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Abstract. We revisit the notion of threshold Password-Authenticated
Key Exchange (tPAKE), and we extend it to augmented tPAKE
(atPAKE), which protects password information even in the case all
servers are compromised, except for allowing an (inevitable) offline
dictionary attack. Compared to prior notions of tPAKE this is
analogous to replacing symmetric PAKE, where the server stores the
user’s password, with an augmented (or asymmetric) PAKE, like
OPAQUE [44], where the server stores a password hash, which can be
used only as a target in an offline dictionary search for the password.
An atPAKE scheme also strictly improves on the security of an aPAKE,
by secret-sharing the password hash among a set of servers. Indeed, our
atPAKE protocol is a natural realization of threshold OPAQUE.

We formalize atPAKE in the framework of Universal Composability
(UC), and show practical ways to realize it. All our schemes are generic
compositions which interface to any aPAKE used as a sub-protocol,
making them easier to adopt. Our main scheme relies on threshold
Oblivious Pseudorandom Function (tOPRF), and our independent
contribution fixes a flaw in the UC tOPRF notion of [41] and upgrades
the tOPRF scheme therein to achieve the fixed definition while
preserving its minimal cost and round complexity. The technique we
use enforces implicit agreement on arbitrary context information within
threshold computation, and it is of general interest.

1 Introduction

Passwords remain a dominant method of authentication of end-users on the
Internet (and beyond),4 and for decades the prime mechanism for client-server
password authentication has been “password-over-TLS”, where the user sends
the password to the server over a secure channel authenticated via a Public Key
Infrastructure (PKI), and the server compares the received password against the
salted, i.e. randomized, password hash created during user registration.

⋆ This is an extended version of the paper which appeared in [34].
4 See e.g. [55, 56, 52] for usability review of alternatives to password authentication.



This scheme has multiple weaknesses, including password visibility on the
server during authentication, accidental storage of passwords (for examples see
e.g. [1, 2]), and password leakage if the user falls prey to the so-called
“phishing” attack. To improve upon this the Internet Engineering Task Force
(IETF) conducted a standardization process for a much stronger mechanism, a
(strong) asymmetric (or augmented) Password-Authenticated Key Exchange
(aPAKE), see e.g. [32, 44] and references there-in, where the server stores a
randomized password hash for each user but the authentication protocol does
not rely on PKI, except possibly for user registration. An aPAKE scheme
eliminates all the above weaknesses of password-over-TLS, limiting attacks to
the two unavoidable avenues, namely online password tests, and offline
password tests in the case of server compromise. The IETF aPAKE
competition chose the OPAQUE protocol [44, 13], which in addition to low
computation and communication costs, uses an Authenticated Key Exchange
(AKE) protocol as a black-box, which makes it easy to integrate with existing
secure channel establishment protocols like TLS 1.3 [37, 62].

Strengthening password protection by server distribution. The online
password tests, where the adversary tests a password by using it to authenticate,
can be mitigated by setting limits on the number of unsuccessful authentication
attempts.5 The exposure to offline password tests after server compromise can be
reduced as well, using Multi-Party Computation (MPC) [33, 10]: If the aPAKE
server is emulated by n parties via an MPC protocol, then the offline testing
attack is enabled only if the adversary corrupts more than some threshold t < n
of these parties and reconstructs server data, i.e. the password hash.

Employing generic MPC techniques makes the complexity of such a solution
linear in the circuit description of the aPAKE server code, which for OPAQUE
involves elliptic curve operations, symmetric ciphers, and CRH hashes, with a
resulting circuit with tens of thousands of gates. A natural question is whether
there are much more practical solutions to an aPAKE where the server-held
password hash is secret-shared across a group of servers, and the offline password
tests attack avenue is enabled only after corruption of t+1 servers.

Threshold symmetric PAKE. MPC-emulation of one party in a symmetric
PAKE is known as threshold PAKE (tPAKE). It was addressed in many works
starting from Ford-Kaliski [29] and Jablon [38], whose proposals included
informal security arguments. MacKenzie, Shrimpton, and Jakobsson [53]
showed the first tPAKE secure in a game-based model, for arbitrary t,
assuming PKI. Gennaro and Raimondo [26] showed a password-only tPAKE
for t < n/3, and Abdalla et al. [3] improved it to t < n/2 in the Random
Oracle Model (ROM). Jarecki, Kiayias, and Krawczyk [39] constructed
game-based tPAKE for any t using an intermediary tool of password-protected
secret-sharing (PPSS), a.k.a. password-authenticated secret-sharing (PASS),
[6, 19, 17, 40, 41]. In addition, several works focus on the case of 2 servers,

5 Two-factor authentication could mitigate on-line password tests as well, but two-
factor authentication is not commonly used in that way.
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known as 2PAKE [15, 63, 48, 66, 47, 19, 49, 11, 43], including support for
proactive security and universal composability [16, 67, 50].

However, in these works the servers MPC-emulate a symmetric PAKE, and
make no security guarantees after corruption of t+1 servers, i.e. the adversary
who corrupts that threshold might reconstruct a plaintext password, as opposed
to its (salted) hash. Current cryptographic literature thus gives the implementers
two incomparable choices for protecting password-related information on the
server: They can protect it by storing only password hashes, using either the
password-over-TLS method or an aPAKE like OPAQUE, or they can protect it
using secret-sharing among n servers and using tPAKE, but the latter choice is
worse than the former if the attacker corrupts t+1 servers.

Contribution #1: UC augmented threshold PAKE model. We define a
tPAKE notion which achieves the best of both worlds, i.e. where the
compromise of t+1 servers leaks only a salted password hash, which enables
offline password tests but does not reveal the password in the clear. We call
such scheme an augmented threshold PAKE (atPAKE), and we define it in the
Universal Composability (UC) framework [20], by extending the UC (strong)
aPAKE notion [44] to the multi-server setting.6

We note that the UC framework for expressing security of password
authentication protocols, beginning with the Canetti et al. model for UC
PAKE [22], is much stronger than extensions of the game-based PAKE security
notion of Bellare-Pointcheval-Rogaway (BPR) [9], because in addition to
arbitrary interactions between protocol instances it can capture security in the
face of arbitrary password correlations, password mistyping, and arbitrary
password information leakage. Indeed, UC security was a requirement in the
PAKE/aPAKE competition conducted by the IETF, and if distributing the
server should strictly upgrade the security properties of UC aPAKE, then the
notion that captures the security of such distribution must extend and
strengthen the UC aPAKE notion.

We define the UC atPAKE model in a flexible way, distinguishing between
two types of servers: A target server, who establishes a secure session with a
password-authenticated client, and an auxiliary server, who holds a secret-share
of the password hash but does not establish a secure session. Similar split of
roles was considered for both tPAKE and 2PAKE, e.g. in [26, 3, 11], with the
target server sometimes called a gateway. However, these solutions assumed a
single party playing the target role and required secure channels between each
pair of servers. By contrast, our protocols admit an arbitrary number of target
and auxiliary servers, with no prior trust assumptions between them. (However,
we imply security only if the client is uncorrupted during account initialization.)
In our model the auxiliary servers do not learn whether authentication succeeds,
but if they need this information, e.g. to implement rate-limiting on unsuccessful

6 Here we use aPAKE to refer to strong aPAKE functionality of [44], denoted saPAKE
therein, and we use weak aPAKE to refer to the original aPAKE functionality of [32].
The weak aPAKE model allows for speeding up the offline attack by precomputation
performed before server compromise, while the (strong) aPAKE disallows it.
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authentication attempts, it can be supported if each auxiliary server also plays
a target server role.

We view our UC atPAKE model as a major part of our contribution. As a
sanity check, we verify that any protocol that realizes the UC atPAKE notion,
simplified to the case where auxiliary and target servers are equated, is also
secure under the game-based tPAKE notion of MacKenzie, Shrimpton, and
Jakobsson [53], upgraded using the real-or-random extension of the BPR
game-based PAKE model introduced by Abdalla-Fouque-Pointcheval [4].
Recall that a similar check was done by Canetti et al. [22] who verified that
their UC PAKE notion implies the BPR game-based PAKE notion of [9].

Contribution #2: Augmented threshold PAKE schemes. We show how
to realize the atPAKE notion in a modular way, as a generic composition of
universally composable sub-protocols, and we prove security of our schemes
under the UC atPAKE definition discussed above. Our main proposal realizes
UC atPAKE by generically combining threshold Oblivious Pseudorandom
Function (tOPRF) [41] with an aPAKE scheme. The variants of this approach
include replacing the tOPRF component with threshold Partially Oblivious
PRF (tPOPRF) [28], or with augmented Password-Protected Secret-Sharing
(aPPSS) [27]. We include an overview of these variants in Section 1.2 below.

Contribution #3: Threshold Oblivious PRF. Oblivious PRF (OPRF) [30]
is a 2-party protocol between a server who holds key k of PRF F and a client
who holds an argument x, s.t. the client outputs y = Fk(x), but no information
on x is leaked to the server. OPRF was defined in the UC framework in [39, 40],
and it is realized by the “2HashDH” scheme [40] based on the Gap-OneMore-DH
(Gap-OMDH) assumption in a prime-order group. For OPRF’s based on other
assumptions see e.g. [46, 39, 5, 23]. Threshold OPRF (tOPRF) [41] replaces the
OPRF server with a group that secret-shares the PRF key.

We revisit the UC tOPRF notion of [41].7 We point out a subtle flaw in
their model which makes it ambiguous, and we propose a revised UC tOPRF
definition which strengthens the model and fixes the ambiguity. The original
tOPRF protocol of [41], based on secret-sharing of the PRF key in the
2HashDH OPRF of [40], does not seem to be provably secure in the fixed
model, as we explain in the technical overview below. However, we show that
adding an additional form of blinding to this tOPRF scheme – which adds only
a very modest cost to the protocol – lets the modified protocol realize the fixed
UC tOPRF notion, under the Gap-OMDH and DDH assumptions in ROM.
Moreover, whereas the original tOPRF of [41] was analyzed under a complex
interactive assumption, which was shown secure in the generic group model,
amending that protocol with our blinding method not only lets the protocol
realize a stronger security model, but it does so under much simpler security
assumptions, adding only the DDH assumption to the Gap-OMDH assumption
required by the underlying 2HashDH OPRF.

7 Variants of UC tOPRF notion were also defined and constructed in [8] and [24], but
these works target only the setting of n-out-of-n sharing.
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We extend the UC tOPRF model and our protocol to threshold Partially
Oblivious PRF (tPOPRF) [28]. This protocol variant has applications e.g. to
an atPAKE scheme where the auxiliary servers share O(1)-sized state across all
user accounts. (We discuss this extension in Section 1.2 below.)

UC tOPRF can also be used to implement augmented PPSS (aPPSS) [27]
via the simple compiler of [41]. Augmented PPSS has further applications, e.g.
to password-protected cryptosystems [27]. An advantage of aPPSS built from
tOPRF via the compiler of [41] is that if tOPRF is proactively secure (see
Section 1.2 below) then so is the resulting aPPSS. By contrast, the aPPSS
construction shown in [27] does not seem easy to proactivize.

1.1 Technical Overview

The idea behind our atPAKE protocol is simple and indeed it has appeared
in close variants before. Our tOPRF-based construction and its aPPSS-based
modification, are close variants of the game-based tPAKE’s of resp. [41] and
[39]. They are also natural threshold extensions of resp. the “server learns first”
variant of OPAQUE called OPAQUE’ in [44, 35, 58], and of OPAQUE itself [44].
They can also be seen as extensions of the 2PAKE of [43] to general thresholds.
Indeed, all these protocols are natural threshold extensions of the password-
hardening idea of Ford-Kaliski [29] and Jablon [38], which originated all research
on threshold PAKE’s. The idea of [29, 38] is a blueprint for 2PAKE: The client
on password pw computes a hardened password rw = Fk(pw) via OPRF with (an
auxiliary) server #1 who holds key k, and then uses rw to authenticate to (a
target) server #2. If the last step is a (weak) aPAKE instance, this scheme was
shown as a game-based secure augmented 2PAKE [43], where augmented refers
to the property that corruption of both servers enables offline password tests
but does not leak the cleartext password. Indeed, if PRF Fk is appropriately
constructed then leaking key k held by server #1 and rw = Fk(pw) held by
server #2, does not leak argument pw except via brute-force attack, where an
evaluation of Fk(·) on each argument requires some fixed amount of computation.

First, observe that using (strong) aPAKE [44] instead of PAKE in the last
step strengthens security by eliminating advantages due to precomputation in the
offline attack in case of all-parties compromise. Second, make it into a “threshold
cryptosystem” by replacing OPRF with a (t, n)-threshold tOPRF involving n
auxiliary servers. Finally, rather than use the tOPRF-derived value rw = Fk(pw)
directly, let the user derive T -specific password as rwT = KDFrw(T ). This forms
our tOPRF-based atPAKE construction: The client on password pw computes
rw = Fk(pw) via tOPRF with the auxiliary servers who hold a (t, n)-threshold
secret-sharing of key k, and then uses T -specific value derived from rw in an
instance of aPAKE with the target server T . We prove that this scheme is a UC
atPAKE if the tOPRF subprotocol is a UC tOPRF.

UC atPAKE model. The UC atPAKE model we propose is a threshold
extension of the UC (strong) aPAKE model [44], customized to a division of
roles of auxiliary and target servers, where the former play the role of
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“guardians”, who must agree for an authentication instance to go through,
while the latter are authentication end-points.

The security properties of our UC atPAKE model can be summarized as
follows: If a user creates an account with a target server with an identifier sid
and a set of n auxiliary servers, then an authentication attempt against the
target server requires a unique password guess and participation of t+1 of these
auxiliary servers who agree on an sid -dependent authentication attempt. Turning
to active attacks against the client, if the attacker plays man-in-the-middle on
client interaction with all servers then the security is as in PAKE, i.e. one user
authentication instance allows the attacker one on-line password test. However,
our model strengthens this basic guarantee s.t. if the adversary is passive in
client’s interaction with at least some auxiliary servers then the on-line password
test is only possible using password guesses which the attacker used himself in
on-line interactions with these servers. In other words, as in the case of the online
attack against the target server, the attacker can on-line test a password only if
it uses it in an sid -tagged interaction with auxiliary servers. This limits online
attacks on the client who fails to authenticate the target server but correctly
authenticates the auxiliary servers. Finally, offline password tests are enabled
only if the adversary corrupts t+1 auxiliary servers and the target server, and
there is no other avenue for learning information on the password.

Requirements on tOPRF and the flaw in the tOPRF model [41]. The
above requirements impose the following contract on the tOPRF subprotocol:
To get one online password test opportunity, either against the target server or
the client, the adversary must engage t+1 auxiliary server instances under the
target account identifier. We strengthen this contract further, so that all
participating auxiliary server instances must run on the same sub-session
identifier ssid . This allows more flexibility in the applications, e.g. ssid can
include context information which must be approved by all these servers (and
approved by the target server if the latter is in the auxiliary group).

The tOPRF of [41] is perfectly hiding for the client and does not enforce that
the servers agree on a sub-session identifier ssid they use to service an interaction
with a user. Indeed, it is unclear how a simulator in that protocol can identify
which server executions pertain to a user computing consistently on some fixed
password. This was observed by [41], who tried to solve this by letting the ideal
tOPRF functionality FtOPRF pick an arbitrary subset of sessions with distinct
t+1 servers which are “utilized” for computing one OPRF value. However, this
turns out to create an ambiguous and effectively unrealizable model.

Consider a tOPRF instance with n=3 servers S1,S2,S3 and threshold t=1,
so one needs 2 servers to compute Fk(·). Assume that the environment allowed
each of servers S1,S2,S3 to engage in tOPRF, and the simulator SIM observes
that the adversary computes Fk(·) on some argument x1, so SIM sends the
“evaluate Fk(·) on x1” request to FtOPRF, which in the model of [41] must decide
which pair of server sessions to utilize for this evaluation. Now, whatever choice
it makes, with 2/3 probability it will not match the subset which the real-world
adversary used, e.g. if the latter picks its set of two servers at random. For
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example, assume the adversary computes Fk(·) on x1 via interaction with S1
and S2, whereas interaction with S3 was directed at computing Fk(·) on x2, and
assume that functionality FtOPRF picked the set of utilized servers badly, e.g.
it chose {S2,S3}. Unfortunately, this will prevent correct simulation afterwards.
Assume the environment cooperates with the adversary, and after this Fk(x1)
evaluation the environment allows S1 to engage in one more tOPRF instance.
The real-world adversary can evaluate Fk(·) on x2 by using this last interaction
with S1 together with the interaction with S3, but when SIM asks FtOPRF for
the value of Fk(·) on x2, functionality FtOPRF is stuck: The only two non-utilized
server sessions are two sessions by a single server S1, whereas an evaluation of
Fk(·) on any new argument requires non-utilized sessions with 2 different servers.

Fixing the tOPRF model of [41]. A natural fix is to change FtOPRF s.t.
simulator SIM must extract the set of servers which the real-world adversary
uses to compute Fk(·) on a single argument. However, the tOPRF protocol of
[41] does not seem to enable such simulation. As mentioned above, tOPRF of
[41] is a threshold version of 2HashDH OPRF of [40]. In the latter Fk is defined
as Fk(x) = H3(x,H1(x)

k) where H1, H3 are RO hash functions, range of H1

is a group G of prime order m, and key k is random in Zm. This is a PRF
under the CDH assumption on group G in ROM. In the 2HashDH protocol for
oblivious evaluation of this PRF, the client on input x picks r ←$ Zm and sends
to the server a blinded form of its argument, a = H1(x)

r. The server responds
with b = ak, which the client de-blinds and outputs Fk(x) as H3(x, b

1/r). In
protocol 2HashTDH which is a tOPRF version of this scheme [41], k is (Shamir)
secret-shared as (k1, ..., kn), the client sends a to t+1 servers, each Si responds
with bi = aki , and the client recovers H1(x)

k = bk/r =
∏

i(bi)
λi/r where λi’s

are interpolation coefficients. However, a malicious client can send ai = H1(x)
ri ,

for random ri, to each Si, and still recover H1(x)
k as

∏
i(bi)

λi/ri . Since each ai
is a random group element, the simulator’s view is independent of which ai’s
correspond to the same argument x.

Fixing protocol 2HashDH: enforcing agreement without interaction.
Still, an honest sender sends the same a to each server, so if the servers
preceded the above tOPRF with a round of agreement on a, ssid , this would
bind t+1 server tOPRF sessions to a single x, ssid . This extra round of
agreement introduces costs and delays, and might not be easy to implement
e.g. if one tOPRF node is the user’s own personal device, a cell phone or a
USB dongle. We show protocol 3HashTDH, which enforces (a, ssid)-binding on
t+1 server sessions without sacrificing the optimal round-complexity of
2HashTDH, using a form of “label-based blinding”, applicable to threshold
exponentiation. Namely, in addition to sharing (k1, ..., kn) of key k, the servers
hold a random zero-sharing (z1, ..., zn), i.e. shares of a random t-degree
polynomial which evaluates to zero, and using another hash function H2 onto
G, server Si on input ssid and client’s message a set its response to
bi = aki · (H2(ssid , a))

zi . The client computes H1(x)
k in the same way, i.e. as∏

i(bi)
λi/r =

∏
i(a)

λiki/r ·
∏

i(H2(ssid , a))
λizi/r: The first factor evaluates to

ak/r = H(x)k as before, while the second factor evaluates to 1 because zi’s
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form a zero-sharing, hence
∑

i λizi = 0. If H2 is an RO hash onto G then under
the DDH assumption, the blinding factors (H2(ssid , a))

zi used by any t servers
Si are indistinguishable from random group elements (after this threshold the
blinding factors are correlated because zi’s lie on a t-degree polynomial).
Consequently, unless t+1 servers use the same (a, ssid) these blinding factors
mask server’s responses, making effective evaluation possible only if t+1 servers
use the same (a, ssid) pair.

1.2 Protocol Variants, Extensions, and Applications

Auxiliary servers with constant-sized state. We consider several further
variants of our main tOPRF+(s)aPAKE construction. Firstly, note that in this
tOPRF-based construction the auxiliary servers hold separate tOPRF keys for
each user. However, the auxiliary servers can keep only a single secret-shared
key if we replace tOPRF with threshold Partially Oblivious PRF
(tPOPRF) [28]. Partially Oblivious PRF (POPRF) [28] extends OPRF to
2-party evaluation of a PRF whose arguments are pairs (xpriv, xpub), where xpriv

is a private input of the client while xpub is known to both parties, and the
protocol hides only xpriv from the server. The “Pythia” POPRF of [28] is secure
under One-More BilinearDH (OMBDH) under a game-based definition. For
POPRF’s based on other assumptions see e.g. [42, 65].8 Threshold POPRF
(tPOPRF) [28, 42] replaces the POPRF server with a group that secret-shares
the PRF key.

In the atPAKE application replacing tOPRF with tPOPRF means that a
single secret-shared key can be re-used across all user accounts: If the servers
set the public tPOPRF input xpub to an account identifier UID, and the user’s
private input is xpriv = pw, then the user’s output is rw = Fk(pw,UID), which
by the PRF property of F can be interpreted as rw = F ′k[UID](pw) where F ′ is

a PRF and k[UID] is a user-specific PRF key. We show that a threshold version
of the Pythia POPRF [28], amended by the same blinding technique as above,
realizes the UC tPOPRF functionality in ROM under Gap-OMBDH and the
DDH assumption on the target group.

Structured authentication data. We also consider a variant where tOPRF
is replaced with aPPSS [27], i.e. a protocol that allows the client holding
password pw to decrypt and authenticate an arbitrary secret rw which was
secret-shared among the auxiliary servers in initialization. (Furthermore, the
aPPSS is augmented in the same sense as atPAKE, i.e. corruption of t+1
servers allows only for an offline dictionary attack against the password.) A
benefit of using aPPSS over tOPRF is that aPPSS can be built from
(non-threshold) OPRF [40, 27], which might require weaker assumptions, e.g.
only GapOMDH [40], or only DDH (with more protocols rounds) [17], or LWE

8 POPRF can be implemented as F ′
k(xpriv, xpub) = FF∗

k
(xpub)(xpriv) using any OPRF F

and PRF F ∗, but this generic construction might not have properties like threshold
implementation, updatability, or verifiability without xpub-dependent keys [28, 65].
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[5]. Moreover, aPPSS based on OPRF was shown to be adaptively secure for
arbitrary t, n parameters [27] (see below).

A disadvantage of this protocol variant is that it enables offline password
testing attack after compromise of t+1 auxiliary servers, without the
compromise of a target server, because the aPPSS datastructure already allows
for verification of the password guess. Indeed, our aPPSS-based atPAKE
scheme can be seen as a threshold counterpart to OPAQUE, where the client
authenticates the server-supplied data before using it to authenticate to the
server, while our tOPRF-based scheme can be seen as a threshold counterpart
to OPAQUE’, where the (target) server is the first party that can verify an
authentication result. Furthermore, we don’t know how to make the
OPRF-based aPPSS construction proactive (see below).

Adaptive and Proactive security. We show our t(P)OPRF protocols secure
for arbitrary t, n parameters in the static corruptions model, i.e. if the
environment corrupts all parties at the outset of the protocol. A variant of the
same argument shows that these protocols remain secure against adaptive
corruptions, but only if

(
n
t

)
is polynomial in the security parameter. The same

security statements carry to the atPAKE construction instantiated if
t(P)OPRF is instantiated as above.

Another benefit of our t(P)OPRF-based atPAKE protocol is that it can be
proactivized, i.e. made secure against proactive adversary, using standard
techniques of distributed secret-sharing randomization [36]. We note that the
same techniques do not extend to the aPPSS of [27], which leaves an open
question of constructing a practical atPAKE which is both proactive and
adaptively secure for arbitrary t, n parameters.

Practical Advantages and Applications.Our UC atPAKE protocol is highly
practical: It involves a single round of low bandwidth interaction between the
client and t+1 auxiliary servers, followed by an aPAKE instance between the
client and the target server. The servers do not need to communicate directly,
which makes the scheme flexible: The auxiliary servers can be implemented by
different commercial entities offering a “password hardening” service, or they can
be user’s own devices, like a USB stick or a cell phone. Our scheme requires no
trust assumptions (and no secure channels) between auxiliary servers or between
the auxiliary servers and the target servers.

We note that for simplicity we present our protocols in non-robust versions,
but robustness and verifiability can be added using well-known inexpensive ROM-
based non-interactive zero-knowledge proofs. We note also that our atPAKE
uses aPAKE as a black-box, and can interface with any existing target-server
aPAKE implementation, like OPAQUE. (Indeed, its variants can interface with
TLS-OPAQUE, password-over-TLS, and others, see Section 6.)

Our UC atPAKE model assumes that the user knows the list of target
servers at initialization, but this is done purely to reduce model complexity,
because all our protocol variants allow the user to add more target servers by
reconstructing rw and computing new rwT = KDFrw(T ) values. Indeed, this
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feature make our atPAKE scheme applicable to a (threshold) password
manager application, implemented by the auxiliary servers.

Other related works. As mentioned above, our atPAKE can be thought of
as a threshold password manager scheme, where the user recovers
service-specific passwords from the master password. Our atPAKE protocols
map to this application if the master password is pw, the T -specific password is
rwT = KDFrw(T ), and rw is recovered from pw via either tOPRF, tPOPRF, or
PPSS. We note that similar usage of non-threshold OPRF or POPRF for
outsourced password managers was previusly considered e.g. in [28, 60, 61].

In other related work, a password-protected storage scheme of [24], a variant
of PPSS which allows adaptive addition of records, analyzed a similar solution
in the n-out-of-n case, i.e. distributed but not (general) threshold.

Another scheme that uses secret-sharing to protect server-stored password
hashes is Distributed Password Verification [18, 28, 59, 51]. In these schemes
compromise of permanent storage of all servers leaks only a salted password hash,
as in atPAKE. However, these schemes implement only the verification step in
the password-over-TLS authentication, i.e. the secret-shared password hash can
be used for secure comparison with a cleartext password candidate, but not for
authenticated key exchange of a remote entity holding that password.

Roadmap. Section 2 includes notation and security assumptions used across
this work, and a brief overview of universal composability. In Section 3 we define
UC Threshold Oblivious PRF (tOPRF) and show protocol 3HashTDH which
realizes that notion. Section 4 introduces the UC Augmented Threshold PAKE
(atPAKE) functionality. Section 5 includes our main construction of secure UC
atPAKE from UC tOPRF. Section 6 overviews several variants and extensions
of the above construction. We defer some material to the appendices.

Specifically, in the appendices we include a proof that UC atPAKE notion
of Section 3 implies a game-based T-PAKE (Appendix A), a proof of that
tOPRF scheme of Section 3 realizes UC tOPRF functionality (Appendix B), a
proof that atPAKE construction of Section 5 realizes UC atPAKE functionality
(Appendix C, and for completeness we include the UC (strong) asymmetric
PAKE (aPAKE) functionality which is used in this proof in Appendix D), an
extension of our 3HashTDH tOPRF to the threshold Partially Oblivious PRF
(tPOPRF) (Appendix G), and we present three further variants of the
atPAKE protocol: (1) replacing tOPRF with tPOPRF [28] (Appendix H), (2)
replacing tOPRF with augmented password-protected secret sharing (aPPSS)
[27] (Appendix F), and (3) replacing (strong) aPAKE with a weak aPAKE in
the last protocol flow (Appendix E).
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by funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 innovation program (grant PROCONTRA-885666).
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2 Preliminaries

Notation. We use τ to denote the security parameter. Given a finite set S,
we write x ←$ S to indicate that x is sampled uniformly at random from S.
Throughout the paper we assume function KDF : {0, 1}τ × {0, 1}∗ → {0, 1}τ
which is a PRF.

