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Abstract—Merkle trees play a crucial role in blockchain
networks in organizing network state. They allow proving a
particular value of an entry in the state to a node that maintains
only the root of the Merkle trees, a hash-based signature
computed over the data in a hierarchical manner. Verification
of particular state entries is crucial in reaching a consensus on
the execution of a block where state information is required
in the processing of its transactions. For instance, a payment
transaction should be based on the balance of the two involved
accounts. The proof length affects the network communication
and is typically logarithmic in the state size. In this paper,
we take advantage of typical transaction characteristics for
better organizing Merkle trees to improve blockchain network
performance. We focus on the common transaction processing
where Merkle proofs are jointly provided for multiple accounts.
We first provide lower bounds for the communication cost
that are based on the distribution of accounts involved in the
transactions. We then describe algorithms that consider traffic
patterns for significantly reducing it. The algorithms are inspired
by various coding methods such as Huffman coding, partition and
weight balancing. We also generalize our approach towards the
encoding of smart contract transactions that involve an arbitrary
number of accounts. Likewise, we rely on real blockchain data
to show the savings allowed by our approach. The experimental
evaluation is based on transactions from the Ethereum network
and demonstrates cost reduction for both payment transactions
and smart contract transactions.

Index Terms—Blockchain, Merkle Trees, Coding Theory.

I. INTRODUCTION

THE blockchain technology received high public attention
in recent years as a distributed secured ledger with no

central authority behind it. It became popular as the technology
behind cryptocurrencies such as the popular Bitcoin [1] and
has been expanded to other applications including electronic
voting, supply chain communications, and medical informat-
ics [2], [3]. Following the first (genesis) block, each later block
includes the output of a cryptographic hash function computed
over the content of the previous block, making it impossible
to alter a block without changing all subsequent blocks.
Blocks are comprised of a list of transactions, which imply
atomic state modifications. These can be simple payments
(money transfers) or a complex state change of virtual machine
throughout the execution of Turing-complete smart contracts.

The Merkle tree is a known tool in cryptography, first
suggested by Merkle [4] which enables efficiently proving
membership of a data element in a set, without revealing the
entire set. In a Merkle tree, every node has a Merkle label.
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For the leaves, this label is the hash of a data item, and for
every non-leaf node, this label is the hash of the concatenation
of the labels of its children. In order to verify that some data
is included in a Merkle tree, one needs to obtain a label R
of the root of the tree, called the Merkle root, from a trusted
source. A Merkle proof for the containment of some data x,
which corresponds to a leaf in the tree, consists of the siblings
path of the leaf, that includes the labels for the siblings of the
nodes in a path from the leaf to the root. These values allow
the verifier to compute the Merkle root, checking the validity
of values including x based on matching with the known value
R. Merkle trees make use of hash functions which are second
preimage resistant [5]. Given a data set, it is difficult to find
an alternative set such that the Merkle trees of the two sets
have the same Merkle root label.

Merkle trees play a fundamental role in blockchain tech-
nology, allowing the secure verification of transactions. The
network state can include for each account its current balance
and additional associated information. Due to the large size
of the state, nodes typically do not maintain their complete
copy. Each block in the chain is associated with the Merkle
root computed for the network state following the execution
of the block transactions. The block approval process includes
verifying the validity of transactions and their impact on the
state. For instance, a payment requires a minimum value of
the payer’s balance, and when successful, it implies a change
in the balance of the two involved accounts. When a node
proposes a block, it associates with it the implied impact of
its transactions on the state. These can be validated through
proofs for the involved inputs to the transactions, such as the
balance of the two accounts in a typical payment transaction.

Typically, accounts are organized in the Merkle tree arbitrar-
ily, e.g. in an order determined by their associated addresses.
Moreover, all accounts appear in the same tree height. On
the contrary, we observe that letting the Merkle tree structure
be traffic-aware with potential diversity in the heights of
accounts allows savings in the amount of data provided for
the membership proofs. In this paper, we study an approach
for traffic-aware construction of Merkle trees. We aim to
take advantage of a common property of Merkle proofs in
blockchain networks where a proof jointly refers to several
inputs such as multiple accounts in the same transaction.

The paper makes the following main contributions:

• We overview use-cases of Merkle trees in Blockchain
systems such as in the Ethereum network (Section II).

• We suggest and formalize a traffic-aware encoding ap-
proach for shortening Merkle proof lengths (Section III).

• We present bounds on the communication cost and relate
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the encoding problem to known problems (Section IV).
• We describe practical considerations and an implementa-

tion architecture in Section V.
• We develop algorithms for finding efficient traffic-aware

Merkle trees (Section VI).
• We generalize the communication cost to smart contracts

involving a large number of accounts (Section VII).
• We study characteristics of real Ethereum data and con-

duct experiments to demonstrate the effectiveness of the
approach (Sections VIII-A-VIII-B).

A preliminary version of this paper appeared in the Interna-
tional Conference on Communication Systems and Networks
(COMSNETS), January 2021 [6].

II. MERKLE TREES IN BLOCKCHAIN AND RELATED WORK

In this section, we detail several use-cases of Merkle trees
in blockchain systems and related applications.

In blockchain networks, a block is associated with a hash
value computed over data of previous blocks making them
immutable [7]. In addition, typically (such as in Ethereum [8])
a block also includes a Merkle root value computed over the
state following the execution of the block. This is illustrated in
red in the chain shown in Fig. 1. An agreement on the addition
of a new block to the chain implies a specific Merkle root value
so a node can demonstrate values in the state by providing
Merkle proofs to other nodes that do not maintain the full state.
A block is validated by verifying the changes its transactions
imply on the state. A typical transaction involves two accounts
whose data appears as part of the state. Accordingly, the
validation examines proofs for the accounts involved in the
transaction.

The Ethereum network [8] is often considered the second-
largest blockchain network. Every block header in Ethereum
contains three Merkle roots of three trees: a transaction tree
that contains the transactions in the block; a receipt tree with
the impact of these transactions; and a state tree that contains
the state of the Ethereum virtual machine. The state Merkle
tree is a key-value mapping where the account addresses are
keys and values include the balance and potentially code or
storage assigned for the account. The complete tree structure
is stored only in a local database maintained by the network
nodes, and only the root hash is stored on the blockchain.
A transaction is verified by supplying the Merkle paths for
the updated accounts (as described in details as part of the
model description in Section III). Additionally, when the state
is modified as a result of transaction execution, the paths from
the changed accounts to the root are updated. If accounts that
are frequently accessed together become closer in the state
tree, fewer tree parts have to be read and updated as a result
of their overlapping paths to the root.

