clienti into groups of ℓ, and Clienti has ⌈ Iiℓ ⌉ input gate
groups.

After this step, the number of input gates belonging to each Clienti is a multiple of ℓ. Note
that this step increases the circuit size by O(ℓ · c).
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– Step 4: For each gate group (i.e. input gate group, multiplication gate group, or addition gate
group), let (w1, w2, . . . , wℓ) denote the output wires, and (n1, n2, . . . , nℓ) denote the number of
times that each output wire is used. Note that an output wire in a multiplication or addition
gate group can be the input wire of some gate in the same gate group because we do not
require that the gates in a multiplication or addition gate group should belong to the same

circuit layer. Let n0 = ⌈
∑ℓ

i=1 ni

ℓ ⌉ · ℓ−
∑ℓ

i=1 ni. We insert n0 dummy output gates belonging to
Client0, and these output gates take w1 as the input wire.
After this step, the number of times that w1, w2, . . . , wℓ are used as input wires in other gates
is a multiple of ℓ. Note that each wire wj is used at least once, so this step increases the circuit
size by at most a factor of 2.

– Step 5: For each client Clienti (i = 0, 1, . . . , c), let Oi denote the number of output gates
belonging to Clienti. We insert ⌈Oi

ℓ ⌉ · ℓ− Oi input gates belonging to Client0, which take 0 as
input. We also insert the same number of output gates belonging to Clienti which take these
inputs as output. Then we divide the output gates belonging to each client Clienti into gate
groups of size ℓ, and we also divide the added input gates for Client0 into gate groups of size ℓ.
After this step, the number of output gates belonging to each Clienti is a multiple of ℓ. Also,
after this step, the number of input gates belonging to Client0 remains a multiple of ℓ. To see
this, recall that after Step 2 and Step 3, the total number of output wires of all clients is a
multiple of ℓ, and the number of output wires of Client0 is a multiple of ℓ. In addition, since
all the added dummy input gates for Client0 in this step will be used only once, the number
of times that the output wires of each gate group formed by these input gates are used is a
multiple of ℓ. Note that this step increases the circuit size by O(ℓ · c).

Next, we show that the circuit C ′ after the transformation has the desired properties:

– First we show C(x) = C ′(x) for all input x. Note that we do not change the original gates
and wires in C. Therefore, it is sufficient to show that the gates and wires we add in the
transformation do not change the functionality. For the input layer, we create several new
input gates belonging to each Clienti (i ≥ 1). These new gates directly connect to the output
gates of Client0, which means that these values are never used in the computation. For the
output layer, we create several new output gates belonging to each Clienti (i ≥ 1). These new
gates directly take the value 0 from the input gates of Client0, which do not affect the final
result. Therefore, C(x) = C ′(x) for all input x.

– Next we show C ′ satisfies the Circuit Segment Conditions, the Gate Number Conditions, and
the Gate Grouping Conditions.
• After Step 2, the size of each segment satisfies the Circuit Segment Conditions.
• After Step 2, the number of addition gates and the number of multiplication gates within
each circuit segment are multiples of ℓ. After Step 1, Step 3, and Step 5, the number of
input gates and the number of output gates belonging to each client are multiples of ℓ.
Therefore, C ′ satisfies the Gate Number Conditions.
• After Step 2, the addition gates and the multiplication gates within each segment are
organized into gate groups of size ℓ. After Step 3 and Step 5, the input gates and the
output gates belonging to each client are organized into gate groups of size ℓ. Also, after
Step 4, for the output wires of each multiplication gate group and of each addition gate
group, the number of times that those wires are used as input wires in other gates is a
multiple of ℓ. After Step 4 and Step 5, for the output wires of each input gate group, the
number of times that those wires are used as input wires in other gates is a multiple of ℓ.
Therefore, C ′ satisfies the Gate Grouping Conditions.

– Step 1 will not affect the size of the circuit. In Step 2, the circuit size increases by O(n2 ·m2).
In Step 4, the circuit size increases by at most a factor of 2. In Step 3 and Step 5, the circuit
size increases by O(ℓ · c). Therefore, the size of C ′ after the transformation is bounded by
O(|C|+ ℓ · c+ n2 ·m2).

E.2 Preparing Random Sharings for Sharing Transformations

Definition of Ideal Functionality. Let r = ⌊n
′−2t′+1

2 ⌋. Let Π1, Π2, . . . ,Πℓ·r be ℓ ·r arbitrary Z/2kZ-
arithmetic secret sharing schemes, where each Πi is defined as follows:
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– The secret space Zi = (Z/2kZ)ℓ.
– The share space Ui = (R)2, which can be viewed as (Z/2kZ)2m.
– The sharing space Ci = (R)2n′

– For a secret x ∈ Zi, the sharing of x is ([ϕ(x)]t, [ϕ(Li(x))]t), where Li is a linear mapping from
the vector space (Z/2kZ)ℓ to the vector space (Z/2kZ)ℓ.

– For a sharing ([ϕ(x)]t, [ϕ(Li(x))]t), we reconstruct the secret x using [ϕ(x)]t.
– The shareΠi

can be viewed as shareΠi
: Z × (Z/2kZ)2t·m → C.

The functionality FRandSharTrans presented in Functionality 16 generates a random sharing in an
Z/2kZ-arithmetic secret sharing scheme Πi = (n′, Zi, Ui, Ci, shareΠi

, recΠi
) for all i ∈ [ℓ · r].

Functionality 16: FRandSharTrans(N)

1. FRandSharTrans receives from the adversary one of the following:
– The shares of active corrupted parties (u

(i)
j )j∈Cactive where Πi(Cactive, (u(i)

j )j∈Cactive) ̸= ∅
for all i ∈ [ℓ · r];

– A semi-corrupted pair {Pj1 , Pj2} where {Pj1 , Pj2} ∩ Cactive ̸= ∅.
2. Based on what it has received, FRandSharTrans does one of the following:

– On receiving (u
(i)
j )j∈Cactive for all i ∈ [ℓ · r], FRandSharTrans uniformly randomly samples a

random Πi-sharing [[x]] ∈ Π(Cactive, (u(i)
j )j∈Cactive) for all i ∈ [ℓ · r]. For each honest party

Ph ∈ Pactive, FRandSharTrans sends the ℓ-th share of [[x]] to Ph for all i ∈ [ℓ · r].
– On receiving {Pj1 , Pj2}, FRandSharTrans sends {Pj1 , Pj2} to all active honest parties.

Protocol Description. For x ∈ (Z/2kZ)r·ℓ = (x1, . . . ,xr) where each xi is a vector in (Z/2kZ)ℓ, let
Φ(x) denote the vector (ϕ(x1), . . . , ϕ(xr)). For y ∈ Rr = (y1, . . . , yr) where each yi is an element
in R, let Ψ(y) denote the vector (ψ(y1), . . . , ψ(yr)).

We have each secret in the secret space needs ℓ elements of randomness in Z/2kZ, and each
random tape needs 2t ·m elements of randomness in Z/2kZ. Following the idea in [GPS22], we can
use random packed Shamir sharings over R to provide such randomness for the Πi-sharings. Note
that 2t ·m+ ℓ < 2n′ ·m, so for a packed Shamir secret sharing scheme whose secret space is in Rr,
we need to prepare 2n′ ·m random sharings in this scheme to provide enough randomness for ℓ · r
random Πi sharings.

In our protocol, we will use the following packed secret sharing scheme Σ over Z/2kZ [GPS22]:

– The secret space is Z = (Z/2kZ)r·ℓ.
– The share space is U = R, which can be viewed as (Z/2kZ)m.
– For x ∈ Z, the sharing of x is computed as follows: First we divide x into r vectors of dimension
ℓ. Then we map each vector to a ring element of R using ϕ(·), i.e. we map x into Φ(x). Next,
we use a degree-d′ packed Shamir secret sharing scheme over R to store the r elements in R.

– For a sharing [[x]] ∈ Σ, we first view it as a degree-d′ packed Shamir secret sharing over R and
reconstruct its secret s ∈ Rr. To recover the secret, we apply ψ, the inverse map of ϕ, to each
element in s.

Also, we define another secret sharing scheme Σ′ over Z/2kZ as follows [GPS22]:

– The secret space is Z ′ = (Z/2kZ)r·ℓ.
– The share space is U ′ = R, which can be viewed as (Z/2kZ)m.
– For x ∈ Z, the sharing of x is computed as follows: First we divide x into r vectors of

dimension ℓ. Then we map x into Φ(x) We sample a vector of elements o = (o1, . . . , or) ∈ Rr

where Ψ(o) = 0 ∈ (Z/2kZ)r·ℓ. It has been shown in section 2.6 that an efficient sampling
algorithm for oi ∈ R such that ψ(oi) = 0 ∈ (Z/2kZ)ℓ exists. Next, we use a degree-d′ packed
Shamir secret sharing scheme over R to store the r elements of Φ(x) + o in R.

