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Abstract. We present a key recovery attack on SQIsign2D-East [NO24b]
that reduces its security level from λ to λ/2. We exploit the fact that
each signature leaks a Legendre symbol modulo the secret degree of the
private key isogeny. About λ/2 signatures are enough for these Legendre
symbols to fully determine the secret degree, which can then be recov-
ered by exhaustive search over a set of size O(2λ/2). Once the degree is
known, the private key isogeny itself can be found, again by exhaustive
search, in time Õ(2λ/2).
We also present a new version of the protocol which does not leak any
such information about the private key and show that our modified pro-
tocol is more efficient than the original one. Finally, we give a security
analysis as well as a new proof of security.

Keywords: Isogeny-based cryptography, SQIsign2D-East, Legendre sym-
bol, cryptanalysis

1 Introduction to SQIsign2D-East

We give an overview of the signature scheme SQIsign2D-East, referring to the
original paper [NO24b] for further details.

The protocol builds on ideas from SQIsignHD [DLRW24] but introduces
algorithms that avoid the need for 4-dimensional isogeny computations for sig-
nature verification, reducing to only 2-dimensional isogeny computations. It is
obtained via the Fiat–Shamir transform applied to an identification protocol
that is based on the diagram depicted in Figure 1. The prover generates an
isogeny τ : E0 → EA as secret key, where E0 is a public supersingular elliptic
curve of known (special extremal) endomorphism ring, and publishes EA as the
corresponding public key. To prove knowledge of the secret isogeny τ and hence
of End(EA), the prover computes another secret isogeny ψ : E0 → E1, pub-
lishing the codomain as commitment. Upon receiving as challenge an isogeny
ϕ : E1 → E2, the prover then responds with an isogeny σ : EA → E2, obtained
by transforming ϕ◦ψ◦ τ̂ into an equivalent isogeny. In order to enable the verifier
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Fig. 1. High-level depiction of the SQIsign2D-East protocol

to evaluate σ via an isogeny in dimension two, the prover will also provide an
auxiliary isogeny ω : EA → E3.

The public parameters (p, a, b, E0, P0, Q0,O0) of SQIsign2D-East targeting a
claimed security level of λ bits are set as follows :

– p is a prime of the form p = 2a+bf − 1 with f a small integer cofactor and
a ≈ b ≈ λ, so p ≈ 22λ;

– E0 is the elliptic curve of equation y2 = x3 + x over Fp2 ;
– P0, Q0 are a basis of E0[2

a+b];
– O0 is Z⟨1, i, i+j

2 ,
1+k
2 ⟩, the maximal order in the quaternion algebra ramified

at p and infinity, isomorphic to End(E0).

Before giving a summary of how the scheme works we recall the algorithms
involved in SQIsign2D-East.

1.1 Algorithms for SQIsign2D-East

The following algorithms are well-known and they are used e.g. in SQISign
[DFKL+20]:

– RandomEquivalentIdealM (I): given an integer M and a left O0-ideal I,
outputs a uniformly random equivalent ideal J ∼ I of norm n(J) < M .
When M ⪆ p1/2, such an ideal exists with high probability.

– EichlerModConstraint(I, γ, δ): given a left O0-ideal I of prime norm N
and elements γ, δ ∈ O0, outputs (C0 : D0) ∈ P1(Z/NZ) such that γ(C0j +
D0k)δ ∈ Z+ I.

– StrongApproximationM (N,C0, D0): given integers M,N,C0, D0, N prime,
outputs µ ∈ O0 such that n(µ) =M and µ = m(C0j+D0k)+Nµ1 for some
integer m and some µ1 ∈ O0.

The next algorithm, called KaniCod, comes from the attacks on SIDH [CD23,
MMP+23, Rob23] and is based on Kani’s lemma [Kan97]. In particular, it uses
[MMP+23, Theorem 1]. Let N1, N2 be coprime integers and let D = N1 + N2.
Consider a commutative diagram of elliptic curve isogenies:
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E0 E2

E1 E3

ψ2

ψ1 ψ′
1

ψ′
2

where deg(ψ1) = deg(ψ′
1) = N1 and deg(ψ2) = deg(ψ′

2) = N2.

– KaniCod(N1, N2, E1, E2, P1, Q1, P2, Q2;S1, S2): given the coprime integers
N1, N2 and the elliptic curves E1, E2, a basis P1, Q1 of E1[D], the basis

P2 = ψ2(ψ̂1(P1)), Q2 = ψ2(ψ̂1(P2))

of E2[D], and finite subsets S1, S2 of E1, E2, respectively, outputs E0 and

the (element-wise) images of S1, S2 under ψ̂1, ψ̂2, respectively.

The following algorithm, called GenRandIsogImg, is a generalized version of
RandIsogImg from [NO24a], which computes the codomain and point images
of a given degree isogeny ι from a specific elliptic curve E0. The generalized
algorithm introduced for SQIsign2D-East allows now to compute the codomain
and point images of a given degree isogeny ι from any elliptic curve E, given
a prime-degree isogeny from E0 to E. GenRandIsogImgWithIdeal is the same
algorithm, with the corresponding ideal Iι as an additional output.

Algorithm 1 GenRandIsogImgIτ (d, D; S)

Input: An isogeny τ : E0 → E of prime degree N , its corresponding ideal Iτ , coprime
integers d,D such that D ≈ p, d > N3, d < D and a finite set S ⊂ E

Output: (F, ι(S)) for a random d-isogeny ι : E → F .
1: (C0 : D0)← EichlerModConstraint(Iτ , 1, 1).
2: α← StrongApproximationd(D−d)(N,C0, D0).
3: Let P,Q be a basis of E[D].
4: (F ; ι(S); ∅)← KaniCod(d,D − d,E,E, P,Q, α(P ), α(Q);S, ∅).
5: return (F, ι(S))

This is Algorithm 2 in [NO24b] and is needed to compute the response σ
and the auxiliary path ω. Note that α is to be viewed as an endomorphism of
E by pushing forward under τ , see [DFKL+20, Section 4.2]. We will propose a
different version of this algorithm in Section 3.

The next algorithm, called AuxiliaryPath, is used to compute the auxiliary
path ω; this is Algorithm 3 in [NO24b]. There, AuxiliaryPath is used with
D1 = 2a ≈ p1/2, D = 2a+b ≈ p and d = 2a − q, where q is the degree of the
signature σ.
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Algorithm 2 AuxiliaryPathIτ (d,D1, D;S)

Input: An isogeny τ : E0 → E of prime degree Nτ , its corresponding ideal Iτ , integers
d,D1, D such that d is coprime to both D1 and D, D ≈ p, d(D1 − d) > N3,
d(D1 − d) < D, and a finite set S ⊂ E.