Another application of Merkle trees in blockchain systems
is the protection of data integrity in cloud systems. A solution
suggested in [9] is to partition the data stored on the cloud
server and keep a unique tag for each part in a T-Merkle tree,
a combination of a Merkle tree and a T-tree, a balanced search
tree designed for main memory databases. The Merkle tree is
kept on a blockchain and is used to supply proofs for the
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Fig. 1. Merkle roots as part of the block info. Besides the hash of a previous
block, a block includes a Merkle root computed for the updated network state.

integrity of the data stored by the cloud server. While their
suggested verification process uses a random set of tags that
results in random proof paths in the Merkle tree, user-based
integrity proofs can be considered. When proofs are requested
according to some user access pattern, the distribution for
batches can be deduced allowing the applicability of one of
the efficient Merkle tree algorithms we propose in this paper.

SmartSync [10], [11] is a recent work that aims to syn-
chronize smart contracts between different blockchains. Their
solution is applicable for account-based systems that use
Merkle trees to hold their state, similarly to Ethereum. In
the synchronization process, they used a multi-proof aggre-
gation to save commonalities between the different proofs.
Similarly, multi-proof is also a design choice in CBCS [12], a
recent blockchain architecture. Both solutions can benefit from
Merkle trees that produce smaller multi proofs on average. An
energy efficient Merkle tree is designed in [13] to ease the
burden of the energy consumption of blockchain systems.

Beyond blockchain, the Huffman Merkle Hash Tree
(HuffMHT) [14] is used to make an efficient certificate revo-
cation system. It minimizes the average length of the Merkle
proof, given the probabilities of the elements, the same way
as the Huffman tree constructed. In our domain, it can yield a
shorter path to accounts that make transfers more frequently.
However, it does not consider gains from overlapping proofs.
The full details can be found later in Algorithm 2.

Compact Merkle multi-proofs [15] is a recent work that
eliminate the overhead of the indices required to store non-
leaf hashes in a multi-proof. This optimization is applicable
to our proposed algorithms as well, and can further improve
the efficiency of proof aggregation.

Additional applications of the Merkle Tree and its mem-
bership proof technique have been suggested [16], [17]. It
is used to reduce the computational costs of using public-
key digital signatures in securing routing protocols [18]. It
can also be used in client-server protocol for web servers
using SSL/TLS that minimizes the latency and improves resis-
tance to denial-of-service attacks [19]. Help secure smart grid
communication [20] and more. Such systems may improve
communication costs if a proof batching is applicable.

III. MODEL AND PROBLEM DEFINITION

A. Illustrative Example

A Merkle tree is illustrated in Fig. 2. It is computed for
eight data items x0 − x7 (shown as leaves). Internal nodes
including the Merkle root R are associated with hash values
computed hierarchically. Based on R, to show the inclusion
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TABLE I
SUMMARY OF MAIN NOTATIONS

Symbol Meaning
ai account i
n number of accounts

Q = {q1, . . . , qm} transaction distribution (appearance probabilities)
σ(·) prefix code

|σ(ai)| codeword length for account ai
c(tx, σ) multipath size for code σ with transaction tx
C(Q, σ) encoding cost for code σ with transaction

distribution Q
OPT (Q) optimal encoding cost for transaction distribution Q

HQ accounts entropy for distribution Q
LQ Huffman code average length

G = (V,E,w) transaction graph with weights describing
transaction probabilities

α ratio of transactions serving as input to tree
computation

among the values of a particular data items, x2 for instance,
x0−x1 and x3−x7 are useful. Together with x2 one can check
that they jointly imply R. For the same purpose, it is enough
to provide only three values (shown in red in the figure): (i) h3

(ii) h0−1 = H(h0 ·h1) (iii) h4−7 = H(H(h4 ·h5)·H(h6 ·h7)),
where for i ∈ [0, 7], hi denotes the values of H(xi). With
these three values and x2, the root value R can be computed
as R = H

(
H
(
h0−1 ·H

(
H(x2) · h3

))
· h4−7

)
.

For a tree computed for m = 2W items representing
accounts, the inclusion proof includes W values as the length
of the siblings path. To show the existence of multiple items,
one can detail the siblings’ path of each of them. Note that
paths for different items can have nodes in common. In such
a case, showing the inclusion of k items requires providing
less than k · W values. For instance, in the example from
Fig. 2 with W = 3 the proof path for x1 is h0, h2−3, h4−7 and
for x2 is h3, h0−1, h4−7. When both proofs are required, it is
enough to provide only five values: h0, h3, h0−1, h2−3, h4−7,
as both share the node h4−7. Moreover, neither h0−1 nor
h2−3 are needed for the proof, as both can be derived by
their leaves. Accordingly, jointly showing the inclusion of
x1, x2 requires only 3 values, h0, h3, h4−7 such that R =

H
(
H
(
H
(
h0 ·H(x1)

)
·H

(
H(x2) · h3

))
· h4−7

)
.

The potential savings are affected by the location of the
items in the tree. For instance, upon showing the inclusion of
x2 and x5, there are no savings since the nodes along their
paths do not overlap. Moreover, as mentioned, the degree of
freedom in the heights of items can also be used to shorten
proofs for common accounts.

Table I summarizes the main notations of the paper.

B. Model

We present a model for the encoding of accounts with
Merkle trees and formalize the problem of minimizing the
communication cost in the processing of a transaction. We
assume here that a transaction has two (distinct) accounts as
in the common case of payment transactions.

Definition 1 (Transaction). A transaction tx ≜ {a1, a2}
is characterized by a set of two accounts. Transactions are
equivalent if they contain the same accounts.

Merkle root

x0 x1 x2 x3 x4 x5 x6 x7

R = H(h0−3 ·
h4−7)

h0−3 =
H(h0−1 ·h2−3)

h0−1 =
H(h0 ·h1)

h0 h1

h2−3 =
H(h2 ·h3)

h2 h3

h4−7 =
H(h4−5 ·h6−7)

h4−5 =
H(h4 ·h5)

h4 h5

h6−7 =
H(h6 ·h7)

h6 h7

Fig. 2. Illustration of a Merkle tree of 8 items. Merkle proof of item x2 (with
a dashed blue leaf) includes nodes h3, h0−1, and h4−7 (in solid red).

In Section VII, we generalize the discussion to smart
contracts transactions that can involve an arbitrary number of
accounts.

Definition 2 (Transaction Distribution). A transaction dis-
tribution (TX,Q)≜({tx1, . . . , txm} , {q1, . . . , qm}) is charac-
terized by a set of transactions with their corresponding posi-
tive appearance probabilities. A transaction is drawn randomly
according to the distribution Q, i.e., P (tx = txi) = qi, with
qi > 0 and Σm

i=1qi = 1.

Definition 3 (Account Encoding Function). An account en-
coding function σ is a mapping σ : A→ {0, 1}≤n \ ∅, where
A is the set of |A| = n accounts and {0, 1}≤n is the set of
all binary vectors of length less than or equal to n.

Definition 4 (Prefix Code). For a set of items S, code σ is
called a prefix code if in its codeword set B, no codeword is
a prefix (start) of any other codeword.