We recall the computational assumptions that we use in this paper:

Definition 1. Let (G, ·) be a cyclic group of prime order m with generator g.
The Decisional Diffie-Hellman problem (DDH) on G is to distinguish the
following two distributions: {(g, ga, gb, gc) : a, b, c ←$ Zm} and
{(g, ga, gb, gab) : a, b←$ Zm}. The DDH assumption is that any PPT adversary
A can only solve this problem with negligible advantage negl(τ).

Definition 2. Let (G, ·) be a cyclic group of prime order m with generator g.
The Gap One-More Diffie Hellman problem (GapOMDH) on G is that, given
a vector (y∗, h1, . . . , hq) where hj ←$ G, and y∗ = gs where s ←$ Zm, along
with access to oracle OMDH(a) which returns as and oracle DDH(y, h, u) which
returns 1 if and only if (g, y, h, u) is a Diffie-Hellman tuple, A wins if it outputs
a set W of pairs (j, hs

j) where |W | is strictly greater than the number of (unique)
queries A made to the OMDH oracle. The GapOMDH assumption is that any
PPT adversary A can win this game with only negligible probability negl(τ).

For groups with bilinear maps, we denote G1, G2, and GT as cyclic groups
of prime order m with generators g1, g2, and gT respectively, and define e :
G1 × G2 → GT as a bilinear pairing. Recall the definition of a bilinear pairing:
e(gα1 , g

β
2 ) = gαβT for all α, β ∈ Zm.

Definition 3. The Gap One-More Bilinear Diffie Hellman problem
(GapOMBDH) on G1, G2, and GT is that, given a vector
(y∗, h1, . . . , hq, h

′
1, . . . , h

′
q) where hj ←$ G1 and h′j′ ←$ G2, and y∗ = gsT where

s←$ Zm, along with access to oracle OMDH(a) which returns as given a ∈ GT ,
and oracle DDH(y, h, u) which returns 1 if and only if (y, h, u) is a
Diffie-Hellman tuple in GT , A wins if it outputs a set W of triples
(j, j′, e(hj , h

′
j′)

s) where |W | is strictly greater than the number of (unique)
queries to the OMDH oracle. The GapOMBDH assumption is that any PPT
adversary A can win this game with only negligible probability negl(τ).

Note that [28] uses OMBDH assumption instead of GapOMBDH we
assume. Specifically, their reductions do not require access to a DDH oracle,
because they argue security under under a game-based definition, while [8] and
our protocol use simulation-based proofs, where the reduction uses the DDH
oracle to maintain consistency of concurrent sessions.

Secure Channel. We assume secure channels, i.e. secure and authenticated
communication, modeled as a UC functionality Fchannel in Figure 1. We stress
that all our protocols use secure channels only in initialization.
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Secure Channel

1. On (channel.send, sid ,R,m) from S ∈ P:
– save (channel.message, sid , S,R,m) marked pending
– send (channel.send, sid , S,R, |m|) to A∗

2. On (channel.deliver, sid , S,R) from A∗ where ∃ record
(channel.message, sid , S,R,m) marked pending:
– mark the record completed
– send (channel.deliver, sid , S,m) to R

Fig. 1. Fchannel: secure and authenticated communication functionality

Universal composability and related notation. In this paper we use the
Universal Composability (UC) framework [20] to construct security proofs. UC
follows the simulation-based paradigm where the security of a protocol is
modeled by a machine called the ideal functionality F , which interacts with a
set of “dummy” parties and an ideal world adversary SIM, and does all
computation in the ideal world. We say that protocol π securely realizes F if
for any PPT A, there is a simulator SIM s.t. for all environments Z, the
difference between the real-world view, i.e. an interaction of Z and A with
parties executing π, and the ideal-world view, i.e. an interaction of Z and A
with SIM and F , is negligible in τ .

In the descriptions of ideal functionalities, e.g. Figure 2, Figure 4, and others,
we specify that each functionality interacts with a set of honest parties P and an
adversary A∗, and we use notation P∗ = P ∪ {A∗}. Each functionality assumes
set Corr includes all initially corrupted parties, and by convention A∗ ∈ Corr.
In our functionalities, protocols, and simulators, we assume strings sid (or sidA,
sidT) have the form sid = (. . . ,S) where S = (S1, . . . ,Sn) is a sequence in P,
and Ssid denotes the list S specified by string sid .

3 Threshold Oblivious PRF

An oblivious pseudorandom function (OPRF) is a protocol with two parties, a
server and an evaluator. The server holds the key to a pseudorandom function,
and the evaluator holds an input to be evaluated by that pseudorandom function.
The OPRF protocol allows the evaluator to evaluate the function obliviously (i.e.
without revealing the input to the server) without learning the server’s secret
key. Since the PRF key is kept secret, evaluators can only compute the function
with the online participation of the server, who could, for example, enforce a
rate-limiting policy on evaluators.

3.1 Threshold Oblivious PRF Model

Threshold OPRF (tOPRF) is an extension of OPRF introduced by [41] which
distributes server across n parties, s.t. any t + 1 of them must participate for
an evaluation to succeed. As explained in detail in Section 1.1, the tOPRF ideal
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functionality of [41] has a subtle flaw that seems to make it unrealizable. In
Figure 2 we show FtOPRF, our modification of the UC tOPRF functionality for
the (t, n) threshold. Our functionality FtOPRF is a modification of the tOPRF
functionality in [41] (see Fig. 1 therein), and it involves several refinements,
including the critical fix to the flaw mentioned above. Below we explain the
workings of our functionality, including the ways in which it differs from [41].

The initialization phase. The initialization is done between an initializer P0

and a group of n servers Ssid . At the end of the process, each server S ∈ Ssid is
supposed to record a key share, to be used later in evaluation. In the
functionality, this is modeled as having a record toprf.sinit for each server S,
which is marked either active or compr; the latter denotes the adversary
knowing S’s key share, which happens if S is compromised, or P0 is the
adversary (in which case the adversary can compute all key shares on its own).

Additionally, P0 can specify a vector of PRF inputs (x1, ..., xk), and obtain
their PRF outputs (Fsid(x1), ..., Fsid(xk)) during initialization. Though
somewhat atypical, this “eval-during-init” feature is natural in our
initialization setting. Since P0 is responsible for creating all key shares and
sending them to the servers, there is no reason why P0 shouldn’t be able to
locally evaluate the PRF during initialization. Looking ahead, our
tOPRF-based atPAKE construction uses this feature to simplify its
initialization phase; specifically, it eliminates the need for the client to perform
a second round of communication with the tOPRF servers after initializing
them.

The evaluation phase. In this phase, a user U begins its evaluation by
specifying a PRF input x. Any server whose record is active, as well as any
corrupted server (whose record is compr), may choose to participate; each
server S is associated with a ticket counter tx[sid , ssidS, i] (where S is the i-th
server in Ssid), which increments if S participates (the mechanics of ssidS will
be explained below). Finally, the ideal adversary specifies an index sid∗ which
may or may not be the intended index for evaluation sid , together with a set of
t + 1 servers C which may or may not be a subset of the intended set of n
servers for evaluation Ssid . (Giving the adversary the ability to directly specify
the evaluation set C fixes the flaw in the tOPRF functionality of [41].) After
that, U receives Fsid∗(x) provided that none of the servers in C has ticket
counter 0 (w.r.t. index sid∗), and all those ticket counters decrement. This
models a man-in-the-middle adversary that might impersonate t + 1 servers
and let the user evaluate on a “wrong” PRF key.

As a specific case, the ideal adversary can make the user evaluate an
unintended function with index sid∗ ̸= sid : the adversary can act as P0 and
init tOPRF sid∗ with itself as all n servers; then it can print tickets for servers
corresponding to sid∗ at will, evaluate function Fsid∗ locally on its own inputs,
and use index sid∗ to respond dishonestly to honest evaluators who are
intending to evaluate a different function. This all simply represents the real
adversary’s ability to locally sample PRFs. To enhance readability, we provide
the adversary with a sndrcomplete∗ interface that is simply a shortcut for the
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Notation
Initially tx[sid , ssidS, i] := 0 and Fsid(x) is undefined for all sid ,ssidS, i, x. When
Fsid(x) is first referenced FtOPRF assigns Fsid(x)←$ {0, 1}l.
Initialization

1. On (toprf.init, sid , x1, . . . , xk) from P0 ∈ P∗, if sid is new (abort otherwise):
– send (toprf.init, sid ,P0) to A∗

– send (toprf.initeval, sid , Fsid(x1), . . . , Fsid(xk)) to P0

– save (toprf.init, sid ,P0) and mark it tampered if P0 ∈ Corr
2. On (toprf.sinit, sid , i,P0) from S where S = Ssid [i] or (S = A∗ and Ssid [i] ∈

Corr), save record (toprf.sinit, sid , i,P0) marked inactive
3. On (toprf.fininit, sid , i) from A∗ where ∃ record urec = (toprf.init, sid ,P0) and

record srec = (toprf.sinit, sid , i,P0) marked inactive:
– send (toprf.sinit, sid , i) to Ssid [i]
– if urec is tampered then mark srec tampered
– else if Ssid [i] ∈ Corr then mark srec compr
– else (i.e. urec is not tampered and Ssid [i] /∈ Corr) mark srec active

Corruption (in the static corruption model disallowed after any other queries)

4. On (toprf.corrupt,P) from A∗ (with permission from Z):
– set Corr := Corr ∪ {P}
– mark every active record (toprf.sinit, sid , i,P0) compr where P = Ssid [i]

Evaluation

5. On (toprf.eval, sid , ssidU, x) from U ∈ P∗, if this is the first call from U for sid
and ssidU:
– send (toprf.eval, sid , ssidU,U) to A∗

– save (toprf.eval, sid , ssidU,U, x) marked fresh
6. On (toprf.sndrcomplete, sid , i, ssidS) from S where ∃ record srec =

(toprf.sinit, sid , i,P0) not marked inactive and (S = Ssid [i] or (S = A∗ and
srec is marked compr or tampered)):
– send (toprf.sndrcomplete, sid , i, ssidS) to A∗

– set tx[sid , ssidS, i]++
6∗. On (toprf.sndrcomplete∗, sid , i, ssidS) from A∗ where not ∃ record

(toprf.init, sid ,P0), set tx[sid , ssidS, i]++
7. On (toprf.rcvcomplete, sid , ssidU, sid

∗, ssid∗
S ,C) from A∗ where |C| = t+1 and

∃ record (toprf.eval, sid , ssidU,U, x) marked fresh:
– if ∃j ∈ C such that tx[sid∗, ssid∗

S , j] = 0, then abort
– otherwise mark the record completed, set tx[sid∗, ssid∗

S , j]−− for all j ∈
C, and send (toprf.eval, sid , ssidU, Fsid∗(x)) to U

Fig. 2. FtOPRF: threshold OPRF functionality, parameterized by threshold t, number
of servers n, and output length l.
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above series of actions. This shortcut is never actually needed by the adversary,
and indeed the simulator for our tOPRF realization does not make use of it.

The “ticketing mechanism” — inherited from various prior works on
(t)OPRF [39], [41] — ensures that in order to compute the PRF value, at least
t+1 servers must participate in the evaluation process. In our functionality the
action of printing tickets comes from the environment, which models the fact
that servers can choose when they wish to participate in an evaluation. In
contrast, [41, Fig. 1] models ticket-printing as an adversarial action, effectively
reducing tOPRF servers to powerless entities that blindly allow tOPRF
evaluations whenever they are asked to.

Our model strengthens the ticketing mechanism by further associating each
ticket with the server subsession identifier ssidS used to print it. To complete
an evaluation, the adversary specifies not only the tOPRF instance sid∗ and
server set C to use, but also the particular ssid∗S whose tickets to use up. A
successful evaluation requires not only that t + 1 servers agree to participate,
but that they agree to participate using the same ssidS. These ssidS values
might, therefore, be used to bind tickets to a particular context (for example,
an evaluation timestamp). If this feature is unneeded, the ssidS field can simply
be left blank by servers, in which case it will play no role in ticketing.

Server corruption. Finally, the ideal adversary may corrupt a server P and
steal its key share. This is modeled by marking any active toprf.sinit record
for P compr. Note that the only consequence of corrupting a server is that the
adversary can now print tickets for it at will.

3.2 3HashTDH

Figure 3 shows our 3HashTDH protocol Π3HashTDH. Protocol Π3HashTDH relies
on secure authenticated channels during initialization, to allow for secure
communication between the initializer party and the n servers participating in
the scheme. In Figure 3 this is modeled via a secure channel functionality
Fchannel shown in Figure 1.

3HashTDH uses a prime-order group G of size m and three hash functions,
H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → G, and H3 : {0, 1}∗ → {0, 1}l. The PRF
it defined as Fk(x) = H3(x,H1(x)

k), exactly the same as the 2HashDH OPRF
of [39]. 2HashDH’s (single-server) oblivious evaluation protocol for this PRF is
the foundation of our protocol. In 2HashDH, the evaluator first picks r ←$ Zm

and sends the blinded input a := H1(x)
r to the server. The server exponentiates

using its secret key and sends b := ak back to the evaluator. The evaluator
de-blinds and computes the final hash, outputting H3(x, b

1/r).
The 2HashTDH protocol of [41] extends 2HashDH to the threshold,

multi-server setting. Each server Si now holds a (Shamir) secret share ki of the
PRF key k. The evaluator sends a := H1(x)

r to t + 1 servers, and they each
respond with bi := aki . To combine these responses, the evaluator uses
polynomial interpolation in the exponent to compute b :=

∏
i b

λi
i = ak, where

the λi’s are Lagrange interpolation coefficients. Finally the evaluator can
compute the final output H3(x, b

1/r) as before.
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Initialization

1. On input (toprf.init, sid , x1, ..., xk), initializer P0 does:
– pick α0, ..., αt ←$ Zm and define polynomial k(x) := α0 +α1x+ ...+αtx

t

– pick β1, ..., βt ←$ Zm and define polynomial z(x) := β1x+β2x
2+ ...+βtx

t

– for each i ∈ [n], send (channel.send, [sid ||i],Ssid [i], (i, k(i), z(i))) to Fchannel,
– output (toprf.initeval, sid , y1, ..., yk) s.t. yj := H3(xj , H1(xj)

α0) for all
j∈[k]

2. On input (toprf.sinit, sid , i,P0), server Ssid [i] does:
– await (channel.deliver, [sid ||i],P0, (i, ki, zi)) from Fchannel;
– then save record (toprf.share, sid , i, ki, zi)
– output (toprf.fininit, sid , i)

Evaluation

3. On input (toprf.eval, sid , ssidU, x), evaluator U does:
– pick r ←$ Zm and compute a := H1(x)

r

– for each i ∈ [n], send (sid , i, ssidU, a) to Ssid [i]
– await responses (sid , i, ssidU, bi) from Ssid [i] for all i ∈ C, for any set

C ⊆ [n] of size t+ 1;
– then compute b :=

∏
i∈C bλi

i where λi is the Lagrange interpolation
coefficient for index i and index set C

– output (toprf.eval, ssidU, H3(x, b
1/r))

4. On input (toprf.sndrcomplete, sid , i, ssidS), server Ssid [i] does:
– retrieve record (toprf.share, sid , i, ki, zi) (abort if not found)
– await (sid , i, ssidU, a) from any U (if it hasn’t already been received);
– then compute bi := aki ·H2(ssidS, a)

zi

– send response (sid , i, ssidU, bi) to U

Fig. 3. Protocol Π3HashTDH which realizes FtOPRF in the Fchannel-hybrid world.

As explained in Section 1.1, though, this 2HashTDH protocol does not
seem to realize the fixed FtOPRF functionality (nor does it realize the non-fixed
functionality, which it seems no protocol can realize). To fully simulate the
environment’s real-world view, the ideal-world simulator must be able to
observe exactly which servers the man-in-the-middle adversary is using for each
evaluation. If the evaluator honestly sends the same a = H1(x)

r to all servers,
then the simulator can indeed make this observation. However, in 2HashTDH,
there is nothing preventing a dishonest evaluator from picking t + 1 different
blinding exponents ri and sending information-theoretically random messages
ai := H1(x)

ri to each server as part of a single evaluation on x.

With 3HashTDH, we aim to fill this simulatability gap by forcing dishonest
evaluators to use a single a with all servers for each evaluation, just as honest
evaluators do. 3HashTDH accomplishes this by having the servers apply an a-
specific blinding factor to their responses; the evaluator can only remove this
blinding factor by combining t+1 server responses computed on the same a. In
particular, the servers in 3HashTDH hold a Shamir secret sharing (z1, ..., zn) of
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zero (in addition to their sharing of the PRF key k). Given an evaluator query a,
server i responds with bi := aki ·(H2(a))

zi . The evaluator combines the responses
as b :=

∏
i b

λi
i =

∏
i a

kiλi ·
∏

i(H2(a))
ziλi , the second part of which interpolates

to (H2(a))
0 = 1 and disappears. Meanwhile, an adversary who sees only t or less

responses for the same a cannot distinguish them from random group elements
(under the DDH assumption). Thus, even dishonest evaluators are forced to send
the same a to all servers, and simulation succeeds.

As a further feature, we have each server include its subsession identifier
ssidS alongside a in the H2 input. Then, only server responses corresponding
to the same (ssidS, a) can be combined. Servers can use this ssidS field to bind
evaluations to some context-specific data, which t + 1 servers must agree upon
in order to have a successful evaluation.

In a concurrent work, Das and Ren [25] have used blinding factors formed in
the same way as ours, though for a different purpose: achieving adaptive security
for a threshold BLS signature scheme. In their case, the message being signed
acts as the “binding data” used as input to the random oracle. Both of our
works are preceded by Canetti and Goldwasser [21], who employed a similar
blinding factor in a CCA-secure threshold encryption scheme. They also used
a Shamir sharing of zero in the exponent, but with a fixed base rather than a
random oracle output. Therefore, their scheme requires a fresh zero sharing for
each execution.

3.3 Security Analysis of 3HashTDH

If corruptions are static, then the 3HashTDH protocol in Figure 3 is secure in
the random oracle model under the Gap One-More Diffie Hellman (GapOMDH)
and Decisional Diffie Hellman (DDH) assumptions.9

Theorem 1. Protocol 3HashTDH realizes functionality FtOPRF with parameters
t and n in the Fchannel-hybrid model, assuming static corruptions, hash functions
H1, H2, and H3 modeled as random oracles, and the GapOMDH and DDH
assumptions on group G.

Specifically, for any efficient adversary A against protocol 3HashTDH, there
exists a simulator SIM such that no efficient environment Z can distinguish
the view of A interacting with the real 3HashTDH protocol and the view of SIM
interacting with the ideal functionality FtOPRF with advantage better than q2I/m+

qI ·(t·AdvDDH
Q +AdvGapOMDH

R )·(t+1) where qI is the number of tOPRF instances,

m = |G|, and AdvGapOMDH
R and AdvDDH

Q are bounds on the probability that any
efficient algorithm violates the GapOMDH and DDH assumptions, respectively.

9 Though somewhat unusual, the combination of the GapOMDH and DDH
assumptions on group G is not theoretically problematic. It has been proven that
the DDH assumption [12] and the GapOMDH assumption [41] each hold for generic
groups. Therefore, our security statement is, at a minimum, sound in the Generic
Group Model. We also note that there are precedents for making a Gap assumption
alongside the DDH assumption on the same group, e.g. [45].
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If corruptions are adaptive, then the 3HashTDH protocol remains secure under
the additional assumption that

(
n
t′

)
is a polynomial function of the security

parameter for all 0 ≤ t′ ≤ t.

Theorem 2. In the case of adaptive corruptions, the statement from Theorem
1 still holds under the additional assumption that

(
n
t′

)
is a polynomial function

of the security parameter for all 0 ≤ t′ ≤ t.
Specifically, no efficient adversary A against 3HashTDH has distinguishing

advantage better than q2I/m+ qI · (t ·AdvDDH
Q +AdvGapOMDH

R ) ·
∑t

t′=0

(
n
t′

)
.

Proof of Theorems 1 and 2 is deferred to Appendix B. We provide a high-level
sketch here.

The essential steps of the proof involve the blinding factorsH2(ssidS, a)
zi that

are applied to the server responses. We construct a GapOMDH reduction that
simulates the real 3HashTDH behavior, but picks random key shares to send to
the adversary for the corrupted servers (denote the number of corrupted servers
as t′). For the uncorrupted servers, the reduction responds to evaluation requests
with uniformly random group elements until the same (ssidS, a) is queried to
t− t′ + 1 servers. At that point, the reduction queries the OMDH oracle to find
ak, where k is the OMDH secret (here it acts as the PRF key). The reduction
then knows enough values to perform interpolation in the exponent between ak,
the t′ key shares attributed to the corrupted servers, and the randomly chosen
first t−t′ responses. Thus, the (t−t′+1)th response (and any future responses) to
(ssidS, a) are correctly formed from the point of view of an adversary who wishes
to interpolate ak. The reduction embeds the OMDH challenge group elements
in the H1 responses, and uses the H3 random oracle queries as an opportunity
to intercept completed evaluations. The “Gap” DDH oracle is used to verify
whether or not an H3 query represents a correct evaluation. If the adversary
ever exceeds their FtOPRF-allowed number of evaluations, then the reduction
exceeds its OMDH-allowed number of k exponentiations and thereby wins the
GapOMDH game.

In this GapOMDH reduction, the first t − t′ uncorrupted server evaluation
requests for any (ssidS, a) return random group elements, rather than
aki · H2(ssidS, a)

zi for consistent (secret) (ki, zi) as in the real world. This is
the only difference between the adversary’s views in the reduction and in the
real world. We use a series of hybrids to prove that it is not detectable.

Our proof first picks any arbitrary set of t−t′ uncorrupted servers. In a series
of incremental hybrids, we replace the blinding factor H2(ssidS, a)

zi at each of
these servers with a randomly chosen group element (for each (ssidS, a)), one
by one. For the uncorrupted servers outside of this set, the blinding factors are
computed by interpolation in the exponent between the t′ key shares attributed
to the corrupted servers, the t−t′ randomly chosen blinding factors, and the fact
that {zi} are a sharing of 0. By a one-time pad argument, a uniformly random
blinding factor creates a uniformly random overall server response. Therefore,
once all blinding factors are randomized in this way, the adversary’s view is
identical to that in the GapOMDH reduction. At each hybrid, we use a DDH
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reduction to prove that replacing one more server’s blinding factors with random
values is not detectable by the adversary. In sum, then, the adversary’s behavior
in the GapOMDH reduction must differ only negligibly from the real world.

The factor of
∑t

t′=0

(
n
t′

)
that appears in the adaptive-case security bound

is a consequence of the GapOMDH reduction simply guessing (at the start of
execution) which t′ servers the adversary will eventually corrupt. As long as
n and t are small, this guess will succeed with non-negligible probability. It is
not sufficient for the reduction to guess a superset (e.g. a t-size superset) of
the servers that will eventually be corrupted. The reduction relies on the fact
that adversarial computation of a PRF output without having queried t− t′+1
uncorrupted servers always corresponds to a win in the GapOMDH game. This
is not true unless the reduction’s guess set is exactly the same as the actual
corrupted set at the moment of this adversarial computation.

3.4 Extension to Threshold Partially Oblivious PRF

Partially Oblivious Pseudorandom Function (POPRF) [28] is a generalization of
OPRF where the argument to the PRF is split into two parts, xpriv and xpub.
Function evaluation is only partially oblivious because the xpub part of the input
is visible to both parties, while xpriv is visible only to the evaluator and is hidden
from the server. Note that if POPRF Fk(xpriv, xpub) is evaluated s.t. xpub is
always ⊥ (or any other constant), then POPRF behaves exactly like a standard
OPRF, hence POPRF can be seen as a generalization of OPRF.

The techniques we use above to implement a UC threshold OPRF (tOPRF)
extend to a UC threshold POPRF (tPOPRF). In Appendix G we define tPOPRF
via the UC functionality FtPOPRF, a generalization of our FtOPRF functionality in
Figure 2, and we show that this functionality is realized by protocol P3HashTDH,
which combines the blinding technique used in our 3HashTDH tOPRF protocol
with the natural threshold implementation of the pairing-based (single-server)
POPRF protocol of Pythia [28]. Protocol P3HashTDH uses only two flows, just
like 3HashTDH, and it implements the PRF of Pythia, i.e. Fk(xpriv, xpub) =
H3(xpriv, xpub, e(H1(xpriv), H

′
1(xpub))

k).
We note that [42] and [64] showed alternative POPRF constructions that

do not rely on pairings. Both of these constructions should have efficient
threshold implementations which realize functionality FtPOPRF without bilinear
maps. The threshold version of the POPRF of [64] would require additional
rounds of communication, while POPRF of [42] is a generic construction from
any OPRF, and its threshold implementation can be instantiated using our
2-flows tOPRF protocol 3HashTDH. However, the disadvantage of the latter
tPOPRF, just like the POPRF of [42], is that it is efficient only for small
groups of servers and it offers no verifiability.

4 Augmented Threshold PAKE Model

Figures 4, 5, and 6 are FatPAKE, the UC functionality for augmented threshold
PAKE (atPAKE). As explained in the introduction, this functionality is flexible
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in that it models target servers and auxiliary servers separately. The target
servers are the entities that ultimately wish to establish keys with password-
authenticated users. The auxiliary servers distribute the secret information in
such a way that it requires the participation of t+1 of them for a user to establish
a session with a target server. If this separation of responsibilities is undesired,
atPAKE can simply be instantiated such that the auxiliary and target server
lists partially or wholly overlap.

The shadowed text in FatPAKE corresponds to relaxations introduced by [44]
to the (non-threshold) FsaPAKE model (included for reference in Appendix D).
The OPAQUE protocol [44] realizes FsaPAKE only with these slight relaxations,
but, as argued in [44], the relaxations do not reduce the functionality’s
practical security properties in any significant way. Since our FatPAKE is a
threshold generalization of [44]’s FsaPAKE, we inherit the same relaxations.

Initialization. A user U may initialize with a group of auxiliary servers and a
group of target servers on password pw, represented by sidA and sidT

respectively, using a userinit call to the functionality. Similarly, a server
(auxiliary or target) may initialize with a user U using an auxinit or targetinit
call. The (ideal) adversary finishes initialization for an auxiliary server SsidA

[i]
by sending finishauxiliaryinit, which establishes the server’s file record; the file
record is compr (i.e., the adversary knows its content) if the server is corrupt.
Similarly, a finishtargetinit call finishes initialization for a target server SsidT

[j]
and establishes a corresponding record, which is compr if that server is
corrupt. However, a target server’s record might additionally be tampered if
the user it communicates with is corrupt, and in this case we allow the
adversary to change the password in the target server’s file from pw to some
pw∗ of the adversary’s choice; the adversary can also overwrite the auxiliary
server instance sidA with which the target server’s file is associated. As will be
apparent in the other sections of the functionality, this tampered case models
the intuitive notion that many atPAKE security properties are lost if the
original initializing user is dishonest.

Corruption, file compromise, and offline password tests. The adversary
may corrupt any party (by sending corrupt) or compromise any server and steal
its file without corrupting it (by sending stealauxiliaryfile or stealtargetfile); either
way, the corresponding server’s file will become compr.