Output: (F, ω(S)) for a random d-isogeny ω : E → F .
1: Let P,Q be a basis of E[D1]
2: (F ′, ι(P ), ι(Q))← GenRandIsogImgIτ (d(D1 − d), D;P,Q)
3: (F ;ω(S); ∅)← KaniCod(d,D1 − d,E, F ′, P,Q, ι(P ), ι(Q);S; ∅)
4: return (F, ω(S))

The degree q is obtained through a randomized procedure, where it is being
rejected and resampled in case it does not satisfy either of the following condi-
tions, which the authors refer to as “(2a, 2b, Nτ )-niceness”. These conditions are
necessary for AuxiliaryPath to succeed.

Definition 1. We say that a positive integer q is (2a, 2b)-nice if q is odd, q < 2a

and q(2a − q) < 2a+b.

Definition 2. We say that a positive integer q is (2a, 2b, Nτ )-nice if q is (2
a, 2b)-

nice and satisfies (
M(q)

Nτ

)
=

(
−1
Nτ

)
, (1)

where M(q) = d(2a+b − d) with d = q(2a − q), and
(·
·
)
is the Legendre symbol.

In Section 2 we will explain that these requirements turn out to contradict
the claimed λ-bit security level of the protocol. In Section 3 we will propose a
different version of this algorithm avoiding such conditions.

1.2 SQIsign2D-East

We give a short description of the identification scheme underlying SQIsign2D-
East, and refer to [NO24b, Section 4.1] for a more thorough exposition.

Key generation. First, the degree of the secret isogeny τ is sampled as a random
prime Nτ < p1/4. Then, a 2-dimensional representation (Nτ , τ(P0), τ(Q0)) of
τ , the corresponding ideal Iτ and the codomain curve EA are computed using
GenRandIsogImgWithIdeal. The secret key is sk = (τ, Iτ ) and the public key is
pk = EA.

Commitment. The commitment works similarly to the key generation. First, the
degree of ψ is sampled as an odd integer Nψ < 22λ. Then, an efficient representa-
tion (Nψ, ψ(P0), ψ(Q0)) of ψ, the corresponding ideal Iψ and the codomain curve
E1 are computed via GenRandIsogImgWithIdeal. The commitment consists of
com = E1.
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Challenge. The challenge is computed by sampling a point K ′
1 of order 2b on E1.

The isogeny ϕ has kernel generated by K ′
1 and can be computed using Vélu’s

formulas. The challenge is ch = K ′
1.

Response. As a response, the prover must produce (1) an isogeny σ : EA → E2

and (2) an auxiliary isogeny ω from EA.

1. To obtain σ, the prover computes the left ideal J = ĪτIψIϕ corresponding to
the composition ϕ◦ψ ◦ τ̂ ; the ideal Iϕ can be computed via IsogenyToIdeal

[Ler22, Algorithm 20] on input ϕ : E1 → E2, ψ : E0 → E1 and the corre-
sponding ideal Iψ. Then, the prover uses RandomEquivalentIdeal2a(J) to
find an equivalent ideal

Iσ = J
ᾱ

NτNψ2b
∼ J

such that n(Iσ) < 2a. The norm q = n(Iσ) is required to be (2a, 2b, Nτ )-nice
(see Definition 2), in order to allow the computation of the auxiliary isogeny
with AuxiliaryPath in the next step. An efficient representation (q,R′

2, S
′
2)

of the isogeny σ is computed as follows: the images R′
2, S

′
2 under σ of the

2a-torsion are obtained as images under

ϕ ◦ ψ ◦ τ̂ ◦ α̂
NψNτ

= 2bσ (2)

of a canonical basis PA, QA of EA[2
a+b]. Note that the equality (2) follows

from a subtle application of the Deuring correspondence, see e.g. [BFD+24,
Lemma 11].

2. An auxiliary isogeny ω from EA having degree 2a−q is obtained by invoking
AuxiliaryPathIτ (2

a− q, 2a, 2a+b; 2bPA, 2bQA), which returns the codomain

E3 of ω and images R′
3 = 2bω(PA), S

′
3 = 2bω(QA). The prover finds an

efficient representation (q(2a − q), U ′
2, V

′
2) of σ ◦ ω̂ by letting M be the

change-of-basis matrix such that (P ′
3, Q

′
3) = (R′

3, S
′
3)M , where P ′

3, Q
′
3 form

the canonical basis of E3[2
a], and computing

(U ′
2, V

′
2) = −(R′

2, S
′
2)M = (

1

q
σω̂(P ′

3),
1

q
σω̂(Q′

3)).

The last equality is obtained by taking images under σ ◦ ω̂ on both sides
of (P ′

3, Q
′
3) = (R′

3, S
′
3)M = (2bω(PA), 2

bω(QA))M . (The leading factor 1/q
slightly simplifies the verification step; note that q is odd by the (2a, 2b, Nτ )-
niceness.)

The response is resp = (E3, U
′
2, V

′
2).

Verification. The verifier computes a (2a, 2a)-isogeny Φ : E3×E2 → A with kernel
K = ⟨(P ′

3, U
′
2), (Q

′
3, V

′
2)⟩ and checks whether the codomain A is isomorphic (as

a principally polarized abelian surface) to a product of elliptic curves, one of
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which being EA. If that is the case, the response is accepted, otherwise rejected.

The protocol satisfies correctness, by the fact that for an honestly generated
response

K = ⟨(P ′
3,

1

q
σω̂(P ′

3), (Q
′
3,

1

q
σω̂(Q′

3))⟩ = ⟨(qP ′
3, σω̂(P

′
3), (qQ

′
3, σω̂(Q

′
3))⟩

and by [MMP+23, Theorem 1] a (2a, 2a)-isogeny Φ of kernel K is, up to post-
composition with an isomorphism, of the form

Φ :

(
ω̂ −σ̂

[ω]∗σ [σ]∗ω

)
: E3 × E2 → EA × F

where F is the codomain of both [ω]∗σ and [σ]∗ω.