Kraft’s inequality [21] formally expresses whether a pre-
fix code of given codeword lengths exists: A code with n
codewords of lengths ℓ1, ℓ2, . . . , ℓn exists if and only if the
inequality

∑n
i=1 2

−ℓi ≤ 1 holds.
The codeword lengths of σ imply a binary tree structure

where each leaf is associated with a codeword obtained
according to the path from the root with left and right edges
corresponding to bits of 0 and 1, respectively. If leaves share
the same height then all codewords have the same length. Con-
sider a Merkle tree where n items appear in heights based on
codewords lengths of a prefix code σ. To show the inclusion of
an item x among the items in the tree, a proof includes |σ(x)|
items. Denote by σ(x) = b = (b1, . . . , b|σ(x)|) the (binary)
codeword for x. The proof includes values that correspond
to nodes in the tree in locations (b1, . . . , bi−1, 1 − bi) for
i ∈ [1, |σ(x)|]. For instance, in Fig. 2 the proof for the inclu-
sion of x2 (with a location reached by a path corresponding to
010) was composed of h3 (of location 011), h0−1 (of location
00) and h4−7 (of location 1).

The following definition refers to the communication cost
in the processing of a transaction that involves two accounts.
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Definition 5 (Multipath size). For a transaction tx = {a1, a2}
and an account prefix encoding σ, the multipath size is defined
as the size of the union of the paths of a1 and a2

c (tx, σ) =
∣∣σ (a1)

∣∣+∣∣σ (a2)
∣∣−∣∣σ (a1, a2)

∣∣ ,
where σ (a1, a2) is the common prefix of σ (a1) and σ (a2).

Definition 6 (Communication Cost). For a transaction dis-
tribution (TX,Q) and an account prefix encoding σ, the
communication cost (measured in units of bits) is defined as
the average multipath size C(Q, σ) =

∑
tx∈TX qtx · c (tx, σ),

where qtx is the probability of transaction tx.

The problem of constructing a Merkle tree that minimizes
the communication cost can be formalized through finding a
corresponding legal prefix code.

Problem 1 (Transaction Encoding Problem). Given a trans-
action distribution (TX,Q) defined over a set of accounts A,
find a prefix code for A that minimizes the communication
cost. Namely,

min

m∑
i=1

qi ·
(∣∣∣σ (

ai,1
)∣∣∣+∣∣∣σ (

ai,2
)∣∣∣−∣∣∣σ (

ai,1, ai,2
)∣∣∣)

s.t.
∑
a∈A

2−|σ(a)| ≤ 1 (1a)∣∣σ(a)∣∣ ≥ 1 ∀a ∈ A (1b)∣∣σ(a)∣∣ ∈ N ∀a ∈ A (1c)

For a transaction distribution Q we denote by OPT (Q) the
optimal encoding cost, i.e., the value minσ C(Q, σ) where σ
is a prefix code.

Note that the communication cost can be reduced below
the multipath size c (tx, σ) =

∣∣σ (a1)
∣∣+∣∣σ (a2)

∣∣−∣∣σ (a1, a2)
∣∣

for transactions of pairs. We can discard two additional items
from the proof: the items located on the level that they are
first different at, i.e. corresponds with the first-bit difference
in their codewords. This is since we can calculate both by the
other proof’s subtree, as demonstrated in Section III-A. For
convenience, we choose the simpler term of Problem 1 as the
minimization target as they differ for simple transactions of
two accounts by a constant (2 items), leading to equivalent
optimization. In Section VII we generalize the discussion to
smart-contract transactions that can involve more than two
accounts. We then explain for this extension the potential
impact on the communication cost.

IV. BASIC PROPERTIES AND BOUNDS

Towards developing solutions to the problem we study in
this section its fundamental properties.

A. Accounts Order in a Transaction
A transaction is often described as an ordered pair of

accounts to distinguish between the roles of a payer and payee.
We simply observe that the encoding problem is insensitive to
that order. This immediately follows the symmetry between the
two accounts in Definition 1. This enables us to simplify the
representation of a distribution while referring to transactions
as unordered. We do so through the representation of a
distribution as an unordered weighted graph as follows.

F
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C D

I

E

J

0.030.02 0.08
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0.02 0.03

0.030.2

0.15
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Fig. 3. Transaction graph example with n = 10 accounts. Every node
represents an account, and a weighted edge describes the probability for a
transaction between two accounts.

B. Graph Representation

Definition 7 (Transaction Graph). A transaction graph G =
(V,E,w) is an undirected weighted graph. Nodes represent
accounts.There is an edge e = (v1, v2) if a transaction between
accounts v1 and v2 can appear. The weight w(e) is the
probability of a transaction to involve the accounts of e.

Through the graph representation of the trans-
action distribution, the communication cost of a
(prefix) code σ can be expressed as C(G, σ) =∑

e∈E w (e) ·
(∣∣σ (e1)

∣∣+∣∣σ (e2)
∣∣−∣∣σ (e1, e2)

∣∣) using
the notation e = (e1, e2). Fig. 3 shows an example for a
transaction graph with ten accounts and thirteen potential
transactions.

Assuming a transaction graph G = (V,E,w) we de-
note by OPT (G) the optimal encoding cost, i.e., the value
minσ C(G, σ) where σ is a prefix code.

C. Bounds on the Communication Cost

We derive lower and upper bounds for the optimal com-
munication cost OPT (Q) for a given distribution Q. The
distribution of the transactions Q implies a distribution of the
appearance of accounts in the transactions. An account can
appear as one of the two accounts in a transaction.

Definition 8 (Account Distribution). An account distribution
(A,P )≜((a1, . . . , an), (p1, . . . , pn)) is characterized by a list
of accounts with their corresponding positive appearance prob-
abilities. For a transaction distribution (TX,Q) an account ai
has probability pi =

1
2 ·

∑
tx={a1,a2}∈TX qtx · I(ai ∈ tx).

A trivial upper bound on the communication cost derives
from a code σ that allocates codewords of fixed length⌈
log2(n)

⌉
for the n accounts, namely |σ(ai)| =

⌈
log2(n)

⌉
for ai ∈ A. The cost for a transaction is at most twice the
fixed length bounding C(Q, σ) and accordingly OPT (Q).

Property 1. The optimal communication cost for a transaction
distribution Q defined over n accounts satisfies OPT (Q) ≤
2 ·

⌈
log2(n)

⌉
.

Note that some additional savings can always be achieved
by assigning codewords with a non-empty common prefix to
accounts in the most common transaction. Accordingly, the
inequality in the above can be strong OPT (Q) < 2·

⌈
log2(n)

⌉
.

Following the account distribution, we define two val-
ues. First, accounts entropy HQ is defined as HQ =∑n

i=1−pi log2(pi). Likewise, its Huffman code average
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Fig. 4. An example for a transaction distribution defined over four accounts
(described by the graph in (a)) and corresponding Huffman-based code (in
(b)) and an optimal code (in (c)).

length LQ is defined as the weighted average codeword
length for a Huffman code [22], computed over the account
distribution (A,P ). It is known that HQ ≤ LQ ≤ HQ + 1
such that LQ = HQ if for i ∈ [1, n] probabilities are of the
form pi = 2−ki for some integer ki.