Obtaining a target server’s file allows the adversary to run an offline
dictionary attack on it, which is modeled by the offlinetestpwd call in which the
adversary specifies a password guess pw∗. Though offline with regard to the
target server, the adversary still requires the participation of t + 1 auxiliary
servers to perform this attack (some or all of them may be compromised, in
which case the adversary can also emulate their participation offline via
auxsession, explained below). In each offlinetestpwd call, the adversary can
specify an auxiliary server i with which it wishes to evaluate pw∗. Only once
t + 1 auxiliary servers have participated in the evaluation of pw∗ can the
adversary test the password guess pw∗ against the compromised target server
file and learn whether or not it is correct.
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Notation
Integer t is a threshold parameter.
Set tx[x] := 0 and TS[x] := {} for all x.

Initialization Phase

1. On (userinit, sidA, sidT, pw) from U ∈ P:
– send (userinit,U, sidA, sidT) to A∗

– save (userinit,U, sidA, sidT, pw) and set cflag[sidA] := uncompromised

– ignore future userinit calls for same sidA or sidT

2. On (auxinit, sidA, i,U) from S = SsidA [i]:
– send (auxinit, sidA, i,U) to A∗

– save (auxinit, sidA, i,U) marked pending
– ignore future auxinit calls for same (sidA, i)

3. On (targetinit, sidA, sidT, j,U) from T = SsidT [j]:
– send (targetinit, sidA, sidT, j,U) to A∗

– save (targetinit, sidA, sidT, j,U) marked pending
– ignore future targetinit calls for same sidA or sidT and j

4. On (finishauxiliaryinit, sidA, i) from A∗:
– find (userinit, [U], sidA, [sidT, pw]) (abort if missing)
– find (auxinit, sidA, i,U) marked pending (abort if missing) and change its

mark to completed
– save (auxiliaryfile, sidA, i), and if SsidA [i] ∈ Corr then mark it compr
– output (finishauxiliaryinit, sidA) to S = SsidA [i]

5. On (finishtargetinit, sidA, sidT, j, sid
∗
A, pw

∗) from A∗:
– find rec=(targetinit,sidA,sidT,j,[U]) marked pending (abort if missing)
– if U /∈ Corr then find (userinit,U, sidA, sidT, [pw]) (abort if missing) and

save (targetfile, sidT, j, sidA, pw,untampered)
– otherwise (i.e. if U ∈ Corr) save (targetfile, sidT, j, sid

∗
A, pw

∗,tampered)
– output (finishtargetinit, sidA, sidT) to T = SsidT [j], mark rec completed
– if SsidT [j] ∈ Corr then mark the targetfile compr

Fig. 4. FatPAKE: atPAKE functionality (1): Initialization Phase.

Authentication. In the authentication phase, a user U′ may start an online
session with a target server T = SsidT

[j] using a usersession call (which specifies a
password pw′); this call also implicitly defines the auxiliary servers by specifying
sidA. This establishes a session record for U′ marked prelim. Similarly, a target
server T may start a session with a user U′ using a targetsession call; since
the target server’s password is included in its file record, it is not explicitly
specified in the targetsession message. This establishes a session record for T
marked fresh. Next, an auxiliary server Si = SsidA

[i] may choose to participate
via a auxsession call, which also increments its ticket count tx[sidA, i, ssidA]. If
the auxiliary server’s file is compr, then the adversary can call auxsession on
its behalf and thereby print tickets for the server at will. In order to progress a
user session from prelim to fresh, the adversary must use an auxproceed call
to connect the user with a set C of t+ 1 auxiliary servers running on identifier
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Party Corruption, File Compromise, Offline Password Tests

6. On (corrupt,P) from A∗ (permitted by Z), set Corr := Corr ∪ {P}
– if ∃ (auxiliaryfile, sidA, i) for SsidA [i] = P mark it compr
– if ∃ (targetfile, sidT, j, sidA, [pw, tflag]) for SsidT [j] = P mark it compr

7. On (stealauxiliaryfile, sidA, i) from A∗ (permitted by Z):
– if ∃ (auxiliaryfile, sidA, i) mark it compr

8. On (stealtargetfile, sidT, j) from A∗ (permitted by Z):
– if ∃ (targetfile, sidT, j, [sidA, pw, tflag]) mark it compr

9. On (offlinetestpwd, sidA, i, ssidA, sidT, j, pw
∗) from A∗:

– if tx[sidA, i, ssidA] > 0 add i to TS[sidA, pw
∗, ssidA], set tx[sidA, i, ssidA]– –

– retrieve rec = (targetfile, sidT, j, sidA, [pw, tflag]) (abort if not found)
– if |TS[sidA, pw

∗, ssidA]| ≥ t+1 and rec is marked compr then return

“correct guess” to A∗ and set cflag[sidA] := compr if pw∗ = pw, else

return “wrong guess” to A∗

Authentication Phase (I): Session Initialization, Passive Transmission

10. On (usersession, sidA, sidT, j, ssid , pw
′) from U′ ∈ P:

– send (usersession,U′, sidA, sidT, j, ssid) to A∗

– save (session,U′,SsidT [j], sidA, sidT, j, ssid , pw
′) marked prelim

– ignore future usersession calls for same ssid

11. On (auxsession, sidA, i, ssidA) from S = SsidA [i] or A
∗:

– retrieve (auxiliaryfile, sidA, i) (abort if record not found)
– if sender is A∗ then abort unless the retrieved record is marked compr
– send (auxsession, sidA, i, ssidA) to A∗

– set tx[sidA, i, ssidA]++
12. On (targetsession, sidT, j,U

′, ssid) from S = SsidT [j]:
– retrieve (targetfile, sidT, j, [sidA, pw, tflag]) (abort if record not found)
– send (targetsession, sidT, j,U

′, ssid) to A∗

– save (session, S,U′, sidA, sidT, j, ssid , pw) marked fresh
– ignore future targetsession calls for same ssid

13. On (auxproceed,U′, ssid , sid∗
A, ssidA,C) s.t. |C| = t+ 1 from A∗:

– retrieve rec = (session,U′, S, [sidA, sidT, j], ssid , [pw
′]) marked prelim

(abort if record not found)
– reset field sidA in record rec to sid∗

A

– abort if ∃i∈C tx[sidA, i, ssidA] = 0, else ∀i∈C set tx[sidA, i, ssidA]– –
– change rec’s mark to fresh

14. On (testabort,U′, sidT, j, ssid) from A∗:
– retrieve rec = (session,U′,SsidT [j], [sid

′
A], sidT, j, ssid , [pw

′]) marked fresh
and (targetfile, sidT, j, [sidA, pw, tflag]) (abort if either not found)

– if (sid ′
A, pw

′) = (sidA, pw) send “success” toA∗; else mark rec completed,
send “fail” to A∗, and output (abort, ssid) to U′

Fig. 5. FatPAKE: atPAKE functionality (2): Compromises, Authentication (I).
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Authentication Phase (II): Active Attacks, Session Termination

15. On (auxactive,U′, ssid) from A∗:
– retrieve (session,U′, S, [sidA, sidT, j], ssid , [pw

′]) marked prelim and mark
it counterfeit (abort if record not found)

16. On (interrupt, sidT, j, ssid) from A∗:

– retrieve (session,SsidT [j], [U
′, sidA], sidT, j, ssid , [pw]) marked fresh, mark

it interrupted and set dPT[ssid ] := 1.

17. On (testpwd,P, ssid , pw∗) from A∗:
– retrieve rec = (session,P, [P′, sidA, sidT, j], ssid , [pw]) (abort if not found)

– if dPT[ssid ] = 1, then set dPT[ssid ] := 0; else if rec is not marked fresh

or counterfeit, abort
– if pw∗ = pw and any of the following conditions hold:

(a) ∃ssidA s.t. |TS[sidA, pw
∗, ssidA]| ≥ t+1

(b) or rec marked counterfeit
(c) or P = SsidT [j] and ∃ record (targetfile, sidT, j, sidA, pw,tampered)
then mark rec as compr, send “correct guess” to A∗,

and (if P = SsidT [j]) set cflag[sidA] := compr ; else mark rec as

interrupted and send “wrong guess” to A∗

18. On (impersonate, sidT, j, ssid) from A∗:
– retrieve rec = (session,U′,SsidT [j], [sidA], sidT, j, ssid , [pw]) marked fresh

(abort if not found)
– if ∃ record (targetfile, sidT, j, sidA, pw, [tflag

′]) marked compr then mark
rec as compr and send “correct guess” to A∗; else mark rec as
interrupted and send “wrong guess” to A∗

19. On (newkey,P, ssid ,K∗) from A∗:
– retrieve rec = (session,P, [P′, sidA, sidT, j], ssid , [pw]) not marked prelim

or completed (abort if record not found) and do:
• if rec is marked compr, then set K ← K∗

• if P = SsidT [j], rec is marked interrupted, and (cflag[sidA] = compr

or ∃ record (targetfile, sidT, j, sidA, pw,tampered)), then set K ← K∗

• if rec is fresh and ∃ rec′ = (session,P′,P, sidA, sidT, j, ssid , pw) s.t.
P′ received (newkey, ssid ,K′) when rec′ was fresh, then set K ← K′

• else pick K ←$ {0, 1}τ
– finally, mark rec as completed, output (newkey, ssid ,K) to P

Fig. 6. FatPAKE: atPAKE functionality (3): Authentication (II).
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sidA. Those auxiliary servers must have all agreed to participate in an evaluation,
which is tracked via the ticket mechanism.

Once both U′ and T sessions are fresh, the adversary lets a party output a
session key using the newkey call. If both sides use the same pw and the same
subsession identifier ssid , then they will receive the same key. Otherwise, they
will output independently random keys for the session. Figure 7 diagrams the
state transitions that user and server session records can move through (including
those corresponding to attack scenarios).

prelim

fresh

counterfeit compr

interrupted

completed

(1)

(2)
(3)

(4)

(5)

(6)
(8)

(8)

(7)

(8)

Fig. 7. FatPAKE session record state diagram. (1) is targetsession; (2) is usersession; (3) is
auxproceed; (4) is auxactive; (5) is interrupt (only for server sessions); (6) is impersonate
(only for fresh user sessions) or testpwd; (7) is testabort (only for user sessions) or
newkey; (8) is newkey.

Passive attacks. The adversary has two “passive” attack avenues that
correspond to simply transmitting messages between parties. With auxproceed,
the adversary might choose to connect the user with a different auxiliary
session sid∗A than expected; in that case the user will not be able to successfully
authenticate to the intended target server (unless that server was dishonestly
initialized with the same spurious sid∗A). With the testabort call, the adversary
can connect a fresh user session to any target server and observe whether or
not they successfully authenticate.

Active attacks. For active session attacks, if the user U′’s session record is
prelim (i.e. it has not completed its communication with the auxiliary
servers), the adversary can run the auxiliary servers’ algorithms on its own and
communicate with U′. In this situation, modeled by the auxactive call, the
adversary effectively controls all auxiliary servers that communicate with U′, so
we mark U′’s session record counterfeit. Such a session can never
successfully authenticate to a target server, but it is vulnerable to an online
password-guessing attack.
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Using testpwd, the adversary can perform an active session attack with some
password guess pw∗. There are three possible cases:

(a) the adversary has evaluated pw∗ with t + 1 auxiliary servers (using
offlinetestpwd);

(b) the adversary is attacking a user session that is counterfeit;
(c) the adversary is attacking a server that was dishonestly initialized (i.e. its

file is tampered).

If the password guess is successful, then the attacked session is marked compr.
Otherwise, it is marked interrupted, indicating that it is no longer possible for
the session to successfully complete. In either case, the adversary learns whether
or not the password guess was correct. After stealing a target server’s file, the
adversary can also compromise user sessions meant to connect with that server
via the impersonate call. If the user’s password does not match the one in the
saved file, then this impersonate attack will fail and the user’s session will become
interrupted.

Once a session is compr, the adversary has done a successful attack, so
the adversary is able to choose that session’s output key in newkey. If both the
session and its countersession are fresh, this models an unattacked pair, so the
two parties output the same random key (if their passwords and sidAs match). In
all other cases (i.e. counterfeit and interrupted), the functionality samples
an independent random key for the session.

Comparison to game-based tPAKE. As a sanity check, we verify that
FatPAKE is at least as strong as the game-based tPAKE definition of
MacKenzie, Shrimpton, and Jakobsson [53]. Appendix A contains a proof that
any protocol realizing FatPAKE (in the case that the auxiliary and target server
lists are identical) is also secure under that notion.

5 Augmented Threshold PAKE Construction

Figure 8 shows protocol ΠtOPRF−atPAKE, our main atPAKE construction which
is a generic composition of UC tOPRF and UC (strong) aPAKE. In Figure 8
we show this protocol in the hybrid model assuming functionalities FtOPRF and
FsaPAKE which model respectively UC tOPRF and UC (strong) aPAKE (they
are shown respectively in Figures 2 and 19), but in an implementation these
functionalities will be replaced by sub-protocols that realize them. Protocol
ΠtOPRF−atPAKE also uses secure channels modeled by functionality Fchannel

(shown in Figure 1), but it uses them only in the initialization. Note that our
realization of the threshold OPRF functionality FtOPRF, i.e. protocol
3HashTDH of Section 3.2, also relies on secure channels in the initialization.

In protocol ΠtOPRF−atPAKE, authentication between a user and a target
server T, indexed as the j-th server in the target server list SsidT

, proceeds in
two steps. First, the user interacts with t + 1 tOPRF servers, i.e. the auxiliary
servers, in order to convert their password guess pw′ into a “hardened”
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Initialization

1. On input (atpake.userinit, sidA, sidT, pw), user U does:
– send (toprf.init, sidA, pw) to FtOPRF

– await response (toprf.initeval, sidA, rw)
– for every j ∈ {1, . . . , |SsidT |}, compute rwj : KDF(rw,SsidT [j]) and send

(channel.send, (sidA||sidT||j),SsidT [j], rwj) to Fchannel

2. On input (atpake.auxinit, sidA, i,U
′), auxiliary server SsidA [i] does:

– send (toprf.sinit, sidA, i,U
′) to FtOPRF

– await response (toprf.fininit, sidA, i)
– then output (atpake.finishauxiliaryinit, sidA)

3. On input (atpake.targetinit, sidA, sidT, j,U
′), target server SsidT [j] does:

– await (channel.deliver, (sidA||sidT||j),U′, rwj) from Fchannel

– send (sapake.storepwdfile, (sidT||j),U′, rwj) to FsaPAKE

– output (atpake.finishtargetinit, sidA, sidT)

Authentication

4. On input (atpake.usersession, sidA, sidT, j, ssid , pw
′), user U′ does:

– send (toprf.eval, sidA, ssid , pw
′) to FtOPRF

– await response (toprf.eval, sidA, ssid , rw
′)

– compute rw′
j := KDF(rw′,SsidT [j])

– send (sapake.usrsession, (sidT||j), ssid ,SsidT [j], rw
′
j) to FsaPAKE

– upon response (sapake.newkey, (sidT||j), ssid ,K), output (atpake.newkey,
ssid ,K)

– upon response (sapake.abort, (sidT||j), ssid), output (atpake.abort, ssid)
5. On input (atpake.auxsession, sidA, i, ssidA), auxiliary server SsidA [i] sends

(toprf.sndrcomplete, sidA, i, ssidA) to FtOPRF

6. On input (atpake.targetsession, sidT, j,U
′, ssid), target server SsidT [j] does:

– send (sapake.svrsession, (sidT||j), ssid) to FsaPAKE

– await response (atpake.newkey, (sidT||j), ssid ,K)
– output (atpake.newkey, ssid ,K)

Fig. 8. Protocol ΠtOPRF−atPAKE which realizes FatPAKE using FtOPRF and FsaPAKE

password rw′ = Fk(pw
′). Then, the user uses a pseudorandom function to

derive a T-specific password rw′j = KDF(rw′,T), and uses rw′j as the password
in an underlying (strong) aPAKE instance between the user and the target
server.

When registering a new user with password pw, the client must initialize
a new tOPRF instance Fk(·) with the auxiliary servers. At the same time the
client computes rwj = KDF(Fk(pw),Tj) for every target server Tj = SsidT

[j],
and sends rwj to Tj over a secure channel. Upon receiving rwj , server Tj uses it
to create a password file for this user.

Theorem 3. Protocol ΠtOPRF−atPAKE realizes functionality FatPAKE with
parameters t and n in the (FtOPRF,FsaPAKE,Fchannel)-hybrid model.
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Specifically, for any efficient adversary A against protocol ΠtOPRF−atPAKE,
there exists a simulator SIM such that no efficient environment Z can
distinguish the view of A interacting with the real ΠtOPRF−atPAKE protocol and
the view of SIM interacting with the ideal functionality FatPAKE with advantage
better than (qT · q2eval + qtest + q∗T · qeval)/2τ where qT is the number of target
server instances, qeval is the number of tOPRF evaluations, qtest is the number
of online and offline password-guessing attacks against FsaPAKE, q∗T is the
number of dishonestly initialized target server instances, and security parameter
τ is the tOPRF output length.

Proof of Theorem 3 is deferred to Appendix C.

Concrete Instantiation. In Figure 9 we show a concrete instantiation of
protocol ΠtOPRF−atPAKE, with FtOPRF realized with the 3HashTDH protocol of
Section 3.2. The user and the target server interact via an arbitrary (strong)
aPAKE, which can be realized with any realization of FsaPAKE, including
OPAQUE [44], OPAQUE’ [44, 35, 58], TLS-OPAQUE [37, 62], or other aPAKE
constructions [14, 54]. As discussed in Section 6, the (strong) aPAKE can be
replaced with weaker building blocks, including weak aPAKE [32], the
“envelope+AKE” building block used within OPAQUE, or even
password-over-TLS, although the resulting protocol could realize modified (and
sometimes weakened) versions of the atPAKE functionality FatPAKE.

6 Protocol Variants and Extensions

We considered several possible variants of the tOPRF+aPAKE construction of
atPAKE shown in Section 5. Indeed, both the UC tOPRF subprotocol and the
(strong) aPAKE protocol can be substituted by other building blocks, and the
resulting protocols implement variants of the atPAKE functionality FatPAKE.
We summarize the security properties of the protocol variants we considered
in Table 1 below. Table entries marked with a special symbol (∗) are verified
formally in this paper. All the other table entries are not formally verified, but
these are our hypotheses based on extrapolating the formally verified cases.

Implementing atPAKE with variants of tOPRF. The columns of the
table include three variants of the threshold OPRF (tOPRF) protocol, namely
tOPRF itself, the threshold Partial OPRF (tPOPRF) (see Section 3.4), and
the augmented Password-Protected Secret-Sharing (aPPSS) [27], an extension
of PPSS [6] to security up to offline dictionary attack upon compromise of all
servers. Recall that PPSS is a protocol which secret-shares a secret s among n
servers and protects it under password pw, s.t. no t parties can learn any
information on s, and t + 1 parties suffice to reconstruct s but only if the
reconstruction protocol client enters the same password pw which was used to
initialize this secret-sharing.10

10 As shown in [41], tOPRF implies PPSS: One simply uses an authenticated encryption
to encrypt secret s under rw = Fk(pw), where Fk is a tOPRF implemented by the
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Notation As in Section 2, τ is a security parameter, KDF : {0, 1}τ × {0, 1}∗ →
{0, 1}τ is a PRF, G is a group of prime order m. H1, H2, H3 are hash functions
with ranges G, G, and {0, 1}l where l is a parameter. SC denotes communication
over a secure and authenticated channel. “aPAKE” denotes arbitrary (strong)
aPAKE. (In other protocol variants aPAKE can be replaced with TLS-OPAQUE,
weak aPAKE, envelope+AKE, or password-over-TLS.)

Initialization
Auxilliary Server Si on User U on Target Server Sj on

(sidA, i,U) (sidA, sidT, pw) (sidA, sidT, j,U)

α0, ..., αt ←$ Zm

k(x) := α0 + α1x + ... + αtx
t

β1, ..., βt ←$ Zm

z(x) := β1x+ β2x
2 + ...+ βtx

t

�SC{(i, k(i), z(i))}
save (i, k(i), z(i))

y := H3(pw, H1(pw)
α0 )

rwj := KDF(y,SsidT
[j]) -SC{rwj}

Sj creates
password file
pwdfile tagged by
[sidT||j]

Authentication
Auxilliary Server Si on User U on Target Server Sj on

(sidA, i, ssidA) (sidA, sidT, j, ssid, pw) (sidT, j,U, ssid)

r ←$ Zm, a := H1(pw)
r

� a

retrieve (i, ki, zi)

bi := aki ·H2(ssidA, a)
zi

-(i, bi)

b :=
∏

i∈C b
λi
i , where C is

a set of (t + 1) responding
servers and λi’s are the
Lagrange coeff.’s for set C

y := H3(pw, b
1/r)

rwj := KDF(y,SsidT
[j]) Sj retrieves

pwdfile tagged
by [sidT, j]

-((sidT||j), ssid, rwj) �(ssid, pwdfile)

aPAKE
� K -K

Fig. 9. Concrete instantiation of ΠtOPRF−atPAKE using arbitrary (strong) aPAKE
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These three protocol variants have the following security characteristics:
Replacing tOPRF with tPOPRF creates a very mild and essentially negligible
difference in the atPAKE security model, denoted FatPAKE′ . However, replacing
t(P)OPRF with aPPSS changes the resulting atPAKE notion to a variant of
UC atPAKE notion we denote FatPAKE(weak), which is weaker than FatPAKE in
the following sense: In the latter model an offline dictionary attack (ODA) is
enabled only if the adversary corrupts t+1 of n auxiliary servers S1, ....,Sn and
the target server T, whereas in FatPAKE(weak) the ODA requires corruption of
t + 1 auxiliary servers, but it can be done without corrupting a target server.
However, note that one can implement the security contract of FatPAKE using
FatPAKE(weak) if the atPAKE scheme involves a single target server: If the target
server T is part of the auxiliary server group, and it holds a “blocking” set of
shares, then corruption of a sufficient number of (virtual) auxiliary servers
becomes possible only if one corrupts t + 1 (real) auxiliary server and the
target server T.

Table 1. Summary of security properties of atPAKE implementation variants

U-to-T subprotocol tOPRF tPOPRF aPPSS

(strong) aPAKE FatPAKE
(∗) FatPAKE′

(∗) FatPAKE(weak)
(∗)

TLS-OPAQUE FatPAKE−EA FatPAKE′−EA FatPAKE(weak)−EA

password-over-TLS FatPAKE−PKI FatPAKE′−PKI FatPAKE(weak)−PKI

weak aPAKE FatPAKE(medium)
(∗) FatPAKE′(medium) FatPAKE(weak)

AKE N/A N/A FatPAKE(weak)

Implementing atPAKE with variants of (strong) aPAKE. Table rows
include five variants of the U-to-T authentication protocol, i.e. the way user U
uses rw retrieved using its password to authenticate to the target server T. In
the protocol analyzed in Section 5 this is handled by (strong) aPAKE. The
same holds for the variants, where tOPRF is replaced by tPOPRF and aPPSS.
However, one can consider replacing the (strong) aPAKE sub-protocol with
TLS-OPAQUE, i.e. the Exported Authenticator (EA) extension of TLS which
implements augmented password authentication over existing TLS connection,
rather than creating new password-authenticated session key [37, 62]. The
mechanics of these “EA” extensions of our FatPAKE variants will be similar as in
[37], and their security properties should be the same as in
FatPAKE/FatPAKE′/FatPAKE(weak) except the final U-T authentication would
pertain to a pre-established secure channel between these two parties.

Another possible variant considers U-T interaction implemented as
“password-over-TLS”. Such “PKI” extensions of our FatPAKE variants would
have weaker security: First, U’s login sessions need to include T’s identity as

servers. We believe that this implements UC augmented PPSS (aPPSS) [27], but we
leave formal verification of this to future work.
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input. Second, if this identity is wrong, i.e. U fails to authenticate the proper T
counterparty, or if it is right but T is compromised, then (1) the adversary
learns rwT and can authenticate to T as U, and (2) the adversary can stage
ODA if t + 1 auxiliary servers are corrupted. (In other words, PKI error in U
authenticating T has the same consequences regarding ODA attack as
corruption of T.)

The final two possibilities include replacing (strong) aPAKE with weak
aPAKE of [32] or with pfs-AKE, i.e. AKE with perfect forward secrecy, usually
achieved by key confirmation flows. Using the first option allows for atPAKE
with lower round complexity (only 3 protocol flows) if weak aPAKE is
implemented with a 2-flow protocol of [31]. However, the resulting functionality
is slightly weaker in the case of FatPAKE and FatPAKE′ , denoted resp.
FatPAKE(medium) and FatPAKE′(medium). The weakening is that after compromise of
t + 1 auxiliary servers the attacker can precompute the ODA before the
compromise of a target server. This forms a mid-point between FatPAKE, where
ODA can start only at compromise of t + 1 auxiliary servers and a target
server, and FatPAKE(weak) where it can start at compromise of just the auxiliary
servers (see Appendix E). Using pfs-AKE can further lower the U-T
subprotocol cost, but it can be done only with aPPSS, because U needs to
reconstruct structured data, not a pseudorandom string, to run AKE, namely
its own private key and server T’s public key. Using either weak aPAKE or
pfs-AKE option the aPPSS-based protocol should achieve the same atPAKE
notion variant FatPAKE(weak), but we recommend that the last option, i.e.
aPPSS and pfs-AKE, should be formally verified before anyone implements it.

Proactive Security. In our tOPRF and tPOPRF protocols, the only state held
by each server is two Shamir secret shares, one of the PRF key and one of zero.
Therefore, these protocols can be naturally extended to support proactive key
refresh by using standard techniques for proactively refreshing a secret sharing.
For example, [36] presents a scheme where all share-holders broadcast verifiable
secret sharings of zero, which are then added to the secret sharing to be refreshed.
After carrying out this refresh procedure, the share-holders hold a fresh sharing
of their original (unchanged) secret value. If the servers in our t(P)OPRF were
to adopt this behavior, it would effectively partition their evaluation tickets into
“epochs” separated by key-refresh events. To successfully evaluate, one would
not only need the participation of t + 1 servers, but the participation of t + 1
servers within the time of one epoch. Similarly, the adversary would gain nothing
by stealing server files across multiple epochs; only by stealing t+1 servers’ data
within the time of one epoch could the adversary unlock the power to perform
entirely offline evaluations.

Our atPAKE constructions that are based on t(P)OPRF inherit these same
proactive security properties. We note that the tOPRF-based atPAKE protocol
requires auxiliary servers to hold a separate tOPRF instance for each user,
whereas the tPOPRF-based construction reuses a single tPOPRF instance
across all users. Since it would likely be impractical for servers to proactively
refresh a separate key sharing for every registered user, the tPOPRF-based
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atPAKE has an additional benefit: Besides reducing each server’s storage load,
it would also make proactive key refresh much more practical.
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A UC T-PAKE implies game-based T-PAKE

In this section, we prove that our UC-security model for atPAKE (Section 4)
implies the game-based security model in [53]. In fact we will prove a stronger
statement, where we consider a “real-or-random” (RoR)-style definition instead
of the “find-then-guess” (FtG)-style definition in [53]. Concretely,

– The adversary cannot send Reveal commands;
– The adversary can send any number of Test commands — recall that there

are two types of them, Test(U, i,Sj) and Test(Sj , i) — instead of one (in [53]
the adversary can only send a single query of either type), with the following
caveats: a bit b is chosen at the beginning, and whenever a Test command
is sent (no matter which type), if b = 1 then the corresponding real session
key is sent, and if b = 0 then a random string is sent. In other words, the
outputs of Test commands are either all real or all random. Furthermore, if
b = 0 (the all random case) Test(U, i,Sj) and Test(Sj , i

′) return the same

string if ΠU
i and Π

Sj

i′ are partnered instances.