2 The attack

We show that for the SQIsign2D-East protocol targeting a security level of λ, we
can perform a key recovery attack with cost 2λ/2, ignoring polynomial overhead.
The estimate from [NO24b] on the cost of key recovery arises as follows: first,
an attacker has to guess the secret prime degree Nτ ∼ 2λ/2 of the secret key
τ : E0 → EA. Then the attacker has to guess the secret isogeny τ itself, for
which there are Nτ +1 ∼ 2λ/2 possibilities; thus there are ∼ 2λ/λ possible secret
isogenies. However, the signatures turn out to leak information about Nτ , in
the form of an equality involving Legendre symbols. We argue that about λ/2
signatures are enough for Nτ to be uniquely determined by these equalities; its
precise value can then be recovered by simple brute-force over all primes of size
∼ 2λ/2. Once we have recovered Nτ , we can perform another brute-force search
for the secret isogeny τ from E0. The total cost of the attack is then still in the
order of 2λ/2. We now describe the attack in greater detail.

2.1 Recovering Nτ

Recall that the secret degree Nτ is a random prime in (0, p1/4). The response σ is
an isogeny of odd degree q < 2a, represented by the kernelK = ⟨(P ′

3, U
′
2), (Q

′
3, V

′
2)⟩

of a (2a, 2a)-isogeny Φ having σ as one of its components. As a first step, we ob-
serve that an attacker can evaluate Φ and consequently σ at any input; the
degree q can be then recovered using a pairing computation combined with an
easy discrete log computation. Therefore, it can be assumed that q is known.

It is important to note that q varies with every signature and is essentially
random, subject to three conditions coming from the (2a, 2b, Nτ )-niceness of q
(see Definition 2); this is enforced in [NO24b, Algorithm 7, step 3]. In particular,
for each signature we learn that d(2a+b − d) with d = 2a − q has the same
quadratic residuosity as −1 mod Nτ . From Dirichlet’s theorem on arithmetic
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progressions it follows that, as soon as M(q) is not the square of an integer, the
density of primes Nτ satisfying (1) is 50%. Thus, heuristically, we expect that
Nτ is uniquely determined by about λ/2 values of q. This means that after seeing
roughly λ/2 signatures we should be able to find Nτ by simply brute-forcing over
all primes in (0, p1/4) and testing whether (1) holds for each of the corresponding
values of q. Ignoring polynomial overhead, this step therefore has a complexity
of Õ(2λ/2).

Computational experiments (reported in Figure 2) confirm this heuristic as-
sumption. For different sizes of Nτ , we computed the average number of signa-

Fig. 2. Average number of signatures needed to determine a secret degree

tures needed to uniquely determine it. In our experiment, to mimick the scheme,
we fix a size e and sample a random prime Nτ < 2e. Then we pick random odd
integers q < 22e, compute d = q(22e−q) andM = d(24e−d), and if

(
M
Nτ

)
=
(−1
Nτ

)
we return q. As expected, after slightly more than e signatures, Nτ is uniquely
determined and can be correctly recovered by brute-force. Notice that the fact
that we do not know the exact value of

(−1
Nτ

)
does not matter.

Remark 3. The problem of recovering a bounded prime Nτ from polynomially
many values

(
a
Nτ

)
, for known but random a (in our case a = −M(q)), is a

special case of breaking a randomized instance of Damg̊ard’s Legendre pseudo-
random function [Dam88] where the offset is known but the modulus is not; see
also [AG97, Problem 2]. We point out that the Legendre PRF is usually being
studied in its unknown-offset but known-modulus variant, see e.g. [BBUV20].
Problems of this type are believed to be hard and, in the case of SQIsign2D-
East, the security loss just comes from the fact that Nτ is too small. However,
simply increasing the size of Nτ is not enough to save the protocol, because
the bound Nτ < p1/3 is needed to build auxiliary paths during the signature
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process [NO24b, Section 3.2]. If we allow Nτ to reach the bound of p1/3, the
cost of key recovery will increase to p1/3 ∼ 22λ/3 operations, but this still falls
short of the proposed security level. A different solution, based on avoiding the
leakage of Legendre symbols, is presented in Section 3.

2.2 Recovering the secret key

Given the norm Nτ of the secret ideal Iτ , we can recover Iτ by enumerating
all left O0-ideals of norm Nτ and checking whether the corresponding isogenies
have codomain isomorphic to EA. There will be O(2λ/2) such ideals and they
can be enumerated using the bijection from [KV10, Lemma 7.2]. Therefore, the
cost of this step is Õ(2λ/2).

On the other hand, given that ideal-to-isogeny translations are not very
efficient in practice, we can as well use the same algorithm that is used in
[NO24b] to generate Iτ . The key generation algorithm in SQIsign2D-East uses
RepresentInteger to sample a random quaternion α ∈ O0 of norm Nτ (2

a+b −
Nτ ). There are no more than O(2λ/2) different return values of this algorithm
when fed with norm Nτ (2

a+b−Nτ ). Therefore, we simply run the key generation
algorithm in SQIsign2D-East, and for each of the quaternion elements returned
by RepresentInteger, we check whether its corresponding isogeny from E0 of
degree Nτ has codomain isomorphic to EA or not. This also costs Õ(2λ/2), but
is more efficient in practice than the previous method.

3 A possible fix

The attack outlined in Section 2 exploits the fact that GenRandIsogImg imposes
the constraint (1), linking the secret degree Nτ with the (public) degree of the
response q. We want to make sure that q can be chosen independently from Nτ ,
so that an attacker observing it cannot learn secret information.

Recall that GenRandIsogImg in SQIsign2D-East first computes an endomor-
phism α ∈ End(EA) of degree

M(q) := q(2a − q)(2a+b − q(2a − q)) (3)

using StrongApproximation. This endomorphism is then passed to KaniCod

twice to obtain first an isogeny of degree q(2a − q) and from that an isogeny
ω of degree 2a − q, which is the auxiliary path to the response σ. Imposed by
StrongApproximation and KaniCod, q needs to satisfy (2a, 2b, Nτ )-niceness.

3.1 The fix: an auxiliary 3-isogeny

We now introduce our fix, where the main idea is that when q does not satisfy (1),
we pass a different norm to StrongApproximation.