– For a sharing [[x]] ∈ Σ′, we first view it as a degree-(d′ + r − 1) packed Shamir secret sharing
over R and reconstruct its secret s ∈ Rr. To recover the secret, we apply Ψ(·) to s and get
Ψ(s).

We pick d′ = ⌈n
′−1
2 ⌉ and r = ⌊

n′−2t′+1
2 ⌋, to guarantee that the degree-d′ packed Shamir sharings

can hold r secrets in (Z/2kZ)ℓ (d′ − r + 1 ≥ t) and that the degree-(d′ + r − 1) packed Shamir
sharings can be reconstructed towards an honest party while detecting errors (d′ + r − 1 < n′ − t′
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by Lemma 2). Therefore, Σ is a degree-⌈n
′−1
2 ⌉ packed Shamir secret sharing scheme that holds

r = ⌊n
′−2t′+1

2 ⌋ secrets in (Z/2kZ)ℓ, and Σ′ is a degree-(n′ − t′ − 1) packed Shamir secret sharing

scheme that holds r = ⌊n
′−2t′+1

2 ⌋ secrets in (Z/2kZ)ℓ.
In the following, we will use [Φ(x)]d′ to denote a Σ-sharing of the secret x ∈ (Z/2kZ)r·ℓ, and

we will use [y]n′−t′−1 to denote a Σ′-sharing of z ∈ (Z/2kZ)r·ℓ such that Ψ(y) = z. It has been
shown in [GPS22] that Σ and Σ′ satisfy that for all c ∈ (Z/2kZ)r·ℓ

[Φ(c) ⋆ Φ(x)]n′−t′−1 = Φ(c) ⋆ [Φ(x)]d′ .

To reconstruct the secret c ⋆ x from [Φ(c) ⋆ Φ(x)]n′−t′−1, we apply Ψ(·) to Φ(c) ⋆ Φ(x) and get
Ψ(Φ(c) ⋆ Φ(x)) = c ⋆ x.

Our construction will use the ideal functionality FRandShPacked (Functionality 10) that prepare
random Σ-sharings, and the ideal functionality FRandZeroSh (Functionality 12) that prepares random
Σ′-sharings of 0 ∈ Rr.

The goal of the protocol is to prepare ℓ · r random sharings [[x1]], . . . , [[xℓ·r]] such that [[xi]]
is a random Πi-sharing, i.e. realizing FRandSharTrans(Π1, . . . ,Πℓ·r). The protocol that implements
FRandSharTrans is shown in Protocol 12.

Protocol 12: ΠRandSharTrans(Π1, . . . ,Πℓ·r)

1. All parties run the protocol ΠRand to obtain 2n′ ·m random Σ-sharings denoted by

[Φ(u1)]d′ , . . . , [Φ(u2n′·m)]d′ ,

or get a semi-corrupted pair denoted by E1. On receiving E1, all parties take E1 as output
and halt. Otherwise, suppose ui = (u

(1)
i , . . . ,u

(r)
i ) where u

(j)
i ∈ (Z/2kZ)ℓ and denote the ℓ-th

element of u
(j)
i by u

(j,ℓ)
i . For all i ∈ [r] and for all q ∈ [ℓ], let

τ(q−1)·r+i = (u
(i,q)
1 , u

(i,q)
2 , . . . , u

(i,q)
ℓ ) ∈ (Z/2kZ)ℓ·ℓ,

and
ρ(q−1)·r+i = (u

(i,q)
ℓ+1 , u

(i,q)
ℓ+2 , . . . , u

(i,q)
ℓ+q̃i

) ∈ (Z/2kZ)2t·m·ℓ.

The goal of this protocol is to compute the Πi-sharing [[xi]] = sharei(τi,ρi).
2. All parties run the protocol ΠRand and obtain 2n′ ·m random Σ′-sharings of 0 ∈ Rr, denoted

by

{[o(1)
j ]n′−t′−1, [o

(2)
j ]n′−t′−1, . . . , [o

(2m)
j ]n′−t′−1}n

′
j=1,

or get a semi-corrupted pair denoted by E2. On receiving E2, all parties take E2 as output and
halt.

3. For all i ∈ [r · ℓ], for all j ∈ [n′], and for all p ∈ [2m], let Li,p
j : Zi × (Z/2kZ)2t·m → Z/2kZ

denote the Z/2kZ linear transformation such that for all τ ∈ Z̃i and ρ ∈ (Z/2kZ)2t·m, Li,p
j (τ ,ρ)

outputs the p-th element of the j-th share of the Πi-sharing sharei(τ ,ρ). Then there exist

c
(i,p)
j,1 , . . . , c

(i,p)
j,ℓ+2t·m ∈ Z/2kZ such that

Li,p
j (τ ,ρ) =

ℓ∑
w=1

c
(i,p)
j,w · τw +

2t·m∑
w=1

c
(i,p)
j,ℓ·ℓ+w · ρw.

For all j ∈ [n′], for all p ∈ [2m], and for all w ∈ [2n′ ·m], let

c
(⋆,p)
j,w = (c

(1,p)
j,w , c

(2,p)
j,w , . . . , c

(r·ℓ,p)
j,w ) ∈ (Z/2kZ)r·ℓ,

where c
(i,p)
j,w = 0 for all w > ℓ+ 2t ·m.

4. For all i ∈ [r · ℓ], for all j ∈ [n′], and for all p ∈ [2m], let v
(i,p)
j = Li,p

j (τi,ρi). Let

v
(⋆,p)
j = (v

(1,p)
j , v

(2,p)
j , . . . , v

(r·ℓ,p)
j ) ∈ (Z/2kZ)r·ℓ.

Then for all j ∈ [n′] and for all p ∈ [2m], all parties locally compute the Σ′-sharing

[s
(⋆,p)
j ]n′−t′−1 = [o

(p)
j ]n′−t′−1 +

2n′·m∑
w=1

Φ(c
(⋆,p)
j,w ) ⋆ [Φ(uw)]d′ .

Note that s
(⋆,p)
j ∈ Rr, and Ψ(s

(⋆,p)
j ) = v

(⋆,p)
j . Then all parties send their shares of [s

(⋆,p)
j ]n′−t′−1

to Pj .
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5. For all j ∈ [n′] and for all p ∈ [2m], Pj reconstructs the Σ′ sharing [s
(⋆,p)
j ]n′−t′−1 and gets

v
(⋆,p)
j = (Ψ(s

(1,p)
j ), Ψ(v

(2,p)
j ), . . . , Ψ(v

(r,p)
j )), or Pj detects error in the sharing [s

(⋆,p)
j ]n′−t′−1

and gets unhappy.
6. Fault Detection Phase:

(a) All players broadcast their happy-bits using the byzantine agreement protocol.
(b) For each party, if it receives at least one unhappy then sets his or her happy-bit to unhappy.
(c) All players run a consensus protocol on their happy-bits. If the consensus is happy, all

parties output the output of π and terminate the procedure. Otherwise, they proceed to
the following steps.

7. Fault Localization Phase:
(a) All players agree the party with the smallest index in PA as the dealer D. All other players

send all their generated values and communication to D.
(b) On receiving all the information, D simulates π and the fault detection phase itself. D

either prepares the message (Pi, corrupt) if Pi failed to follow the protocol, or the message
(Pj1 , Pj2 , idx, b, b

′, disputed) if the idx-th bit b that Pj1 sends to Pj2 is inconsistent with
Pj2 ’s bit b

′ that Pj2 claims to have received. Then D broadcasts the prepared message to
all players.

(c) If (Pi, corrupt) is received, all players set the eliminating set E = {D,Pi}.
Otherwise, if (Pj1 , Pj2 , idx, b, b

′, disputed) is received, Pj1 and Pj2 will broadcast if they
agree with this message. If Pj1 does not agree, all players set the eliminating set E =
{D,Pj1}; otherwise if Pj2 does not agree, all players set the eliminating set E = {D,Pj2};
otherwise all players set the eliminating set E = {Pj1 , Pj2}.

(d) All players update Pactive := Pactive − E and halt.

8. For all i ∈ [r · ℓ], Pj sets its share of the Πi sharing [[xi]] to be v
(i)
j = (v

(i,1)
j , v

(i,2)
j , . . . , v

(i,2m)
j ).