The RoR-style definition was first introduced in the context of symmetric PAKE
in [4].

One discrepancy between the game-based model in [53] and our UC model is
that the former does not require the session IDs to be agreed upon between the
parties in advance, while in UC the session ID is part of the input of the protocol
and thus must be determined before the protocol execution begins. This could be
done via, e.g., parties exchanging nonces as the session ID in advance. Below we
ignore this technical distinction and always assume the “session ID-enhanced”
version while referring to a protocol.

In the following we assume that the (UC-secure) tPAKE protocol has a
honest-but-curious (HBC)-respecting simulator, i.e., a PPT simulator that for
any PPT environment sends testpwd to FatPAKE with negligible probability in
sessions where the real adversary passes all messages without any modification.
This is analogous to the concept of “reasonable simulator” in [57], which is
necessary for the result that UC-security implies game-based security in
symmetric PAKE.

Theorem 4. Consider any protocol Π that realizes functionality FatPAKE

(Figures 4, 5, and 6). Then Π is secure under the game-based security
definition as described above.
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Proof. Let Ã be any PPT adversary against game-based security of Π; we
want to show that the advantage of Ã is negligible. We use Ã to construct an
environment Z against the UC-security of Π:
Initialization:

– Z samples a password pw←$ D.
– Z sends (userinit, sidA, sidT, pw) to U.
– Z sends (auxinit, sidA, i,U) and (targetinit, sidA, sidT, i,U) to Si (for

i = 1, . . . , n).
– For S ∈ Corr, Z instructs A to corrupt S.

Protocol execution:

– Z samples a bit b←$ {0, 1} (to be used in Test queries).
– On Execute(U, i, ((Sj1 , ℓj1), . . . , (Sjk , ℓjk))) from Ã, Z initiates the

corresponding parties’ sessions by sending
(usersession, sidA, sidT, j1, ssid , pw), . . . , (usersession, sidA, sidT, jk, ssid , pw)
to U, (targetsession, sidT, j1,U, ssid) to Sj1 , . . . , and
(targetsession, sidT, jk,U, ssid) to Sjk . After that, Z instructs the UC
adversary A11 to pass messages between U and Sj1 , . . . ,Sjk without any
modification.

– On Send((Sj1 , . . . ,Sjk), i,m) from Ã, if this query initializes a session
between U and Sj1 , . . . ,Sjk , Z initiates the corresponding session by
sending
(usersession, sidA, sidT, j1, ssid , pw), . . . , (usersession, sidA, sidT, jk, ssid , pw)
to U and instructing A to send m to Sj1 , . . . ,Sjk . For later Send queries

from Ã, Z simply instructs A to send the corresponding messages to the
corresponding party.

– On Test(U, i,Sj) from Ã, Z observes U’s session key K in the i-th session
between U and Sj . (If there is no such session key, i.e., the session has not
completed, then Z ignores this query.) If b = 1 then Z sends K to A. If
b = 0, Z checks if a K ′ has been sent to A as the result of A’s Test(Sj , i)
query. If so, Z sends K ′ to A; otherwise it sends K ′ ←$ {0, 1}τ to A.

– Similarly, on Test(Sj , i) from Ã, Z observes Sj ’s session key K in the i-th
session between U and Sj , and sends K or a random K ′ (subject to the
restriction that K ′ must be equal to the string sent to A as the result of a
previous Test(U, i,Sj) query) to A according to b.

Since Π realizes FatPAKE, there exists a successful PPT simulator SIM. Let
CorrectGuess be the event that SIM sends at least one testpwd to FatPAKE resulting
in “correct guess”. Since SIM is HBC-respecting, it sends testpwd to FatPAKE with
negligible probability in all eavesdropping sessions (in other words, in all sessions
where Ã queries Execute to Z). Furthermore, for each of the q sessions where

11 We stress that A is the real adversary in the UC-security game, whereas Ã is an
adversary against the game-based security of Π but invoked by the UC environment
Z.
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Ã queries Send to Z, SIM may send a testpwd to FatPAKE resulting in “correct
guess”. Overall, we have that

Pr[CorrectGuess] ≤ q

|D|
+ negl(τ).

On the other hand, according to the syntax of FatPAKE, if none of the sessions has
even been compr, then each session outputs a random key. This means that if
CorrectGuess does not happen, b is independent of Ã’s view (no matter whether
b is 0 or 1, Ã sees random strings from all sessions). So

Pr[SuccΠ(Ã) = 1 | CorrectGuess] = 1

2
.

Combining the above two, we get that

Pr[SuccΠ(Ã) = 1] ≤ 1

2
+

q

2|D|
+ negl(τ),

which completes the proof.

B Proof of 3HashTDH Security

In this section we prove Theorems 1 and 2 from Section 3.3, i.e. static and
adaptive security of protocol 3HashTDH. These two proofs are provided as
one; the sections in which they diverge are noted by the tags “STATIC” and
“ADAPTIVE”.

First, we provide the full version of FtOPRF (Figure 10), which includes an
added transcript integrity feature. For every PRF evaluation, the evaluator and
all t+1 servers output transcripts of the adversary’s choosing. If the transcripts
seen by both sides of the interaction match up, then it is guaranteed that the
evaluator has correctly received an output from the function (i.e. PRF key)
intended by the servers. If the servers were initialized by a dishonest party, then
this guarantee is nullified (because, for example, the servers may not even hold
a valid key sharing). This transcript model captures the natural intuition that
if the man-in-the-middle adversary is passive (i.e. the messages sent between
the honest parties are delivered without modification), then PRF evaluation
should behave as expected. If the honest parties have a means of comparing
their transcripts, they can then verify after the fact that an evaluation was
correct.

We provide a corresponding full version of Π3HashTDH (Figure 11), which
achieves this transcript integrity feature. Our proof is carried out for this
stronger model and protocol even though transcript integrity is not required by
our higher-level atPAKE construction.

Proof. For any adversary A∗, we construct simulator SIM3HashTDH as shown in
Figures 13, 14, and 15. Without loss of generality, we assume that A∗ is a

38



Notation
Initially tx[sid , ssidS, i] := 0 and Fsid(x) is undefined for all sid ,ssidS, i, x. When
Fsid(x) is first referenced FtOPRF assigns Fsid(x)←$ {0, 1}l.
Initialization

1. On (toprf.init, sid , x1, . . . , xk) from P0 ∈ P∗, if sid is new (abort otherwise):
– send (toprf.init, sid ,P0) to A∗

– send (toprf.initeval, sid , Fsid(x1), . . . , Fsid(xk)) to P0

– save (toprf.init, sid ,P0) and mark it tampered if P0 ∈ Corr
2. On (toprf.sinit, sid , i,P0) from S where S = Ssid [i] or (S = A∗ and Ssid [i] ∈

Corr), save record (toprf.sinit, sid , i,P0) marked inactive
3. On (toprf.fininit, sid , i) from A∗ where ∃ record urec = (toprf.init, sid ,P0) and

record srec = (toprf.sinit, sid , i,P0) marked inactive:
– send (toprf.sinit, sid , i) to Ssid [i]
– if urec is tampered then mark srec tampered
– else if Ssid [i] ∈ Corr then mark srec compr
– else (i.e. urec is not tampered and Ssid [i] /∈ Corr) mark srec active

Corruption (in the static corruption model disallowed after any other queries)

4. On (toprf.corrupt,P) from A∗ (with permission from Z):
– set Corr := Corr ∪ {P}
– mark every active record (toprf.sinit, sid , i,P0) compr where P = Ssid [i]

Evaluation

5. On (toprf.eval, sid , ssidU, x) from U ∈ P∗, if this is the first call from U for sid
and ssidU:
– send (toprf.eval, sid , ssidU,U) to A∗

– save (toprf.eval, sid , ssidU,U, x) marked fresh
6. On (toprf.sndrcomplete, sid , i, ssidS) from S where ∃ record srec =

(toprf.sinit, sid , i,P0) not marked inactive and (S = Ssid [i] or (S = A∗ and
srec is marked compr or tampered)):
– send (toprf.sndrcomplete, sid , i, ssidS) to A∗

– and await (toprf.sndrtrans, sid , i, ssidS, tri) from A∗;

– then send (toprf.sndrtrans, sid , i, ssidS, tri) to S

– if srec is not tampered, then save (toprf.sndrtrans, sid , i, tri)

– (regardless of the above) set tx[sid , ssidS, i]++

7. On (toprf.rcvcomplete, sid , ssidU, sid
∗, ssid∗

S ,C , trU ) from A∗ where |C| = t+

1 and ∃ record (toprf.eval, sid , ssidU,U, x) marked fresh:

– if (i) ∃j ∈ C such that tx[sid∗, ssid∗
S , j] = 0, or (ii) ∃ a set of records

{(toprf.sndrtrans, sid ′, j, trU[j])}j∈C such that sid ′ ̸= sid∗, then abort

– otherwise mark the record completed, set tx[sid∗, ssid∗
S , j]−− for all j ∈

C, and send (toprf.eval, sid , ssidU, Fsid∗(x) , trU ) to U

Fig. 10. FtOPRF: threshold OPRF functionality, parameterized by threshold t, number
of servers n, and output length l. Shadowed text can be ignored if transcript integrity
is unneeded. 39



Initialization

1. On input (toprf.init, sid , x1, ..., xk), initializer P0 does:
– pick α0, ..., αt ←$ Zm and define polynomial k(x) := α0 +α1x+ ...+αtx

t

– pick β1, ..., βt ←$ Zm and define polynomial z(x) := β1x+β2x
2+ ...+βtx

t

– for each i ∈ [n], send (channel.send, [sid ||i],Ssid [i], (i, k(i), z(i))) to Fchannel,
– output (toprf.initeval, sid , y1, ..., yk) s.t. yj := H3(xj , H1(xj)

α0) for all
j∈[k]

2. On input (toprf.sinit, sid , i,P0), server Ssid [i] does:
– await (channel.deliver, [sid ||i],P0, (i, ki, zi)) from Fchannel;
– then save record (toprf.share, sid , i, ki, zi)
– output (toprf.fininit, sid , i)

Evaluation

3. On input (toprf.eval, sid , ssidU, x), evaluator U does:
– pick r ←$ Zm and compute a := H1(x)

r

– for each i ∈ [n], send (sid , i, ssidU, a) to Ssid [i]

– await responses (sid , i, ssidU, ssidS, bi) from Ssid [i] for all i ∈ C, for any

set C ⊆ [n] of size t+ 1;
– then compute b :=

∏
i∈C bλi

i where λi is the Lagrange interpolation
coefficient for index i and index set C

– output (toprf.eval, ssidU, H3(x, b
1/r) , (tr1, ..., trn) ) where

tri := (ssidS, a, bi) for all i ∈ C and tri := ⊥ for all i /∈ C

4. On input (toprf.sndrcomplete, sid , i, ssidS), server Ssid [i] does:
– retrieve record (toprf.share, sid , i, ki, zi) (abort if not found)
– await (sid , i, ssidU, a) from any U (if it hasn’t already been received);
– then compute bi := aki ·H2(ssidS, a)

zi

– output (toprf.sndrtrans, sid , i, ssidS, (ssidS, a, bi))

– send response (sid , i, ssidU, ssidS, bi) to U

Fig. 11. Protocol Π3HashTDH which realizes FtOPRF in the Fchannel-hybrid world.
Shadowed text can be ignored if transcript integrity is unneeded.

“dummy” adversary that merely passes messages to and from the environment
Z.

Figure 12 diagrams the interactions that occur in the real and simulated
worlds. We now show that, for any efficient (i.e. PPT) Z, the distinguishing
advantage of Z between these two worlds is negligible. The argument proceeds
by a series of game changes, starting from the real world G0 and ending at the
simulated world G7. By DistG,H

Z we denote distinguisher Z’s distinguishing
advantage between world G and world H. Specifically,
DistG,H

Z = |PrZ↔G[Z outputs 1]− PrZ↔H[Z outputs 1]|.
In this proof, Z’s distinguishing advantage is upper-bounded using the

advantages of PPT reductions in the Gap One-More Diffie Hellman
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Z

Π3HashTDH

Fchannel

A∗

the real world game G0

Z

FtOPRF SIM A∗

the simulated world game G7

Fig. 12. Diagram of interactions between components in the real and simulated worlds
of the 3HashTDH security proof. The proof shows that Z’s views in these two games
are indistinguishable.

(GapOMDH) and Decisional Diffie Hellman (DDH) games. By AdvGapOMDH
R

and AdvDDH
Q we denote the advantages of algorithms R and Q in GapOMDH

and DDH, respectively.

Game G0: The real world. The distinguisher Z interacts with Π3HashTDH

(Figure 11) in the role of the honest parties and in the role of the adversary. H1,
H2, and H3 are all true random oracles.

As a purely conceptual change from the true real world, one can imagine all
the computational processes of the honest parties (i.e. Π3HashTDH and Fchannel)
abstracted into a single monolithic component, which we call the simulator.
This component also simulates the code of FtOPRF in parallel to its “real world”
functions. By the end of the following sequence of game changes, all interactions
with the honest parties will exclusively occur through the interface of FtOPRF.

Game G1: Key generation never collides. G1 is G0 with only one change:
no secret key α0 = k(0) is ever chosen twice during initialization (Figure 13).

Clearly, G0 and G1 are identical unless there is a key collision in G0. The
key is sampled from Zm uniformly at random, so the probability that any two
particular instances pick the same key is 1

m . Therefore, if initialization is run qI

times, the probability that one or more collisions occur is upper-bounded by
q2I
m .

DistG0,G1

Z ≤ q2I
m

Game G2: H1 has a trapdoor. G2 is G1 with only one change: instead of
sampling a random group element directly, H1(x) samples a random exponent
τ ←$ Zm and returns h := gτ . A record (x, τ, h) is saved. H1 now behaves
exactly as it will in the fully simulated world (Figure 15).

Clearly, the external view of H1 is unchanged.
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Notation
Initially, evalsetsid(ssidS, a) := ∅ for all sid , ssidS, and a. Values t, n, l are
parameters.

Honest Initialization

1. On (toprf.init, sid ,P0) from FtOPRF where P0 ̸= A∗:
– pick α0, ..., αt ←$ Zm (such that α0 has never been picked before) and

define polynomial k(x) := α0 + α1x+ ...+ αtx
t

– pick β1, ..., βt ←$ Zm and define polynomial z(x) := β1x+β2x
2+ ...+βtx

t

– save (toprf.init, sid ,P0, g
k(0))

– for each i ∈ [n], save (toprf.share, sid , i,P0, k(i), z(i)) marked inactive
– for each i ∈ [n], send (channel.send, [id||i],P0,Ssid [i], |(i, k(i), z(i))|) to A∗

2. On (channel.deliver, [sid ||i],P0,Ssid [i]) from A∗ where ∃ record
(toprf.share, sid , i,P0, ki, zi) marked inactive:
– mark the record active (or if P0 = A∗ mark it compr)
– send (toprf.fininit, sid , i) to FtOPRF

Dishonest Initialization

3. On (channel.send, [sid ||i],Ssid [i], (i, ki, zi)) from A∗ on behalf of P0 ∈ Corr:
– if this is the first such message for sid , then send (toprf.init, sid) to FtOPRF

on behalf of P0

– receive (toprf.initeval, sid) in response
– and save (toprf.share, sid , i,A∗, ki, zi) marked inactive

Corruption

4. On corruption by A∗ of party P (with permission from Z):
– send (toprf.corrupt,P) to FtOPRF

– set Corr := Corr ∪ {P}
5. If ever ∃ record (toprf.share, sid , i,P0, ki, zi) marked active where Ssid [i] ∈

Corr and Ssid [i] ̸= A∗, mark it compr and send (toprf.share, sid , i, ki, zi) to
A∗

6. Whenever the simulator eventually halts, for each record (toprf.init, sid ,P0, k),
emit (corr, sid , |{i : Ssid [i] ∈ Corr}|)

Fig. 13. Simulator SIM3HashTDH for protocol Π3HashTDH, part 1: Notation, Honest
Initialization, Corrupt Initialization, and Corruption
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Honest Evaluation

7. On (toprf.eval, sid , ssidU,U) from FtOPRF where U ̸= A∗:
– pick r ←$ Zm and define a := gr

– for each i ∈ [n], send (sid , i, ssidU, a) to A∗ (addressed from U to Ssid [i])
– and await responses (sid , i, ssidU, ssidS, bi) fromA∗ (addressed from Ssid [i]

to U) for all i ∈ C, for any set C ⊆ [n] of size t+ 1;
– then compute b :=

∏
i∈C bλi

i where λi is the Lagrange interpolation
coefficient for index i and index set C

– run FindEvalset(b1/r), which returns (sid∗, ssid∗
S ,C

′) (see routine 9)
– send (toprf.rcvcomplete, sid , ssidU, sid

∗, ssid∗
S ,C

′, (tr1, ..., trn)) to FtOPRF

where tri := (ssidS, a, bi) for all i ∈ C and tri := ⊥ for all i /∈ C
8. On (toprf.sndrcomplete, sid , i, ssidS) from FtOPRF and (sid , i, ssid ′

U, a) from A∗

(addressed from U to Ssid [i]) where Ssid [i] ̸= A∗:
– set evalsetsid(ssidS, a) := evalsetsid(ssidS, a) ∪ {i}
– retrieve (toprf.share, sid , i,P0, ki, zi)
– define κa,i := aki and ζ(ssidS,a),i := H2(ssidS, a)

zi

– compute bi := κa,i · ζ(ssidS,a),i

– send (sid , i, ssid ′
U, ssidS, bi) to A∗ (addressed from Ssid [i] to U)

– send (toprf.sndrtrans, sid , i, ssidS, (ssidS, a, bi)) to FtOPRF

9. Define subroutine FindEvalset(k∗):
– find record (toprf.init, sid∗,P0, k

∗)
– if no such record exists, create it as follows:
• choose an unused sid∗ such that Ssid∗ = (A∗)n

• send (toprf.init, sid∗) to FtOPRF

• receive (toprf.init, sid∗,A∗) and (toprf.initeval, sid∗) in response
• for each i ∈ [n], send (toprf.sinit, sid∗, i,A∗) and (toprf.fininit, sid∗, i)

to FtOPRF

• save (toprf.init, sid∗,A∗, k∗)
– if P0 = A∗, then define C∗ := [n]
– if P0 ̸= A∗, then define C∗ := {i : ∃ record (toprf.share, sid∗, i,P0, ki, zi)

marked compr}
– for each i ∈ C∗:
• pick an unused ssid ′

• send (toprf.sndrcomplete, sid∗, i, ssid ′) to FtOPRF

• receive the same message in response (don’t run routine 8)
• and send (toprf.sndrtrans, sid∗, i, ssid ′,⊥) to FtOPRF

– pick any (ssid∗
S , a) such that |evalsetsid∗(ssid∗

S , a)| ≥ (t + 1) − |C∗| (if no
such (ssid∗

S , a) exists, then emit (fail, sid∗) and halt the entire simulator)
– pick any evaluation set C′ ⊆ C∗ ∪ evalsetsid∗(ssid∗

S , a) of size |C′| = t+ 1
– set evalsetsid∗(ssid∗

S , a) := ∅
– return (sid∗, ssid∗

S ,C
′)

Fig. 14. Simulator SIM3HashTDH for protocol Π3HashTDH, part 2: Honest Evaluation
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Dishonest Evaluation

10. On fresh query x to H1(·):
– pick τ ←$ Zm and define h := gτ

– save (toprf.h1, x, τ, h)
– set H1(x) := h and return it

11. On fresh query (ssidS, a) to H2(·), simply set H2(ssidS, a)←$ G and return it
12. On fresh query (x, u) to H3(·):

– retrieve (toprf.h1, x, τ, h) if it exists (otherwise, simply set H3(x, u) ←$

{0, 1}l and return it)
– run FindEvalset(u1/τ ), which returns (sid∗, ssid∗

S ,C
′) (see routine 9)

– pick an unused ssidU and send (toprf.eval, sid∗, ssidU, x) to FtOPRF

– send (toprf.rcvcomplete, sid∗, ssidU, sid
∗, ssid∗

S ,C
′, (⊥)n) to FtOPRF

– receive (toprf.eval, ssidU, y, (⊥)n) in response
– set H3(x, u) := y and return it

Fig. 15. Simulator SIM3HashTDH for protocol Π3HashTDH, part 3: Dishonest Evaluation

DistG1,G2

Z = 0

Game G3: Illegal evaluations cause failure. G3 is G2 with the following
changes:

– As honest servers perform evaluations (i.e. toprf.sndrcomplete) the evalset of
each (ssidS, a) pair is tracked (Figure 14).

– Subroutine FindEvalset is introduced (Figure 14). Given parameter k∗ ∈ G,
this subroutine finds a PRF instance that was initialized with key k(0) such
that k∗ = gk(0). If no such instance exists, it uses the interface of FtOPRF to
create one, with A∗ taking the nominal role of all n servers. It then “prints
blank tickets” for as many of this instance’s servers as it can (all n if the
instance was just created); these blank tickets could correspond to any pair
(ssidS, a). Finally it finds a pair (ssid∗S, a) that has been evaluated by a set
C′ of at least t+1 servers and “uses it up” by resetting its evalset to empty. If
no such (ssid∗S, a) can be found, then it is illegal to perform an evaluation on
this PRF instance; the simulator immediately emits the event fail and halts.
Otherwise, the relevant instance identifier sid∗, server subsession identifier
ssid∗S, and evaluation set C′ are returned.

– Whenever the simulator eventually halts (e.g. due to fail), it emits an
event corr reporting the number of corrupted servers for each PRF
instance (Figure 13).

– H3 queries by the adversary check for illegal evaluation before completing
(Figure 15). In particular, upon fresh query (x, u) where H1(x) = gτ , H3

calls FindEvalset(u1/τ ). If that subroutine succeeds at finding a matching
evaluation set, then H3 uses FtOPRF’s toprf.rcvcomplete interface to query
the PRF output y for x. However, in this game H3 does not return y. It
simply samples a random output and returns it as before.
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– The honest clients’ PRF evaluation process makes the same check (Figure
14). In particular, before querying H3(x, b

1/r) it calls FindEvalset((b1/r)1/τ )
(note that, unlike in the eventual fully simulated world, this routine is still
using H1(x) as a). If FindEvalset succeeds, then client evaluation continues
via the FtOPRF’s toprf.rcvcomplete interface. However, in this game the PRF
output produced by that interface is not the value returned to the client. It
simply samples a random output and returns it as before.

– Note that the use of H3 during initialization remains unchanged. No check
to FindEvalset is made. Randomly sampled outputs are returned as before.

Observe that FindEvalset’s mechanism for determining the legality of an
evaluation is always at least as restrictive as the “ticketing” mechanism used
by FtOPRF internally. FtOPRF allows an evaluation as long as every server in the
evaluation set has at least one unused ticket corresponding to ssid∗S.
FindEvalset only allows an evaluation if every server in the evaluation set has at
least one unused ticket corresponding to ssid∗S and the same common query a.
Therefore, the interactions with toprf.rcvcomplete introduced in this game
change are guaranteed to succeed (since they are always preceded by successful
calls to FindEvalset).

Observe furthermore that the eventual output values of the adversarial H3

and honest client evaluation routines are unaltered by this game change.
Therefore, the only potential change to Z’s view is the newly added possibility
of the fail event, which causes all execution to immediately halt. Z’s
probability of distinguishing between G2 and G3 is upper-bounded by the
probability that Z triggers fail. This probability can expressed as a
summation over every possible number of servers that could be corrupt when
that event occurs. Notice that fail is impossible when the number of
corruptions is (t+ 1) or greater.

DistG2,G3

Z ≤
∑
sid

Pr
Z↔G3

[(fail, sid)] =
∑
sid

t∑
t′=0

Pr
Z↔G3

[(fail, sid) ∧ (corr, sid , t′)]

Notice that the fail event is only possible for honestly initialized instances; by
qI we denote the number of times honest initialization occurs. From this point
forward, we consider only the instance sid∗ with the maximum probability of
hosting the fail event. For succicntness, we will omit its identifier sid∗ from the
fail and corr events.

DistG2,G3

Z ≤ qI ·
t∑

t′=0

Pr
Z↔G3

[fail ∧ (corr, t′)]

In order to bound PrZ↔G3
[fail∧ (corr, t′)], we define an auxiliary series of

games derived from G3.

Game H′: The simulator guesses which servers will be corrupted. H′

is G3 with the following changes:
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– When the instance identified by sid∗ is initialized, pick a t-element subset
of [n]. Call it Guess0.
• STATIC: If possible, pick Guess0 such that for every server Ssid∗ [i] ∈
Corr, i ∈ Guess0. Otherwise (i.e. if more than t of this instance’s servers
are corrupted), simply pick Guess0 uniformly at random.

• ADAPTIVE: Pick Guess0 uniformly at random.
– Whenever the simulator eventually halts, report whether the guess was

unsuccessful. Specifically, if ∃ server Ssid∗ [i] ∈ Corr for i /∈ Guess0, then
emit (exposed, sid∗).

– For servers not in Guess0, compute ζ by interpolation from the ζ’s held by
the servers that are in Guess0. Specifically,

∀(ssidS, a) ∀i /∈ Guess0 ζ(ssidS,a),i :=
∏

j∈Guess0
ζ
λj

(ssidS,a),j
(where λj is the

Lagrange interpolation coefficient for index j, index set Guess0, and target
index i).

Clearly, Z’s views in G3 and H′ are identical.

Game H0: Unsuccessful guesses cause immediate failure. H0 is H′ with
only one change: if ever ∃ server Ssid∗ [i] ∈ Corr for i /∈ Guess0, then
immediately emit (exposed, sid∗) and halt the simulator.

Unless Z manages to trigger exposed by corrupting a server outside of
Guess0, its views in H′ and H0 are identical.

STATIC: Our choice of Guess0 makes exposed impossible as long as t′ ≤ t.

Pr
Z↔G3

[fail ∧ (corr, t′)] = Pr
Z↔H0

[fail ∧ (corr, t′)]

ADAPTIVE: We can bound Z’s distinguishing advantage combinatorially
(for all 0 ≤ t′ ≤ t).

Pr
Z↔H0

[fail ∧ (corr, t′)] = Pr
Z↔H0

[fail ∧ (corr, t′) ∧ ¬exposed] (1)

= Pr
Z↔H′

[fail ∧ (corr, t′) ∧ ¬exposed] (2)

= Pr
Z↔H′

[fail ∧ (corr, t′)]

· Pr
Z↔H′

[¬exposed | fail ∧ (corr, t′)] (3)

= Pr
Z↔H′

[fail ∧ (corr, t′)]

· Pr
Z↔H′

[¬exposed | (corr, t′)] (4)

= Pr
Z↔G3

[fail ∧ (corr, t′)]

· Pr
Z↔H′

[¬exposed | (corr, t′)] (5)

= Pr
Z↔G3

[fail ∧ (corr, t′)] ·
(
t
t′

)(
n
t′

) (6)

Pr
Z↔G3

[fail ∧ (corr, t′)] =

(
n
t′

)(
t
t′

) · Pr
Z↔H0

[fail ∧ (corr, t′)] (7)

46



At step (1) observe that the fail and exposed events are disjoint in H0

since both cause the execution to immediately halt. At step (2) observe that
as long as the event exposed does not happen, Z’s views in H′ and H0 are
identical. At step (4) observe that fail and exposed are independent in H′

when conditioned on the event (corr, t′). At step (5) observe that G3 and H′

are identical except for the exposed event.
In order to bound PrZ↔H0 [fail ∧ (corr, t′)] for all t′, we now define

additional games H1, H2, . . .Ht.

