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Abstract. This paper presents a new efficient hash function for ima-
ginary class groups. Many class group based protocols, such as verifiable
delay functions, timed commitments and accumulators, rely on the ex-
istence of an efficient and secure hash function, but there are not many
concrete constructions available in the literature, and existing construc-
tions are too inefficient for practical use cases.
Our novel approach, building on Wesolowski’s initial scheme, achieves a
200 fold increase in computation speed, making it exceptionally practical
for real-world applications. This optimisation is achieved at the cost of
a smaller image of the hash function, but we show that the image is still
sufficiently large for the hash function to be secure.
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1 Introduction

Imaginary class groups have recently become a focal point in cryptographic
research due to a unique property: their order remains elusive. Recall that the
order of an imaginary class group with a given discriminant is known as the
class number and it is believed to be difficult to compute for large discriminants,
which is why we may assume that the order of a class group, even if we know
the discriminant, is unknown.

Assuming the factorization is not known, the order of an RSA group is also
unknown, but the benefit of class groups over RSA groups is that sampling
a new group with unknown order is easier for class groups, because one can
simply sample a sufficiently large negative, prime discriminant ∆ and publish it.
For RSA groups, sampling a new group is much more difficult to do because it
requires sampling a modulus N = pq where p and q are two prime factors, and if
you know these you also know the group order. So in RSA groups, for a trusted
party to sample a group with unknown order without, more sophisticated and
computationally expensive protocols are required, such as secure multi-party
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computation (MPC), making class groups a more practical choice for certain
cryptographic applications. See [8] for a recent example of this.

Groups of unknown order are used in many applications, most famously in the
RSA signature scheme [1], but also for some implementations of accumulators
[6], verifiable delay functions ([20,16]), and polynomial commitments [7]. We
also note that specific groups of unknown order, including class groups, cannot
replace RSA in applications which require the group order as a trapdoor - some
examples are RSA-based time-lock puzzles [17], and random beacons [5].

When class groups are used in cryptography, sampling or hashing to a random
element is an important primitive. This is for instance the case for some digital
signature schemeas, where the plaintext has to be mapped to a group element,
or for verifiable delay functions where a random input has to be sampled for
each VDF instance.

Until recently, there have not been many concrete examples of hash functions
for class groups. Wesolowski [20] presented a construction where the first coeffi-
cient a is restricted to be a prime. Recently, Seres, Burcsi and Kutas [18] have
presented a set of new hash function schemes and have also shown that some
previous constructions are insecure. Their work focuses in particular on how to
construct a hash function with a uniform output in the class group and uses
Bach’s algorithm [3] to sample quadratic forms with composite a coefficients.

In [20], Wesoloski calls for optimizations to his hash construction, and this
paper is a response to this. Our proposed scheme is significantly more efficient
than both Wesolowski’s construction and the constructions presented by Seres
et al.

After a brief introduction to imaginary class groups in Section 2, we present
the algorithm in Section 4 and prove the security of the hash function by proving
that its image is uniform in a sufficiently large subgroup of a class group, and
analyze its time complexity. The algorithm is implemented as part of the open-
source fastcrypto Rust library and is used in the implementation of verifiable
delay functions on the Sui blockchain. Finally, Section 5 discusses implementa-
tion remarks and benchmarks, before presenting future work developments in
Section 7.

2 Background

We will only provide a few facts and definitions about imaginary class groups
here and refer to Chapter 5 in [10] for a thorough introduction. The imaginary
class group Cl(∆) with discriminant ∆ < 0 where ∆ ≡ 1 mod 4 and |∆| is prime
may be represented by all quadratic forms ax2 + bxy + cy2, which we will write
(a, b, c), with ∆ = b2−4ac where the group operation is known as composition of
forms which was discovered by Gauss [13]. In this representation, two quadratic
forms f and g represent the same group element if they are equivalent, e.g. if
there is a matrix U ∈ SL2(Z) such that f = g◦U . Each equivalence class contains
exactly one reduced form so we use reduced quadratic forms to represent class
group elements:
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Definition 1 (Reduced quadratic form). A quadratic form (a, b, c) with a >
0 and discriminant ∆ = b2 − 4ac is said to be reduced if |b| ≤ a ≤ c and if
a ∈ {|b|, c} implies b ≥ 0.

As discussed in the introduction, the order of a class group is hard to compute,
but we get as a consequence of Dirichlet’s class group formula an approximation,
namely that #Cl(∆) ≈

√
|∆|. The size of the discriminant for cryptographic

protocols will typically be at least 1024 bits, but a recent paper by Dobson,
Galbraith and Smith [12] suggests that discriminants should be thousands of
bits to ensure that it is sufficiently hard to find the order of a class group for a
random discriminant of a given size.