Definition 4. We say that a positive integer q is (2a, 2b)3-nice if q is (2a, 2b)-
nice and M(q) is divisible by 3.
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To start, in the key generation phase we additionally require that 3 is not
a square modulo Nτ , i.e., we require Nτ ≡ 5, 7 mod 12. Then, in the response
phase, instead of requiring q to be (2a, 2b, Nτ )-nice, we require it to be (2a, 2b)3-
nice; this condition is clearly independent from Nτ . Recall that in SQIsign2D-
East, one calls GenRandIsogImg with parameters d = q(2a − q) and D = 2a+b,
which in turn invokes StrongApproximation with target normM(q) = d(D−d).
Our two new conditions together allow us to modify the scheme as follows:

– if q satisfies condition (1) then we proceed as before;
– otherwise, we call StrongApproximation with target normM(q)/3 to obtain

an endomorphism α′. In this case we have that M(q)/3 satisfies(
M(q)/3

Nτ

)
=

(
−1
Nτ

)
,

since (
M(q)/3

Nτ

)(
3

Nτ

)
=

(
M(q)

Nτ

)
and we required that

(
3
Nτ

)
= −1 in the key generation phase. After that,

we compute a random degree-3 isogeny α′′ : EA → E3 using Vélu and we
compose it with α′ to finally obtain an isogeny α of degree M(q) from EA
to E3. The process is as shown in the diagram below, where α′ = ψ̂2 ◦ ψ1

and ψ1, ψ2 : EA → E have degrees d and (D − d)/3 respectively.

EA

E EA E3

ψ1
α′

ψ̂2 α′′

The subsequent steps are left unchanged. Notice that in the first call to
KaniCod, the input is no longer an endomorphism. Rather, it is an isogeny from
EA to E3 whose evaluation on EA[2

a+b] is known. Therefore, we can apply Kani’s
lemma in the same way. The modified version of [NO24b, Algorithm 2] is given
in Algorithm 3.

3.2 Impact on efficiency

The proposed alternative strategy comes with additional requirements with re-
spect to the original protocol. We now argue that these requirements do not
negatively impact the overall efficiency.

In the key generation step, we require that 3 is not a square mod Nτ . This
rules out about half of the choices for Nτ , thus reducing the security by only one
bit. Moreover, as observed in Remark 3, we have some margin on Nτ which is
only bounded by p1/3, so we can even increase it by one bit and retain the same
security with essentially no impact on efficiency.

In the response phase, we require that q is (2a, 2b)3-nice. When compared
with [NO24b], we are now asking thatM(q) is divisible by 3, instead of imposing
condition (1). In this way, we avoid leaking Legendre symbols modulo Nτ . At
first sight, our fix
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Algorithm 3 GenRandIsogImgIτ (d, D; S)

Input: An isogeny τ : E0 → E of prime degree Nτ , its corresponding ideal Iτ , rel-
atively prime integers d,D such that 3 | d(D − d), D ≈ p, d > N3, d < D, and
E[D] ⊆ E(Fp2), and a finite set S ⊆ E,

Output: (F, ι(S)) for a random d-isogeny ι : E → F .
1: (C0 : D0)← EichlerModConstraint(Iτ , 1, 1)
2: Let P,Q be a basis of E[D].

3: if d satisfies
(d(D−d)

Nτ

)
=

(−1
Nτ

)
then

4: α← StrongApproximationd(D−d)(N,C0, D0)
5: (F ; ι(S); ∅)← KaniCod(d,D − d,E,E, P,Q, α(P ), α(Q);S; ∅)
6: else
7: α′ ← StrongApproximationd(D−d)/3(N,C0, D0)

8: α′′ ← random 3-isogeny E → E′′, computed using Vélu
9: α← α′′ ◦ α′

10: (F ; ι(S); ∅)← KaniCod(d,D − d,E,E′′, P,Q, α(P ), α(Q);S; ∅)
11: end if
12: return (F, ι(S))

– seems to decrease the probability of accepting q. Indeed, the probability
that a random integer satisfies (1) is about 1/2, while the probability that a
random integer is divisible by 3 is 1/3. However, M(q) has three (coprime)
factors q, 2a − q and 2a+b − q(2a − q), and it is easy to check that:
• if a ≡ b mod 2 then 3 |M(q),
• if a ≡ 0 mod 2 and b ≡ 1 mod 2 then 3 ∤M(q)⇔ q ≡ 2 mod 3,
• if a ≡ 1 mod 2 and b ≡ 0 mod 2 then 3 ∤M(q)⇔ q ≡ 1 mod 3.

So our condition is in fact less restrictive than (1): the probability of success
increases from 1/2 to 1 or 2/3, it now seems, depending on the parities of a, b.
We wrote “it now seems”, because in view of Conjecture 6 below, quaternion
norms are more likely to be divisible by 3 than random integers, creating a
bias in our favour; as it turns out, if a ̸≡ b mod 2 then a better estimate for
the probability that 3 |M(q) is 19/27 ≈ 70.37%, rather than 2/3 ≈ 66.66%.

– seems to require the 3-torsion to be rational. This is satisfied as soon as
3 | f . However, even if 3 ∤ f then this is not an issue: all 3-torsion points
have rational x-coordinates, and this is good enough to avoid arithmetic over
a field extension.

Notice that none of our requirements has an impact on p and its size. As
a consequence, the sizes of keys and signatures remain unchanged even in the
modified version of the protocol.

4 More on the response algorithm

In this section, we first recall a trick from [NO24b, Section 4.3] on increasing the
success rate of finding a response ideal. Then in Section 4.2, we give a careful
analysis on the success rate of sampling a response ideal using this trick, which
was omitted in [NO24b].
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4.1 A trick in the response algorithm

The actual response algorithm from [NO24b] is different from the simplified
version described in Section 1.2. The reason is that sometimes one cannot find
an ideal Iσ such that n(Iσ) is (2a, 2b, Nτ )-nice. With our fix from Section 3
integrated in the response algorithm, now we are looking for an ideal Iσ such
that n(Iσ) is (2a, 2b)3-nice, but the same obstacle persists. In case no response
ideal is found, one needs to go back to the commitment phase. In [NO24b, Section
4.3] the authors describe two tricks to increase the chance of finding a response
ideal Iσ, and their implementation only uses the first one, which we refer to as
the “gcd-trick”.

In what follows, we recall the “gcd-trick” from [NO24b, Section 4.3] with
slight modifications to adapt it to our fix. From now on, we assume that a−b ≤ 2,
which means that at least 2/3 of odd integers smaller than 2a are (2a, 2b)3-nice
(see [NO24b, Remark 2] and Section 3.2). To avoid the failure in finding Iσ, the
“gcd-trick” uses q′ = q/ gcd(q, f) instead of q where f is as in the parameter
choice introduced in Section 1. This reduces the constraint of q from q < 2a to
q′ < 2a ⇔ q < gcd(q, f) · 2a.

Definition 5. We say that a positive integer q is (2a, 2b, f)3-nice when q′ =
q/ gcd(q, f) is (2a, 2b)3-nice.