The account distribution (A,P ) computed for the transac-
tion distribution Q helps us to derive bounds for OPT (Q).

Theorem 2. Let (TX,Q) be a transaction distribution with
a corresponding account distribution (A,P ). The optimal
communication cost satisfies LQ + 1 ≤ OPT (Q) ≤ 2 · LQ.

Proof: Consider a prefix code σ for the transaction
distribution. For a transaction txi = (ai,1, ai,2) w.p.
qi, the communication cost is ci = |σ

(
ai,1

)
| +

|σ
(
ai,2

)
| − |σ

(
ai,1, ai,2

)
|. It satisfies ci ≥ |σ

(
ai,1

)
| + 1

and ci ≥ |σ
(
ai,2

)
| + 1. First, for the lower bound,

the communication cost C(Q, σ) for any code σ is∑m
i=1 qi ·

(
|σ

(
ai,1

)
|+ |σ

(
ai,2

)
| − |σ

(
ai,1, ai,2

)
|
)

≥∑m
i=1 qi · |σ

(
ai,1

)
| + 1 ≥ LQ + 1, where the last

inequality follows properties of the Huffman code,
achieving the optimal (minimal) average codeword
length. To see the upper bound, let σ be the Huffman
code itself for the account distribution (A,P ) computed
for Q. Then, its communication cost is C(Q, σ) =∑m

i=1 qi ·
(
|σ

(
ai,1

)
|+ |σ

(
ai,2

)
| − |σ

(
ai,1, ai,2

)
|
)

≤∑m
i=1 qi ·

(
|σ

(
ai,1

)
|+ |σ

(
ai,2

)
|
)

= 2 · LQ. This implies
the upper bound on OPT (Q).

Example 3. Fig. 4(a) illustrates a transaction distribution
Q defined over four accounts A,B,C,D with three potential
transactions. The probabilities for these transactions imply
a distribution for the four accounts given as (A,P ) =(
(A,B,C,D),

(
(0.4+0.2)/2, 0.4/2, (0.2+0.4)/2, 0.4/2

))
=

((A,B,C,D), (0.3, 0.2, 0.3, 0.2)). The accounts entropy is
HQ ≈ 1.97. An example for a Huffman code is illustrated in
Fig. 4(b), with a fixed codeword length of 2 implying LQ = 2.
An optimal code is illustrated in Fig. 4(c). This implies cost of
2+2-1=3 for (A,B) (as A,B both appear in the left half of the
tree), a cost of 2+2=4 for (A,C) (as A,C appear in two different
halves of the tree) and a cost of 2+2-1=3 for (C,D) such that
the average cost is OPT (Q) = 0.4 · 3+0.2 · 4+0.4 · 3 = 3.2.
We can see that the inequalities LQ + 1 = 3 ≤ OPT (Q) =
3.2 ≤ 2 · LQ = 4 indeed hold.

By the communication cost of the Huffman code and the

lower bound on the communication cost of any potential
code from the last proof, we deduce that the Huffman code
approximates the optimal code with a factor smaller than 2.

Property 4. For any transaction distribution (TX,Q) the
Huffman code has a communication cost C(Q, σ) ≤ 2·LQ

LQ+1 ·
OPT (Q) < 2 ·OPT (Q).

Let σ be the above-mentioned Huffman code computed for
the account distribution (A,P ) implied by Q. Such a code
neglects the probabilities of the various accounts to appear
jointly in a transaction. Accordingly, while it allocates to
accounts codewords of a particular length, it does not try to
allocate to accounts that often appear jointly in a transaction
codewords with a lengthy common prefix.

Considering the distribution of transactions (TX,Q) and
not just the account distribution (A,P ) allows us to further im-
prove the upper bound OPT (Q) ≤ 2·

⌈
log2(n)

⌉
on the optimal

communication cost from Property 1 but with more tedious
expressions. The idea is to consider the transactions of highest
weights and allocate codewords with a long common prefix
to each pair of accounts from these transactions. Consider
some n/2 transactions with n distinct accounts. Each such
transaction txi = {a1, a2} with probability qi helps to reduce
the upper bound of 2·

⌈
log2(n)

⌉
on the optimal communication

cost by qi · (
⌈
log2(n)

⌉
− 1) through allocating for the two

accounts codewords that share all bits but the last. Note that
we cannot always refer to the n/2 transactions of highest
probability and potentially need to consider transactions of
lower weights for the transactions to be of disjoint accounts.
Note that the same property that allows the additional savings
is not necessarily valid for the upper bound 2 · LQ from
Theorem 2. The reason is that the particular codeword lengths
in a Huffman code imply restrictions on the potential of two
accounts to have a lengthy prefix in common.

D. Connection to Known Problems

We relate the transaction encoding problem (Problem 1) to
the Quadratic Assignment Problem (QAP) from the field of
facilities location problems [23].

Problem 2 (Quadratic Assignment Problem). Given are N
facilities and a demand matrix DN×N where Di,j describes
the amount of traffic sent from facility i to facility j. A graph
G = (V,E) with |V | = N is given with a known travel cost
between any pair of nodes. The goal is to map facilities to
nodes such that the weighted average travel cost is minimized.

The transaction encoding problem allows flexibility in the
codeword lengths (while satisfying the Kraft’s inequality).

Property 5. While referring to trees of a known structure, e.g.
the tree with leaves of a fixed height, the encoding problem of
Problem 1 is an instance of the Quadratic Assignment Problem
(QAP).

In our context, the distance between two nodes
reached through paths of the form σ (a1) , σ (a2) is(∣∣σ (a1)

∣∣+∣∣σ (a2)
∣∣− 2

∣∣σ (a1, a2)
∣∣). While the QAP problem
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is NP-hard in the general case, our hope is that particular
graph properties might enable finding efficient solutions.

Next, we relate the transaction encoding problem (Prob-
lem 1) to another known problem. Interestingly, this connec-
tion allows better understanding of the computational hardness
of Problem 1, again assuming a restriction that the tree is a
complete tree with leaves of a fixed height.

Problem 3 (Data Arrangement in a Tree [24]). Given are
an undirected weighted graph G = (V,E,w) and an integer
B ≥ 0. Determine whether there exists an injective mapping
f from V to the leaves of a complete d-ary tree T of height
⌈logd|V |⌉, such that∑

e∈E

w (e) · dT
(
f (e1) , f (e2)

)
≤ B

where dT (u, v) is the distance between u, v in T .