Game Hk: One more server picks its responses randomly. For all 1 ≤
k ≤ t, Hk is recursively defined as Hk−1 with the following changes:

– After defining Guessk−1, pick one element ik from Guessk−1. Define
Guessk := Guessk−1 \ {ik} (so |Guessk| = t− k).

• STATIC: If possible, pick ik such that Ssid∗ [ik] /∈ Corr. Otherwise (i.e.
if more than t − k of this instance’s servers are corrupted), simply pick
ik uniformly at random.

• ADAPTIVE: Pick ik uniformly at random.

– If server ik is ever corrupted, then immediately emit (exposed, sid∗) and
halt the simulator.

– For all a, server ik sets ζ at random. Specifically, ∀(ssidS, a) ζ(ssidS,a),ik ←$

G.

In each of H0,H1, . . . ,Ht, Z’s probability of triggering fail can be bounded
using a GapOMDH reduction.

Reduction Rk: GapOMDH. The GapOMDH input is a vector
(y∗, h1, . . . , hq) where all hj are uniformly random group elements and y∗ = gs

for some uniformly random secret exponent s. The reduction has access to an
oracle OMDH(a), which returns as. It also has access to an oracle DDH(y, h, u),
which returns a bit that is 1 if and only if (y, h, u) is a Diffie-Hellman tuple
(i.e. there exist a, b ∈ Zm such that y = ga, h = gb, and u = gab). The
reduction wins if it outputs a set W of pairs (j, hs

j) and |W | is greater than the
number of (unique) queries it made to the OMDH oracle.

For all 1 ≤ k ≤ t,Rk is constructed from Z ↔ Hk with the following changes:

– Initially, set W := ∅.
– Queries to H1 are answered with the hj values. Specifically, H1(xj) := hj

where j is initialized as 1 and increments after a fresh query is seen. As a
consequence of this change, H3 no longer has toprf.h1 records (“trapdoors”)
to rely on.

– H3 uses the DDH oracle in place of the H1 trapdoors. Specifically, upon fresh
query H3(x, u) where H1(x) = hj (if H1 was never queried on x, then make
such a query now on behalf of Z), do the following:

• retrieve every initialization record (toprf.init, sid ,A∗, ysid) where sid ̸=
sid∗ and query DDH(ysid , hj , u) for each one,

• also query DDH(y∗, hj , u),
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• if all oracle responses are 0, then simply set H3(x, u) ←$ {0, 1}l and
return it,

• but otherwise, if some DDH(y, hj , u) = 1, then call FindEvalset(y), and
proceed accordingly (if y = y∗, then also save W := W ∪ {(j, u)}).

– For all a, for the first k queries to servers not in Guessk, set κ at random
(only for instance sid∗). Specifically, ∀a ∀i /∈ Guessk κa,i ←$ G if
|(∪ssidS

evalset(ssidS, a)) \Guessk| ≤ k.
– For the (k + 1)st query and on, use the OMDH oracle and interpolate κ

(only for instance sid∗). Specifically, ∀a ∀i /∈ Guessk
κa,i := OMDH(a)λ0

∏
j∈E κ

λj

a,j if |(∪ssidS
evalset(ssidS, a)) \ Guessk| > k

(where E is any t-element subset of ∪ssidS
evalset(ssidS, a) ∪Guessk and λj

is the Lagrange interpolation coefficient for index j, index set E, and target
index i).

– If a call to FindEvalset triggers event fail followed by (corr, t − k), then
output W and thereby win the GapOMDH game.

These modifications do not change Z’s view at all. Therefore, this reduction’s
probability of winning the GapOMDH game is equal to the probability that Z
in interaction with Hk triggers fail with exactly (t− k) corruptions.

∀ 1 ≤ k ≤ t AdvGapOMDH
Rk

= Pr
Z↔Hk

[fail ∧ (corr, t− k)]

All that remains is to relate PrZ↔H0
[fail ∧ (corr, t′)] to PrZ↔Ht−t′ [fail ∧

(corr, t′)] for all t′. To do so, we use a reduction from DDH to bound Z’s ability
to distinguish between Hk and Hk−1 for all k. First we recall the following useful
variant of DDH.

Lemma 1. Let (G, ·) be a cyclic group of prime order m with generator g. For
any k polynomial in τ , the Generalized Decisional Diffie-Hellman problem on
G is to distinguish the following two distributions:
{(h1, h

′
1, h2, h

′
2, ..., hk, h

′
k) : ∀i ∈ {1, 2, .., k} hi, h

′
i ←$ G} and

{(h1, h
′
1, h2, h

′
2, ...) : r ←$ Zm,∀i ∈ {1, 2, .., k} hi ←$ G, h′i = hi

r}. The
Generalized DDH problem on G reduces tightly to standard DDH on G. (This
reduction is well-known; for example, see [7].)

Reduction Qk,t′ : DDH. The Generalized DDH input is a vector
(h1, h

′
1, . . . , hq, h

′
q) where all hj are uniformly random group elements. If

challenge bit b = 0, then there exists a secret exponent s such that every
h′j = hs

j . If challenge bit b = 1, then all h′j are uniformly random. The
reduction’s advantage is its probability of distinguishing the case where b = 0
from the case where b = 1.

For all 1 ≤ k ≤ t and 0 ≤ t′ ≤ t, Qk,t′ is constructed from Z ↔ Hk with the
following changes:

– Queries to H2 are answered with the hj values. Specifically,
H2((ssidS, a)j) := hj where j is initialized as 1 and increments after a fresh
(ssidS, a) is seen.
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– For all (ssidS, a)j , server ik sets ζ as h′j . Specifically,
∀(ssidS, a)j ζ(ssidS,a)j ,ik := h′j where j is as above.

– Ultimately, output 1 iff execution ends with the event fail followed by
(corr, t′).

If b = 1, Z’s view in Qk,t′ is identical to its view in Hk. If b = 0, its view is
identical to its view in Hk−1 unless server ik is corrupted. Denote the event of
this corruption by (comp, ik).

AdvDDH
Qk,t′

=

∣∣∣∣ PrQk,t′
[fail ∧ (corr, t′) | b = 0]− Pr

Qk,t′
[fail ∧ (corr, t′) |b = 1]

∣∣∣∣ (1)

=

∣∣∣∣ PrQk,t′
[fail ∧ (corr, t′) | b = 0]− Pr

Z↔Hk

[fail ∧ (corr, t′)]

∣∣∣∣ (2)

=

∣∣∣∣ PrQk,t′
[fail ∧ (corr, t′) ∧ ¬ (comp, ik) | b = 0]

− Pr
Z↔Hk

[fail ∧ (corr, t′)]

∣∣∣∣ (3)

=

∣∣∣∣ Pr
Z↔Hk−1

[fail ∧ (corr, t′) ∧ ¬ (comp, ik)]

− Pr
Z↔Hk

[fail ∧ (corr, t′)]

∣∣∣∣ (4)

=

∣∣∣∣ Pr
Z↔Hk−1

[fail ∧ (corr, t′)]

· Pr
Z↔Hk−1

[¬ (comp, ik) | fail ∧ (corr, t′)]

− Pr
Z↔Hk

[fail ∧ (corr, t′)]

∣∣∣∣ (5)

At step (3) observe that the fail and (comp, ik) events are disjoint in Qk,t′

since both cause the execution to immediately halt.
In the case of static corruptions, our choice of ik makes (comp, ik) impossible

as long as t′ ≤ t− k (or equivalently, k ≤ t− t′).

STATIC:

AdvDDH
Qk,t′

=

∣∣∣∣ Pr
Z↔Hk−1

[fail ∧ (corr, t′)]− Pr
Z↔Hk

[fail ∧ (corr, t′)]

∣∣∣∣
Pr

Z↔Hk−1

[fail ∧ (corr, t′)] ≤ AdvDDH
Qk,t′

+ Pr
Z↔Hk

[fail ∧ (corr, t′)]

By solving this recurrence relation with the base case
PrZ↔Ht−t′ [fail ∧ (corr, t′)] = AdvGapOMDH

Rt−t′
from above, we can set a bound

on PrZ↔H0
[fail ∧ (corr, t′)]. Here we use AdvDDH

Qt′
to denote

max0≤k≤t−t′ AdvDDH
Qk,t′

.
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STATIC: Pr
Z↔H0

[fail ∧ (corr, t′)] ≤ t ·AdvDDH
Qt′

+AdvGapOMDH
Rt−t′

In the case of adaptive corruptions, we can calculate the probability of
(comp, ik) combinatorially. Notice that the event fail implies that only servers
in Guessk−1 were corrupted (any other corruption would cause execution to
halt with event exposed).

ADAPTIVE:

AdvDDH
Qk,t′

=

∣∣∣∣ Pr
Z↔Hk−1

[fail ∧ (corr, t′)] · (1− t′

t− (k − 1)
)

− Pr
Z↔Hk

[fail ∧ (corr, t′)]

∣∣∣∣
=

∣∣∣∣ Pr
Z↔Hk−1

[fail ∧ (corr, t′)] · ( t− t′ − k + 1

t− k + 1
)

− Pr
Z↔Hk

[fail ∧ (corr, t′)]

∣∣∣∣
≥ Pr
Z↔Hk−1

[fail ∧ (corr, t′)] · ( t− t′ − k + 1

t− k + 1
)

− Pr
Z↔Hk

[fail ∧ (corr, t′)]

Pr
Z↔Hk−1

[fail ∧ (corr, t′)]

≤ (
t− k + 1

t− t′ − k + 1
) · (AdvDDH

Qk,t′
+ Pr
Z↔Hk

[fail ∧ (corr, t′)])

By solving this recurrence relation with the base case
PrZ↔Ht−t′ [fail ∧ (corr, t′)] = AdvGapOMDH

Rt−t′
from above, we can set a bound

on PrZ↔H0
[fail ∧ (corr, t′)]. Here we use AdvDDH

Qt′
to denote

50



max0≤k≤t−t′ AdvDDH
Qk,t′

.

Pr
Z↔H0

[fail ∧ (corr, t′)] ≤

AdvDDH
Qt′
·
t−t′∑
i=1

i∏
j=1

t+ 1− j

t− t′ + 1− j


+

AdvGapOMDH
Rt−t′

·
t−t′∏
j=1

t+ 1− j

t− t′ + 1− j


≤

AdvDDH
Qt′
· (t− t′) ·

t−t′∏
j=1

t+ 1− j

t− t′ + 1− j


+

AdvGapOMDH
Rt−t′

·
t−t′∏
j=1

t+ 1− j

t− t′ + 1− j


=

t−t′∏
j=1

t+ 1− j

t− t′ + 1− j


· ((t− t′) ·AdvDDH

Qt′
+AdvGapOMDH

Rt−t′
)

=
t!

t′!(t− t′)!
· ((t− t′) ·AdvDDH

Qt′
+AdvGapOMDH

Rt−t′
)

=

(
t

t′

)
· ((t− t′) ·AdvDDH

Qt′
+AdvGapOMDH

Rt−t′
)

≤
(
t

t′

)
· (t ·AdvDDH

Qt′
+AdvGapOMDH

Rt−t′
)

Finally we can combine our results to reach a bound on DistG2,G3

Z . Here we

use AdvDDH
Q to denote max0≤t′≤t AdvDDH

Qt′
and AdvGapOMDH

R to denote

max0≤t′≤t AdvGapOMDH
Rt−t′

.

STATIC:

DistG2,G3

Z ≤ qI ·
t∑

t′=0

Pr
Z↔G3

[fail ∧ (corr, t′)]

= qI ·
t∑

t′=0

Pr
Z↔H0

[fail ∧ (corr, t′)]

≤ qI ·
t∑

t′=0

t ·AdvDDH
Qt′

+AdvGapOMDH
Rt−t′

≤ qI · (t ·AdvDDH
Q +AdvGapOMDH

R ) · (t+ 1)
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ADAPTIVE:

DistG2,G3

Z ≤ qI ·
t∑

t′=0

Pr
Z↔G3

[fail ∧ (corr, t′)]

= qI ·
t∑

t′=0

(
n
t′

)(
t
t′

) · Pr
Z↔H0

[fail ∧ (corr, t′)]

≤ qI ·
t∑

t′=0

(
n
t′

)(
t
t′

) · ( t

t′

)
· (t ·AdvDDH

Qt′
+AdvGapOMDH

Rt−t′
)

≤ qI · (t ·AdvDDH
Q +AdvGapOMDH

R ) ·
t∑

t′=0

(
n

t′

)

Game G4: H3 returns PRF outputs. G4 is G3 with only one change: instead
of randomly sampling outputs, all uses ofH3 return the PRF outputs provided by
FtOPRF. In the cases of adversarial queries toH3 and honest client evaluations, the
process for querying these outputs from FtOPRF via toprf.rcvcomplete is already
in place from G3 (Figures 15 and 14). In the case of eval-during-init, the honest
user interface of FtOPRF is simply used (Figure 10).

In the previous game, H3(x, u) outputs a randomly sampled value
corresponding to (x, u). In this game, it outputs a randomly sampled value
corresponding to (x, sid), where sid is a PRF instance identifier that maps to
(x, u). In the cases of adversarial queries to H3 and honest client evaluations,
this mapping is determined by FindEvalset. In the case of eval-during-init, the
mapping is immediate. If there exists a perfect bijection between pairs (x, u)
and pairs (x, sid), then Z’s views of G3 and G4 are identical. Consider the two
directions of this bijection:

1. Suppose there exist x, u, sid , and sid ′ such that H3(x, u) maps to both
(x, sid) and (x, sid ′). The PRF instances identified by sid and sid ′ use secret
keys k(0) and k′(0), respectively.
In all cases (i.e. eval-during-init, adversarial query to H3, and honest client
evaluation), H3(x, u) can only map to sid if u1/τ = gk(0) where H1(x) = gτ

(and it can only map to sid ′ if u1/τ = gk
′(0)). Therefore, it follows that

gk(0) = gk
′(0) and further that k(0) = k′(0). Per the game change to G1,

collisions never occur during honest key generation. FindEvalset can also
never cause a key collision, since new (adversarially chosen) keys are only
recorded if an existing match cannot be found. Thus, it must be the case
that sid = sid ′.

2. Suppose there exist x, u, u′, and sid such that H3(x, u) and H3(x, u
′) both

map to (x, sid).
Eval-during-init can never create such a collison (because different instances
use different sids). Thus, the only possibility to consider is that two calls
FindEvalset(u1/τ ) and FindEvalset(u′1/τ ) both map to sid . In the case of
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adversarial query to H3, this u is provided directly by the adversary; in
the case of honest client evaluation, it is calculated as b1/r. In both cases,
H1(x) = gτ . Per the procedure of FindEvalset, it follows that both u1/τ =
gk(0) and u′1/τ = gk(0), where k(0) is the secret key for the PRF instance
identified by sid . Therefore, u = u′.

Thus, this bijection between pairs (x, u) and pairs (x, sid) does indeed hold.

DistG3,G4

Z = 0

Game G5: Honest client evaluation doesn’t use H1(x). G5 is G4 with
only one change: after picking random exponent r, the honest client evaluation
procedure simply sets a := gr rather than a := H1(x)

r. Consequently, it later
calls FindEvalset(b1/r) rather than FindEvalset((b1/r)1/τ ) (Figure 14).
Z’s views of G4 and G5 are identical. In both games a is a uniformly random

group element.

DistG4,G5

Z = 0

Game G6: Transcript integrity is enforced. G6 is G5 with only one change:
the final step of honest client evaluation aborts if all t+1 servers in the evaluation
set C′ have recorded a PRF instance identifier sid different from the identifier
sid∗ of the instance that actually underlies this evaluation, yet they agree on the
communication transcript observed by the client. This abortion does not take
place if the initial party P0 was dishonest during the initialization of the instance
identified by sid (Figure 10).

Clearly, Z’s views of G5 and G6 are identical unless this abortion happens.
In order for it to occur, each server Ssid [i] in C′ must have received a message
(sid , i, ssid ′U, a) and responded with ssidS and bi := aki ·H2(ssidS, a)

zi where ki
and zi are the secret shares held by Ssid [i] and the subsession identifier ssidS

is common between all servers. Since P0 was honest during initialization, the
values ki must share the PRF secret key k(0), and the values zi must share zero.
Therefore, the client’s computation of b :=

∏
i∈C bλi

i must have yielded ak(0)

as expected (λi is the Lagrange interpolation coefficient for index i and index
set C). Since a is defined as gr, the client finally determines sid∗ by calling
FindEvalset(gk(0)). Per the procedure of FindEvalset, the mapping of gk(0) to sid∗

implies that k(0) and the secret key k∗(0) of PRF instance sid∗ are equal. Since
there are guaranteed to be no key collisions, it follows that sid = sid∗. Thus,
the hypothetical abortion introduced by this game change is impossible.

DistG5,G6

Z = 0

Game G7: The simulated world. The change from G6 to G7 is purely
conceptual. All interactions between the simulator and the honest parties now
occur through the interface of FtOPRF, so one can imagine the monolithic
simulator now cleanly split into the two components FtOPRF and SIM3HashTDH.

53



DistG6,G7

Z = 0

Summing up the distinguishing advantage bounds for each incremental game
change yields an overall bound on Z’s distinguishing advantage between the real
and simulated worlds.

STATIC: DistG0,G7

Z ≤ q2I
m

+ qI · (t ·AdvDDH
Q +AdvGapOMDH

R ) · (t+ 1)

ADAPTIVE: DistG0,G7

Z ≤ q2I
m

+ qI · (t ·AdvDDH
Q +AdvGapOMDH

R ) ·
t∑

t′=0

(
n

t′

)
m = |G| is an exponential function of the security parameter. If Z is

efficient, then qI is a polynomial function of the security parameter.
Furthermore, AdvDDH

Q and AdvGapOMDH
R are both negligible functions of the

security parameter under the DDH and GapOMDH assumptions, respectively.
Thus, in the case of static corruptions, the distinguishing advantage of any
efficient Z between the real and simulated worlds is negligible. Under the
additional assumption that

(
n
t′

)
is polynomial for all 0 ≤ t′ ≤ t, the same is true

in the case of adaptive corruptions.
Protocol 3HashTDH realizes FtOPRF.

C Proof of tOPRF-atPAKE Security

In this section we prove Theorem 3 from Section 5, i.e. security of protocol
ΠtOPRF−atPAKE.

Proof. For any adversary A∗, we construct simulator SIMtOPRF−atPAKE as shown
in Figures 16, 17, and 18. Without loss of generality, we assume that A∗ is a
“dummy” adversary that merely passes messages to and from the environment
Z.

We now show that, for any efficient (i.e. PPT) Z, the distinguishing
advantage of Z between the real and simulated worlds is negligible. The
argument uses only a single game change from the real world G0 to the
simulated world G1. By DistG0,G1

Z we denote distinguisher Z’s distinguishing
advantage between world G0 and world G1. Specifically,
DistG0,G1

Z = |PrZ↔G0 [Z outputs 1]− PrZ↔G1 [Z outputs 1]|.

Game G0: The real world. The distinguisher Z interacts with ΠtOPRF−atPAKE
(Figure 8) in the role of the honest parties and in the role of the adversary.

Game G1: The simulated world. By inspection, SIMtOPRF−atPAKE in
interaction with FatPAKE behaves identically to the real world protocol, except
in the case of a rare PRF collision event. Therefore, the probability that Z can
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Notation
Initially tx[sidA, i, ssidA] := 0 for all sidA, i, and ssidA, and cflag[sidT, j] :=
uncompromised for all sidT and j. Also, FsidA(x) is undefined for all sidA and x.
When first referenced, the functionality assigns FsidA(x)←$ {0, 1}τ .
Initialization Phase

1. On (atpake.userinit,U, sidA, sidT) from FatPAKE for honest U:
– save (userinit,U, sidA, sidT)
– send (toprf.init, sidA,U) to A∗

– for every j ∈ {1, . . . , |SsidT |}, send
(channel.send, (sidA||sidT||j),U,SsidT [j], τ) to A

∗

2. On (toprf.init, sidA, pw
∗
1, . . . , pw

∗
k) from A∗ on behalf of some U ∈ Corr:

– save (userinit,U, sidA,⊥) marked adversarial
– send (toprf.init, sidA,U) to A∗

– send (toprf.initeval, sidA, FsidA(pw
∗
1), . . . , FsidA(pw

∗
k)) to U

– if U ̸= A∗, choose any sidT and pw and send (atpake.userinit, sidA, sidT, pw)
to FatPAKE on behalf of U

3. On (atpake.auxinit, sidA, i,U
′) from FatPAKE:

– save (auxinit, sidA, i,U
′) marked pending

4. On (toprf.sinit, sidA, i,U
′) from A∗ where SsidA [i] ∈ Corr:

– if SsidA [i] ̸= A
∗, send (atpake.auxinit, sidA, i,U

′) to FatPAKE

– otherwise, save (auxinit, sidA, i,U) marked pending
5. On (atpake.targetinit, sidA, sidT, j,U

′) from FatPAKE:
– save (targetinit, sidA, sidT, j,U

′) marked pending
6. On (toprf.fininit, sidA, i) from A∗:

– retrieve urec = (userinit, [U], sidA, [sidT]) (abort if not found)
– retrieve (auxinit, sidA, i,U) marked pending and change its mark to

completed (abort if not found)
– save (auxiliaryfile, sidA, i) and mark it adversarial if urec is adversarial
– send (atpake.finishauxiliaryinit, sidA, i) to FatPAKE

7. On (channel.deliver, (sidA||sidT||j),U,SsidT [j]) from A
∗:

– retrieve trec = (targetinit, sidA, sidT, j,U) marked pending (abort if not
found)

– if (channel.send, (sidA||sidT||j),SsidT [j], [rw
∗
j ]) was previously sent by A∗

on behalf of U ∈ Corr:
• if ∃ (sid∗

A, pw
∗) s.t. rw∗

j = KDF(Fsid∗
A
(pw∗),SsidT [i]) then send

(atpake.finishtargetinit, sidA, sidT, j, sid
∗
A, pw

∗) to FatPAKE and save
(targetfile, sid∗

A, sidT, j, pw
∗, rw∗

j )
• otherwise, send (atpake.finishtargetinit, sidA, sidT, j,⊥,⊥) to FatPAKE

and save (targetfile,⊥, sidT, j,⊥, rw∗
j )

– otherwise, retrieve record (userinit,U, sidA, sidT) (abort if not found),
send (atpake.finishtargetinit, sidA, sidT, j,⊥,⊥) to FatPAKE, and save
(targetfile, sidA, sidT, j,⊥,⊥)

– mark trec completed

Fig. 16. Simulator SIMtOPRF−atPAKE for protocol ΠtOPRF−atPAKE, part 1: Notation and
Initialization
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Party Corruption

8. On (toprf.corrupt,P) from A∗:
– set Corr := Corr ∪ {P}
– send (atpake.corrupt,P) to FatPAKE

9. On (sapake.stealpwdfile, (sidT||j)) from A∗:
– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ]) and mark it compr (abort if

not found)
– send (atpake.stealtargetfile, sidT, j) to FatPAKE

Authentication Phase (I)

10. On (atpake.usersession,U′, sidA, sidT, j, ssid) from FatPAKE:
– send (toprf.eval, sidA, ssid ,U

′) to A∗

– save (session,U′,SsidT [j], sidA, sidT, j, ssid ,⊥,⊥) marked prelim
11. On (toprf.eval, sidA, ssid , pw

∗) from A∗:
– send (toprf.eval, sidA, ssid ,A∗) to A∗

– save (eval, sidA, ssid , pw
∗) marked fresh

12. On (atpake.auxsession, sidA, i, ssidA) from FatPAKE:
– send (toprf.sndrcomplete, sidA, i, ssidA) to A∗

– set tx[sidA, i, ssidA]++
13. On (toprf.sndrcomplete, sidA, i, ssidA) from A∗:

– retrieve rec = (auxiliaryfile, sidA, i) (abort if not found)
– if rec is marked adversarial, send (toprf.sndrcomplete, sidA, i, ssidA)

to A∗ and set tx[sidA, i, ssidA]++; otherwise, send
(atpake.auxsession, sidA, i, ssidA) to FatPAKE

14. On (toprf.rcvcomplete, sidA, ssid , sid
∗
A, ssid

∗
A,C) from A∗ s.t. ∃ record urec =

(session, [U′,SsidT [j]], sidA, [sidT, j], ssid ,⊥,⊥) marked prelim:
– abort if ∃i∈C tx[sid∗

A, i, ssid
∗
A] = 0, else ∀i∈C set tx[sid∗

A, i, ssid
∗
A]−−

– change urec’s mark to fresh
– update field sidA in urec to sid∗

A

– if record (userinit, [U], sid∗
A, [sid

′
T]) is marked adversarial,

send (atpake.auxactive,U′, ssid) to FatPAKE; otherwise, send
(atpake.auxproceed,U′, ssid , sid∗

A, ssid
∗
A,C)

– send (sapake.usrsession, (sidT||j), ssid ,U′,SsidT [j]) to A
∗

15. On (toprf.rcvcomplete, sidA, ssid , sid
∗
A, ssid

∗
A,C) from A∗ s.t. ∃ record urec =

(eval, sidA, ssid , [pw
∗]) marked fresh:

– abort if ∃i∈C tx[sid∗
A, i, ssid

∗
A] = 0, else ∀i∈C tx[sid∗

A, i, ssid
∗
A]−−

– change urec’s mark to completed
– send (toprf.eval, sidA, ssid , Fsid∗

A
(pw∗)) to A∗

– ∀i∈C send (atpake.offlinetestpwd, sid∗
A, i, ssid

∗
A,⊥,⊥, pw∗) to FatPAKE

– save (completedeval, sid∗
A, pw

∗, ssid∗
A, Fsid∗

A
(pw∗))

Fig. 17. Simulator SIMtOPRF−atPAKE for protocol ΠtOPRF−atPAKE, part 2: Authentication
Phase (I)
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Authentication Phase (II)

16. On (atpake.targetsession, sidT, j,U
′, ssid) from FatPAKE:

– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ])
– send (sapake.svrsession, (sidT||j), ssid ,U′,SsidT [j]) to A

∗

– save (session,SsidT [j],U
′, sidA, sidT, j, ssid , pw, rwj) marked fresh

17. On (sapake.interrupt, (sidT||j), ssid ,SsidT [j]) from A
∗:

– send (atpake.interrupt, sidT, j, ssid) to FatPAKE

18. On (sapake.testpwd, (sidT||j), ssid ,P, rw∗
j ) from A∗:

– retrieve rec = (session,P, [P′, sidA], sidT, j, ssid , [pw
′, rw′

j ]) (abort if not
found)

– if rw′
j ̸= ⊥ and rw∗

j = rw′
j , send (atpake.testpwd,P, ssid , pw′) to FatPAKE

– else if rw′
j ̸= ⊥ but rw∗

j ̸= rw′
j , send (atpake.testpwd,P, ssid , (pw′||0))

– else if ∃ pw∗ s.t. rw∗
j = KDF(FsidA(pw

∗),SsidT [j]), send
(atpake.testpwd,P, ssid , pw∗)

– else, send (atpake.testpwd,P, ssid ,⊥)
– in any case, forward the response (if any) to A∗

– if the response is “correct guess”, mark rec compr and set cflag[sidT, j] :=
compr

19. On (sapake.impersonate, (sidT||j), ssid) from A∗:
– send (atpake.impersonate, sidT, j, ssid) to FatPAKE

– forward the response (if any) to A∗

– if the response is “correct guess”, mark rec compr
20. On (sapake.newkey, (sidT||j), ssid ,P,K∗) from A∗:

– retrieve rec = (session,P, [P′, sidA], sidT, j, ssid , [pw, rwj ]) not marked
prelim (abort if not found)

– if rec is not compr and cflag[sidT, j] = uncompromised, set K∗ ←$

{0, 1}τ
– send (atpake.newkey,P, ssid ,K∗) to FatPAKE

– mark rec completed
21. On (sapake.testabort, (sidT||j), ssid ,U′) from A∗:

– send (atpake.testabort,U′, sidT, j, ssid) to FatPAKE

– forward the response (if any) to A∗

Offline Password Tests

22. On (sapake.offlinetestpwd, (sidT||j), rw∗
j ) from A∗:

– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ])
– if rw∗

j = rwj ̸= ⊥, send “correct guess” to A∗

– else if ∃ record (completedeval, sidA, [pw
∗, ssidA], rw

∗) s.t. rw∗
j =

KDF(rw∗,SsidT [j]), send (atpake.offlinetestpwd, sidA,⊥, ssidA, sidT, j, pw
∗)

to FatPAKE and forward the response to A∗

– else, send “wrong guess” to A∗

– in any case, if the response is “correct guess”, set cflag[sidT, j] := compr

Fig. 18. Simulator SIMtOPRF−atPAKE for protocol ΠtOPRF−atPAKE, part 3: Authentication
Phase (II) and Offline Password Tests
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distinguish between the real and simulated worlds is upper-bounded by the
probability that such an event occurs.