Let σ be a q-isogeny computed in the response phase. Assume that q is (2a, 2b, f)3-
nice and let g = gcd(q, f), q′ = q/g, and r = 2a − q′. The “gcd-trick” formally
decomposes the q-isogeny σ into a g-isogeny σg : EA → Em and a q′-isogeny
σ′ : Em → E2 and takes the following steps:

1. Compute kerσg by evaluating σ on EA[g].

2. Compute σg : EA → Em by using Vélu’s formulas.

3. Obtain an r-isogeny ω : EA → E3 by using AuxiliaryPath.

4. Let σ′
g = [ω]∗σg and compute kerσ′

g = ω(kerσg).

5. Compute σ′
g : E3 → E4 by using Vélu’s formulas.

6. Evaluate σ′ and ω′ on Em[2a] by using the relationships: σ′ ◦ σg = σ and
ω′ ◦ σg = σ′

g ◦ ω.

The response in this case is given by (Kg, E4, U2, V2) where Kg is a generator of

σg and U2, V2 are computed similarly as U ′
2, V

′
2 in the original response algorithm
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from Section 1.2, but with σ and ω replaced by σ′ and ω′.

E0

τ

��

ψ
// E1

ϕ

��
EA

ω

��

σg //

σ

&&
Em

ω′

��

σ′
// E2

E3

σ′
g // E4,

Note that there is a possible concern if deg σg = g is not coprime to degω = r.
In that case it may happen that kerσg ∩ kerω ̸= {0} so that the degree of ω′

reduces to r̃ = r/h for some factor h of gcd(g, r). In this case, one computes an
additional random h-isogeny ι from E4 and uses ι ◦ ω′ as an auxiliary path. For
simplicity, [NO24b] only considers the case h = 1.

4.2 Sampling a response ideal

As discussed in Section 4.1, in our SQIsign2D-East variant, the response ideal
Iσ ∼ J arises by repeatedly sampling an element α ∈ J such that n(α) <
f2an(J) until q = n(α)/n(J) is (2a, 2b, f)3-nice.
Then one can take

Iσ = J
ᾱ

n(J)
,

as explained, e.g., in [DFKL+20, Lemma 1]. In this section we give a more precise
analysis of the probability of success.

Firstly, the number of candidate-q’s can be estimated using the Gaussian
heuristic, which says that in any sufficiently general lattice Λ ⊂ R4 we expect

#{α ∈ Λ | ∥α∥ < R } ≈
π2

2 R
4

Vol(Λ)
,

where the numerator on the right is just the volume of a ball in R4 with radius
R. Applying this heuristic to Λ = J , which has Euclidean covolume n(J)2p/4,
and to R =

√
f2an(J), we find an expected number of

2π2f222a

p
≈ 2π2f2a−b

elements α ∈ J whose quaternion norm is smaller than f2an(J). Assuming
OR(J)× = {±1}, from [DFKL+20, Lemma 1] it follows that this should result
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in π2f2a−b left ideals Iσ ⊂ OA satisfying Iσ ∼ J and n(Iσ) < f2a, and we
generically expect all of these to have different norms.

However, it is not correct to think about q as being sampled uniformly at
random from the interval (0, f2a). Indeed, the distribution of q is subject to the
following phenomena:

(i) In view of the Gaussian heuristic, the probability that q ∈ (x1, x2) is roughly
proportional to x22 − x21.

(ii) For any fixed (small) modulusm, the remainder of q mod m is not distributed
uniformly over the interval {0, 1, . . . ,m−1}, but rather tends to be sampled
from the following distribution:

Conjecture 6. Let J ⊂ Bp,∞ be an integral ideal, let ℓe be a prime power and
let r ∈ {0, 1, . . . , ℓe − 1}. Let k denote the ℓ-adic valuation of r. If ℓ ̸= p then

Pr,ℓe := lim
x→∞

{α ∈ J |n(α) ≤ x and n(α)
n(J) ≡ r mod ℓe }

{α ∈ J |n(α) ≤ x }

exists and is equal to

ℓe+1 + ℓe − 1

ℓ2e+1
if r = 0,

(ℓ+ 1)(ℓk+1 − 1)

ℓk+e+2
if r ̸= 0.

Motivation. We believe that the distribution of norms mod ℓe should follow the
distribution of determinants of uniformly random matrices M ∈ (Z/ℓeZ)2×2.
The latter distribution is well-understood, e.g., the above formulas were taken
from [BM87, Corollary 2.2]. For instance, if J = O is a maximal order, then the
conjecture holds because O/ℓeO ∼= (Z/ℓeZ)2×2 and under this isomorphism the
norm corresponds to the determinant.

As an example, this predicts (and we experimentally observe) that about 5/8 ≈
62.5% of the sampled α ∈ J are such that q = n(α)/n(J) is even.

For a general modulus m = ℓe11 · · · ℓess (where the ℓi are distinct primes) and
residue class r ∈ {0, 1, . . . ,m− 1}, we simply let

Pr,m =

s∏
i=1

Pr mod ℓ
ei
i ,ℓ

ei
i
,

motivated by the Chinese remainder theorem. Let us now turn to the probability
of sampling an ideal Iσ whose norm q is (2a, 2b, f)3-nice. We will content our-
selves with the heuristic assumption that each q is sampled independently from
a distribution that meets the above phenomena (i) and (ii). Apart from being
an imprecise statement, the independence is easily debunked: for any α ∈ J sat-
isfying the stronger bound n(α) < f2a−2n(J), we have that both q = n(α)/n(J)
and 4q = n(2α) are possible outcomes, and clearly these do not behave inde-
pendently with respect to niceness. However, the proportion of α’s that arise as
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scalar multiples of each other is small,1 and we expect the resulting bias to be
negligible.

We will assume that 0 ≤ a−b ≤ 2, so that q′(2a−q′) < 2a+b is automatically
fulfilled as soon as the other conditions for q (2a, 2b, f)3-niceness are taken care
of. For these other conditions, we obtain the following probabilities:

– If we let t denote the 2-adic valuation of f , then through an application of
Conjecture 6 with modulus 2t+1, we arrive at an estimated probability of

22t+3 − 3 · 2t+1 + 1

22t+3

that q′ = q/ gcd(q, f) is odd. E.g., if t = 0 then this just equals the probability
that q is odd, which is about 3

8 = 37.5%. For t = 1 and t = 2 this increases
to 21

32 ≈ 65.63% and 105
128 ≈ 82.03%, respectively.