All parties take [[x1]], [[x2]], . . . , [[xr·ℓ]] as output.

Cost of Protocol 12. The communication complexity of running ΠRand in Step 2 and Step 3 are
both O(n2 ·m2) elements in Z/2kZ. Step 5 has communication complexity of O(n2 ·m2) elements
in Z/2kZ. Therefore, the total communication complexity of Protocol 12 is O(n2 ·m2) elements in
Z/2kZ.

Lemma 11. In Step 5 of Protocol 12, either at least one active honest party has unhappy happy-bit
or the shares of the output sharings {[[xi]]}ri=1 held by active honest parties are valid and consistent.

Proof. If no honest party get unhappy, by Lemma 2 all the Shamir sharings [s
(⋆,p)
j ]n′−t′−1 are

consistent for j ∈ Hactive. This indicates that no corrupted parties have deviated from the protocol
in Step 4 by sending wrong sharings, so all the parties have acted faithfully. Therefore, the output
sharings {[[xi]]}ri=1 held by active honest parties are valid and consistent.

Lemma 12. The protocol ΠRandSharTrans computes FRandSharTrans with perfect security when |Cactive| <
|Pactive|/3.

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors of
honest parties for the adversary. Recall that Cactive denotes the active corrupted parties and that
Hactive denotes the active honest parties.

Simulation for ΠRandSharTrans. Sim simulates the protocol ΠRandSharTrans as follows:

1. In Step 1, Sim calls the simulator for ΠRand to simulate the protocol ΠRand. Sim receives either a
semi-corrupted pair or the active corrupted parties’ shares of the sharings [Φ(u1)]d′ , . . . , [Φ(u2n′·m)]d′ .
On receiving a semi-corrupted pair, Sim sends it to FRandSharTrans and halts.

2. In Step 2, Sim calls the simulator for ΠRand to simulate the protocol ΠRand. Sim receives either
a semi-corrupted pair or the active corrupted parties’ share of the sharings

{[o(1)
j ]n′−t′−1, [o

(2)
j ]n′−t′−1, . . . , [o

(2m)
j ]n′−t′−1}n

′

j=1.

On receiving a semi-corrupted pair, Sim sends it to FRandSharTrans and halts.
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3. In step 5, Sim simulates the happy-bits of active honest parties as follows. For each honest
party Pi, and for each corrupted party Pj , Sim compares the real shares held by Pj and the
shares that Pj sent to Pi. If they are different, Sim sets Pi’s happy-bit to unhappy on behalf of
Pi.

4. In Fault Detection Phase, Sim simulates the byzantine agreement protocol faithfully using
active honest parties’ happy-bits.

5. If the simulation proceeds to Fault Localization Phase, Sim samples random Σ sharings that are
compatible with active corrupted parties’ shares on behalf of active honest parties as inputs
of ΠRand in Step 1. Also, Sim samples random Σ′ sharings that are compatible with active
corrupted parties’ shares on behalf of active honest parties as inputs of ΠRand in Step 2. Then
Sim faithfully follows the protocol.

6. If the simulation does not proceeds to Fault Localization Phase, in Step 4, for each honest
party Pj , Sim receives from A the active corrupted parties’ authentic shares of the shar-

ing [s
(⋆,p)
j ]n′−t′−1 for all p ∈ [2m]. Then Sim gets from A the shares sent to Pj of the

sharing [s
(⋆,p)
j ]n′−t′−1 for all p ∈ [2m]. Sim simulates the active honest parties’ shares of

([s
(⋆,p)
j ]n′−t′−1)j∈Cactive

for all p ∈ [2m] as follows:

(a) For all i ∈ [r · ℓ], Sim samples a random Πi-sharing [[x̃i]] that is compatible with ac-
tive corrupted parties’ shares sent to FRandSharTrans from A. Because Πi has threshold

t, Sim can always sample such sharings. Suppose party Pj ’s share is denoted by v
(i)
j =

(v
(i,1)
j , v

(i,2)
j , . . . , v

(i,2m)
j ).

(b) For all j ∈ [n′] and q ∈ [2m], Sim computes v
(⋆,q)
j .

(c) Because Σ′ has threshold n′− t′− r ≥ t′, the shares of [s
(⋆,p)
j ]n′−t′−1 held by active honest

parties are independent of the secret v
(⋆,p)
j and the shares held by active corrupted parties.

For all j ∈ Cactive and for all q ∈ [2m], Sim samples the random Σ′-sharings [s
(⋆,p)
j ]n′−t′−1

based on the secrets v
(⋆,p)
j and the shares of active corrupted parties simulated by Sim.

(d) Sim sends the shares of [s
(⋆,p)
j ]n′−t′−1 held by active honest parties to A.

Hybrid Arguments. We show that Sim perfectly simulates the behaviors of honest parties.
Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, Sim calls the simulator for ΠRand to simulate the protocol ΠRand. in

Step 1 of ΠRandSharTrans, and calls the simulator for ΠRand to simulate the protocol ΠRand in Step 3
of ΠRandSharTrans. Then the distribution of this hybrid is identical to the distribution of Hybrid0

by the correctness of these two simulators.
Hybrid2: In this hybrid, Sim simulates the happy-bits of active honest parties and uses them

to simulate the byzantine agreement protocol in the Fault Detection Phase. Because the happy-bits
of active honest parties only depends on the communication of A, Sim can perfectly simulate this
process.

Therefore, the distribution of this hybrid is identical to the distribution of Hybrid1.
Hybrid3: In this hybrid, Sim simulates the Fault Localization Phase by sampling random

sharings that are compatible with active corrupted parties’ shares for active honest parties in
Step 1 and Step 2. Note that the Σ sharings and Σ′ sharings sampled by Sim have the same
distribution as the actual sharings sampled by active honest parties. Also note that it will not
affect the output distribution, since the semi-corrupted pair is only related to the corrupted parties’
messages. Therefore, the distribution of this hybrid is identical to the distribution of Hybrid2.

Hybrid4: In this hybrid, Sim simulates the shares of ([s
(⋆,p)
j ]n′−t′−1)j∈Cactive

held by active
honest parties for all p ∈ [2m] instead of getting them from active honest parties.

– We first show that the correct shares of the sharings ([s
(⋆,p)
i ]n′−t′−1)

2m
p=1 held by active corrupted

parties (i.e. {ṽ(i)
j }j∈Cactive

) are the same as the distribution of that in Hybrid3. To see this, in
Hybrid3 the shares held by active corrupted parties are computed by following sharei(τi,ρi)
for all i ∈ [r]. Because Σ is a degree-d′ packed Shamir secret sharing and d′ − r + 1 ≥ t′,
τi and ρi are uniformly random. While in this hybrid, Sim randomly samples the shares of
active corrupted parties by first sampling random sharings of Π1, . . . ,Πr and then obtaining
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the shares of active corrupted parties. Therefore, in this hybrid {ṽ(i)
j }j∈Cactive

has the same
distribution as that in Hybrid3.

– Next we argue that the active honest parties’ shares of [s
(⋆,p)
j ]n′−t′−1 has the same distribution

as that in Hybrid3. Recall that [o
(p)
j ]n′−t′−1 are random Σ′ sharings of 0. Because Σ′ has

a threshold no less than t′, in Hybrid3 [s
(⋆,p)
j ]n′−t′−1 is a random Σ′ sharing of the secret

v
(⋆,p)
j given the shares of the corrupted parties and the secret. Since v

(⋆,p)
j is determined by

{τi,ρi}ri=1, which are independent of the shares of {[Φ(uw)]d′}2n′·m
w=1 and [o

(p)
j ]n′−t′−1 held by

active corrupted parties, v
(⋆,p)
j is independent of the shares of [s

(⋆,p)
j ]n′−t′−1 held by active

corrupted parties.

In this hybrid, because Sim computes the shares of [s
(⋆,p)
j ]n′−t′−1 held by active corrupted

parties given the shares of [o
(p)
j ]n′−t′−1 held by active corrupted parties, and because the

secret v
(⋆,p)
j , a part of {v(i)

j }j∈Cactive
, has the same distribution as the one in Hybrid3, we

have that the secret v
(⋆,p)
j and the shares of [s

(⋆,p)
j ]n′−t′−1 held by active corrupted parties has

the same distribution as in Hybrid3. Since the shares of [s
(⋆,p)
j ]n′−t′−1 held by active honest

parties in this hybrid are sampled according to the secret v
(⋆,p)
j and the shares of [s

(⋆,p)
j ]n′−t′−1

held by active corrupted parties computed by Sim, they have the same distribution as that in
Hybrid3.