These collision events can be classified into 3 types:

1. For some target server instance identified by (sidT, j), there exist two
non-equal pairs (sidA, pw) ̸= (sid ′A, pw

′) such that
rwj = KDF(FsidA

(pw),SsidT
[j]) = rw′j = KDF(Fsid′

A
(pw′),SsidT

[j]).
In the real world, FsaPAKE considers only rwj equality when evaluating the
success of a honest session or adversarial attack. In the simulated world,
the equality of (sidA, pw) pairs is used instead. Therefore, if there exists a
session where non-equal (sidA, pw) pairs actually collide to the same rw, the
real world will treat that session a success while the simulated world treats
it as a failure. Specifically, this disparity can occur as the result of a testpwd,
impersonate, newkey, testabort, or offlinetestpwd message.
For any (sidT, j), the rwj mapped to by each (sidA, pw) is completely random.
Therefore, Z’s probability of finding a collision can be bounded:

Pr[collision type #1] ≤ qT ·
q2eval
2τ

Here, qT is the number of target server instances, qeval is the number of
tOPRF evaluations, and τ is the output length of PRFs F and KDF.

2. For some rw∗j used in an (online or offline) password-guessing attack
against target server instance (sidT, j) initialized with
rwj = KDF(FsidA

(pw),SsidT
[j]), rw∗j = rwj even though the adversary did

not derive rw∗j from any (sid∗A, pw
∗) pair.

In the real world, FsaPAKE considers only rwj equality when evaluating the
success of a password-guessing attack. In the simulated world, the equality
of (sidA, pw) pairs is used instead, and it is assumed that the adversary never
succeeds in a guess using a rw∗j that is not derived from a (sidA, pw) pair.
Therefore, if the adversary “gets lucky” and guesses the correct rwj directly,
the real world will treat the attack as a success while the simulated world
treats it as a failure. Specifically, this disparity can occur as the result of a
testpwd or offlinetestpwd message.
For any target server, the rwj mapped to by the (sidA, pw) with which it
was initialized is completely random. Therefore Z’s probability of “getting
lucky” in this way can be bounded:

Pr[collision type #2] ≤ qtest
2τ

Here, qtest is the number of online and offline password-guessing attacks
against FsaPAKE and τ is the output length of PRFs F and KDF.

3. For some rw∗j dishonestly sent to an initializing target server identified by
(sidT, j), there later is found a pair (sidA, pw) such that
rw∗j = KDF(FsidA

(pw),SsidT
[j]) even though the adversary did not derive

rw∗j from any (sid∗A, pw
∗) pair.

In both the real and simulated worlds, a dishonest user can cause a target
server to initialize using some rw∗j that was not derived from a (sidA, pw)
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pair. In the real world, it is possible that an honest (or dishonest) user later
“gets lucky” and authenticates to that server using a (sidA, pw) pair that
just happens to map to that rw∗j . In the simulated world, it is impossible for
any honest user to ever authenticate to that target server. Specifically, this
disparity can occur on target server instances initialized with tampered
targetfiles.
For any (sidT, j), the rwj mapped to by (sidA, pw) is completely random.
Therefore, Z’s probability of finding a “getting lucky” in this way can be
bounded:

Pr[collision type #3] ≤ q∗T · qeval
2τ

Here, q∗T is the number of dishonestly initialized target server instances, qeval
is the number of tOPRF evaluations, and τ is the output length of PRFs F
and KDF.

Summing up these probabilities yields an overall bound on Z’s distinguishing
advantage between the real and simulated worlds.

DistG0,G1

Z ≤ qT · q2eval + qtest + q∗T · qeval
2τ

τ is the security parameter. If Z is efficient, then qT, qeval, qtest, and q∗T
are all polynomial functions of the security parameter. Thus, the distinguishing
advantage of any efficient Z is negligible.

Protocol ΠtOPRF−atPAKE realizes FatPAKE.

D Strong Asymmetric PAKE Functionality

For completeness we include in Figure 19 the strong asymmetric PAKE
(saPAKE) functionality, FsaPAKE [44].

We make two edits in this functionality, relative to how it appears in [44], one
simplification and one correction. The simplification is in the testabort interface,
which we restrict only to user U, because that’s the only side which can abort
mid-protocol in OPAQUE, and only to client’s sessions marked fresh. The
correction is that the server password file does not keep the identity U because
this moniker identifies a machine which can execute the saPAKE protocol on
the user’s behalf, but this identity is flexible: Indeed the user can authenticate
using his/her password from an arbitrary network entity. Instead, the intended
communication counterparty can be dynamically decided by the environment,
and it is passed to the server in the serversession query.

E atPAKE Construction from Non-Strong aPAKE

In this section we present our atPAKE variant which uses ordinary asymmetric
password-authenticated key exchange (aPAKE) as a building block, rather than
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Password Registration

– On (storepwdfile, sid , pw) from S, if this is the first such message, record

⟨file, sid ,S, pw⟩, mark it uncompromised, set cflag := uncompromised.

Stealing Password Data

– On (stealpwdfile, sid) from A∗, if there is no record ⟨file, sid , S, pw⟩, return
“no password file” to A∗. Otherwise, if the record is marked uncompromised,
mark it compromised; regardless, return “password file stolen” to A∗.

– On (offlinetestpwd, sid , pw∗) from A∗, if there is a record ⟨file, sid , S, pw⟩
marked compromised, do: if pw∗ = pw, return “correct guess” to A∗

and set cflag := compromised; otherwise return “wrong guess.”

Password Authentication

– On (usersession, sid , ssid , S, pw′) from U, send (usersession, sid , ssid ,U, S) to
A∗. Also, if this is the first usersession message for ssid , record ⟨ssid ,U, S, pw′⟩
and mark it fresh.

– On (serversession, sid , ssid ,U) from S, retrieve ⟨file, S, pw⟩, and send
(serversession, sid , ssid , S,U) to A∗. Also, if this is the first serversession
message for ssid , record ⟨ssid , S,U, pw⟩ and mark it fresh.

Active Session Attacks

– On (interrupt, sid , ssid ,S) from A∗, if there is a record ⟨ssid , S,U, pw⟩
marked fresh, mark it interrupted and set dPT[ssid ] := 1.

– On (testpwd, sid , ssid ,P, pw∗) from A∗, retrieve record ⟨ssid ,P,P′, pw′⟩ and:
• If the record is fresh then do the following: If pw∗ = pw′ return “correct

guess” to A∗ and mark ⟨ssid ,P,P′, pw′⟩ compromised, otherwise return
“wrong guess” and mark ⟨ssid ,P,P′, pw′⟩ interrupted.

• If P = S and dPT[ssid ] = 1 then set dPT[ssid ] := 0 and if pw∗ = pw′

then return “correct guess” to A∗ else return “wrong guess.”
In either case, if P = S and pw∗ = pw′ then set cflag := compromised.

– On (impersonate, sid , ssid) from A∗, if there is a record ⟨ssid ,U, S, pw′⟩marked
fresh, do: If there is a record ⟨file,U, S, pw⟩marked compromised and pw′ =
pw, mark ⟨ssid ,U, S, pw′⟩ compromised and return “correct guess” to A∗;
otherwise mark it interrupted and return “wrong guess.”

Key Generation and Authentication

– On (newkey, sid , ssid ,P, SK∗) from A∗ where |SK∗| = ℓ, if there is a record
⟨ssid ,P,P′, pw′⟩ not marked completed, do:

• If the record is compromised, or (P = S, the record is interrupted and
cflag = compromised) , or either P or P′ is corrupted, set SK := SK∗.

• Else, if the record is fresh and (sid , ssid , SK′) was sent to P′ at the time
there was a record ⟨ssid ,P′,P, pw′⟩ marked fresh, set SK := SK′.

• Else pick SK ←$ {0, 1}ℓ.
Finally, mark ⟨ssid ,P,P′, pw′⟩ completed and send (sid , ssid , SK) to P.

– On (testabort, sid , ssid ,U) from A∗, if ∃ record ⟨ssid ,U,S, pw′⟩ marked fresh
and record ⟨file, sid , S, pw⟩ do: If pw = pw′ send Succ to A∗, otherwise send
Fail to A∗ and (abort, sid , ssid) to U and mark ⟨ssid ,U, S, pw′⟩ completed.

Fig. 19. Functionality FsaPAKE with marked relaxations specific to OPAQUE [44].
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strong aPAKE (saPAKE). We recall that saPAKE was introduced by [44] as a
type of aPAKE that is resistant to precomputation attacks. Consequently, using
aPAKE rather than saPAKE opens up an adversarial precomputation avenue in
the resulting atPAKE protocol. However, this is a mild weakening of the atPAKE
notion, because the adversary can only start precomputing ODA attack after
compromising t+ 1 auxiliary servers.

For completeness we include in Figure 20 the aPAKE functionality, FaPAKE

[32]. Its significant difference from FsaPAKE (Figure 19) is in the handling of
precomputed offline password tests.

We define protocolΠaPPSS−aPAKE, an atPAKE construction built using FtOPRF

and FaPAKE. This protocol is identical to our main construction ΠtOPRF−atPAKE of
Figure 8, except that it replaces calls to FsaPAKE with calls to FaPAKE. Protocol
ΠaPPSS−aPAKE realizes an ideal functionality FatPAKE(medium), which is defined as
FatPAKE shown in Figures 4, 5, and 6, but with the following 3 differences:

1. In the offlinetestpwd routine, the adversary can precompute offline password
tests against target server files before they are compromised. In particular,
rather than aborting if no compr targetfile is found, the functionality
instead still checks whether the password guess has been evaluated with
t+ 1 auxiliary servers (i.e. whether |TS[sidA, pw

∗, ssidA]| ≥ t+1). If so, then
a record (offline, sidT, sidA, pw

∗) is saved, indicating that the adversary
has precomputed an offline password test on pw∗.

2. In the corrupt and stealtargetfile routines, compromise of a target server
immediately informs the adversary if one of the precomputed password
tests was correct. In particular, after a record (targetfile,
sidT, j, sidA, pw, tflag) is marked compr, the functionality checks where
there exists record (offline, sidT, sidA, pw); if so, it sends (sidA, pw) to A∗.

3. The testabort routine can be run against both user and server sessions, as
is the case in FaPAKE. (In FsaPAKE, only user sessions can be targeted by
testabort.) Furthermore, success requires a matching counter-session, not just
a matching server file.
Separately from changes related to ODA precomputation, this last difference
reflects a minor additional way in which FaPAKE is weaker than FsaPAKE. See
Appendix D for further explanation.

Theorem 5. Protocol ΠaPPSS−aPAKE realizes functionality FatPAKE(medium) with
parameters t and n in the (FtOPRF,FaPAKE,Fchannel)-hybrid model.

Specifically, for any efficient adversary A against protocol ΠaPPSS−aPAKE,
there exists a simulator SIM such that no efficient environment Z can
distinguish the view of A interacting with the real ΠaPPSS−aPAKE protocol and
the view of SIM interacting with the ideal functionality FatPAKE(medium) with
advantage better than (qT · q2eval + qtest + q∗T · qeval)/2τ where qT is the number of
target server instances, qeval is the number of tOPRF evaluations, qtest is the
number of online and offline password-guessing attacks against FaPAKE, q∗T is
the number of dishonestly initialized target server instances, and security
parameter τ is the tOPRF output length.
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Password Registration

– On (storepwdfile, sid , pw) from S, if this is the first such message, record
⟨file, sid ,S, pw⟩ and mark it uncompromised

Stealing Password Data

– On (stealpwdfile, sid) from A∗, if there is no record ⟨file, sid , S, pw⟩, return
“no password file” to A∗. Otherwise, if the record is marked uncompromised,
mark it compromised; regardless,

• If there is a record (offline, sid , pw), send pw to A∗ .

• Else return “password file stolen” to A∗.

– On (offlinetestpwd, sid , pw∗) from A∗, do:
• If there is a record ⟨file, sid , S, pw⟩ marked compromised, do: if pw∗ =

pw, return “correct guess” to A∗; otherwise return “wrong guess.”

• Else record (offline, sid , pw∗).

Password Authentication

– On (usersession, sid , ssid , S, pw′) from U, send (usersession, sid , ssid ,U, S) to
A∗. Also, if this is the first usersession message for ssid , record ⟨ssid ,U, S, pw′⟩
and mark it fresh.

– On (serversession, sid , ssid ,U) from S, retrieve ⟨file, S, pw⟩, and send
(serversession, sid , ssid , S,U) to A∗. Also, if this is the first serversession
message for ssid , record ⟨ssid , S,U, pw⟩ and mark it fresh.

Active Session Attacks

– On (testpwd, sid , ssid ,P, pw∗) from A∗, if there is a record ⟨ssid ,P,P′, pw′⟩
marked fresh, do: if pw∗ = pw′ return “correct guess” to A∗ and mark
⟨ssid ,P,P′, pw′⟩ compromised, otherwise return “wrong guess” and mark
⟨ssid ,P,P′, pw′⟩ interrupted.

– On (impersonate, sid , ssid) from A∗, if there is a record ⟨ssid ,U, S, pw′⟩marked
fresh, do: If there is a record ⟨file,U, S, pw⟩marked compromised and pw′ =
pw, mark ⟨ssid ,U, S, pw′⟩ compromised and return “correct guess” to A∗;
otherwise mark it interrupted and return “wrong guess.”

Key Generation and Authentication

– On (newkey, sid , ssid ,P, SK∗) from A∗ where |SK∗| = ℓ, if there is a record
⟨ssid ,P,P′, pw′⟩ not marked completed, do:
• If the record is compromised, or P or P′ is corrupted, set SK := SK∗.
• Else, if the record is fresh and (sid , ssid , SK′) was sent to P′ at the time

there was a record ⟨ssid ,P′,P, pw′⟩ marked fresh, set SK := SK′.
• Else pick SK ←$ {0, 1}ℓ.

Finally, mark ⟨ssid ,P,P′, pw′⟩ completed and send (sid , ssid , SK) to P.
– On (testabort, sid , ssid ,P) from A∗, if there is a record (ssid ,P,P′, pw′) not

marked completed, do:
• If it is fresh and there is a record (ssid ,P′,P, pw′), send Succ to A∗.
• Else send Fail to A∗ and (abort, sid , ssid) to P, and mark (ssid ,P,P′, pw′)

completed.

Fig. 20. Functionality FaPAKE [32], [44]. The shadowed text is the adversary’s
precomputation avenue, which does not exist in FsaPAKE (Figure 19).
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Note that, in Theorem 5’s security bound, qtest is the number of completed
password-guessing attacks. It does not count precomputed offline guesses that
are never completed by the later corruption of the relevant target server.

The proof of Theorem 5 is almost entirely identical to our main construction’s
proof of security (Appendix C). To avoid redundancy, we list only the few ways in
which the simulator SIMtOPRF−atPAKE (Figures 16, 17, and 18) must be modified in
order to accomodate this new proof. All other parts of the proof are identical. The
differences all follow in a straightforward manner from the differences between
FaPAKE and FsaPAKE.

1. In response to apake.offlinetestpwd messages from A∗ (routine 22), send
atpake.offlinetestpwd to FatPAKE even if there is no targetfile record.

2. After sending atpake.stealtargetfile to FatPAKE (routine 9), forward any
response to A∗. In particular, FatPAKE will respond with pw if there was a
correct precomputed offline password test.

3. Never set any cflag to compr. The only effect of this change is in the handling
of apake.newkey messages from A∗ (routine 20).

4. Omit handling of apake.interrupt messages from A∗ (routine 17). This
command does not exist in the FaPAKE interface.

F atPAKE Construction from aPPSS

In this section we discuss our atPAKE variant which constructs atPAKE from
augmented password-protected secrete sharing (aPPSS) [27] instead of tOPRF.
The aPPSS scheme allows the client holding password pw to decrypt and
authenticate an arbitrary secret rw which was secret-shared (and
password-protected) among the auxiliary servers during initialization.
Compared to tOPRF, an aPPSS scheme can be realized from any
(non-threshold) OPRF, which in turn can be realized under weaker
assumptions, e.g. GapOMDH [40] or DDH (with more protocols rounds) [17].
The disadvantage of using aPPSS is that it (1) it enables offline password
testing attack after compromise of t + 1 auxiliary servers, without the
compromise of a target server, and (2) it lets the client, not the target server,
be the first to learn if an authentication attempt succeeded, a feature which
some servers might find problematic.

For completeness, we recall the FaPPSS functionality of [27] in Figure 21, and
we refer to [27] for an OPRF-based implementation of this functionality. As
mentioned in the Introduction, see also footnote 10, we believe the UC aPPSS
functionality FaPPSS can also be generically realized from UC tOPRF via the
compiler of [41].

In Figures 22, 23, and 24 we present FatPAKE(weak), a weakened variant of
FatPAKE that can be realized using aPPSS instead of tOPRF. The most important
security relaxation is in regard to offline dictionary attacks. In FatPAKE(weak), once
t+ 1 auxiliary servers are compromised the adversary can freely perform offline
password tests (without any target server compromise or involvement). Honest
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Notation: Values t, n, τ are parameters. Functionality initializes
ppss.pwtested(pw) := ∅ for all pw, and txauxsid(Pi) := 0 for all Pi.
(The functionality code handles only one instance, tagged by a unique string sid.)

Initialization:

1. On (ppss.uinit, sid , pw, sk∗) from party U s.t. |Psid | = n: Send
(ppss.uinit, sid ,U) to A∗. If U is honest then set sk ←$ {0, 1}τ , else set
sk := sk∗. Save (ppss.uinit, sid ,U, pw, sk). Ignore future ppss.uinit calls for same
sid .

2. On (ppss.sinit, sid , i,U) from party S, or (ppss.sinit, sid , i, S,U) from A∗ for
S ∈ Corr, send (ppss.sinit, sid , i, S,U) to A∗, save (ppss.sinit, sid ,U, S, i).

3. If ∃ rec. (ppss.uinit, sid ,U, pw, sk) and (ppss.sinit, sid ,U, S, i) s.t. S=Psid [i],
mark S as ACTIVE.

4. On (ppss.fininit, sid) from A∗, if ∃ rec. (ppss.uinit, sid ,U, pw, sk) and all parties
in list Psid are marked ACTIVE, send (ppss.fininit, sid , sk) to U.

Server Compromise: (This query requires permission from the environment.)

1. On (ppss.compromise, sid ,P) from A∗, set Corr := Corr ∪ {P}.

Reconstruction:

1. On (ppss.urec, sid , ssid ,S, pw′) from party U′ or from U′ = A∗,
send (ppss.urec, sid , ssid ,U′,S) to A∗. If ∃ record (ppss.uinit, sid ,U, pw, sk)
then create record (ppss.urec, sid , ssid ,U′, pw, pw′, sk), else create record
(ppss.urec, sid , ssid ,U′,⊥, pw′,⊥). Ignore future ppss.urec calls for same ssid .

2. On (ppss.srec, sid , ssid ,U′) from party S or (ppss.srec, sid , ssid ,S,U′) from A∗

for S ∈ Corr, send (ppss.srec, sid , ssid , S,U′) to A∗. If S is marked ACTIVE
then increment txauxsid(S) by 1.

3. On (ppss.finrec, sid , ssid ,C, atflag, pw∗, sk∗) from A∗, if ∃ rec. (ppss.urec, sid ,
ssid ,U′, pw, pw′, sk) then erase it and send (ppss.finrec, sid , ssid , sk′) to U′ s.t.
(a) if atflag = 1, |C| = t+ 1, and ∀S∈C(txauxsid(S) > 0) then set txauxsid(S)– – for

all S ∈ C, and if pw = pw′ then set sk′ := sk else set sk′ := ⊥;
(b) if atflag = 2 and pw∗ = pw′ then set sk′ := sk∗;
(c) otherwise set sk′ := ⊥.

Password Test:

1. On (ppss.testpw, sid , S, pw∗) from A∗, retrieve (ppss.uinit, sid ,U, pw, sk). If
txauxsid(S)>0 then add S to set ppss.pwtested(pw∗) and set txauxsid(S)– –. If
|ppss.pwtested(pw∗)| = t+1 then return sk to A∗ if pw∗ = pw, else return ⊥.

Fig. 21. Augmented PPSS functionality FaPPSS
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Notation
Integer t is a threshold parameter.
Set tx[x] := 0 and TS[x] := {} for all x.

Initialization Phase

1. On (userinit, sidA, sidT, pw) from U ∈ P:
– send (userinit,U, sidA, sidT) to A∗

– save (userinit,U, sidA, sidT, pw) and set cflag[sidA] := uncompromised

– ignore future userinit calls for same sidA or sidT

2. On (auxinit, sidA, i,U) from S = SsidA [i]:
– send (auxinit, sidA, i,U) to A∗

– save (auxinit, sidA, i,U) marked pending
– ignore future auxinit calls for same (sidA, i)

3. On (targetinit, sidA, sidT, j,U) from T = SsidT [j]:
– send (targetinit, sidA, sidT, j,U) to A∗

– save (targetinit, sidA, sidT, j,U) marked pending
– ignore future targetinit calls for same sidA or sidT and j

4. On (finishauxiliaryinit, sidA, i) from A∗:
– find (userinit, [U], sidA, [sidT, pw]) (abort if missing)
– find (auxinit, sidA, i,U) marked pending (abort if missing) and change its

mark to completed
– save (auxiliaryfile, sidA, i, pw ), and if SsidA [i] ∈ Corr then mark it compr

– output (finishauxiliaryinit, sidA) to S = SsidA [i]

5. On (finishtargetinit, sidA, sidT, j, sid
∗
A, pw

∗) from A∗:
– find rec=(targetinit,sidA,sidT,j,[U]) marked pending (abort if missing)
– if U /∈ Corr then find (userinit,U, sidA, sidT, [pw]) (abort if missing) and

save (targetfile, sidT, j, sidA, pw,untampered)
– otherwise (i.e. if U ∈ Corr) save (targetfile, sidT, j, sid

∗
A, pw

∗,tampered)
– output (finishtargetinit, sidA, sidT) to T = SsidT [j], mark rec completed
– if SsidT [j] ∈ Corr then mark the targetfile compr

Fig. 22. FatPAKE(weak): atPAKE functionality (1): Initialization Phase.
Dashed text is included in FatPAKE(weak) but omitted from FatPAKE.

clients also learn whether or not their passwords are correct before interacting
with a target server. A second and less significant relaxation is that auxiliary
server evaluation tickets are no longer bound to a particular ssid .

In Figure 25 we show the atPAKE protocol constructed from aPPSS. Our
aPPSS-based atPAKE scheme can be seen as a threshold counterpart to
OPAQUE, where the client authenticates the server-supplied data before using
it to authenticate to the server, while our tOPRF-based scheme can be seen as
a threshold counterpart to OPAQUE’, where the (target) server is the first
party that can verify an authentication result.

In Figures 26, 27 and 28 we show the simulator for the security proof of the
aPPSS-based atPAKE protocol, i.e. for the proof of Theorem 6:
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Party Corruption, File Compromise, Offline Password Tests

6. On (corrupt,P) from A∗ (permitted by Z), set Corr := Corr ∪ {P}
– if ∃ (auxiliaryfile, sidA, i, [pw] ) for SsidA [i] = P mark it compr

– if ∃ (targetfile, sidT, j, sidA, [pw, tflag]) for SsidT [j] = P mark it compr
7. On (stealauxiliaryfile, sidA, i) from A∗ (permitted by Z):

– if ∃ (auxiliaryfile, sidA, i, [pw] ) mark it compr

8. On (stealtargetfile, sidT, j) from A∗ (permitted by Z):
– if ∃ (targetfile, sidT, j, [sidA, pw, tflag]) mark it compr

9. On (offlinetestpwd, sidA, i, ssidA, sidT, j, pw
∗) from A∗:

– retrieve (auxiliaryfile, sidA, i, [pw]) (abort if not found)

– if tx[sidA, i, ssidA] > 0 add i to TS[sidA, pw
∗, ssidA], set tx[sidA, i, ssidA]– –

– retrieve rec = (targetfile, sidT, j, sidA, [pw, tflag]) (abort if not found)

– if |TS[sidA, pw
∗, ssidA]| ≥ t+1 and rec is marked compr then return

“correct guess” to A∗ and set cflag[sidA] := compr if pw∗ = pw, else

return “wrong guess” to A∗

Authentication Phase (I): Session Initialization, Passive Transmission

10. On (usersession, sidA, sidT, j, ssid , pw
′) from U′ ∈ P:

– send (usersession,U′, sidA, sidT, j, ssid) to A∗

– save (session,U′,SsidT [j], sidA, sidT, j, ssid , pw
′) marked prelim

– ignore future usersession calls for same ssid

11. On (auxsession, sidA, i, ssidA) from S = SsidA [i] or A
∗:

– retrieve (auxiliaryfile, sidA, i, [pw] ) (abort if record not found)

– if sender is A∗ then abort unless the retrieved record is marked compr
– send (auxsession, sidA, i, ssidA) to A∗

– set tx[sidA, i, ssidA]++

12. On (targetsession, sidT, j,U
′, ssid) from S = SsidT [j]:

– retrieve (targetfile, sidT, j, [sidA, pw, tflag]) (abort if record not found)
– send (targetsession, sidT, j,U

′, ssid) to A∗

– save (session, S,U′, sidA, sidT, j, ssid , pw) marked fresh
– ignore future targetsession calls for same ssid

13. On (auxproceed,U′, ssid , sid∗
A, ssidA,C) s.t. |C| = t+ 1 from A∗:

– retrieve rec = (session,U′, S, [sidA, sidT, j], ssid , [pw
′]) marked prelim

(abort if record not found)

– reset field sidA in record rec to sid∗
A

– abort if ∃i∈C tx[sidA, i, ssidA] = 0, else ∀i∈C set tx[sidA, i, ssidA]– –

– change rec’s mark to fresh

– retrieve (auxiliaryfile, sidA, i, [pw]) for any i ∈ C

– if pw′ = pw send “success” to A∗ and mark rec as fresh, else mark rec

as completed, send “fail” to A∗ and output (abort, ssid) to U′

14. On (testabort,U′, sidT, j, ssid) from A∗:
– retrieve rec = (session,U′,SsidT [j], [sid

′
A], sidT, j, ssid , [pw

′]) marked fresh
and (targetfile, sidT, j, [sidA, pw, tflag]) (abort if either not found)

– if (sid ′
A, pw

′) = (sidA, pw) send “success” toA∗; else mark rec completed,
send “fail” to A∗, and output (abort, ssid) to U′

Fig. 23. FatPAKE(weak): atPAKE functionality (2): Compromises, Authentication (I).
Dashed text is included in FatPAKE(weak) but omitted from FatPAKE.
Boxed text is included in FatPAKE but omitted from FatPAKE(weak).
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Authentication Phase (II): Active Attacks, Session Termination

15. On (auxactive,U′, ssid) from A∗:
– retrieve (session,U′, S, [sidA, sidT, j], ssid , [pw

′]) marked prelim and mark
it counterfeit (abort if record not found)

16. On (interrupt, sidT, j, ssid) from A∗:

– retrieve (session,SsidT [j], [U
′, sidA], sidT, j, ssid , [pw]) marked fresh, mark

it interrupted and set dPT[ssid ] := 1.