– Let us recall from Section 3.2, now applied to q′ rather than q:

• if a ≡ b mod 2 then 3 |M(q′),
• if a ≡ 0 mod 2 and b ≡ 1 mod 2 then 3 ∤M(q′)⇔ q′ ≡ 2 mod 3,
• if a ≡ 1 mod 2 and b ≡ 0 mod 2 then 3 ∤M(q′)⇔ q′ ≡ 1 mod 3.

If we write t for the 3-adic valuation of f , then through an application of
Conjecture 6 with modulus 3t+1, we arrive at an estimated probability of 1
if a ≡ b mod 2 and

(3t+2 + 1)(3t+1 − 1) + 2 · 3t+2

2 · 32t+3
if a ̸≡ b mod 2

that M(q′) is divisible by 3. E.g., if t = 0 then this last expression equals
19
27 ≈ 70.37%, but for t = 1 and t = 2 this decreases to 139

243 ≈ 57.20% and
1147
2187 ≈ 52.45%, respectively.

– In view of the Gaussian heuristic (i) and Conjecture 6, we estimate the
probability that q < gcd(q, f)2a as

f−1∑
r=0

Pr,f ·
gcd(r, f)2

f2
. (4)

Example 7. For f = 35 = 5 · 7 and a = 191, b = 189 (this is the parameter set
from [NO24b] for NIST level 3), these probabilities read 3/8, 1 and

34∑
r=0

Pr,35
gcd(r, 35)2

352
=

2449043

52521875
≈ 4.66%,

respectively. Since gcd(f, 6) = 1 it seems reasonable to assume independence
of these properties. Then a given q meets all three of them with probability

1 We refer to this mathoverflow discussion for an argument suggesting a proportion of
1/ζ(4) = 90/π4 ≈ 92.39% distinct vectors up to scaling; this matches very well with
experiments.

https://mathoverflow.net/questions/151706/what-fraction-of-the-integer-lattice-can-be-seen-from-the-origin
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≈ 37.50% · 100.00% · 4.66% ≈ 1.75%. This matches near perfectly with our
experiments, and it results in an overall probability of

(1− 0.0175)
π2·35·22 ≈ 2−35.17

for the non-existence of a (2a, 2b, f)3-nice instance of q. In these rare cases, the
signer has to retry with a new commitment.

In general, one has to be more cautious, since if gcd(f, g) > 1 then the
conditions are not independent. The following formula gives a more careful count:

P(q is nice) ≈
6f−1∑
r=0

cr,2cr,3Pr,6f
gcd(r, f)2

f2
. (5)

Here, the constants cr,2, cr,3 ∈ {0, 1} are characterized as follows:

– cr,2 = 1 if and only if r/ gcd(r, f) is odd,
– cr,3 = 1 if and only if a ≡ b mod 2 or r/ gcd(r, f) ̸≡ 1 mod 3.

Note that the formula for cr,3 excludes the wrong value of q′ mod 3, potentially.
However, only the 3-adic valuation of r/ gcd(r, f) matters for the value of Pr,6f ,
so this does not affect the probability estimate. A Magma script for evaluating (5)
can be found in Appendix A.

In general, it is a good idea to choose a−b = 2, since this leads to the largest
number of candidate values of q, and the condition 3 | M(q′) comes for free in
this case. Table 1 gives concrete parameters, along with the heuristic success
probabilities predicted by (5) and the experimental values obtained by running
our implementation. It also lists the probability that the response algorithm
would fail to find a (2a, 2b, f)3-nice q and would therefore need to restart with
a different commitment. Table 2 shows more detailed statistics on the norms
found experimentally by signing 1000 messages for each security level.

Table 1. P(q is nice) denotes the probability that a randomly sampled q is (2a, 2b, f)3-
nice, according to our heuristic. The column “experiment” compares this with the
proportion of (2a, 2b, f)3-nice q’s according to experiment, averaged over 1000 different
commitments. The last column shows the base-2 logarithm of the heuristic probability
that no nice q exists.

NIST level a b f P(q is nice) experiment log2 (P(all q’s fail))
1 129 127 45 64859

3645000
≈ 1.78% 1.75% ≈ −46.02

3 191 189 35 7347129
420175000

≈ 1.75% 1.76% ≈ −35.17
5 254 252 375 514579

253125000
≈ 0.20% 0.20% ≈ −43.46
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Table 2. The values of a, b, f are the same as in Table 1. Total and Small show the
number of elements with (reduced) norm below f2a and 2a respectively; these are
compared with the Gaussian heuristic in brackets. Even is the percentage of all norms
below f2a being even. Nice is the number of nice elements found, and Nice ratio the
ratio to the total number of elements. These quantities are compared with the estimates
(in brackets) computed by the script in Appendix A.

Level Total Small Even Nice Nice ratio

1
1778.7
(1776.5)

0.94
(0.88)

62.5%
(62.5%)

31.26
(31.6)

1.75%
(1.78%)

3
1380.65
(1381.7)

1.16
(1.12)

62.4%
(62.5%)

24.3
(24.14)

1.76%
(1.75%)

5
14804.19
(14804.40)

0.07
(0.10)

62.5%
(62.5%)

29.54
(30.09)

0.20%
(0.20%)

5 Security analysis

We now discuss the security of our SQIsign2D-East variant. Note that this sec-
tion is entirely about the zero-knowledge property as the proof for special sound-
ness stays the same as in [NO24b].

5.1 On the distribution of auxiliary paths

Let τ : E0 → EA be an Nτ -isogeny and Iτ be the left O0-ideal corresponding to
τ . Given the right order OA of Iτ , we use SIτ ,M to denote the distribution on

OM := {α ∈ O0 ∩ OA | n(α) =M}

output by the algorithm consisting of first getting (C0 : D0) ∈ P1(Z/NτZ) by
running EichlerModConstraint(Iτ , 1, 1) and then getting α ∈ O0 ∩ OA with
norm M by running StrongApproximationM (Nτ , C0, D0).

We define a distribution Q on Z, which is the distribution of the reduced
norms of the response ideals Iσ. The support of this distribution is contained
in the set of (2a, 2b, f)3-nice integers. For a fixed q that is (2a, 2b, f)3-nice, let
q′ = q/ gcd(f, q), we define

Iso(EA, q
′) := {φ : EA → ⋆ such that degφ = 2a − q′ },

and we consider the following distributions on Iso(EA, q
′):

DU : The uniform distribution UIso(EA,q′).
D1: For q′ such thatM(q′) satisfies Eq. (1): a factor of θα of degree 2a−q′ where

α← SIτ ,M(q′) and θα ∈ End(EA) is the corresponding endomorphism.
D2: For q′ such that M(q′) does not satisfy Eq. (1): a factor of θα ◦ θ′′ of de-

gree 2a − q′ where α ← SIτ ,M(q′)/3, θα ∈ End(EA) is the corresponding
endomorphism and θ′′ is a random isogeny of degree 3 with domain EA.
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DAP : DAP = D1 ifM(q′) satisfies Eq. (1), and DAP = D2 otherwise. Note that this
is the same distribution as output by Algorithm 2 with inputs d = q′, D1 = 2a

andD = 2a+b when GenRandIsogImgIτ in line 2 is replaced with our modified
version Algorithm 3.