– Finally we show that the distribution of active honest parties’ output in ΠRandSharTrans given
the view of corrupted parties is the same as that in Hybrid3. We have (1) for all w ∈ [2n′ ·m],
the shares of [Φ(uw)]d′ held by active corrupted parties are independent of {τi,ρi}ri=1; (2) for

all j ∈ [n′] and for all p ∈ [2m], the shares of [o
(p)
j ]n′−t′−1 held by active corrupted parties

are independent of {τi,ρi}ri=1; (3) for all j ∈ Cactive, the shares of [s
(⋆,p)
j ]n′−t′−1 held by

active honest parties are only dependent on {v(i)
j }j∈Cactive

. Recall that [[xi]] = sharei(τi,ρi).
Therefore, in Hybrid3 the view of corrupted parties is independent of the joint of shares of
[[xi]] = sharei(τi,ρi) held by active honest parties and the secret xi.
In this hybrid, Sim perfectly simulates the shares of [[xi]] = sharei(τi,ρi) held by active
corrupted parties and send them to FRandSharTrans, and then FRandSharTrans samples a random
Πi-sharing based on the shares of active corrupted parties. The output of active honest parties
is their shares of [[xi]] for all i ∈ [r · ℓ].
Therefore, the output of active honest parties given the joint view of corrupted parties in this
hybrid has the same distribution as that in Hybrid3.

Therefore, the distribution of this hybrid is identical to the distribution of Hybrid3.
Note that this hybrid is the execution in the ideal world.

E.3 Performing Linear Transformations

Let L1, . . . , LN be N linear mappings in the linear mapping set L((Z/2kZ)ℓ, (Z/2kZ)ℓ), and let
[ϕ(x1)]t, . . . , [ϕ(xN )]t be N Shamir sharings. We introduce the functionality that applies the linear
transformation Li on the Shamir sharing [ϕ(xi)]t and gets [ϕ(Li(xi))]t for all i ∈ [N ], or outputs
a semi-corrupted pair {Pi, Pj} such that {Pi, Pj} ∩ Cactive ̸= ∅. The functionality FLinearTrans is
described in Functionality 17. We assume that for each degree-t Shamir secret sharing, the shares
of all active honest parties lie on a degree-t polynomial.

Functionality 17: FLinearTrans(N)

1. Let [ϕ(x1)]t, . . . , [ϕ(xN )]t denote the input sharings. Let L1, . . . , LN be N linear mappings in
the linear mapping set L((Z/2kZ)ℓ, (Z/2kZ)ℓ).

2. FLinearTrans receives from active honest parties their shares of [ϕ(x1)]t, . . . , [ϕ(xN )]t, and recon-
structs x1, . . . ,xN . FLinearTrans further computes the shares of [ϕ(x1)]t, . . . , [ϕ(xN )]t held by
active corrupted parties and send them to the adversary.

3. FLinearTrans receives from the adversary a set of even number of parties S ⊂ Pactive such that
|S|/2 ≤ |S ∩ Cactive|. FLinearTrans updates Pactive := Pactive − S. FLinearTrans then sends S to all
active honest parties.
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4. FLinearTrans computes L1(x1), . . . , LN (xN ), and then FLinearTrans receives from the adversary the
shares of active corrupted parties of [ϕ(L1(x1))]t, . . . , [ϕ(LN (xN ))]t;

5. FLinearTrans samples the whole sharing [ϕ(L1(x1))]t, . . . , [ϕ(LN (xN ))]t so that they are compati-
ble with the active corrupted parties’ shares. For each active honest party Ph, FLinearTrans sends
Ph’s shares of [ϕ(L1(x1))]t, . . . , [ϕ(LN (xN ))]t to Ph.

Protocol Description. Recall that in Section E.2, for the linear mapping Li : (Z/2kZ)ℓ → (Z/2kZ)ℓ
we construct a corresponding Z/2kZ-arithmetic secret sharing scheme Πi as follows:

– The secret space Zi = (Z/2kZ)ℓ.
– The share space Ui = (R)2.
– For a secret x ∈ Zi, the sharing of x is ([ϕ(x)]t, [ϕ(Li(x))]t).

– For a sharing ([ϕ(x)]t, [ϕ(Li(x))]t), we reconstruct the secret x using [ϕ(x)]t.

Therefore, we can use FRandSharTrans to prepare random Πi sharings, and perform linear transfor-
mation to a sharing [ϕ(x)]t following the idea in [GPS22]. Our protocol that implements FLinearTrans

is described in Protocol 13.

Protocol 13: ΠLinearTrans(N, {[ϕ(xi)]t}Ni=1, {Li}Ni=1)

1. Recall that [ϕ(x1)]t, . . . , [ϕ(xN )]t are the input sharings, and that L1, . . . , LN areN linear map-
pings in the linear mapping set L((Z/2kZ)ℓ, (Z/2kZ)ℓ). Let Πi denote the Z/2kZ-arithmetic
secret sharing scheme corresponding to Li as defined previously. All parties set the eliminated
party set S = ∅.

2. All parties invoke FRandSharTrans ⌈ N
r·ℓ⌉ times. All parties receive the random Π1, . . . , ΠN shar-

ings ([ϕ(r1)]t, [ϕ(L1(r1))]t), . . . , ([ϕ(rN )]t, [ϕ(LN (rN ))]t) If any call of FRandSharTrans outputs a
semi-corrupted pair E, all parties eliminate the semi-corrupted pair, set S := S ∪ E and call
FRandSharTrans again.

3. All parties invoke FOpenPub(N) on the sharings [ϕ(x1)]t+[ϕ(r1)]t, . . . , [ϕ(xN )]t+[ϕ(rN )]t and get
the output ϕ(x1)+ϕ(r1), . . . , ϕ(xN )+ϕ(rN ). Then all parties locally compute x1+r1, . . . ,xN+
rN by applying ψ(·) to ϕ(x1) + ϕ(r1), . . . , ϕ(xN ) + ϕ(rN ).

4. All parties output the eliminated party set S. For all i ∈ [N ], all parties locally compute
ϕ(Li(xi + ri)), and then take Li(xi + ri)− [ϕ(Li(ri))]t as output.

Cost of Protocol 13. In Step 2, all parties invoke FRandSharTrans O( N
r·ℓ + |S|) times, so the cost of

Step 2 is O( N
r·ℓ ·n

2 ·m2+n2 ·m2 · |S|) elements in Z/2kZ. In Step 3, the communication complexity
of calling FOpenPub(N) is O(n ·m ·N +n2 ·m) elements in Z/2kZ. Note that m/ℓ = O(1), r = O(n)
and t = O(n), so the total communication complexity of Protocol 13 is O(N · n ·m+ n2 ·m2 · |S|)
elements in Z/2kZ.

Lemma 13. The protocol ΠLinearTrans computes Flinear-transformation with perfect security in the
(FRandSharTrans,FOpenPub)-hybrid model when |Cactive| < |Pactive|/3.

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors
of honest parties for the adversary. In Step 2, Sim faithfully emulates FRandSharTrans. In Step 3, Sim
faithfully emulates FOpenPub. Because there is no other communication, the distribution of the real
world is the same as the distribution of the ideal world.

E.4 Fan-Out, Permute, and Collect

Instantiating FFanOut. The functionality FFanOut is described in Functionality 18.
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Functionality 18: FFanOut(N)

1. Let [ϕ(z(1))]t, . . . , [ϕ(z
(N))]t denote the input sharings. Let n

(i)
j denote the number of times

the j-th wire of z(i) needs to be copied and let m(i) =
∑ℓ

j=1 n
(i)
j

ℓ
. For all i ∈ [N ], let f

(i)
j denote

the desired fan-out linear transformations for j = 1, . . . ,m(i).
2. FFanOut receives from active honest parties their shares of [ϕ(z(1))]t, . . . , [ϕ(z

(N))]t. Then
FFanOut reconstructs the secrets ϕ(z(1)), . . . , ϕ(z(N)). FFanOut further computes the shares of
[ϕ(z(1))]t, . . . , [ϕ(z

(N))]t held by active corrupted parties and send the shares to the adversary.
3. FFanOut locally computes z(i) = ψ(ϕ(z(i))) for all i ∈ [N ]. Then for all i ∈ [N ], FFanOut computes

x
(i)
j := f

(i)
j · z(i) for all j = 1, . . . ,m(i).