The only result we need about quadratic forms is the following lemma which
ensures that the output of our algorithms are reduced.

Lemma 1. If a <

√
|∆|
2 and −a < b ≤ a then (a, b, c) is reduced.

Proof. By assumption, we have |b| ≤ a, so we just need to consider the bound
on c, but this is true because

c =
b2 + |∆|

4a
≥ |∆|

4a
>

a2

a
= a.

This also proves that a ̸= c. We may still have a = b, but by assumption this
only happens when b ≥ 0 which proves that (a, b, c) is reduced.

3 Preliminaries

For multiple constructions we will need a function which samples a uniformly
random integer in a range, that is a function RandomNumber(C, seed) which
is modelled as a random oracle on {1, . . . , C − 1} for seed ∈ {0, 1}∗.

We assume there is a function ModSqrt(k,m) for positive integers k and m,
m being a prime number, which returns the smallest s such that s2 ≡ k mod m
with 0 ≤ s < m, assuming this exists. In particular, it is the smallest s and m−s
for any square root 0 ≤ s < m.

Recall that π : N → N is the prime-counting functions such that π(n) =
#{p ≤ n | p prime}. We are also interested in the inverse of this, namely the
n’th prime, which by the prime number theorem is approximately

p̃(n) := ⌊n lnn⌋.

4 Hash to class group

We now describe a hash algorithm and discuss its complexity and parallelizabil-
ity.
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4.1 Description

Our algorithm is an extension of Wesolowski’s construction from [20]. The origi-
nal construction samples a uniformly random prime a such that a <

√
|∆|/2 and(

∆
a

)
= 1. This ensures that we can find a square root b such that b2 ≡ ∆ mod a.

If b is odd, b2 ≡ 1 mod 4, so 4a divides b2 − ∆. If not, we can use the other
square root, a− b, in place of b and compute the exact quotient c = (b2 −∆)/4a
and return a quadratic form (a, b, c) with discriminant ∆. Lemma 1 ensures that
the result is reduced.

Our algorithm is a natural extension to this construction where we first de-
termine an upper bound on the size of the prime from a security parameter λ
and then sample smaller primes and use their product as a.

The bottleneck for Wesolowski’s construction is sampling random primes,
and using a product of smaller primes allows for a speed-up and efficient par-
allelization at the cost of reducing the size of the image and also any claims of
uniformity of the image, but the output is large enough for the hash function to
be collision resistant, which we think will be sufficient for many use cases.

Algorithm 1 Hash2Prime(l, q, seed)
Require: l > 3, d prime, seed ∈ {0, 1}∗.
Ensure: p prime with

(
q
p

)
= 1 and p ≤ 2p̃(l).

counter← 0,
repeat

p← RandomNumber(2p̃(l), counter∥seed),
n← n+ 1,

until p prime and
(
q
p

)
= 1

return p.

Lemma 2. Let P (l, q) = {Hash2Prime(l, q, seed) | seed ∈ {0, 1}∗}. Then

#P (l, q) ∼ l.

Furthermore, for fixed l and q, the map seed 7→ Hash2Prime(l, q, seed) is a
random oracle on P (l, q).

Proof. From the definition of p̃, there are 2l primes in the set p is chosen from,
and half of these have q as a quadratic residue. The map is a random oracle
since it is a rejection sampling based on RandomNumber, which is assumed to
be a random oracle.

Lemma 3. If we let C(l,∆) = {SamplePrimeForm(l,∆, seed) | seed ∈ {0, 1}∗},
then #C(l,∆) ∼ l and seed 7→ SamplePrimeForm(l,∆, seed) is a random or-
acle on C(l,∆) for all l.
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Algorithm 2 SamplePrimeForm(l,∆, seed)

Require: 3 < p̃(l) ≤
√

|∆|
2

, ∆ < 0,∆ ≡ 1 (mod 4), −∆ is prime and seed ∈ {0, 1}∗.
Ensure: (a, b, c) ∈ Cl(∆) reduced.

a← HashPrime(l,∆, seed)
b←ModSqrt(∆, a) ▷ Efficiently computable because a is prime.
return (a, b).

Algorithm 3 Hash2ClassGroup(λ, k,∆, seed)

Require: k ≥ 1, ∆ < 0,∆ ≡ 1 (mod 4), −∆ is prime, p̃(22λ) <
√
−∆
2

and x ∈ {0, 1}∗.
Ensure: (a, b, c) ∈ Cl(∆) is a reduced quadratic form.