The Data Arrangement problem is NP-hard even when
w (e) = 1 for all e ∈ E and for any d ≥ 2 [24]. In our terms,
when considering fixed-length codewords, the problem is hard
even without considering the transaction distribution. Although
this problem uses the length between leaves, as opposed to
the total length of the union of the paths from the root as
in Problem 1, each can be solved by the other when adding
the constraint of fixed length codewords to Problem 1. In a
complete tree, our problem is equivalent to

C (G, σ) = min

m∑
i=1

(
log2 n+ log2 n−

∣∣∣σ (
ai,1, ai,2

)∣∣∣)
= mlog2 n+min

m∑
i=1

(
log2 n−

∣∣∣σ (
ai,1, ai,2

)∣∣∣)
= mlog2 n+

1

2
min

∑
e∈E

dT
(
f (e1) , f (e2)

)
since log2 n−

∣∣∣σ (
ai,1, ai,2

)∣∣∣ is half the distance (dT ) between
the leaves of σ

(
ai,1

)
and σ

(
ai,2

)
. We can see that a solution

to Problem 1 with fixed length codewords can be applied to
Problem 3, and given a solution to Problem 3, we can search
for the minimal value B and get C (G, σ).

V. PRACTICAL CONSIDERATIONS OF TRAFFIC-AWARE
MERKLE TREES

We explore practical tradeoffs of adopting Traffic-aware
Merkle trees in blockchain systems. Specifically, we consider
the implications of computational and storage overhead to-
wards the expected savings in communication bandwidth. We
start by presenting a system with Traffic-aware Merkle trees
that shares the main design with the Ethereum system and
point to the overhead and savings.

This system architecture would include a reconfiguration
protocol to ensure that the Merkle tree remains optimized for
recent traffic patterns. This protocol can be a simple block
count for reconstruction of the tree, or it could be based
on detecting significant changes in the traffic that warrant
a reconfiguration. The reconfiguration process, as illustrated
in Fig. 5, involves feeding a predefined algorithm for tree

Tx history

0xab

Tree computation

0x4c

proof

Fig. 5. Tree computation and usage. Given a transaction history (a sequence
of blocks), a new Merkle tree is computed. Later, a proof is generated for a
transaction between two accounts.

computation (such as among those from Section VI) with
a transaction history from previous blocks and outputting an
updated Merkle tree. Nodes adopt the updated tree structure
until the next reconfiguration is triggered. It is noted that a
balance should be implied between frequent updates, which
could lead to higher operational costs, and infrequent updates,
which may result in suboptimal Merkle trees that do not reflect
the latest transaction patterns.

Nodes independently execute the protocol without storing
state information on the blockchain, thus not adding additional
storage requirements for the blockchain itself. This can be
done thanks to the shared historical transaction data that serves
as a common reference point for all nodes. This commonality
ensures that every Merkle tree independently constructed by
a node is consistent with trees of other nodes, obviating the
need for an additional consensus protocol.

Fig. 6 demonstrates the evolution of the Merkle tree struc-
ture as transactions are added to the blockchain. When trans-
actions are processed, the state of the tree is modified and the
hashes are updated in the paths to the root, and the new root
is kept in the block header. In these updates, using a traffic-
aware tree saves node updates in the tree, as frequent accounts
have a shorter path. When a reconfiguration occurs, a new tree
structure is computed and its root is kept on chain as before.

Additional storage is required for mapping account ad-
dresses to codewords (nodes in the tree), but this is stored
locally at each node and recalculated as necessary, thus it
does not impact the blockchain’s size. However, the size of
the map depends not only on the number of accounts but
also on the tree structure. For a complete binary tree, each
codeword is of length log2 n, and in the extreme case of
a degenerate tree the average codeword length is O (n). In
practice, one way to reduce the mapping cost in systems
with a large number of accounts is to consider only the
most frequent accounts in a traffic-aware tree, and to maintain
another regular tree for the rest. This approach has the potential
to balance the computational and storage trade-offs, ensuring
that the blockchain remains scalable even as the number of
accounts grows. This approach leverages the typical heavy-
tailed distribution of transactions in blockchains, as explored
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Block #604

Merkle
root
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Block #605

Merkle
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Prev
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Block #606

Merkle
root

Prev

a

b c

d e

Tree update

Block #607

Merkle
root

Prev

ab cd

e

Blockchain

Local Memory

Fig. 6. Illustration of the dynamic nature of the Merkle tree as it evolves over time. In the first three blocks in the diagram, the tree keeps its structure, but
hash values are changed along paths from accounts root for the individual transactions. By the fourth block, a reconfiguration of the tree occurs and a new
structure is established. The updated tree structure is computed by one of the algorithms for tree computation based on recent transaction history.

in Section IV and in a similar work on traffic-aware algorithms
in blockchain systems [25].

VI. ALGORITHMS FOR COMPUTING TRAFFIC-AWARE
MERKLE TREES

Although the previous discussion suggests that it is likely
hard to solve Problem 1 optimally for every instance, in
this section we present efficient algorithms, and later in
Section VIII-B demonstrate their performance improvements
on realistic distributions. We describe various algorithms for
finding a code σ for a given transaction distribution (TX,Q).
The algorithms differ in several aspects, including (i) The
codeword lengths they produce (either fixed or variable length)
(ii) The information they rely on, such as the complete
transaction distribution or only the account distribution.

Algorithm 1: Random (Fixed length codewords)
Input: Transaction distribution (TX,Q); Accounts

A = {a1, . . . , an}
Output: Codewords per account σ = {σ1, . . . , σn}
return σ(ai) = bin(i)/*

⌈
log2(n)

⌉
-bit value */

The first simple algorithm allocates for all n accounts fixed
length codewords of the minimal possible length of

⌈
log2(n)

⌉
bits. Pseudo-code is shown in Algorithm 1. While the partic-
ular assignment of codewords affects the communication cost
according to the transaction distribution, this simple algorithm
does not use the transaction distribution nor the implied
account distribution. The algorithm simply uses the standard
binary representation to assign codewords to accounts.

The second algorithm (Algorithm 2) uses the account dis-
tribution implied by the input transaction distribution and is
based on the Huffman Merkle Hash Tree (HuffMHT) [14]. The
algorithm does not further make use of the informative trans-
action distribution. It assigns codewords of variable lengths
to accounts as a Huffman code [22] based on each account

Algorithm 2: Huffman [14] (Variable length code-
words)
Input: Transaction distribution (TX,Q); Accounts

A = {a1, . . . , an}
Output: Codewords per account σ = {σ1, . . . , σn}

1 Compute account distribution (A,P ) from transaction
distribution Q

2 return Huffman code for A based on P /* [22] */

probability. Accounts participating in more transactions are
assigned shorter codewords such that the code minimizes the
average codeword length based on the account distribution.