4. FFanOut receives from the adversary a set of even number of parties S ⊂ Pactive such that
|S|/2 ≤ |S ∩ Cactive|. FFanOut updates Pactive := Pactive − S. FFanOut then sends S to all active
honest parties.

5. FFanOut receives from the adversary the shares of active corrupted parties of [ϕ(x
(i)
j )]t for all

i ∈ [N ] and for all j ∈ [m(i)].

6. FFanOut samples the whole sharings [ϕ(x
(i)
j )]t so that they are compatible with the active cor-

rupted parties’ shares for all i ∈ [N ] and for all j ∈ [m(i)]. For each active honest party Ph,

FFanOut sends Ph’s shares of [ϕ(x
(i)
j )]t for all i ∈ [N ] and for all j ∈ [m(i)] to Ph.

Note that each fan-out operation can be viewed as a linear transformation of the original secret
sharing, so we will implement FFanOut using the functionality FLinearTrans. Let {[ϕ(z(i))]t}Ni=1 denote

the input Shamir sharings of the protocol, and let n
(i)
j denote the number of times the j-th wire

needs to be copied in the fan-out sharings. We require that
∑ℓ

j=1 n
(i)
j is a multiple of ℓ greater than

0 for all i ∈ [N ]. Recall that m(i) :=
∑ℓ

j=1 n
(i)
j

ℓ denote the number of fan-out operations needed for

the output sharing [ϕ(z(i))]t. All parties first need to agree on the sequence of all entries in the fan-

out results. For all i ∈ [N ], let f
(i)
j denote the agreed fan-out operations for j = 1, . . . ,m(i). Note

that f
(i)
j is a linear transformation. The description of ΠFanOut that implements FFanOut appears in

Protocol 14.

Protocol 14: ΠFanOut(N, {([ϕ(z(i))]t, (n
(i)
j )m

(i)

j=1 )}Ni=1)

1. All parties locally compute the desired fan-out linear transformations f
(i)
j on z(i) for j =

1, . . . ,m(i) for all i ∈ [N ].

2. All parties invoke FLinearTrans with [ϕ(z(1))]t, . . . , [ϕ(z
(N))]t and the fan-out operations {f (i)

j :

j ∈ [m(i)], i ∈ [N ]}. Then all parties get the set of eliminated parties S from FLinearTrans and the
output sharings

{[ϕ(f (i)
j · z(i))]t : j ∈ [m(i)], i ∈ [N ]}.

All parties output S and all sharings in {[ϕ(f (i)
j · z(i))]t : j ∈ [m(i)], i ∈ [N ]}.

Let M :=
∑N

i=1m
(i) denote the total number of fan-out sharings which are the output of

the protocol. In Step 2, the communication complexity of calling FLinearTrans(M) is O(M · n ·m +
n2 · m2 · |S|) elements in Z/2kZ. Therefore, the total communication complexity of ΠFanOut is
O(M · n ·m+ n2 ·m2 · |S|) elements in Z/2kZ.

Lemma 14. The protocol ΠFanOut computes FFanOut with perfect security in the FLinearTrans-hybrid
model when |Cactive| < |Pactive|/3.

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors of
honest parties for the adversary. In Step 2, Sim faithfully emulates FLinearTrans. Because there is no
other communication, the distribution of the real world is the same as the distribution of the ideal
world.

Instantiating FPermute. Let [ϕ(x1)]t, . . . , [ϕ(xN )]t denote the input sharings, and let p1, . . . , pN
denote the desired permutations. The description of FPermute appears in Functionality 19.
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Functionality 19: FPermute(N)

1. Let [ϕ(x1)]t, . . . , [ϕ(xN )]t denote the input sharings. Let p1, . . . , pN denote the desired per-
mutations. FPermute receives from active honest parties their shares of [ϕ(x1)]t, . . . , [ϕ(xN )]t.
Then FPermute reconstructs the secrets ϕ(x1), . . . , ϕ(xN ). FPermute further computes the shares
of ([ϕ(x1)]t, . . . , [ϕ(xN )]t) held by active corrupted parties and send the shares to the adversary.

2. FPermute locally computes xi = ψ(ϕ(xi)) for all i ∈ [N ]. Then FPermute computes yi := pi · xi

for all i ∈ [N ].
3. FPermute receives from the adversary a set of even number of parties S ⊂ Pactive such that

|S|/2 ≤ |S ∩ Cactive|. FPermute updates Pactive := Pactive − S. FPermute then sends S to all active
honest parties.

4. FPermute receives from the adversary the shares of active corrupted parties of
[ϕ(y1)]t, . . . , [ϕ(yN )]t.

5. FPermute samples the whole sharings [ϕ(y1)]t, . . . , [ϕ(yN )]t so that they are compatible with the
active corrupted parties’ shares. For each active honest party Ph, FPermute sends Ph’s shares of
[ϕ(y1)]t, . . . , [ϕ(yN )]t to Ph.

The description of ΠPermute that implements FPermute appears in Protocol 15. The communi-
cation complexity of ΠPermute with N input sharings is O(N · n · m + n2 · m2 · |S|) elements in
Z/2kZ.

Protocol 15: ΠPermute(N, {[ϕ(xi)]t}Ni=1, {pi}Ni=1)

1. All parties invoke FLinearTrans(N) with the input [ϕ(x1)]t, . . . , [ϕ(xN )]t and the desired permuta-
tions p1, . . . , pN , and get a set of eliminated parties S and the sharings [ϕ(p1 ·x1)]t, . . . , [ϕ(pN ·
xN )]t as output.

2. All parties output S and the sharings [ϕ(p1 · x1)]t, . . . , [ϕ(pN · xN )]t.

Lemma 15. The protocol ΠPermute computes FPermute with perfect security in the FLinearTrans-hybrid
model when |Cactive| < |Pactive|/3.

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors of
honest parties for the adversary. In Step 1, Sim faithfully emulates FLinearTrans. Because there is no
other communication, the distribution of the real world is the same as the distribution of the ideal
world.

Instantiating FCollect. The description of FCollect appears in Functionality 20.

Functionality 20: FCollect(N)

1. Let [ϕ(x1)]t, . . . , [ϕ(xM )]t denote the input Shamir sharings, and let [ϕ(z1)]t, . . . , [ϕ(zN )]t de-
note the target output Shamir sharings. Suppose that the j-th wire of zi is collected from the
j-th wire of xwi,j .

2. FCollect receives from active honest parties their shares of [ϕ(x1)]t, . . . , [ϕ(xM )]t. FCollect

reconstructs the secrets ϕ(x1), . . . , ϕ(xM ). FCollect further computes the shares of
([ϕ(x1)]t, . . . , [ϕ(xM )]t) held by active corrupted parties and send the shares to the adver-
sary.

3. FCollect locally computes xi = ψ(ϕ(xi)) for all i ∈ [M ]. Then FCollect computes

zi :=

ℓ∑
j=1

ej ⋆ xwi,j

for all i ∈ [N ].
4. FCollect receives from the adversary a set of even number of parties S ⊂ Pactive such that

|S|/2 ≤ |S ∩ Cactive|. FCollect updates Pactive := Pactive − S. FCollect then sends S to all active
honest parties.

5. FCollect receives from the adversary the shares of active corrupted parties of
[ϕ(z1)]t, . . . , [ϕ(zN )]t.
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6. FCollect samples the sharings [ϕ(z1)]t, . . . , [ϕ(zN )]t so that they are compatible with the ac-
tive corrupted parties’ shares. For each active honest party Ph, FCollect sends Ph’s shares of
[ϕ(z1)]t, . . . , [ϕ(zN )]t to Ph.

The protocol ΠCollect implements FCollect. The description of ΠCollect appears in Protocol 16. The
communication complexity of ΠCollect to generate N output sharings is O(N · n ·m+ n2 ·m · |S|)
elements in Z/2kZ.

Protocol 16: ΠCollect(N, {[ϕ(xi)]t}Mi=1, {(wi,j)}i∈[N ],j∈[ℓ])

1. For all i ∈ [N ], all parties locally compute

[si]t :=

ℓ∑
j=1

ϕ(ej) · [ϕ(xwi,j )]t.

We note that ψ(si) = xi for all i ∈ [N ].
2. All parties call the functionality FReEncode with the input [s1]t, . . . , [sN ]t, and get a set of

eliminated parties S and the sharings [ϕ(z1)]t, . . . , [ϕ(zN )]t.
3. All parties locally update Pactive := Pactive − S, and then output the eliminated party set S

and the sharings [ϕ(z1)]t, . . . , [ϕ(zN )]t.