(a0, b0)← SamplePrimeForm
(
2λ,∆, seed∥0

)
counter← 0
for i = 1, . . . , k do

repeat
counter← counter + 1

(ai, bi)← SamplePrimeForm
(
2λ/k,∆, seed∥counter

)
for i = 1, . . . , k.

until ai ̸= aj for all j < i
end for
a←

∏k
i=0 ai.

Pick b such that b ≡ bi mod ai for all i. ▷ Using the Chinese Remainder Theorem.
if b even then

b← a− b,
end if
c← b2−∆

4a
, ▷ b odd =⇒ b2 ≡ 1 mod 4

return (a, b, c).
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Proof. The size of C(l,∆) follows directly from Lemma 3 since there is a 1-1 map-
ping between P (l,∆) and C(l,∆) given by the procedure SamplePrimeForm.
This also proves that SamplePrimeForm is a random oracle on C(l,∆).

Theorem 1. The output of Algorithm 4.1 is a reduced quadratic form with dis-
criminant ∆, and the image of the hash function has size 2λ.

Proof. The sampling method for a ensures that ∆ is a quadratic residue modulo
a and the Chinese Remainder Theorem ensures that b is a square root of ∆
modulo a and that b is odd so b2 ≡ 1 mod 4. This ensures that the division
when computing c is exact and that (a, b, c) has discriminant ∆. We also see
that a <

√
|∆|/2 and −a < b < a so (a, b, c) is reduced by Lemma 1.

Ignoring the requirement that the prime factors must be distinct, the image
size is 2λ(2λ/k)k = 22λ.

Remark 1. If the output of the hash function is to be used as input to a VDF an
adversary could, if the upper bounds of the prime forms used in Algorithm 3 is
too small, precompute the output on some smaller forms and compute the output
quickly as follows: If we define ci =

b2i−∆
4ai

for i = 0, . . . , k, (a, b, c) =
∏

i(ai, bi, ci)

as elements of Cl(∆). Recall that a VDF on input x ∈ Cl(∆) is x2T for some
large T , and that computing this requires T operations to compute. However, if
x = x0 · · ·xk,

x2T = x2T

0 · · ·x2T

k ,

so if the adversary knows all xi, the output can be computed using k operations.
This is handled in Algorithm 3 by ensuring that one of the factors, namely

the first, is taken from a set of size O(2λ), so precomputing all elements from
this has complexity 2λ. If k > 1, the rest of the forms are smaller, but these are
included to ensure that the image of the hash function is of size 22λ to ensure
that the hash functions is collision resistant.

4.2 Theoretical complexity

The asymptotical complextiy of Algorithm 4.1 is dominated by the sampling of
the prime factors. If we use the Miller-Rabin primality test1, the complexity of
checking an N bit number is O(rN3) where r is the number of rounds. Computing
the Legendre symbol can be done in O(N2) steps using a Euclidean Algorithm-
like implementation (see Algorithm 2.3.5 in [11]), and the modular square root
is O(N4) but is only computed once per found factor. The expected number of
candidates to consider before finding a N bit prime is O(log 2N ) = O(N) under
the Cramér random model, and the probability that the Legendre symbol = 1,
is 1/2, so the expected complexity of the entire loop is O(rλ4), and does not
1 In practice, the Miller-Rabin test should be combined with the Lucas primality tests

to ensure security (see section 5.1), but for the complexity analysis here we will just
consider the Miller-Rabin test.
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depend on k directly, since the dominant part of the algorithm is the sampling
of the first, large prime factor. We will see, however, that the parameter k makes
a difference in practice in the benchmarks.

4.3 Parallelization

Algorithm 4.1 may be parallelized by running the loop to sample the ai’s in
multiple threads. This requires some alterations to the algorithm:

1. We need to check that no ai can be sampled more than once. This may be
done either by checking it after the loop and resample any duplications or by
making the list of ai’s synchronized such that only one thread can write to it
at a time. In practice, it is very unlikely it will happen when the discriminant
is large.

2. The counter variable needs to be handled such that the same value is not
used twice. This may be done by allowing the i’th thread to only use use
values for the counter that are of the form qk + i for and then increment q
instead.

5 Implementation and Benchmarks

The algorithms presented above have been implemented as part of the Rust
language based high-efficiency fastcrypto library [15]. In this section we provide
comments and considerations for a concrete implementation.

5.1 Primality testing

Both the theoretical complexity analysis and profiling of the actual application
suggests that the main bottleneck of computing the hash function presented in
this paper is primality testing, so this has to be designed carefully.