Definition 8. ([BFD+24, Definition 23]) A fixed degree isogeny oracle (FIDIO)
is an oracle taking as input a supersingular elliptic curve E defined over Fp2 and
an integer N , and outputs a uniformly random isogeny φ : E → E′ (in efficient
representation) with domain E and degree N .

Problem 9. Let a, b and f be fixed integers as in the parameter choices, Nτ be
the reduced norm of the secret ideal and EA be the public curve. Let S ⊂ {ω :
EA → ⋆ } be a set of size larger than logNτ where either

1. S is sampled by first sampling q ← Q, then sampling ω from DU on the set
Iso(EA, q

′), where q′ := q/ gcd(f, q);
2. S is sampled by first sampling q ← Q, then sampling ω from DAP on the

set Iso(EA, q
′), where q′ := q/ gcd(f, q).

The problem is, given a, b, f,Nτ , EA, S, to distinguish between the two cases
with a polynomial number of queries to Q, to FIDIO and to DAP .

EA

F

E′

2a−q′

q′

2a+b−q′(2a−q′)

Fig. 3. A diagram that illustrates the computation of the auxiliary path from EA in
the case when Eq. (1) holds for M(q′).

EA F E′

EA E′′

2a−q′

M(q′)/3

q′

2a+b−q′(2a−q′)

3

Fig. 4. A diagram that illustrates the computation of the auxiliary path from EA in
the case when Eq. (1) does not hold for M(q′).

Remark 10. It seems that the most natural way to distinguish the two cases in
Problem 9 is to reverse engineer the algorithm that underlies the distribution
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DAP . That means, given an isogeny EA → F of degree 2a − q′, one tries to
complete the diagrams in Figs. 3 and 4. In the first case, it means to come
up with an isogeny from F to EA of degree q′(2a+b − q′(2a − q′)). This gives
rise to an endomorphism on EA. Then one recovers the quaternion element
corresponding to this endomorphism and checks whether the quaternion element
is sampled from SIτ ,M(q′). The second case is similar, except that one finds an
isogeny from F to some curve E′′ that is connected to EA by a degree 3 isogeny.
This process requires at least the knowledge of both the endomorphism rings
of EA and F . Therefore, it seems reasonable to assume that solving Problem 9
is computationally hard and it requires a time complexity of at least O(2λ) for
p ∈ O(22λ).

5.2 Zero-knowledge of SQIsign2D-East

We now give a proof of the zero-knowledge property of our SQIsign2D-East
variant.

Definition 11. Given integers f , a and b, a random uniform nice degree isogeny
oracle (Rundio) is an oracle taking as input a supersingular elliptic curve E
defined over Fp2 and returning an elliptic curve E′ together with an efficient
representation of an isogeny σ : E → E′ such that:

(i) The distribution of E′ is uniform in the supersingular isogeny graph.
(ii) If there exist isogenies from E to E′ of (2a, 2b, f)3-nice degree, then the

conditional distribution of σ given E′ is uniform among isogenies E → E′

of (2a, 2b, f)3-nice degree. If no such isogenies exist, then σ is the 0 isogeny
from E to E′.

Problem 12. Let a, b and f be fixed integers as in the parameter choices. Let E
be a supersingular elliptic curve, and F be another supersingular elliptic curve
where either

1. F is sampled by first applying rejection sampling that rejects 0 isogenies
to the outputs of RUNDIO with input E, then taking a random walk of
degree 2b from the curve E′ where E′ is the codomain of the output isogeny
σ : E → E′,

2. F is sampled uniformly at random on the supersingular isogeny graph.

The problem is, given f, a, b, E, to distinguish between the two cases with a
polynomial number of queries to RUNDIO.

Remark 13. According to the analysis in Section 4.2, with our proposed param-
eter choices, there is only a tiny portion (≈ 2−40) of curves on the supersin-
gular isogeny graph that is not connected to any given random curve E with
a (2a, 2b, f)3-nice degree isogeny. In the easier case when E is taken to be E′

instead of the endpoint of a random walk from E′, to be able to distinguish
from the two distributions, either one computes all curves that are connected to
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E by a (2a, 2b, f)3-nice degree isogeny and use this as a distinguishing method,
or one recovers the endomorphism rings of E and F , then enumerating all the
connecting isogenies that are of degree less than 2af . Both methods take a time
complexity of at least O(2λ). F is taken to be the codomain of a random isogeny
walk from E′, we expect this problem to be even harder.

Theorem 14. Assuming that the commitment curve E1 is computationally in-
distinguishable from an elliptic curve chosen uniformly at random in the super-
singular isogeny graph, and the hardness of Problem 9 and Problem 12, then the
SQIsign2D-East identification protocol is computationally honest-verifier zero-
knowledge in the RUNDIO and FIDIO model.

In other words, there exists a polynomial time simulator S with access to a
RUNDIO and a FIDIO that produces random transcripts which are computa-
tionally indistinguishable from honest transcripts.

Proof. A transcript of SQIsign2D-East consists of (E1, ϕ,Kg, E4, U2, V2), where
E1 is a commitment, ϕ is a challenge, (Kg, E4, U2, V2) can be uniquely computed
from a q′-isogeny σ′ and a (2a−q′)-isogeny ω′. (See Section 4.1 for more details.)
The simulator proceeds as follows:

1. Call the RUNDIO on input EA to get an isogeny σ̃ : EA → Ẽ2 of (2a, 2b, f)3-
nice degree q̃. If RUNDIO outputs the 0 isogeny, then we run RUNDIO again
until σ ̸= 0. According to the analysis of Section 4.2 applied to our parameter
choices, this happens with a fairly small probability. Let σ̃g be the factor of

σ̃ from EA of degree g̃ = gcd(q̃, f), and let K̃g be its kernel.