Algorithm 3: Partition (Fixed length codewords)
Input: Transaction distribution (TX,Q); Accounts

A = {a1, . . . , an}
Output: Codewords per account σ = {σ1, . . . , σn}

1 Refer to all accounts as a single group with an empty
string codeword

2 while maximal group size > 1 do
3 Select the group of the largest size
4 Compute a balanced partition of the group accounts

with minimal weight of crossing edges, separating
accounts into two subgroups /* [26] */

5 For each account ai add 0 or 1 to its codeword σi,
based on its subgroup

6 end
7 return Codewords per account {σ1, . . . , σn}

The Partition algorithm (Algorithm 3) assigns codewords
of a roughly fixed length to all the accounts. The fixed length
is achieved by recursively partitioning the accounts into two
subsets so as to minimize the probability that a transaction
involves accounts in different subsets. Accounts are arranged
in a balanced hierarchy, with all accounts in the same partition
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sharing the same codeword prefix. Thus, as the probability
of two accounts making a transaction grows, their codes are
expected to share more of their prefix. The algorithm, which
is based on a top-down partitioning, is calling a balanced min-
cut algorithm n − 1 times. For finding the balanced min-cut
we make use of a heuristic for the problem of a balanced
partition with minimal crossing edge weights. The heuristic
was suggested by Kernighan and Lin in 1970 [26]. The reason
for using such a heuristic is that finding an optimally balanced
partition (line 4 of Algorithm) is NP-complete [27].

Algorithm 4: Pairs-first Huffman (Variable length
codewords)

Input: Transaction distribution (TX,Q); Accounts
A = {a1, . . . , an}

Output: Codewords per account {σ1, . . . , σn}
1 Initialize all account codewords by the empty string
2 Compute the account distribution (A,P ) from the

transaction distribution Q
3 A′ ← A, P ′ ← P
4 For each transaction txk =

{
ai, aj

}
∈ TX , compute

relative weight for its two accounts

w (txk) =

(
qk
pai

, qk
paj

)
5 while TX is not empty do
6 tx← most frequent transaction in TX
7 if minw (tx) > (α, α) then

/* Merge accounts to subtree */
8 Append ’0’ to the codeword σi of ai
9 Append ’1’ to the codeword σj of aj

10 Remove all tx with either ai, aj from TX
11 A′ ← A′ \

{
ai, aj

}
12 A′ ← A′ ∪

{(
ai, aj

)}
13 p′i,j ← pi + pj
14 end
15 end
16 return Huffman code σ for A′ based on account

distribution P ′ /* [22] */

Each of the previous two algorithms addresses one part of
the multipath-size expression: Algorithm 2 minimizes σ(ai)
and Algorithm 3 maximizes σ(a1, a2). The following algo-
rithms attempt a joint optimization of the two parts, optimiz-
ing both the individual representation sizes and the overlaps
between pairs.

In the following, we make adaptations to the Huffman
algorithm (as of Algorithm 2) to consider also the distribution
of transactions rather than only of accounts. Intuitively, in
addition to assigning short codewords to frequently appearing
accounts, we try to allocate long common prefixes to pairs
of accounts with many joint transactions. In Algorithm 4,
the input accounts are first processed. An alternative account
distribution P ′ is computed based on (A,P ) and serves as
the Huffman algorithm’s input. We merge pairs of accounts
with frequent joint transactions. In doing so, we would like
the transaction to take for each of its two accounts, a high
ratio among all transactions the accounts are involved in.

Algorithm 5: Weight Balance [28] (Variable length
codewords, ordered accounts)
Input: Transaction distribution (TX,Q); Accounts

tuple A = (a1, . . . , an)
Output: Codewords per account σ = {σ1, . . . , σn}

1 Compute account distribution (A,P ) from transaction
distribution Q

2 Let Σ be a list of n empty codewords.
3 I ←

{
(A,Σ)

}
4 while I is not empty do
5 A′,Σ← I.pop()
6 l←

∣∣A′∣∣
7 if l = 1 then
8 σ

(
A′

1

)
← Σ1

9 else
10 k ← argmink∈[1,l]

∣∣∣∑k
i=1 pi −

∑l
i=k+1 pi

∣∣∣
11 L←

((
A′

1, . . . , A
′
k

)
, (0Σ1, . . . , 0Σk)

)
12 R←

((
A′

k+1, . . . , A
′
l

)
, (1Σk+1, . . . , 1Σl)

)
13 I ← I ∪ {L,R}
14 end
15 end
16 return Codewords per account {σ1, . . . , σn}

In Algorithms 2-4, the order of accounts in the Merkle tree
leaves is determined by the algorithm. However, in some cases
it is desired to keep the accounts’ binary representations in
their original order, for example when consecutive account
numbers form some organizational grouping. For this case, we
suggest using a known algorithm, called Weight Balance [28],
that optimizes the representation lengths while preserving the
order of the inputs. It is shown here as Algorithm 5.

The algorithm recursively partitions the account space from
top to bottom into two subsets of consecutive accounts. At
each step, the partition point is chosen as the one that
minimizes the difference between the total weights of the two
subsets. We refer to the weight of a subset as the sum of the
account frequencies in it. In each partition, the accounts of the
left subset are assigned the prefix 0 (in addition to previously
bits assigned to them), and the accounts on the right the
prefix 1. The algorithm then continues on each of the subsets
recursively such that an account is associated with the code-
word given as a concatenation of its assigned bits. With this
algorithm the communication cost of its tree is upper bounded
by C

(
Q, σAlg.5

)
≤ HQ+2−(n+ 2)mini∈[1,n] pi [28], where

HQ and pi are the account entropy and account probability,
respectively (as earlier defined in Section IV-C).

Next, we introduce an algorithm that combines partition
and weight balancing. Algorithm 6 initially partitions the
accounts according to Algorithm 3 (thus potentially reordering
them), and subsequently applies the weight-balance algorithm
(Algorithm 5) on the re-ordered list of accounts. This approach
combines the benefits of both methods: grouping together
accounts with high traffic based on transaction frequency
(partition step), and optimizing communication cost within a
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Algorithm 6: Partition and weight balance (Variable
length codewords)

Input: Transaction distribution (TX,Q); Accounts
A = {a1, . . . , an}

Output: Codewords per account σ = {σ1, . . . , σn}
1 σ ← Partition(TX,Q,A) /* Alg. 3 */
2 A′ ← A sorted lexicography by σ
3 σ ←WeightBalance(TX,Q,A′) /* Alg. 5 */
4 return σ

predetermined account order (weight-balance step).

Example 6 (Algorithm illustration). Consider the transac-
tion distribution shown in Fig. 7a with n = 8 accounts
A,B, . . . ,H . There are seven potential transactions (shown
by the edges), including a very frequent transaction between
accounts B, C. Fig. 7b-7g present the codes computed by
Algorithms 1-6 with their corresponding communication costs.
First, in Fig. 7b we can see the result of Algorithm 1 assigning
an arbitrary (unique) codeword of length log2(n = 8) = 3
(described by the path from the root) to each of the n = 8 ac-
counts. Here, the accounts in the common transaction {B,C}
have codewords 010 and 100, respectively, without a common
prefix so that the communication cost of the transaction is
3 + 3 = 6. The communication cost of the code is 5.52.