Lemma 16. The protocol ΠCollect computes FCollect with perfect security in the FReEncode-hybrid
model when |Cactive| < |Pactive|/3.

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors of
honest parties for the adversary. In Step 2, Sim faithfully emulates FReEncode. Because there is no
other communication, the distribution of the real world is the same as the distribution of the ideal
world.

F Security Proofs

F.1 Proof of Lemma 9

Proof. Suppose by contradiction that in some scenario the semi-corrupted pair E selected by
the protocol consists of two honest parties. We discuss two cases based on whether the dealer is
corrupted or not.

When D is honest, we have that the sharing ⟨ô⟩ must be an invalid additive sharing of 0. To
see this, if ⟨o′′⟩ is invalid D will broadcast ⟨o′′⟩ is invalid, and if ⟨o′′⟩ is valid then ⟨o⟩ − ⟨o′⟩+ ⟨o′′⟩
must be an invalid additive sharing of 0 since ⟨o⟩ is invalid and ⟨o′⟩ is derived robustly due to the
robust reconstruction of the Shamir sharings. Also, D can broadcast at least one of the messages
in Step 6. Otherwise, all parties have sent correct sharings and all parties’ communication is

consistent, so
∑n′

i=1 ô
(i)
j = 0 for all j ∈ [n′], which is contradictory to

∑n′

j=1

∑n′

i=1 ô
(i)
j ̸= 0. By the

assumption, D should not have broadcast the message (Pi, incorrect) in Step 6, or otherwise Pi

must be corrupted. It follows that D broadcast the message (Pj1 , Pj2 , ô
(j2)
j1

, (ô
(j2)
j1

)′, inconsistent)
in Step 6. Because Pj1 and Pj2 cannot both be honest for D to broadcast this message, and by the
assumption at least one of them is honest, so exactly one of Pj1 and Pj2 is corrupted.

– If Pj1 is corrupted, then E = {D,Pj2} according to the assumption. So Pj1 agrees with the
broadcast message, and Pj2 does not agree with the broadcast message. However, Pj2 will

disagree only if the message (ô
(j2)
j1

)′ broadcast by D is not the message that Pj2 has sent to D,
which is not possible since D is honest.

– If Pj2 is corrupted, then E = {D,Pj1} according to the assumption. So Pj1 does not agree with

the broadcast message. However, Pj1 will disagree only if the message ô
(j2)
j1

broadcast by D is
not the message that Pj1 has sent to D, which is not possible since D is honest.
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When D is corrupted, by the assumption D must broadcast the message (Pj1 , Pj2 , ô
(j2)
j1

, (ô
(j2)
j1

)′,
inconsistent) in Step 6. Also, we must have Pj1 and Pj2 are honest, and they all agree with
the broadcast message according to the assumption. However, this is not possible because honest

parties ô
(j2)
j1

that Pj1 claims to have sent to Pj2 will always equal to (ô
(j2)
j1

)′ that Pj2 claims to have
received from Pj1 .

Above all, in all cases, the protocol is always able to find a semi-corrupted pair.

F.2 Proof of Lemma 10

Proof. In Step 2, if the functionality FVerifyBC outputs consistent, all parties will hold consistent
values of x(i)+a(i) and y(i)+b(i) for all i ∈ [N ]. If the output of FVerifyBC is a semi-corrupted pair,
it is guaranteed by the functionality that at least one party of the semi-corrupted pair is corrupted.

If all parties do not halt on Step 2, and if all the parties hold the correct x(i)+a(i) and y(i)+b(i)

for all i ∈ [N ], then it is clear the protocol will generate random output Shamir sharings for all
gate groups correctly, and all parties will pass the verification.

Next we need only show that if all parties does not halt on Step 2, and if there exists some
x(i) + a(i) or y(i) + b(i) is not correct, then all parties will output a semi- where at least one is
corrupted.

Consider the incorrect entry of x(i) +a(i) or y(i) + b(i) that has the smallest topological order,

W.L.O.G. we suppose the entry is x
(i0)
j0

+ a
(i0)
j0

. Since from Step 3 to Step 6, all the computation

that derives x̃(i0) + a(i0) is robust and only involves the correct Shamir secret sharings, we have

that x̃
(i0)
j0

+ a
(i0)
j0

should be the correct value of x
(i0)
j0

+ a
(i0)
j0

. Therefore, in Step 7 all parties can
detect this incorrect entry and they will proceed to Step 7.b.

If there already exist some eliminated parties, i.e. S ̸= ∅ in Step 10.(b), it is guaranteed by the
previous functionalities that at least half of S are corrupted. Otherwise, all active parties will run
ΠFaultDetection.

Note that the extended additive sharing of x
(i0)
j0

+a
(i0)
j0

is calculated correctly. Also note that all

parties that holds the shares of Lx(i0)j0
+a

(i0)
j0

M from the beginning of ΠEval remain active in this step.

Since the dealer D has all parties’ shares of ⟨x(i0)j0
⟩+ ⟨a(i0)j0

⟩+ ⟨o(i0)j0
⟩, and ⟨x(i0)j0

⟩+ ⟨a(i0)j0
⟩ is derived

from the extended additive sharing Lx(i0)j0
+ a

(i0)
j0

M, by Lemma 9 all parties can call ΠFaultDetection to
output a set of eliminated parties where at least half of the set are corrupted.

F.3 Proof of Lemma 3

Proof. Let A denote the adversary. We will construct a simulator Sim to simulate the behaviors of
honest parties for the adversary. Recall that Cactive denotes the active corrupted parties and that
Hactive denotes the active honest parties.

The correctness of ΠMain follows the correctness of the protocol ΠVerify (Lemma 10) and the
correctness of network routing (Theorem 2).

Simulation for ΠMain. Sim simulates ΠMain as follows:

1. In Step 1, Sim does nothing.
2. In Step 2, Sim simulates ΠInput as follows:

(a) In Step 1.(b) of ΠInput, Sim faithfully emulates FInputShamir.
(b) In Step 1.(c) of ΠInput, Sim faithfully emulates FRandShamir.
(c) In Step 1.(d) of ΠInput, if Client is corrupted, Sim learns y1, . . . , yN from A. Then Sim

samples ri ∈ (Z/2kZ)ℓ, and then send yi + ϕ(ri) to the active corrupted parties on behalf
of FOpenPub for all i ∈ [N ]. If Client is honest, Sim samples random r̃i ∈ (Z/2kZ)ℓ, and
sends ϕ(r̃i) to A on behalf of FOpenPub for all i ∈ [N ].

(d) In Step 1.(e) of ΠInput, Sim does nothing.
(e) In Step 2 of ΠInput, Sim faithfully emulates FFanOut.
(f) In Step 3 of ΠInput, Sim faithfully emulates FPermute.

3. In Step 3.(a), Sim simulates ΠEval for seg as follows:
(a) In Step 2 of ΠEval, Sim faithfully emulates FRandZeroAdd.
(b) In Step 3 of ΠEval, Sim faithfully emulates FTripleAdd and FTripleMult.
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(c) In Step 5.(b) of ΠEval, if D is corrupted, Sim samples uniformly random values in Z/2kZ
as the shares of ⟨x⟩+ ⟨aj⟩+ ⟨o1⟩ and ⟨y⟩+ ⟨bj⟩+ ⟨o2⟩ held by active honest parties whose
indices are in {1, 2, . . . , t+ 1}. If D is honest, Sim follows the protocol.

(d) In step 5.(c) of ΠEval, if D is corrupted, Sim follows the protocol. If D is honest, Sim samples
two uniformly random elements in Z/2kZ as u and v sent to active corrupted parties.

4. In Step 3.(b), Sim simulates ΠVerify for seg as follows:

(a) In Step 2 of ΠVerify, Sim faithfully emulates FVerifyBC.

(b) In Step 4 of ΠVerify, Sim faithfully emulates FMult and then faithfully emulates FReEncode.

(c) In Step 5 of ΠVerify, Sim faithfully emulates the functionalities FFanOut, FPermute, FCollect and
FPermute in the protocol ΠNetworkRouting.

(d) In Step 6 of ΠVerify, recall that x(i) + a(i) and y(i) + b(i) are computed from the values

sent by D in ΠEval. Let ũ
(i)
j := x̃

(i)
j + a

(i)
j denote the j-th wire of x̃(i) + a(i), and let

u
(i)
j := x̃

(i)
j + a

(i)
j denote the j-th wire of x(i) + a(i). Similarly, let ỹ

(i)
j + b

(i)
j denote the

j-th wire of ỹ(i) + b(i). Note that u
(i)
j is reconstructed by D at Step 5.(c) of ΠEval. Also

note that u
(i)
j should equal ũ

(i)
j if the reconstruction is correct, because of the correctness

of network routing.