2. Generate an isogeny
ˆ̃
ϕ : Ẽ2 → Ẽ1 of degree 2b uniformly at random.

3. Let q̃′ = q̃/ gcd(f, q̃). Call the FIDIO on input (EA, 2
a− q̃′), resulting in the

isogeny ω̃ : EA → Ẽ3.
4. Compute (Ẽ4, Ũ2, Ṽ2) from (σ̃, ω̃).

Then the procedure above gives rise to a simulated transcript as (Ẽ1, ϕ̃, K̃g, Ẽ4,

Ũ2, Ṽ2).
Let (E1, ϕ,Kg, E4, U2, V2) be a real transcript where (Kg, E4, U2, V2) is com-

puted from the response isogeny σ : EA → E2 of degree q and the auxiliary path
ω : EA → E3 of degree 2a − q. From the properties of the RUNDIO and FIDIO
and the assumptions we made in the theorem, we can see that:

1. The codomain curve Ẽ1 of
ˆ̃
ϕ is computationally indistinguishable from a ran-

dom curve in the supersingular isogeny graph by the hardness of Problem 12.
By assumption, E1 and Ẽ1 are computationally indistinguishable.

2. ϕ and ϕ̃ follow the same distribution as they are generated the same way.
3. Conditional to Ẽ2, σ̃ is uniformly random among isogenies between EA and
Ẽ2 of (2a, 2b, f)3-nice degree by the definition of RUNDIO. Conditional to
E2, σ has the same distribution by construction.

4. Assuming the hardness of Problem 9, ω is computationally indistinguishable
from a random isogeny of degree 2a − q̃′ from EA with q̃ sampled from Q
and q̃′ = q̃/ gcd(f, q̃).
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5. Item 3,4 combined shows that (Kg, E4, U2, V2) is computationally indistin-

guishable from (K̃g, Ẽ4, Ũ2, Ṽ2) as the distributions of (σ, ω) and (σ̃, ω̃) are
computationally indistinguishable. ⊓⊔

Remark 15. The assumption on the distribution of the commitment curve E1

made in Theorem 14 is about analyzing the distribution of the outputs of the
algorithm RandIsogImg given the input norm size. This has been discussed in
great detail in [NO24a] where this algorithm was first introduced. Based on the
discussions there, we believe this assumption is reasonable.

The previous attack strategy does not apply. To run the attack as in Section 2
on SQIsign2D-East, we need to able to solve the following problem:

Problem 16. Let a be a fixed integer as in the parameter choices and EA be the
public curve. Let ω : EA → ⋆ be of degree 2a − q where either

1. ω is sampled from D1,
2. ω is sampled from D2.

The problem is, given EA, ω, to distinguish between the two cases with a success
rate of 1 with a polynomial number of queries to DAP .

We prove in Proposition 17 that Problem 16 is not much easier than Prob-
lem 9 assuming the most efficient algorithm to solve Problem 9 has a time
complexity of O(2λ

′
) where λ′ ≥ λ. This seems a reasonable assumption as dis-

cussed in Remark 10, and a necessary condition to have our protocol achieve
λ-bits security. Proposition 17 then implies that our assumption on the hardness
of Problem 9 ensures the hardness of Problem 16, therefore we do not need to
make an extra assumption on Problem 16. This agrees with the intuition that if
Problem 16 were easy, then our SQIsign2D-East would not be zero-knowledge.

Proposition 17. If solving Problem 9 requires a time complexity of O(2λ
′
) with

λ′ ≥ λ, then solving Problem 16 requires a time complexity of at least O(2λ
′
/λ).

Proof. We prove by contradiction. Suppose there is an algorithm A that solves
Problem 16 in a time complexity of O(t) smaller than O(2λ

′
/λ). Now in Prob-

lem 9, we are given k samples with k > logNτ such that they are either from DU
or DAP . We run the distinguishing algorithm A on around logNτ ≈ λ/2 number
of samples to get enough Legendre symbol values with respect to Nτ to uniquely
determine Nτ . These values allow us to recover Nτ in time O(2λ/2). Given the
value of Nτ , we check whether the remaining k− logNτ samples give rise to cor-
rect Legendre symbols values. In the case when the k samples are from DU , this
fails with a non-negligible probability; and in the case when k samples are from
DAP , this always succeeds. This leads to an algorithm that solves Problem 9 in
time less than O(λt) +O(2λ/2) which is less than O(2λ

′
), a contradiction. ⊓⊔

Remark 18. Although the additional 3-isogeny computation will probably be
very fast compared to the rest of the response step, it still introduces a condi-
tional step that is performed only when q fails to satisfy some Legendre symbol
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condition with respect to Nτ . This may leak side channel information that, if
exploited, could lead to a restoration of the original attack. A careful analysis
of this aspect through an optimized implementation is left as future work.
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A Script for estimating the probability of niceness

The following Magma procedure probnice(f, a, b) can be used to evaluate
formula (5), for any given values of f , a, b.

1 function NormDensity(r, f)

2 fac := Factorization(f);

3 prod := 1;

4 for ell in fac do

5 e := ell [2];

6 modulus := r mod ell [1]^e;

7 if modulus eq 0 then

8 prod *:= (ell [1]^(e + 1) + ell [1]^e - 1)/ell [1]^(2*e +

1);

9 else

10 k := Valuation(modulus , ell [1]);

11 prod *:= (ell [1] + 1)*(ell [1]^(k + 1) - 1)/ell [1]^(k +

e + 2);

12 end if;

13 end for;

14 return prod;

15 end function;

16

17 procedure probnice(f, a, b);

18 pi := Pi(RealField ());

19 prob := 0;

20 for r in [0..6*f - 1] do // represents q mod 6f

21 rdiv := r div GCD(f, r);

22 cond2 := rdiv mod 2 ne 0;

23 if a mod 2 eq b mod 2 then

24 cond3 := true;

25 else

26 cond3 := rdiv mod 3 ne 1;

27 // note: this may exclude wrong residue class , but prob

does not change

28 end if;

29 if cond2 and cond3 then prob +:= NormDensity(r, 6*f)*GCD(r

, f)^2/f^2; end if;

30 end for;

31 print "For f =", f, "and a =", a, "and b =", b, ":";

32 print "Expected probability for q being nice is", prob , "

which is approximately", prob *1.;
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33 print "log_2 of overall probability of failure is", Log(2,

(1 - prob)^(pi^2*f*2^(a-b)));

34 end procedure;

35

36 print "\n NIST 1";

37 probnice (45, 129, 127);

38

39 print "\n NIST 3";

40 probnice (35, 191, 189);

41

42 print "\n NIST 5";

43 probnice (375, 254, 252);
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