Fig. 7c illustrates the code for the Huffman-based solution
from Algorithm 2. It assigns shorter codewords to active
accounts C, B of 0 and 10 with lengths of 1 and 2 bits. This
reduces for instance the cost for the transaction between B
and C to only 1+2 = 3 and the cost of the code to only 3.85.
Fig. 7d shows the code derived by the partition algorithm from
Algorithm 3 in which again all codewords have a length of
log2(n = 8) = 3. The minimal balanced cut divides accounts
into two subsets {A,B,C,D} and {E,F,G,H} (illustrated
in red in Fig. 7a). It performs additional partitions for lower
levels of the tree and results in a cost of 4.48. Note that the
optimal first cut for fixed-length codewords is {B,C,D,E}
and {A,F,G,H}, and when continuing with recursive optimal
cuts the cost is 4.37. Fig. 7e presents the code of the modified
Huffman algorithm from Algorithm 4 that tries to merge pairs
of accounts with a high amount of transactions before using
the Huffman code on the merged accounts. In this case, the
algorithm first merges accounts B and C as they have the
highest transaction frequency, then D and E, and so on. Here,
it results in an improved cost of 3.82.

A potential output of Algorithm 5 is presented in Fig. 7f.
Assume for instance that accounts must preserve the alpha-
betical order. The algorithm aims to derive such a codeword
assignment with low communication cost. Its first partition
of the account space is done after account B, as the dif-
ference between the probability of {A,B} to the proba-
bility of the other accounts {C,D,E, F,G,H} is minimal,
|0.385− 0.615|. Similarly, the next steps partition the space
further for each of the partitions for the next level of the tree,
yielding a cost of 4.11 for this example. Finally, Fig. 7g shows
the result of Algorithm 6. In this example, the initial partition
is the same as the one obtained in Fig. 7d. Then, the algorithm
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Fig. 7. Illustration of the code construction algorithms. (a) shows the input
transaction distribution. (b)-(g) present as a tree structure the codes computed
by Algorithms 1-6.

performs weight balancing on the ordered list of accounts:
(A,D,B,C,E, F,G,H). In this case the minimal difference
in the first weight balance step is achieved when A,D,B are
separated to the left. The final cost for this method is 4.44.

VII. SMART CONTRACT TRANSACTIONS

For smart contract transactions, an arbitrary number of
accounts (potentially larger than two) can be accessed by
a transaction. Such transactions can be represented as a
hypergraph. An edge again stands for a transaction but can
involve more than two nodes. Smart contracts are supported by
blockchain networks such as Ethereum [8]. We explain how to
generalize the communication cost function for smart contract
transactions accessing an arbitrary number of accounts.

A. Generalized model

Let stx be a smart contract transaction. We refer to stx
as the set of accounts accessed by the transaction. Let σ be
a prefix code allocating a codeword for each account in stx.
We refer to accounts in stx in an order implied by σ such that
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Merkle root
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R = H(h0−3 ·
h4−7)

h0−3 =
H(h0−1 ·h2−3)

h0−1 =
H(h0 ·h1)

h0 h1

h2−3 =
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Fig. 8. Illustration of the communication cost for a smart contract transaction
with 4 accounts {x1, x2, x4, x5} (shown in dashed blue) in a Merkle tree
of 8 data elements. The Merkle proof includes values from the union of the
proofs for the four accounts. These are shown as nodes in red with a total of
9 values (in solid red).

codewords for the items are ordered in an increasing binary
value. We express the multipath size c of the transaction stx.

Theorem 7. Let stx be a smart contract transaction. Using
code σ, let a1, . . . , a|stx| be the order of the accounts in
increasing codeword values. The multipath size of the trans-
action with the code σ is

c (stx, σ) =
∣∣σ (a1)

∣∣+ |stx|∑
j=2

(∣∣∣σ (
aj
)∣∣∣−∣∣∣σ (

aj , aj−1

)∣∣∣) .

Proof: The particular order of the codewords allows us
to easily compute the number of additional values that are
required to be included in the proof but were not part of the
proof for earlier codewords. This is exactly the length of the
current codeword minus the length of its common prefix with
the prefix codeword.

It is easy to see that the above formula generalizes the
communication cost for a simple (rather than a smart contract)
transaction of two accounts (with |stx| = 2) from Definition 6.
Based on the communication cost for a single smart contract
transaction, the cost for the distribution of such transactions
can be derived. The following example illustrates the compu-
tation of the communication cost for smart contracts.

Example 8. Let stx be a smart contract transaction with
four accounts {a1, a2, a3, a4} = {x1, x2, x4, x5}. Assume the
accounts are allocated the four codewords 001, 010, 100 and
101, respectively. These are illustrated with leaves in dashed
blue in Fig. 8. The proof includes for x1: h0, h2−3 and h4−7,
for x2: h3, h0−1 and h4−7, for x4: h5, h6−7 and h0−3 and
for x5: h4, h6−7 and h0−3. There are exactly nine values
in total (shown in solid red) with a number given by ci =
|001|+(|010|−|0|)+(|100|)+(|101|−|10|) = 3+2+3+1 = 9.
To see that, recall that the first and second codewords share the
first bit of 0, the second and the third do not share any prefix
bits, and the third and fourth have the same two first bits. Also
note that the leaf values h4 = H(x4) and h5 = H(x5) are
common for the proof and the transaction.

Similar to the case of simple transactions from Section III,
also for smart contract transactions the number of items in the
proof can be lower than the size of the union of the paths for
the various accounts in a transactions. We call this technique
multi-proof aggregation, and it allows additional savings and
follows the property that some of them can be computed based
on others. The number of items that can be saved is a function
of the number of accounts in the transaction.

Theorem 9. Let stx be a smart contract transaction. The proof
size of the transaction with the code σ is

c′ (stx, σ) = c (stx, σ)− 2
(
|stx| − 1

)
.

Proof: By induction. Consider an arbitrary code σ. For
a transaction of size |stx| = 1 all items are required and
c′ (stx, σ) = c (stx, σ). For transactions with more than one
account, each additional leaf in the tree has a proof path that
intersects with the multipath of the other accounts leaves.
Thus, two items can be discarded from the proof: the items
that are one level below the intersection point, as each can be
computed recursively by the definition of the Merkle proof.

Consider again the transaction stx from Example 8 of size
|stx| = 4. We refer again to the illustration of Fig. 8. Recall
that accounts of the transaction appear as leaves in dashed blue
and the union of the paths in red. The proof can be shortened
to include only h0, h3 and h6−7 such that the proof size can
be reduced to c (stx, σ)− 2

(
|stx| − 1

)
= 9− 2 · (4− 1) = 3

items. For instance, two items that can be discarded from the
proof are h0−1 and h2−3. h0−1 can be computed based on h0

that is supplied by the proof and h1 = h (x1), and similarly,
h2−3 can be computed based on h3 and h2 = h (x2).