17. On (testpwd,P, ssid , pw∗) from A∗:
– retrieve rec = (session,P, [P′, sidA, sidT, j], ssid , [pw]) (abort if not found)

– if dPT[ssid ] = 1, then set dPT[ssid ] := 0; else if rec is not marked fresh

or counterfeit, abort
– if pw∗ = pw and any of the following conditions hold:

(a) ∃ssidA s.t. |TS[sidA, pw
∗, ssidA]| ≥ t+1

(b) or rec marked counterfeit
(c) or P = SsidT [j] and ∃ record (targetfile, sidT, j, sidA, pw,tampered)
then mark rec as compr, send “correct guess” to A∗,

and (if P = SsidT [j]) set cflag[sidA] := compr ; else mark rec as

interrupted and send “wrong guess” to A∗

18. On (impersonate, sidT, j, ssid) from A∗:
– retrieve rec = (session,U′,SsidT [j], [sidA], sidT, j, ssid , [pw]) marked fresh

(abort if not found)
– if ∃ record (targetfile, sidT, j, sidA, pw, [tflag

′]) marked compr then mark
rec as compr and send “correct guess” to A∗; else mark rec as
interrupted and send “wrong guess” to A∗

19. On (newkey,P, ssid ,K∗) from A∗:
– retrieve rec = (session,P, [P′, sidA, sidT, j], ssid , [pw]) not marked prelim

or completed (abort if record not found) and do:
• if rec is marked compr, then set K ← K∗

• if P = SsidT [j], rec is marked interrupted, and (cflag[sidA] = compr

or ∃ record (targetfile, sidT, j, sidA, pw,tampered)), then set K ← K∗

• if rec is fresh and ∃ rec′ = (session,P′,P, sidA, sidT, j, ssid , pw) s.t.
P′ received (newkey, ssid ,K′) when rec′ was fresh, then set K ← K′

• else pick K ←$ {0, 1}τ
– finally, mark rec as completed, output (newkey, ssid ,K) to P

Fig. 24. FatPAKE(weak): atPAKE functionality (3): Authentication (II).
Boxed text is included in FatPAKE but omitted from FatPAKE(weak).
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Initialization

1. On input (atpake.userinit, sidA, sidT, pw), U does:
– send (ppss.uinit, sidA, pw,⊥) to FaPPSS

– receive (ppss.fininit, sidA, rw) from FaPPSS as response
– for every j ∈ {1, . . . , |SsidT |}, compute rwj := KDF(rw,SsidT [j]) and send

(channel.send, (sidA||sidT||j),SsidT [j], rwj) to Fchannel

2. On input (atpake.auxinit, sidA, i,U
′), auxiliary server S = SsidA [i] does:

– send (ppss.sinit, sidA, i,U
′) to FaPPSS

– output (atpake.finishauxiliaryinit, sidA)
3. On (atpake.targetinit, sidA, sidT, j,U

′), target server T = SsidT [j] does:
– await (channel.deliver, (sidA||sidT||j),U′, rwj) from Fchannel

– send (sapake.storepwdfile, (sidT||j),U′, rwj) to FsaPAKE

– output (atpake.finishtargetinit, sidA, sidT)

Password Authentication

4. On input (atpake.usersession, sidA, sidT, j, ssid , pw
′), U′ does:

– send (ppss.urec, sidA, ssid ,SsidA , pw
′) to FaPPSS

– await response (ppss.finrec, sidA, ssid , rw
′)

– if rw′ = ⊥ then pick rw′
j ←$ {0, 1}τ . Otherwise compute rw′

j :=
KDF(rw′,SsidT [j])

– send (sapake.usrsession, (sidT||j), ssid ,SsidT [j], rw
′
j) to FsaPAKE

– if receive (sapake.newkey, (sid ||j), ssid ,K) from FsaPAKE, then output
(atpake.newkey, ssid ,K)

– if instead (sapake.abort, (sidT||j), ssid) is received, then output
(atpake.abort, ssid)

5. On input (atpake.auxsession, sidA, i, ssidA), auxiliary server S = SsidA [i] sends
(ppss.srec, sidA, ssidA,U

′) to FaPPSS

6. On input (atpake.targetsession, sidT, j,U
′, ssid), target server T = SsidT [j]

does:
– send (sapake.svrsession, (sidT||j), ssid) to FsaPAKE

– if response (atpake.newkey, (sidT||j), ssid ,K) is received, then output
(atpake.newkey, ssid ,K)

Fig. 25. Protocol ΠaPPSS−atPAKE which realizes FatPAKE(weak) in the
(FaPPSS,FsaPAKE,Fchannel)-hybrid world.
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Notation
Table r stores [(sid , pw), rw] pairs where the initial entries are set to ⊥. Initially
tx[sidA, i] := 0 for all sidA and i.

Initialization Phase

1. On (atpake.userinit,U, sidA, sidT) from FatPAKE for honest U:
– save (userinit,U, sidA, sidT)
– send (ppss.uinit, sidA,U) to A∗

– for every j ∈ {1, . . . , |SsidT |}, send
(channel.send, (sidA||sidT||j),U,SsidT [j], τ) to A

∗

2. On (ppss.uinit, sidA, pw
∗, rw∗) from A∗ on behalf of some U ∈ Corr:

– save (userinit,U, sidA,⊥) marked adversarial, save r[sidA, pw
∗] = rw∗.

– send (ppss.uinit, sidA,U) to A∗

– if U ̸= A∗, choose any sidT and send (atpake.userinit, sidA, sidT, pw
∗) to

FatPAKE on behalf of U
3. On (atpake.auxinit, sidA, i,U

′) from FatPAKE:
– save (auxinit, sidA, i,U

′) marked pending
4. On (ppss.sinit, sidA, i,U

′) from A∗ where SsidA [i] ∈ Corr:
– if SsidA [i] ̸= A

∗, send (atpake.auxinit, sidA, i,U
′) to FatPAKE

– otherwise, save (auxinit, sidA, i,U) marked pending
5. On (atpake.targetinit, sidA, sidT, j,U

′) from FatPAKE:
– save (targetinit, sidA, sidT, j,U

′) marked pending
6. On (ppss.fininit, sidA, i) from A∗:

– retrieve urec = (userinit, [U], sidA, [sidT]) (abort if not found)
– retrieve (auxinit, sidA, i,U) marked pending and change its mark to

completed (abort if not found)
– save (auxiliaryfile, sidA, i) and mark it adversarial if urec is adversarial
– send (atpake.finishauxiliaryinit, sidA, i) to FatPAKE

7. On (channel.deliver, (sidA||sidT||j),U,SsidT [j]) from A
∗:

– retrieve (targetinit, sidA, sidT, j,U) marked pending and change its mark
to completed (abort if not found)

– if (channel.send, (sidA||sidT||j),SsidT [j], [rw
∗
j ]) was previously sent by A∗

on behalf of U ∈ Corr:
• if ∃ (sid∗

A, pw
∗) s.t. rw∗

j = KDF(rw∗,SsidT [i]) where r[sid
∗
A, pw

∗] = rw∗,
then send (atpake.finishtargetinit, sidA, sidT, j, sid

∗
A, pw

∗) to FatPAKE

and save (targetfile, sid∗
A, sidT, j, pw

∗, rw∗
j )

• otherwise, send (atpake.finishtargetinit, sidA, sidT, j,⊥,⊥) to FatPAKE

and save (targetfile,⊥, sidT, j,⊥, rw∗
j )

– otherwise, retrieve record (userinit,U, sidA, sidT) (abort if not found),
send (atpake.finishtargetinit, sidA, sidT, j,⊥,⊥) to FatPAKE, and save
(targetfile, sidA, sidT, j,⊥,⊥)

Fig. 26. Simulator SIMaPPSS−atPAKE for protocol ΠaPPSS−atPAKE, part 1: Notation and
Initialization
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Party Corruption

8. On (ppss.compromise,P) from A∗:
– set Corr := Corr ∪ {P}
– send (atpake.corrupt,P) to FatPAKE

9. On (sapake.stealpwdfile, (sidT||j)) from A∗:
– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ]) and mark it compr (abort if

not found)
– send (atpake.stealtargetfile, sidT, j) to FatPAKE

Authentication Phase (I)

10. On (atpake.usersession,U′, sidA, sidT, j, ssid) from FatPAKE:
– send (ppss.urec, sidA, ssid ,U

′) to A∗

– save (session,U′,SsidT [j], sidA, sidT, j, ssid ,⊥,⊥) marked prelim
11. On (ppss.urec, sidA, ssid , pw

∗) from A∗:
– send (ppss.urec, sidA, ssid ,A∗) to A∗

– save (urec, sidA, ssid , pw
∗, r[sidA, pw

∗]) marked fresh
12. On (atpake.auxsession, sidA, i, ssidA) from FatPAKE:

– send (ppss.srec, sidA, i, ssidA) to A∗

– set tx[sidA, i]++
13. On (ppss.srec, sidA, i, ssidA) from A∗:

– retrieve rec = (auxiliaryfile, sidA, i) (abort if not found)
– set tx[sidA, i]++ if rec is marked adversarial; otherwise send

(atpake.auxproceed,U′, ssid ,C) to FatPAKE

14. On (ppss.finrec, sidA, ssid ,C,⊥,⊥,⊥) from A∗ s.t. ∃ record urec =
(session, [U′,SsidT [j]], sidA, [sidT, j], ssid ,⊥,⊥) marked prelim:
– abort if ∃i∈C tx[sidA, i] = 0, else ∀i∈C set tx[sidA, i]−−
– change urec’s mark to fresh
– if record (userinit, [U], sidA, [sid

′
T]) is marked adversarial,

send (atpake.auxactive,U′, ssid) to FatPAKE; otherwise, send
(atpake.auxproceed,U′, ssid ,C)

– send (sapake.usrsession, (sidT||j), ssid ,U′,SsidT [j]) to A
∗

15. On (ppss.finrec, sidA, ssid ,C,⊥, pw∗, rw∗) from A∗ s.t. ∃ record urec =
(urec, sidA, ssid , [pw

∗], [rw∗]) marked fresh:
– abort if ∃i∈C tx[sidA, i] = 0, else ∀i∈C tx[sidA, i]−−
– change urec’s mark to completed
– send (ppss.urec, sidA, ssid , rw

∗) to A∗

– ∀i∈C send (atpake.offlinetestpwd, sidA, i, pw
∗) to FatPAKE

– save (completedurec, sidA, pw
∗, ssidA)

Fig. 27. Simulator SIMaPPSS−atPAKE for protocol ΠaPPSS−atPAKE, part 2: Authentication
Phase (I)
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Authentication Phase (II)

16. On (atpake.targetsession, sidT, j,U
′, ssid) from FatPAKE:

– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ])
– send (sapake.svrsession, (sidT||j), ssid ,U′,SsidT [j]) to A

∗

– save (session,SsidT [j],U
′, sidA, sidT, j, ssid , pw, rwj) marked fresh

17. On (sapake.interrupt, (sidT||j), ssid ,SsidT [j]) from A
∗:

– send (atpake.interrupt, sidT, j, ssid) to FatPAKE

18. On (sapake.testpwd, (sidT||j), ssid ,P, rw∗
j ) from A∗:

– retrieve rec = (session,P, [P′, sidA], sidT, j, ssid , [pw
′, rw′

j ]) (abort if not
found)

– if rw′
j ̸= ⊥ and rw∗

j = rw′
j , send (atpake.testpwd,P, ssid , pw′) to FatPAKE

– else if rw′
j ̸= ⊥ but rw∗

j ̸= rw′
j , send (atpake.testpwd,P, ssid , (pw′||0))

– else if ∃ pw∗ s.t. rw∗
j = KDF(rw∗),SsidT [j]) where r[sidA, pw

∗] = rw∗, send
(atpake.testpwd,P, ssid , pw∗)

– else, send (atpake.testpwd,P, ssid ,⊥)
– in any case, forward the response (if any) to A∗

– if the response is “correct guess”, mark rec compr and set cflag[sidT, j] :=
compr

19. On (sapake.impersonate, (sidT||j), ssid) from A∗:
– send (atpake.impersonate, sidT, j, ssid) to FatPAKE

– forward the response (if any) to A∗

– if the response is “correct guess”, mark rec compr
20. On (sapake.newkey, (sidT||j), ssid ,P,K∗) from A∗:

– retrieve rec = (session,P, [P′, sidA], sidT, j, ssid , [pw, rwj ]) not marked
prelim (abort if not found)

– if rec is not compr and cflag[sidT, j] = uncompromised, set K∗ ←$

{0, 1}τ
– send (atpake.newkey,P, ssid ,K∗) to FatPAKE

– mark rec completed
21. On (sapake.testabort, (sidT||j), ssid ,U′) from A∗:

– send (atpake.testabort,U′, sidT, j, ssid) to FatPAKE

– forward the response (if any) to A∗

Offline Password Tests

22. On (sapake.offlinetestpwd, (sidT||j), rw∗
j ) from A∗:

– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ])
– if rw∗

j = rwj ̸= ⊥, send “correct guess” to A∗

– else if ∃ record (completedurec, sidA, [pw
∗]) s.t. rw∗

j = KDF(rw∗,SsidT [j]),
where r[sidA, pw

∗] = rw∗, send (atpake.offlinetestpwd, sidA,⊥, j, pw∗) to
FatPAKE and forward the response to A∗

– else, send “wrong guess” to A∗

– in any case, if the response is “correct guess”, set cflag[sidT, j] := compr

Fig. 28. Simulator SIMaPPSS−atPAKE for protocol ΠaPPSS−atPAKE, part 3: Authentication
Phase (II) and Offline Password Tests
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Theorem 6. Protocol ΠaPPSS−atPAKE realizes functionality FatPAKE(weak) with
parameters t and n in the (FaPPSS,FsaPAKE,Fchannel)-hybrid model, i.e. for any
efficient adversary A against protocol ΠaPPSS−atPAKE, there exists a simulator
SIM s.t. environment Z can only distinguish the view of A interacting with the
real ΠaPPSS−atPAKE protocol and the view of SIM interacting with the ideal
functionality FatPAKE(weak) with negligible advantage.

G Partially Oblivious 3HashTDH

In this section we provide an ideal functionality for Partially Oblivious
Pseudorandom Functions (POPRFs) and a protocol that we prove to realize
that functionality (Section 3.4 provides a high-level overview of these
contributions).

G.1 Security Model

Figure 29 shows FtPOPRF, a generalization of our FtOPRF functionality (Figure
10) to support partially oblivious inputs. As with FtOPRF, the functionality has
two “modes” corresponding to a static and an adaptive corruption model.

Like the full version of FtOPRF (Figure 10), FtPOPRF incorporates a transcript
integrity feature. As explained in Appendix B, this property provides a guarantee
that evaluation behaves as expected whenever the man-in-the-middle adversary
is passive. If the honest parties have a means of comparing their transcripts, they
can then verify after the fact that an evaluation was correct. Looking ahead,
our tPOPRF-based atPAKE construction will perform exactly this verification
during its initialization phase (during which it is assumed that the client and
servers have secure and authenticated channels over which they can send the
transcripts) after evaluating the tPOPRF on the client’s password. In contrast,
our tOPRF-based construction initializes a whole new tOPRF for each new
atPAKE initialization, so there is no evaluation to be verified and no need for
transcripts.

G.2 The P3HashTDH Protocol

Figure 30 is ΠP3HashTDH, the partially oblivious 3HashTDH protocol. Like
Π3HashTDH (Figure 3), it uses Fchannel (Figure 1) as a building block.

P3HashTDH uses prime-order groups (G1,G2,GT ) of size m with a bilinear
pairing e : G1 × G2 → GT and (contrary to its name) four hash functions
(since the two parts of the input are hashed separately), H1 : {0, 1}∗ → G1,
H ′1 : {0, 1}∗ → G2, H2 : {0, 1}∗ → GT , and H3 : {0, 1}∗ → {0, 1}l. The PRF it
ultimately computes is Fk(xpriv, xpub) = H3(xpriv, xpub, e(H1(xpriv), H

′
1(xpub))

k),
which is very similar to the “Pythia” POPRF shown in [28] (Pythia lacks the
outer hash H3, which it does not need because it does not use a simulation-based
security model).
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Notation
Initially tx[sid , ssidS, xpub, i] := 0 for all sid , ssidS, xpub, and i. Also, Fsid(xpriv, xpub)
is undefined for all sid , xpub, and xpriv. When first referenced, the functionality
assigns Fsid(xpriv, xpub)←$ {0, 1}l.
Initialization

1. On (tpoprf.init, sid , (xpriv,1, xpub,1), . . . , (xpriv,k, xpub,k)) from P0 ∈ P∗, if this is
the first such call for sid :
– send (tpoprf.init, sid ,P0) to A∗

– send (tpoprf.initeval, sid , Fsid(xpriv,1, xpub,1), . . . , Fsid(xpriv,k, xpub,k)) to P0

– save (tpoprf.init, sid ,P0) and mark it tampered if P0 ∈ Corr
2. On (tpoprf.sinit, sid , i,P0) from S where S = Ssid [i] or (S = A∗ and Ssid [i] ∈

Corr), save record (tpoprf.sinit, sid , i,P0) marked inactive
3. On (tpoprf.fininit, sid , i) from A∗ where ∃ record urec = (tpoprf.init, sid ,P0)

and record srec = (tpoprf.sinit, sid , i,P0) marked inactive:
– send (tpoprf.fininit, sid , i) to Ssid [i]
– if urec is tampered then mark srec tampered
– else if Ssid [i] ∈ Corr then mark srec compr
– else (i.e. urec is not tampered and Ssid [i] /∈ Corr) mark srec active

Corruption

4. On (tpoprf.corrupt,P) from A∗ (with permission from Z):
– set Corr := Corr ∪ {P}
– mark every active record (tpoprf.sinit, sid , i,P0) compr where P = Ssid [i]

Evaluation

5. On (tpoprf.eval, sid , ssidU, xpriv, xpub) from U ∈ P∗, if this is the first call from
U for sid and ssidU:
– send (tpoprf.eval, sid , ssidU,U, xpub) to A∗,
– and save (tpoprf.eval, sid , ssidU,U, xpriv, xpub) marked fresh.

6. On (tpoprf.sndrcomplete, sid , i, ssidS, xpub) from S where ∃ record srec =
(tpoprf.sinit, sid , i,P0) not marked inactive and (S = Ssid [i] or (S = A∗

and srec is marked compr or tampered)):
– send (tpoprf.sndrcomplete, sid , i, ssidS, xpub) to A∗

– and await (tpoprf.sndrtrans, sid , i, ssidS, tri) from A∗;

– then send (tpoprf.sndrtrans, sid , i, ssidS, tri) to S

– if srec is not tampered, then save (tpoprf.sndrtrans, sid , i, tri)

– (regardless of the above) set tx[sid , ssidS, xpub, i]++

7. On (tpoprf.rcvcomplete, sid , ssidU, sid
∗, ssid∗

S ,C , trU ) from A∗ where |C| =
t+ 1 and ∃ record (tpoprf.eval, sid , ssidU,U, xpriv, xpub) marked fresh:

– if (i) ∃j ∈ C such that tx[sid∗, ssid∗
S , xpub, j] = 0,

or (ii) ∃ a set of records {(tpoprf.sndrtrans, sid ′, j, trU[j])}j∈C such that

sid ′ ̸= sid∗, then abort

– otherwise mark the record completed, set tx[sid∗, ssid∗
S , xpub, j]−− for

all j ∈ C, and send (tpoprf.eval, sid , ssidU, Fsid∗(xpriv, xpub) , trU ) to U

Fig. 29. FtPOPRF: threshold partially oblivious PRF functionality, parameterized by
threshold t, number of servers n, and output length l. For the static corruption model,
routine 4 is omitted. Shadowed text can be ignored if transcript integrity is unneeded.73



Notation
G1, G2, and GT are cyclic groups of prime order m with generators g1, g2, and
gT , respectively. e : G1 ×G2 → GT is a bilinear pairing.
H1 : {0, 1}∗ → G1, H

′
1 : {0, 1} → G2, H2 : {0, 1}∗ → GT , and H3 : {0, 1}∗ →

{0, 1}l are hash functions.

Initialization

1. On input (tpoprf.init, sid , (xpriv,1, xpub,1), . . . , (xpriv,k, xpub,k)), initializer P0

does:
– pick α0, ..., αt ←$ Zm and define polynomial k(x) := α0 +α1x+ ...+αtx

t

– pick β1, ..., βt ←$ Zm and define polynomial z(x) := β1x+β2x
2+ ...+βtx

t

– for each i ∈ [n], send (channel.send, [sid ||i],Ssid [i], (i, k(i), z(i))) to Fchannel

– and output (tpoprf.initeval, sid , y1, . . . , yk) where yj :=
H3(xpriv,j , xpub,j , e(H1(xpriv,j), H

′
1(xpub,j))

α0) for every j ∈ [k]
2. On input (tpoprf.sinit, sid , i,P0), server Ssid [i] does:

– await (channel.deliver, [sid ||i],P0, (i, ki, zi)) from Fchannel;
– then save record (tpoprf.share, sid , i, ki, zi)
– output (tpoprf.fininit, sid , i)

Evaluation

3. On input (tpoprf.eval, sid , ssidU, xpriv, xpub), evaluator U does:
– pick r ←$ Zm and compute a := H1(xpriv)

r

– for each i ∈ [n], send (sid , i, ssidU, a, xpub) to Ssid [i]

– await responses (sid , i, ssidU, ssidS, bi) from Ssid [i] for all i ∈ C, for any

set C ⊆ [n] of size t+ 1;
– then compute b :=

∏
i∈C bλi

i where λi is the Lagrange interpolation
coefficient for index i and index set C

– output (tpoprf.eval, ssidU, H3(xpriv, xpub, b
1/r) , (tr1, ..., trn) ) where

tri := (ssidS, a, xpub, bi) for all i ∈ C and tri := ⊥ for all i /∈ C

4. On input (tpoprf.sndrcomplete, sid , i, ssidS, xpub), server Ssid [i] does:
– retrieve record (tpoprf.share, sid , i, ki, zi) (abort if not found)
– await (sid , i, ssid ′

U, a, xpub) from any U (if it hasn’t already been received);
– then compute bi := e(a,H ′

1(xpub))
ki ·H2(ssidS, a)

zi

– output (tpoprf.sndrtrans, sid , i, ssidS, (ssidS, a, xpub, bi))

– and send response (sid , i, ssid ′
U, ssidS, bi) to U

Fig. 30. Protocol ΠP3HashTDH which realizes FtPOPRF in the Fchannel-hybrid world.
Shadowed text can be ignored if transcript integrity is unneeded.

P3HashTDH is essentially a combination of our 3HashTDH tOPRF
protocol with the pairing-based POPRF protocol of Pythia. As in 3HashTDH,
each server Si holds a Shamir secret share ki of the PRF key k, as well as a
Shamir secret share zi of zero. The evaluator first picks r ←$ Zm and sends the
blinded private input a := H1(xpriv)

r to t + 1 servers. Server i responds with
bi := e(a,H ′1(xpub))

ki · H2(ssidS, a)
zi . To combine these responses, the
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evaluator uses polynomial interpolation in the exponent to compute
b :=

∏
i b

λi
i , where the λs are Lagrange interpolation coefficients. As long as all

servers used the same (a, ssidS), the evaluator will correctly compute
b =

∏
i e(a,H

′
1(xpub))

kiλi ·
∏

i H2(ssidS, a)
ziλi , the second part of which

interpolates to H2(ssidS, a)
0 = 1 and disappears. Finally, the bilinear pairing

property enables the evaluator to correctly remove the blinding exponent r and
compute the final output H3(xpriv, xpub, b

1/r).

G.3 Security Analysis

Under the Gap One-More Bilinear Diffie Hellman (GapOMBDH) assumption
(replacing the non-bilinear GapOMDH assumption), the P3HashTDH protocol
in Figure 30 is as secure as 3HashTDH.

Theorem 7. Protocol P3HashTDH realizes functionality FtPOPRF with
parameters t and n in the Fchannel-hybrid model, assuming static corruptions,
hash functions H1, H ′1, H2, and H3 modeled as random oracles, the
GapOMBDH assumption on pairing e, and the DDH assumption on group GT .

Specifically, for any efficient adversary A against protocol P3HashTDH, there
exists a simulator SIM such that no efficient environment Z can distinguish
the view of A interacting with the real P3HashTDH protocol and the view of
SIM interacting with the ideal functionality FtPOPRF with advantage better than
q2I/m + qI · (t · AdvDDH

Q + AdvGapOMBDH
R ) · (t + 1) where qI is the number of

tPOPRF instances, m = |GT |, and AdvGapOMBDH
R and AdvDDH

Q are bounds on
the probability that any efficient algorithm violates the GapOMBDH and DDH
assumptions, respectively.

Theorem 8. In the case of adaptive corruptions, the statement from Theorem
7 still holds under the additional assumption that

(
n
t′

)
is a polynomial function

of the security parameter for all 0 ≤ t′ ≤ t.
Specifically, no efficient adversary A against P3HashTDH has distinguishing

advantage better than q2I/m+ qI · (t ·AdvDDH
Q +AdvGapOMBDH

R ) ·
∑t

t′=0

(
n
t′

)
.

The proof of Theorems 7 and 8 is extremely similar to the security proof for
non-partial 3HashTDH (Appendix B). To avoid redundancy, we provide only an
overview of the important differences.

Proof. For any adversary A∗, we construct simulator SIMP3HashTDH, which is
extremely similar to simulator SIM3HashTDH shown in Figures 13, 14, and 15. We
reuse the notation, conventions, and series of game changes from the proof in
Appendix B. With the alterations detailed below, these game changes relate the
real world G0 to the simulated world G7.

Game G2: H
′
1 also has a trapdoor. LikeH1(xpriv),H

′
1(xpub) samples a random

exponent τ ′ ←$ Zm and returns h′ = (g2)
τ ′
. A record (xpub, τ

′, h′) is saved.

Game G3: The public input xpub is also used to track evaluation legality.
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– As honest servers perform evaluations (i.e. toprf.sndrcomplete) the evalset of
each (ssidS, a, xpub) triple is tracked.

– Subroutine FindEvalset (Figure 14) is modified to interpret its first parameter
as k̃ and to take a second parameter xpub.
• Before anything else, it retrieves the trapdoor τ ′ such that H ′1(xpub) =

(g2)
τ ′

(if H ′1 was never queried on xpub, then make such a query now on

behalf of Z). It then computes k∗ as k̃1/τ
′
and goes on to use it as in the

other proof (i.e. by finding or creating a PRF instance initialized with

key k(0) such that k∗ = g
k(0)
T ).