In our implementation, we use the Baillie-PSW probabilistic primality test
[4]. This was chosen over using just a Miller-Rabin test because the latter is
vulnerable to an attack when used on candidates that may have been chosen by
an adversary [2].

5.2 Legendre symbol

In Algorithm 2, the Legendre symbol
(
∆
a

)
is computed to ensure that ∆ is a

square modulo a. First note that this is indeed a Legendre symbol because a is
a prime, so it may be computed as(

∆

a

)
= ∆

a−1
2 mod a. (1)

Assuming that a multiplication of two numbers not larger than a takes O(log2 a)
operations, this formula gives an algorithm which runs in O(log3 a) operations,
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but there is a faster algorithm, similar to the Euclidean Algorithm (see e.g. [10,
pp. 29–31] or [11, p. 98]), which takes O(log2 a) operations. The latter is the
approach used in our implementation.

There is an alternative way to compute the Legendre symbol which is faster
but reduces the range of the hash function slightly: Recall that ∆ < 0 is the
fixed discriminant and that −∆ is prime, so if we restrict the factors ai of a to
to ai ≡ 3 mod 4 we get from the Law of Quadratic Reciprocity that(

∆

ai

)
=

(
ai
−∆

)
= a

−∆−1
2 mod (−∆).

Now the modulus is fixed, so we can use the Montgomery Exponentiation [14]
to compute the exponent which avoids modular reduction in each step in the
exponentiation loop.

5.3 Benchmarks

The implementation has been benchmarked on a MacBook Pro Laptop with an
M1 Pro processor with 8 cores and 16 GB RAM, and the results are shown in
Figure 1.

The target image size is 2256, and the benchmarks show a 3.5 × improvement
for the right choice of k, but also that increasing k beyond 2 does not give any
additional benefits. The results also show that there is a small improvement in
parallelisation with k = 1 but that it is insignificant for larger k. This is likely
due to congestion and the fact that the bottleneck is the sampling of the first,
large prime factor.

As discussed in section 4.1, Wesolowski’s construction for a hash function
samples a single prime a smaller than

√
|∆|/2 and constructs b and c from this,

and this method takes, using the same program and discriminant as was used
for these benchmarks, 495 ms to compute so our construction gives, at the cost
of a smaller but still significantly large image for the hash function, an 200 ×
improvement.

6 Applications

Imaginary class groups are used in a wide array of applications, and for a lot
of these, for example timed commitments [19], accumulators [6], and, perhaps
most notably, verifiable delay functions (VDFs) [20,16], a secure and efficient
hash function to the class group is an important primitive.

Recall that a VDF is a function F : G → G defined by g 7→ g2
T

for some
large T . Computing this function takes T group operations if the order of the
group is unknown, but it is also possible to derive a proof that the computation
was done correctly, which is fast to verify.

As noted in Remark 3 in [20], using a hash function to pick the input of the
VDF is important, because knowing the result of F (x) = x2T makes it easy to
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Fig. 1. Plots of performance for different choices of the parameter k. The class group
used for the benchmarks has a 3072 bit discriminant, but this has no influence on the
runtime.

compute, for example,

F (xa) = (xa)2
T

= (x2T )a = F (x)a.

At the time of writing, the only VDF in production is run by the Chia Net-
work [9], where VDFs are used in a proof-of-time consensus protocol. However,
Chia Networks’ deployment does not use a hash function to generate a random
input to a VDF. Instead it uses a fixed input to the VDF and samples a new
random discriminant for each VDF instance.

The Sui blockchain also has a VDF implementation, and while implementing
this we have found that sampling sufficiently large (according to [12]) discrimi-
nants at random may take several seconds, which is too slow for on-chain usage.
Due to this limitation, a fixed discriminant is used instead so the input to the
VDF must be sampled for each instance instead based on user-provided random-
ness. This requires a hash function to which maps to a class group element, which
is fast enough for it to be computed on-chain, but Wesolowski’s hash function
construction takes up to a second to compute, which is too slow for on-chain
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usage, so we use the construction presented in this paper which computes a hash
in as little as 2 ms (see Figure 1) for a large 3072 bit discriminant.

7 Future work

In certain applications, it is imperative to ensure that hash functions operate
in constant time to prevent any leakage of information about the input. The
challenge with the algorithm described in this paper lies in its dependency on
probabilistically sampling random primes from a range, which inherently varies
in time. Interesting lines of research could include:

(a) Uniform sampling techniques for developing an efficient, constant time algo-
rithm,

(b) Pre-computations by preparing a pool of random primes in advance,
(c) Time-padding methods where the execution time is artificially extended to

be fixed.
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