If D is corrupted, Sim simulates x̃(i)+a(i) and ỹ(i)+b(i) as follows. Since D is corrupted, we

must have that A locally possesses this correct value ũ
(i)
j at Step 5.(b) of ΠEval. Therefore,

Sim gets ũ
(i)
j = x̃

(i)
j + a

(i)
j from A for all i ∈ [N ] and for all j ∈ [ℓ]. Similarly, Sim can

get ỹ
(i)
j + b

(i)
j from A for all i ∈ [N ] and for all j ∈ [ℓ]. Then Sim sends ϕ(x̃(i) + a(i)) and

ϕ(ỹ(i) + b(i)) to the active corrupted parties on behalf of FOpenPub for all i ∈ [N ].

If D is honest, Sim simulates x̃(i) +a(i) and ỹ(i) + b(i) as follows. At Step 5.(b) of ΠEval, A
possesses the additive error introduced to ũ

(i)
j , which we suppose is d

(i)
j ∈ Z/2kZ. Therefore,

Sim receives d
(i)
j from A, and sets ũ

(i)
j = u

(i)
j −d

(i)
j for all i ∈ [N ] and for all j ∈ [ℓ]. Similarly,

Sim can get ỹ
(i)
j +b

(i)
j from A for all i ∈ [N ] and for all j ∈ [ℓ]. Then Sim sends ϕ(x̃(i)+a(i))

and ϕ(ỹ(i) + b(i)) to the active corrupted parties on behalf of FOpenPub for all i ∈ [N ].

(e) In Step 7.(a) of ΠVerify, Sim faithfully emulates FFanOut, and then faithfully emulates
FPermute.

(f) In Step 7.(b) of ΠVerify, it is clear that Sim can locate the first wire that is incorrect, denoted
by LsM and ⟨s⟩+ ⟨o⟩. Then Sim simulates ΠFaultDetection as follows:

i. In Step 1 of ΠFaultDetection, if Pi is corrupted, Sim receives from A the shares of ⟨o′′i ⟩
for active honest parties, and sends them to active honest parties. If Pi is honest, Sim
samples uniformly random elements in Z/2kZ as the shares of ⟨o′′i ⟩ held by the active
corrupted parties whose indices are in {1, 2, . . . , t+ 1}.

ii. In Step 2 of ΠFaultDetection, if D is corrupted, Sim samples a random additive zero sharing
as the sharing

∑
i∈Hactive

⟨o′′i ⟩. Then Sim sets ⟨o′′⟩ =
∑

i∈Hactive
⟨o′′i ⟩ +

∑
i∈Cactive

⟨o′′i ⟩ as
the communication from active honest parties to D. Afterwards, Sim simulates all the
communication in the byzantine agreement protocol.
If D is honest, Sim receives from A the shares of ⟨o′′⟩ sent by active corrupted parties.
Sim follows the protocol to send active corrupted parties’ shares of ⟨o′′⟩ to D. Then Sim

checks if
∑

i∈Cactive
⟨o′′⟩ sent by active corrupted parties equals

∑
i∈Cactive

⟨o′′⟩ actually
held by active corrupted parties. If so, Sim learns that D broadcasts that ⟨o′′⟩ is valid.
Otherwise, Sim learns that D broadcasts that ⟨o′′⟩ is invalid. Next Sim simulates the
byzantine agreement protocol according to what is broadcast by D.

iii. In Step 4 of ΠFaultDetection, Sim faithfully emulates FRandParity.
If D is corrupted, note that Sim has already sample s in Step 3.(c). Then Sim samples
the shares of LsM+[p]t held by active honest parties that are compatible with the shares
of LsM+[p]t held by active corrupted parties and with s. Sim sends the shares of LsM+[p]t
held by active honest parties to A.
If D is honest, Sim follows the protocol.

iv. In Step 5 of ΠFaultDetection, if D is corrupted, Sim samples random additive zero sharings
for {⟨ôi⟩}i∈Hactive

, such that
∑

i∈Hactive
⟨ôi⟩ = ⟨ô⟩−

∑
i∈Cactive

⟨ôi⟩, and ⟨ôi⟩ is compatible

with the simulated active corrupted parties’ shares. For all Pi ∈ Hactive, Sim gets ô
(j)
i

50



from the sampled ⟨ôi⟩, and Sim gets (ô
(i)
j )′ from the sampled sharing ⟨ôj⟩ if j ∈ Hactive,

or from A if j ∈ Cactive.
If D is honest, Sim follows the protocol.

v. In Step 6 of ΠFaultDetection, if D is corrupted, since Sim has sampled all sharings, Sim
can simply follow the protocol.
IfD is honest, Sim receives fromA all the incorrect or inconsistent messages. From these
messages, Sim can determine D’s broadcast message. Then Sim follows the byzantine
agreement protocol to broadcast the message.

vi. In Step 7 ofΠFaultDetection, if (Pi, incorrect) is broadcast byD, Sim follows the protocol.

If (Pj1 , Pj2 , ô
(j2)
j1

, (ô
(j2)
j1

)′, inconsistent) is broadcast by D, Sim can perfectly simulate
if Pj1 or Pj2 agree as follows. If D is corrupted, since Sim has sampled all sharings, Sim
follows the protocol to simulate if Pj1 or Pj2 agrees. If D is honest, Sim knows that the
honest party between Pj1 and Pj2 will always agree, and receives from A whether the
corrupted party between Pj1 and Pj2 agrees. Then Sim follows the byzantine agreement
protocol.

5. In Step 4, Sim simulates ΠOutput as follows:

(a) In Step 1 of ΠOutput, Sim faithfully emulates FCollect.
(b) In Step 2 of ΠOutput, Sim faithfully emulates FPermute.
(c) In Step 3 of ΠOutput, if Client is corrupted, Sim receives from FMain the output towards

Client. Then Sim samples the shares of the output Shamir sharings held by active honest
parties that are compatible with the secrets and the active corrupted parties’ shares, and
then Sim sends them to Client.
If Client is honest, Sim follows the protocol.

Hybrid Arguments. We show that Sim perfectly simulates the behaviors of honest parties.
Hybrid0: The execution in the real world.
Hybrid1: In this hybrid Sim faithfully emulates the functionalities FInputShamir, FRandShamir in

Step 1.(b) and Step 1.(c) of ΠInput. The distribution is the same as Hybrid0.
Hybrid2: In this hybrid Sim simulates Step 1.(d) ofΠInput. If Client is corrupted, the distribution

is the same since Sim receives the true value of {yi}Ni=1 from A, and samples from the same
distribution for the secrets {ϕ(ri)}Ni=1. If Client is honest, since Client’s input will always be valid
and has the form of yi = ϕ(xi) for all i ∈ [N ], we have the distribution of yi + ϕ(ri) is the same
as the distribution that Sim samples from for all i ∈ [N ]. Therefore, the distribution is the same
as Hybrid1.

Hybrid3: In this hybrid Sim faithfully emulates the functionalities FFanOut and FPermute in Step
2 and Step 3 of ΠInput. The distribution is the same as Hybrid2.

Hybrid4: Sim faithfully emulates FRandZeroAdd in Step 2 of ΠEval, and FTripleAdd and FTripleMult

in Step 3 of ΠEval. The distribution is the same as Hybrid3.
Hybrid5: In this hybrid, Sim simulates Step 5.(b) and 5.(c) of ΠEval when D is corrupted.

Note that the shares of ⟨x⟩+ ⟨aj⟩+ ⟨o1⟩ and ⟨y⟩+ ⟨bj⟩+ ⟨o2⟩ held by active corrupted parties are
independent of the shares of ⟨x⟩ + ⟨aj⟩ + ⟨o1⟩ and ⟨y⟩ + ⟨bj⟩ + ⟨o2⟩ held by active honest parties
and the secrets x + aj , y + bj . This is because x + aj and y + bj are uniformly random given the
shares of [ϕ(a)]t and [ϕ(b)]t held by active corrupted parties, and because additive sharings have
threshold t. Note that in Step 5.(c) Sim follows the protocol, which will not change the distribution.
Therefore, the distribution is the same as Hybrid4.

Hybrid6: In this hybrid, Sim faithfully emulates the functionalities among Step 2 to Step 5 of
ΠVerify when D is corrupted. Specifically, Sim faithfully emulates FVerifyBC in Step 2 of ΠVerify, FMult

and FReEncode in Step 4 of ΠVerify, and FFanOut, FPermute, FCollect, and FPermute in Step 5 of ΠVerify.
The distribution is the same as Hybrid5.