• It also must include xpub in its toprf.sndrcomplete messages to FtPOPRF

when it prints new tickets on behalf of corrupted servers.
• It ultimately finds a pair (ssid∗S, a) that has been evaluated by t + 1

servers specifically for the public input xpub. (This is accomplished using
evalset, which tracks (ssidS, a, xpub) triples during toprf.sndrcomplete as
explained above.)

– H3 queries by the adversary make use of the expanded FindEvalset interface
to check for illegal evaluations. In particular, upon fresh query
(xpriv, xpub, u) where H1(xpriv) = gτ1 , H3 calls FindEvalset(u1/τ , xpub). If that
subroutine succeeds at finding a matching evaluation set, then H3 uses
FtOPRF’s toprf.rcvcomplete interface to query the PRF output y for
(xpriv, xpub). (Just as in the other proof, H3 does not yet return y in this
game.)

– The honest clients’ PRF evaluation process does accordingly.

As in the other proof, this simulation strategy guarantees that a successful
FindEvalset check always precedes a toprf.rcvcomplete command to FtPOPRF and
that this evalset-based check is always at least as restrictive as the functionality’s
internal “ticketing” mechanism. The same auxiliary series of game changes is
used to bound the probability of the fail event.

Reduction Rk: GapOMBDH. The GapOMBDH input is a vector
(y∗, h1, . . . , hq, h

′
1, . . . , h

′
q) where all hj are uniformly random group elements in

G1, all h
′
j′ are uniformly random group elements in G2, and y∗ = gsT for some

uniformly random secret exponent s. The reduction has access to an oracle
OMDH(a), which returns as given a ∈ GT . It also has access to an oracle
DDH(y, h, u), which returns a bit that is 1 if and only if (y, h, u) is a Diffie
Hellman tuple in GT (i.e. there exist a, b ∈ Zm such that y = gaT , h = gbT , and
u = gabT ). The reduction wins if it outputs a set W of triples (j, j′, e(hj , h

′
j′)

s)
and |W | is greater than the number of (unique) queries it made to the OMDH
oracle.

For all 1 ≤ k ≤ t,Rk is constructed from Z ↔ Hk with the following changes:

– Initially, set W := ∅.
– Queries to H1 and H ′1 are answered with the hj and h′j′ values. Specifically,

H1(xj) := hj where j is initialized as 1 and increments after a fresh x is
seen; H ′1(xj′) := h′j′ where j′ is also initialized as 1 and increments after a
fresh x is seen. As a consequence of this change, H3 no longer has trapdoors
to rely on.
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– H3 uses the DDH oracle in place of the H1 and H ′1 trapdoors. Specifically,
upon fresh query H3(xpriv, xpub, u) where H1(xpriv) = hj and H ′1(xpub) = h′j′
(if H1 or H ′1 were never queried on xpriv or xpub, respectively, then make such
queries now on behalf of Z), do the following:
• retrieve every initialization record (toprf.init, sid ,A∗, ysid) where sid ̸=
sid∗ and query DDH(ysid , e(hj , h

′
j′), u) for each one,

• also query DDH(y∗, e(hj , h
′
j′), u),

• if all oracle responses are 0, then simply set H3(xpriv, xpub, u)←$ {0, 1}l
and return it,

• but otherwise, if some DDH(y, e(hj , h
′
j′), u) = 1, then call

FindEvalset(y, xpub), and proceed accordingly (if y = y∗, then also save
W := W ∪ {(j, j′, u)}).

– FindEvalset can now interpret its first parameter as k∗ (as in the other proof).
In other words, it does not first use an H ′1 trapdoor to unblind k̃ into k∗ like
it does in the other games of this proof.

– For all a and xpub, for the first k queries to servers not in Guessk, set κ at
random (only for instance sid∗). Specificially,
∀a ∀xpub ∀i /∈ Guessk κa,xpub,i ←$ GT if
|(∪ssidS

evalset(ssidS, a, xpub))−Guessk| ≤ k.
– For the (k + 1)st query and on, use the OMDH oracle and interpolate κ

(only for instance sid∗). Specifically, ∀a ∀xpub ∀i /∈ Guessk

κa,xpub,i := OMDH(e(a,H ′1(xpub)))
λ0

∏
j∈E κ

λj

a,xpub,j
if

|(∪ssidS
evalset(ssidS, a, xpub)) − Guessk| > k (where E is any t element

subset of ∪ssidS
evalset(ssidS, a, xpub) ∪ Guessk and λj is the Lagrange

interpolation coefficient for index j, index set E, and target index i).
– If a call to FindEvalset triggers event fail followed by (corr, t − k), then

output W and thereby win the GapOMBDH game.

As in the other proof, these modifications do not change Z’s view at all.
The remainder of the proof proceeds without significant alterations. Apart

from the swap of AdvGapOMDH
R for AdvGapOMBDH

R , the distinguishing advantage
bounds between each pair of games are identical, and therefore their eventual
sums are identical (in the both the static and adaptive corruption models).

H atPAKE Construction from tPOPRF

Figure 31 is ΠtPOPRF−atPAKE, an atPAKE construction built using FtPOPRF and
FsaPAKE (Figures 29 and 19). It additionally uses Fchannel (Figure 1) as a building
block; that functionality models secure authenticated communication, which is
only used by our atPAKE protocol during initialization.

The tPOPRF-atPAKE protocol is similar to our main tOPRF-atPAKE
construction from above (Figure 8). User authentication follows the same two
steps: auxiliary server interaction followed by an saPAKE session with the
target server. The only difference is that a single tPOPRF instance identified
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Initialization

1. On input (atpake.userinit, sidA, sidT, pw), user U does:
– for every i ∈ [n], send (channel.send, (sidA||i||1),SsidA [i], init) to Fchannel

– send (tpoprf.eval,SsidA , (sidA||init), pw, sidA) to FtPOPRF

– await (channel.deliver, (sidA||i||2),SsidA [i], tri) from Fchannel ∀i ∈ [n]
– await (tpoprf.eval,SsidA , (sidA||init), rw, trU) from FtPOPRF

– abort if trU ̸= (tr1, . . . , trn)
– for every j ∈ {1, . . . , |SsidT |}, compute rwj := KDF(rw,SsidT [j]) and send

(channel.send, (sidA||sidT||j),SsidT [j], rwj) to Fchannel

2. On input (atpake.auxinit, sidA, i,U
′), auxiliary server SsidA [i] does:

– await (channel.deliver, (sidA||i||1),U′, init) from Fchannel

– if there is a pending record (tpoprf,SsidA), wait for it to be completed
– else if there is no record (tpoprf,SsidA) at all, create it marked pending

and do the following before marking it completed:
• if i = 1, send (tpoprf.init,SsidA) to FtPOPRF

• (regardless of the above) send (tpoprf.sinit,SsidA , i,SsidA [1]) to FtPOPRF

• await (tpoprf.fininit,SsidA , i) in response
– then (in any case) output (atpake.finishauxiliaryinit, sidA)
– if i ≤ t+ 1, do the following:
• send (tpoprf.sndrcomplete,SsidA , i, init, sidA) to FtPOPRF

• await (tpoprf.sndrtrans,SsidA , i, init, tri) in response
• send (channel.send, (sidA||i||2),U′, tri) to Fchannel

– otherwise, send (channel.send, (sidA||i||2),U′,⊥) to Fchannel

3. On input (atpake.targetinit, sidA, sidT, j,U
′), target server SsidT [j] does:

– await (channel.deliver, (sidA||sidT||j),U′, rwj) from Fchannel;
– then send (sapake.storepwdfile, (sidT||j),U′, rwj) to FsaPAKE

– output (atpake.finishtargetinit, sidA, sidT)

Authentication

4. On input (atpake.usersession, sidA, sidT, j, ssid , pw
′), user U′ does:

– send (tpoprf.eval,SsidA , ssid , pw
′, sidA) to FtPOPRF

– await response (tpoprf.eval,SsidA , ssid , rw
′, trU);

– then compute rw′
j := KDF(rw′,SsidT [j]) and send

(sapake.usrsession, (sidT||j), ssid ,SsidT [j], rw
′
j) to FsaPAKE

– upon response (sapake.newkey, (sidT||j), ssid ,K), output
(atpake.newkey, ssid ,K)

– upon response (sapake.abort, (sidT||j), ssid), output (atpake.abort, ssid)
5. On input (atpake.auxsession, sidA, i, ssidA), auxiliary server SsidA [i] sends

(tpoprf.sndrcomplete,SsidA , i, ssidA, sidA) to FtPOPRF

6. On input (atpake.targetsession, sidT, j,U
′, ssid), target server SsidT [j] does:

– send (sapake.svrsession, (sidT||j), ssid) to FsaPAKE

– upon response (atpake.newkey, (sidT||j), ssid ,K), output
(atpake.newkey, ssid ,K)

Fig. 31. Protocol ΠtPOPRF−atPAKE which realizes FatPAKE in the
(FtPOPRF,FsaPAKE,Fchannel)-hybrid world.
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by the auxiliary server list SsidA
is common to all users that use the same list

SsidA
. Since tPOPRF instances are shared, the user-specific sidA is used as the

public input to the tPOPRF in order to effectively partition the OPRF by
user. Target server saPAKE passwords, then, are computed as
rwj = KDF(Fk(pw, sidA),T) (using as an example target server T indexed as j
in the target server list SsidT

).
The initialization of these auxiliary servers is somewhat more complex than in

tOPRF-atPAKE. The first time that any particular auxiliary server list is used,
the first server in that list plays the role of tPOPRF initializer and establishes a
new tPOPRF instance with the servers in the list. After that first time, auxiliary
server state does not change as the result of a new user registration. Instead, the
auxiliary servers participate in a (transcript-verified) tPOPRF evaluation with
the new user, who learns Fk(pw, sidA) and can then proceed to derive target
server-specific passwords and send them out as in the former protocol.

The security of tPOPRF-atPAKE is proven for ideal functionality FatPAKE′ ,
which we define to be a variation of FatPAKE (Figures 4, 5, and 6) with the
following 2 differences:

1. In the finishtargetinit routine (Figure 4), the adversary is given a stronger
power to meddle in target file creation. If the initializing user U is corrupt,
then A∗ can fully overwrite the sidA and pw fields of the created targetfile
as before. However, even if U is not corrupt, if at least t+ 1 of the auxiliary
servers in sidA are corrupt, then the adversary can overwrite sidA (but not
pw).
This relaxation is necessary to model adversarial attack on the tPOPRF
evaluation that takes place during our protocol’s initialization phase. In the
tOPRF-based protocol, there is no online evaluation during initialization
(the user evaluates locally, instead) and therefore this vulnerability does
not exist. Still, due to our assumption of secure and authenticated channels
during initialization, this attack is only possible if t + 1 of the auxiliary
servers are corrupted. Our intuitive notion that the protocol is secure as
long as initialization is honest still holds.

2. In the auxsession routine (Figure 5), execution does not necessarily abort
when there is no auxiliaryfile with a matching sidA. Instead, execution aborts
if there is no auxiliaryfile with any sid ′A such that SsidA

= Ssid′
A
.

This change is not a security relaxation; on the contrary, it actually models
a valuable feature of our tPOPRF-based construction. Auxiliary servers
(whether honest or dishonest) can choose to participate in a session tagged
by sidA even if they were never initialized using sidA (as long as they did
at some point initialize on a sid ′A with the same auxiliary server list). In
practice, this means that servers can behave in a way that does not reveal
whether or not particular users have registered.

Theorem 9. Protocol ΠtPOPRF−atPAKE realizes functionality FatPAKE′ with
parameters t and n in the (FtPOPRF,FsaPAKE,Fchannel)-hybrid model.

Specifically, for any efficient adversary A against protocol ΠtPOPRF−atPAKE,
there exists a simulator SIM such that no efficient environment Z can distinguish
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the view of A interacting with the real ΠtPOPRF−atPAKE protocol and the view
of SIM interacting with the ideal functionality FatPAKE′ with advantage better
than (qT · q2eval + qtest + q∗T · qeval)/2τ where qT is the number of target server
instances, qeval is the number of tPOPRF evaluations, qtest is the number of
online and offline password-guessing attacks against FsaPAKE, q

∗
T is the number

of dishonestly initialized target server instances, and security parameter τ is the
tPOPRF output length.

The proof of Theorem 9 is similar to the proof of tOPRF-atPAKE security in
Appendix C; to avoid redundancy, we list only the differences between the two.

Proof. For any adversary A∗ we construct simulator SIMtPOPRF−atPAKE in Figures
32, 33, 34, and 35. Without loss of generality we assume that A∗ is a “dummy”
adversary that merely passes messages to and from the environment Z.

We now show that, for any efficient (i.e. PPT) Z, the distinguishing
advantage of Z between the real and simulated worlds is negligible. The
argument uses only a single game change from the real world G0 to the
simulated world G1. By DistG0,G1

Z we denote distinguisher Z’s distinguishing
advantage between world G0 and world G1. Specifically,
DistG0,G1

Z = |PrZ↔G0 [Z outputs 1]− PrZ↔G1 [Z outputs 1]|.

Game G0: The real world. The distinguisher Z interacts withΠtPOPRF−atPAKE
(Figure 31) in the role of the honest parties and in the role of the adversary.

Game G1: The simulated world. By inspection, SIMtPOPRF−atPAKE in
interaction with FatPAKE′ behaves identically to the real world protocol, except
in the case of a rare PRF collision event. Therefore, the probability that Z can
distinguish between the real and simulated worlds is upper-bounded by the
probability that such an event occurs.

These collision events can be classified into 3 types, which are directly
analogous to the PRF collision types described in the ΠtOPRF−atPAKE proof of
security (Appendix C). The only difference is that, in this proof, rwj values are
a function of (sid , sidA, pw) triples rather than (sidA, pw) pairs. In honest
evaluations, sid = SsidA

, but in cases of adversarial action this is not
guaranteed. Nonetheless, the 3 PRF collision types have precisely the same
probability bounds as in the other proof; summing up these probabilities yields
an overall bound on Z’s distinguishing advantage between the real and
simulated worlds.

DistG0,G1

Z ≤ qT · q2eval + qtest + q∗T · qeval
2τ

τ is the security parameter. If Z is efficient, then qT, qeval, qtest, and q∗T
are all polynomial functions of the security parameter. Thus, the distinguishing
advantage of any efficient Z is negligible.
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Notation
Initially tx[sid , sidA, i, ssidA] := 0 for all sid , sidA, i, and ssidA, and cflag[sidT, j] :=
uncompromised for all sidT and j. Also, Fsid(xpriv, xpub) is undefined for all sid ,
xpriv, and xpub. When first referenced, the functionality assigns Fsid(xpriv, xpub)←$

{0, 1}τ .
Initialization Phase (I)

1. On (atpake.userinit,U, sidA, sidT) from FatPAKE for honest U:
– save rec = (userinit,U, sidA, sidT) marked pending
– for every i ∈ [n], send (channel.send, (sidA||i||1),U,SsidA [i], |init|) to A

∗

– send (tpoprf.eval,SsidA , (sidA||init),U, sidA) to A∗

– await (tpoprf.rcvcomplete,SsidA , (sidA||init), sid∗, ssid∗
A,C, trU) from A∗

s.t. ∀i∈C tx[sid∗, sidA, i, ssid
∗
A] > 0 and there does not exist a set of records

{(sndrtrans, sid ′, i, trU[i])}i∈C s.t. sid ′ ̸= sid∗

– ∀i∈C set tx[sid∗, sidA, i, ssid
∗
A]−−

– if not ∀i∈[n] there exists record (inittrans, sidA, i, trU[i]) marked
completed, then abort

– for every j ∈ {1, . . . , |SsidT |}, send
(channel.send, (sidA||sidT||j),U,SsidT [j], τ) to A

∗

– mark rec completed
2. On (channel.send, (sidA||i||1),SsidA [i], init) from A∗ on behalf of some U ∈

Corr:
– save (userinit,U, sidA,⊥)

3. On (tpoprf.init, sid , (pw∗
1, sidA,1), . . . , (pw

∗
k, sidA,k)) from A∗ on behalf of some

U ∈ Corr:
– send (tpoprf.init, sid ,U) to A∗

– send (toprf.initeval, sid , Fsid(pw
∗
1, sidA,1), . . . , Fsid(pw

∗
k, sidA,k)) to U

– if U = Ssid [1], then save (tpoprf, init, sid ,U) marked adversarial
4. On (atpake.auxinit, sidA, i,U

′) from FatPAKE for honest SsidA [i]:
– await (channel.deliver, (sidA||i||1),U′,SsidA) from A

∗

– if there is no record (userinit,U′, sidA, [sidT]), then abort
– if there is no record (tpoprf, i,SsidA ,SsidA [1]), then create it marked

pending, and, if i = 1, send (tpoprf.init,SsidA ,SsidA [1]) to A∗ and save
(tpoprf, init,SsidA ,SsidA [1])

– wait until (tpoprf, i,SsidA ,SsidA [1]) is completed (if it isn’t already)
– send (atpake.finishauxiliaryinit, sidA, i) to FatPAKE

– if i ≤ t+ 1, do the following:
• set tx[SsidA , sidA, i, init]++
• send (tpoprf.sndrcomplete,SsidA , i, init, sidA) to A∗

• await (tpoprf.sndrtrans,SsidA , i, init, tri) from A
∗

• send (channel.send, (sidA||i||2),SsidA [i],U
′, |tri|) to A∗

• save (inittrans, sidA, i, tri) marked pending
– otherwise, send (channel.send, (sidA||i||2),SsidA [i],U, |⊥|) to A∗ and save

(inittrans, sidA, i,⊥) marked pending

Fig. 32. Simulator SIMtPOPRF−atPAKE for protocol ΠtPOPRF−atPAKE, part 1: Notation and
Initialization Phase (I)
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Initialization Phase (II)

5. On (tpoprf.sinit, sid , i,U′) from A∗ where Ssid [i] ∈ Corr:
– if Ssid [i] ̸= A∗, send (atpake.auxinit, sid , i,U′) to FatPAKE

– save (tpoprf, i, sidA,U
′) marked pending

6. On (tpoprf.fininit, sid , i) from A∗:
– retrieve (tpoprf, i, sid , [P0]) marked pending and rec =

(tpoprf, init, sid ,P0) (abort if either not found) and mark the former
completed

– save (auxiliaryfile, sid , i) and mark it adversarial if rec is adversarial
7. On (channel.send, (sidA||i||2),U, tri) from A∗ on behalf of SsidA [i] ∈ Corr:

– save (inittrans, sidA, i, tri) marked pending
8. On (channel.deliver, (sidA||i||2),SsidA [i],U) from A

∗:
– if there exists record (userinit,U, sidA, [sidT]), retrieve record

(inittrans, sidA, i, tri) marked pending and mark it completed
9. On (atpake.targetinit, sidA, sidT, j,U

′) from FatPAKE:
– save (targetinit, sidA, sidT, j,U

′) marked pending
10. On (channel.deliver, (sidA||sidT||j),U,SsidT [j]) from A

∗:
– retrieve trec = (targetinit, sidA, sidT, j,U) marked pending (abort if not

found)
– if (channel.send, (sidA||sidT||j),SsidT [j], [rw

∗
j ]) was previously sent by A∗

on behalf of U ∈ Corr:
• if ∃ (sid∗, sid∗

A, pw
∗) s.t. rw∗

j = KDF(Fsid∗(pw∗, sid∗
A),SsidT [i]) then

send (atpake.finishtargetinit, sidA, sidT, j, sid
′
A, pw

∗) to FatPAKE where
sid ′

A := (sid∗||sid∗
A) if sid∗ ̸= Ssid∗

A
and sid ′

A := sid∗
A otherwise, and

save (targetfile, sid ′
A, sidT, j, pw

∗, rw∗
j )

• otherwise, send (atpake.finishtargetinit, sidA, sidT, j,⊥,⊥) to FatPAKE

and save (targetfile,⊥, sidT, j,⊥, rw∗
j )

– otherwise, retrieve record (userinit,U, sidA, sidT) marked completed
(abort if not found) and do the following:
• recall (tpoprf.rcvcomplete,SsidA , (sidA||init), sid∗, ssid∗

A,C, trU)
previously sent by A∗ that caused the userinit record to become
completed

• if sid∗ = SsidA , define sid∗
A := sidA; else define sid∗

A := (sid∗||sidA)
• send (atpake.finishtargetinit, sidA, sidT, j, sid

∗,⊥) to FatPAKE, and save
(targetfile, sid∗, sidT, j,⊥,⊥)

– mark trec completed

Fig. 33. Simulator SIMtPOPRF−atPAKE for protocol ΠtPOPRF−atPAKE, part 2: Initialization
Phase (II)
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Party Corruption

11. On (tpoprf.corrupt,P) from A∗:
– set Corr := Corr ∪ {P}
– send (atpake.corrupt,P) to FatPAKE

12. On (sapake.stealpwdfile, (sidT||j)) from A∗:
– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ]) and mark it compr (abort if

not found)
– send (atpake.stealtargetfile, sidT, j) to FatPAKE

Authentication Phase (I)

13. On (atpake.usersession,U′, sidA, sidT, j, ssid) from FatPAKE:
– send (tpoprf.eval,SsidA , ssid ,U

′, sidA) to A∗

– save (session,U′,SsidT [j], sidA, sidT, j, ssid ,⊥,⊥) marked prelim
14. On (tpoprf.eval, sid , ssid , pw∗, sidA) from A∗:

– send (tpoprf.eval, sid , ssid ,A∗, sidA) to A∗

– save (eval, sid , ssid , pw∗, sidA) marked fresh
15. On (atpake.auxsession, sidA, i, ssidA) from FatPAKE for honest SsidA [i]:

– send (tpoprf.sndrcomplete,SsidA , i, ssidA, sidA) to A∗

– set tx[SsidA , sidA, i, ssidA]++
16. On (tpoprf.sndrcomplete, sid , i, ssidA, sidA) from A∗:

– retrieve rec = (auxiliaryfile, sid , i) (abort if not found)
– if rec is not adversarial, then send (atpake.auxsession, sid∗

A, i, ssidA) to
FatPAKE where sid∗

A = (sid ||sidA) if sid ̸= SsidA and sid∗
A = sidA otherwise

(abort if response (atpake.auxsession, sid∗
A, i, ssidA) is not received)

– send (tpoprf.sndrcomplete, sid , i, ssidA, sidA) to A∗

– set tx[sid , sidA, i, ssidA]++
17. On (tpoprf.rcvcomplete,SsidA , ssid , sid

∗, ssid∗
A,C, trU) from A∗ s.t. ∃ record

urec = (session, [U′,SsidT [j]], sidA, [sidT, j], ssid ,⊥,⊥) marked prelim:
– abort if ∃i∈C tx[sid∗, sidA, i, ssid

∗
A] = 0, else ∀i∈C set

tx[sid∗, sidA, i, ssid
∗
A]−−

– if sid∗ = SsidA , define sid∗
A := sidA; else define sid∗

A := (sid∗||sidA)
– update field sidA in urec to sid∗

A, and change urec’s mark to fresh
– if record (userinit, [U], sid∗, [sid ′

T]) is marked adversarial,
send (atpake.auxactive,U′, ssid) to FatPAKE; otherwise, send
(atpake.auxproceed,U′, ssid , sid∗

A, ssid
∗
A,C)

– send (sapake.usrsession, (sidT||j), ssid ,U′,SsidT [j]) to A
∗

18. On (tpoprf.rcvcomplete, sid , ssid , sid∗, ssid∗
A,C, trU) from A∗ s.t. ∃ record

urec = (eval, sid , ssid , [pw∗, sidA]) marked fresh:
– abort if ∃i∈C tx[sid∗, sidA, i, ssid

∗
A] = 0, else ∀i∈C tx[sid∗, sidA, i, ssid

∗
A]−−

– change urec’s mark to completed
– send (tpoprf.eval, sid , ssid , Fsid∗(pw∗, sidA)) to A∗

– if sid∗ = SsidA , define sid∗
A := sidA; else define sid∗

A := (sid∗||sidA)
– ∀i∈C send (atpake.offlinetestpwd, sid∗

A, i, ssid
∗
A,⊥,⊥, pw∗) to FatPAKE

– save (completedeval, sid∗
A, pw

∗, ssid∗
A, Fsid∗(pw∗, sidA))

Fig. 34. Simulator SIMtPOPRF−atPAKE for protocol ΠtPOPRF−atPAKE, part 3: Authentication
Phase (I)
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Authentication Phase (II)

19. On (atpake.targetsession, sidT, j,U
′, ssid) from FatPAKE:

– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ])
– send (sapake.svrsession, (sidT||j), ssid ,U′,SsidT [j]) to A

∗

– save (session,SsidT [j],U
′, sidA, sidT, j, ssid , pw, rwj) marked fresh

20. On (sapake.interrupt, (sidT||j), ssid ,SsidT [j]) from A
∗:

– send (atpake.interrupt, sidT, j, ssid) to FatPAKE

21. On (sapake.testpwd, (sidT||j), ssid ,P, rw∗
j ) from A∗:

– retrieve rec = (session,P, [P′, sidA], sidT, j, ssid , [pw
′, rw′

j ]) (abort if not
found)

– if rw′
j ̸= ⊥ and rw∗

j = rw′
j , send (atpake.testpwd,P, ssid , pw′) to FatPAKE

– else if rw′
j ̸= ⊥ but rw∗

j ̸= rw′
j , send (atpake.testpwd,P, ssid , (pw′||0))

– else if ∃ pw∗ s.t. rw∗
j = KDF(Fsid(pw

∗, sid ′
A),SsidT [j]) where sidA is parsed

as (sid ||sid ′
A) if possible and (sid , sid ′

A) := (SsidA , sidA) otherwise, send
(atpake.testpwd,P, ssid , pw∗)

– else, send (atpake.testpwd,P, ssid ,⊥)
– in any case, forward the response (if any) to A∗

– if the response is “correct guess”, mark rec compr and set cflag[sidT, j] :=
compr

22. On (sapake.impersonate, (sidT||j), ssid) from A∗:
– send (atpake.impersonate, sidT, j, ssid) to FatPAKE

– forward the response (if any) to A∗

– if the response is “correct guess”, mark rec compr
23. On (sapake.newkey, (sidT||j), ssid ,P,K∗) from A∗:

– retrieve rec = (session,P, [P′, sidA], sidT, j, ssid , [pw, rwj ]) not marked
prelim (abort if not found)

– if rec is not compr and cflag[sidT, j] = uncompromised, set K∗ ←$

{0, 1}τ
– send (atpake.newkey,P, ssid ,K∗) to FatPAKE

– mark rec completed
24. On (sapake.testabort, (sidT||j), ssid ,U′) from A∗:

– send (atpake.testabort,U′, sidT, j, ssid) to FatPAKE

– forward the response (if any) to A∗

Offline Password Tests

25. On (sapake.offlinetestpwd, (sidT||j), rw∗
j ) from A∗:

– retrieve (targetfile, [sidA], sidT, j, [pw, rwj ])
– if rw∗

j = rwj ̸= ⊥, send “correct guess” to A∗

– else if ∃ record (completedeval, sidA, [pw
∗, ssidA], rw

∗) s.t. rw∗
j =

KDF(rw∗,SsidT [j]), send (atpake.offlinetestpwd, sidA,⊥, ssidA, sidT, j, pw
∗)

to FatPAKE and forward the response to A∗

– else, send “wrong guess” to A∗

– in any case, if the response is “correct guess”, set cflag[sidT, j] := compr

Fig. 35. Simulator SIMtPOPRF−atPAKE for protocol ΠtPOPRF−atPAKE, part 4: Authentication
Phase (II) and Offline Password Tests
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