Hybrid7: In this hybrid, Sim simulates Step 9 of ΠVerify when D is corrupted. Because Sim has
sampled the entire sharing of ⟨x⟩+ ⟨aj⟩+ ⟨o1⟩ and ⟨y⟩+ ⟨bj⟩+ ⟨o2⟩ when simulating Step 3.(c) of
ΠEval, Sim can locally generate the correct values x̃(i)+a(i) and ỹ(i)+b(i) for all i ∈ [N ]. Therefore,
the distribution of ϕ(x̃(i) +a(i)) and ϕ(ỹ(i) + b(i)) is the same as receiving the reconstructed value
from FOpenPub for all i ∈ [N ]. It follows that the distribution of this hybrid is the same as Hybrid6.

Hybrid8: In this hybrid, Sim faithfully emulates FFanOut and FPermute in Step 10.(a) of ΠVerify

when D is corrupted. The distribution is the same as Hybrid7.
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Hybrid9: In this hybrid, Sim simulates Step 1 of ΠFaultDetection when D is corrupted. Because
additive zero sharings have threshold t, the shares of ⟨o′′i ⟩ held by active corrupted parties are
uniformly random when Pi is honest, Since Sim samples active corrupted parties’ shares uniformly
randomly, the distribution of this hybrid is the same as Hybrid8.

Hybrid10: In this hybrid, Sim simulates Step 2 of ΠFaultDetection when D is corrupted. Consider
the zero additive sharing ⟨o′′i ⟩ for an honest party Pi. Its shares held by active honest parties are in-
dependent of its shares held by active corrupted parties. It follows that the shares of

∑
i∈Hactive

⟨o′′i ⟩
held by active honest parties are independent of the shares of ⟨o′′i ⟩ held by active corrupted parties
for all i ∈ Hactive. So the distribution of

∑
i∈Hactive

⟨o′′i ⟩ sampled by Sim is identical to the distribu-
tion of

∑
i∈Hactive

⟨o′′i ⟩ sampled by active honest parties. Therefore, the distribution of this hybrid
is the same as Hybrid9.

Hybrid11: In this hybrid, Sim simulates Step 4 of ΠFaultDetection when D is corrupted. Sim first
faithfully emulates FRandParity in Step 4 of ΠFaultDetection. After this step, the distribution is the same
as Hybrid10.

Suppose the sharing LsM + [p]t sampled by Sim is denoted by [w]t. We argue that [w]t has the
same distribution as the real sharing LsM + [p]t as follows.

– Given the secret s, the sharing ⟨s⟩ + ⟨o⟩ is independent of the sharing LsM and is therefore
independent of the sharing of LsM+ [p]t. It follows that the sharing ⟨s⟩+ ⟨o⟩ sampled by Sim is
independent of the distribution of LsM + [p]t.

– Note that [p]t is a uniformly random parity sharing given active corrupted parties’ shares, and
the sampled sharing [w]t is valid if and only if [w]t − LsM is a parity sharing. So LsM + [p]t has
the same distribution as [w]t.

Therefore, the distribution of this hybrid is the same as Hybrid10.
Hybrid12: In this hybrid, Sim simulates Step 5, Step 6, and Step 7 of ΠFaultDetection when D is

corrupted. If ⟨ô⟩ = ⟨o′′⟩, Sim has sampled
∑

i∈Hactive
⟨o′′i ⟩. If ⟨ô⟩ = ⟨o⟩ − ⟨o′⟩ + ⟨o′′⟩, note that Sim

has sampled LsM + [p]t, Sim can derive
∑

i∈Hactive
(⟨oi⟩ − ⟨o′i⟩+ ⟨o′′i ⟩) from the sampled sharings. In

either case, Sim has
∑

i∈Hactive
⟨ôi⟩, and it is uniformly random given the shares of

∑
i∈Hactive

⟨ôi⟩
held by active corrupted parties.

For i ∈ Hactive, ⟨ôi⟩ is a uniformly random additive zero sharing given the shares held by
active corrupted parties. Therefore, when Sim uniformly samples ⟨ôi⟩ for all i ∈ Hactive given∑

i∈Hactive
⟨ôi⟩, the distribution is the same as Hybrid11.

Since Sim follows the rest of Steps of ΠFaultDetection, and the sharing distribution is the same, we
have that the distribution of this hybrid is the same as Hybrid11.

Hybrid13: In this hybrid, Sim simulates Step 5.(b) and Step 5.(c) of ΠEval when D is honest.
We have the secret x+ aj and y + bj are uniformly random, and are independent of the shares of
⟨x⟩+ ⟨aj⟩+ ⟨o1⟩ and ⟨y⟩+ ⟨bj⟩+ ⟨o2⟩ held by active corrupted parties. Since Sim samples x+ aj
and y + bj uniformly randomly, we have the distribution of this hybrid is the same as Hybrid12.

Hybrid14: In this hybrid, Sim faithfully emulates the functionalities among Step 2 to Step 8
of ΠVerify when D is honest. Specifically, Sim faithfully emulates FVerifyBC in Step 2 of ΠVerify, FMult

and FReEncode in Step 4 of ΠVerify, FFanOut in Step 5 of ΠVerify, FPermute in Step 6 and Step 8 of
ΠVerify, and FCollect in Step 7 of ΠVerify. The distribution is the same as Hybrid13.

Hybrid15: In this hybrid, Sim simulates Step 9 ofΠVerify whenD is honest. Because the network

routing is correct, and Sim can receive from A the additive errors introduced to ũ
(i)
j , i.e. u

(i)
j − ũ

(i)
j ,

for all i ∈ [N ] and for all j ∈ [ℓ], Sim correctly generates ũ
(i)
j from the u

(i)
j that it sampled when

simulating Step 5.(d) of ΠEval. Therefore, the distribution of ϕ(x̃(i) + a(i)) and ϕ(ỹ(i) + b(i)) is
the same as receiving the reconstructed value from FOpenPub for all i ∈ [N ]. It follows that the
distribution of this hybrid is the same as Hybrid14.

Hybrid16: In this hybrid, Sim faithfully emulates FFanOut and FPermute in Step 10.(a) of ΠVerify

when D is honest. The distribution is the same as Hybrid15.
Hybrid17: In this hybrid, Sim simulates Step 1 of ΠFaultDetection when D is honest. Because

additive zero sharings have threshold t, the shares of ⟨o′′i ⟩ held by active corrupted parties are
uniformly random when Pi is honest, Since Sim samples active corrupted parties’ shares uniformly
randomly, the distribution of this hybrid is the same as Hybrid16.

Hybrid18: In this hybrid, Sim simulates Step 2, Step 4, Step 5, Step 6, and Step 7 ofΠFaultDetection

when D is honest. In Step 2 of ΠFaultDetection, because Sim can perfectly simulate the value broadcast

52



by D, the distribution is the same. In Step 4 and Step 5 of ΠFaultDetection, because Sim follows the
protocol, the distribution remains the same. In Step 6 of ΠFaultDetection, because Sim receives from
A the incorrect or inconsistent message, Sim can perfectly simulate D’s broadcast message. In Step

7 of ΠFaultDetection, if (Pj1 , Pj2 , ô
(j2)
j1

, (ô
(j2)
j1

)′, inconsistent) is broadcast, the honest party between
Pj1 and Pj2 will always agree, and the other party is the corrupted party. So Sim can perfectly
simulate the message broadcast by Pj1 and Pj2 . Above all, the distribution of this hybrid is the
same as Hybrid17.

Hybrid19: In this hybrid, Sim faithfully emulates the functionalities FCollect and FPermute in
Step 1 and Step 2 of ΠOutput. The distribution is the same as Hybrid18.

Hybrid20: In this hybrid, Sim simulates Step 3 of ΠOutput. Suppose the output sharings for
Client are [ϕ(z1)]t, . . . , [ϕ(zN )]t. If Client is corrupted, it is guaranteed by FPermute that the shares
of [ϕ(z1)]t, . . . , [ϕ(zN )]t held by active honest parties are uniformly sampled given the secrets
ϕ(z1), . . . , ϕ(zN ) and the shares held by active corrupted parties. Therefore, the shares held by
active honest parties sampled by Sim have the same distribution as the real shares held by active
honest parties in the view of A. If Client is honest, since Sim follows the protocol, the distribution
remains the same. Therefore, the distribution of this hybrid is the same as Hybrid19.

Note that this hybrid is the execution in the ideal world.
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