Also for smart contract transactions, this additional savings
is fixed for all codes, even when the size of the smart contract
transactions can vary. Thus an optimal code can be found as
a code minimizing the simpler cost expressed in Theorem 7.

B. Algorithms

We describe an algorithm for the generalized problem of
communication cost minimization for transactions of arbitrary
number of accounts such as smart contract transactions.

The naive algorithm that assigns codewords randomly (Al-
gorithm 1) is applicable of course also for the generalized
problem and we also consider it as the baseline. Huffman
algorithm (Algorithm 2) can be also used as it only requires
the account frequencies, a property that can be easily derived
from the transaction hypergraph.

We can enhance the Huffman algorithm to be sensitive
also to the relations between the accounts and not only to
their frequencies. This is a generalization of Algorithm 4
(previously suggested in Section VI) that we present here as
Algorithm 7. The algorithm works in two phases. In the first
phase, the most frequent smart contract transactions are visited
from the most heavily weighted to the least. For each such
transaction, a Huffman tree is built for its accounts (that have
not appeared as part of earlier transactions) based on their
frequencies. Each tree is then added to the pool of accounts,
with a frequency of the sum of its leaves, the accounts in that
transaction. These accounts are removed from the remaining
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Algorithm 7: Heaviest-first Huffman (Variable length
codewords)

Input: Smart contract transaction distribution
(STX,Q); Accounts A = {a1, . . . , an}

Output: Codewords per account {σ1, . . . , σn}
1 Initialize all account codewords by the empty string
2 Compute the account distribution (A,P ) from the

transaction distribution Q
3 A′ ← A, P ′ ← P
4 while STX is not empty do
5 stx← most frequent transaction in STX
6 if w (stx) > α then

/* Merge accounts to subtree */
7 Build Huffman subtree for the accounts in stx
8 for a ∈ stx do
9 Append the resulting Huffman code to the

codeword σ (a)
10 Remove a from all txs in STX
11 end
12 A′ ← A′ \ stx
13 A′ ← A′ ∪ stx
14 P ′ (stx)←∑

a∈stx P
′ (a)

15 end
16 end
17 return Huffman code for

(
A′, P ′) /* [22] */

transactions and the accounts pool. The second phase is to
build a Huffman joint tree for all these subtrees and accounts
left in the pool. Codewords for accounts not part of a subtree
are simply their codeword implied by the joint tree. Codeword
for accounts part of the subtree is a concatenation of their
subtree codeword and their codeword within the joint tree.

VIII. EXPERIMENTAL EVALUATION

A. Transaction Characteristics

In this section we examine real Ethereum data to study typ-
ical transaction distributions. We observe that a large portion
of the traffic is covered by a small portion of transactions and
that an account typically participates in transactions with a
small number of other accounts.

We collected 2-month Ethereum data (January 1 - February
28, 2022) that end at block no. 14297758. We first examine
the number of active accounts in different time periods. The
curves in Fig. 9 refer to periods ranging from 5 minutes
to 1 week. Clearly, the number of active accounts is highly
affected by the period length. For instance, for a period of 1
hour, the number of active accounts ranges between 26835-
45824 with an average of 33657. In longer periods of 1 week,
there are 2.16M-2.55M accounts with a higher average of
roughly 2.35M. Intuitively, Merkle roots computed for a larger
number of accounts require tree structures with more levels
and thus necessitates longer Merkle proofs. We explain how
these numbers highly affect the length of the Merkle proofs.

Studies have shown that the distribution of accounts par-
ticipating in transactions is not uniform and its bias can
be expressed in two major properties. Consider a particular
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Fig. 9. Ethereum real data: Number of active accounts in various periods
across 2 months starting at January 1, 2022.
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Fig. 10. Transaction distribution in Ethereum: (a) The distribution of the
degree of an address in a period. (b) The ratio the most frequent (unique)
transactions (pairs of addresses) take among all transactions. Plots are com-
puted for periods of 5 minutes, 1, 6 hours, 1 day, 1 week and 1 month.

account associated with an address. We can refer to its
degree as the number of accounts it conducts transactions
with. Often in such networks the degree follows a power law
distribution [29], [30] such that the probability for an account
degree d is P (d) = d−α for some positive α. This indicates
that the majority of the accounts only transfer value to very
few accounts, and on the other hand a minority of accounts are
connected with many others. These highly connected nodes are
commonly exchanges or mining pool accounts and are taking
a major role in its shape, as observed for Ethereum [31].
Similarly, in a view of a transaction as its set of accessed
addresses, a small number of unique transactions cover a large
portion of transactions. A recent study [30] showed similar
results for additional blockchain networks. Both distributions
are affected by the length of the measured interval.

We also measured the account degrees and the weight of the
most popular transactions in various periods that range from
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(a) 6 hour period over a month

00:00:00
01:00:00

02:00:00
03:00:00

04:00:00
05:00:00

06:00:00
07:00:00

08:00:00
09:00:00

10:00:00
11:00:00

12:00:00
13:00:00

14:00:00
15:00:00

16:00:00
17:00:00

18:00:00
19:00:00

20:00:00
21:00:00

22:00:00
23:00:0000:00:0001:00:0002:00:0003:00:0004:00:0005:00:0006:00:0007:00:0008:00:0009:00:0010:00:0011:00:0012:00:0013:00:0014:00:0015:00:0016:00:0017:00:0018:00:0019:00:0020:00:0021:00:0022:00:0023:00:00

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Je
ns

en
-S

ha
nn

on
 d

iv
er

ge
nc

e

(b) 1 hour period over a day

Fig. 11. Jensen-Shannon divergence of transaction distribution between
different periods illustrating the fluctuations in Ethereum transaction patterns.
Low divergence values indicate minor changes, while higher values suggest
significant distribution shifts. We can observe a decent transition towards
yellow away from the diagonal, suggesting an increase in divergence for
periods that are far apart in time.

5 minutes to 1 month. As can be seen in Fig. 10, not only
the account degree follows a heavy-tailed distribution, also the
transaction frequency as few transactions repeated many times
while most of the transactions appear only once. For instance,
the top 1% most frequent transactions cover 19% and 42% of
the traffic for period of 5 minutes and 1 week, respectively.

As our model is based on the transaction distribution in a
given period, it is important to analyze how these distributions
might change over time. A substantial change in the distribu-
tion upon which a tree was built would likely increase the
average size of Merkle proofs. To assess the stability of these
distributions, we apply the Jensen-Shannon divergence [32] as
a method to quantify the similarity between different periods:

JSD (P,Q) = H(M)− 1

2

(
H (P ) +H (Q)

)
where P,Q are distributions and H is the entropy. This metric
measures distance between distributions, where 0 indicates that
the two distributions are equal, and a value close to 1 would
mean that the distributions are very different.

TABLE II
RELATIVE SAVINGS (%) IN COMMUNICATION COST FOR THE VARIOUS

ALGORITHMS IN DIFFERENT PERIOD LENGTHS (VS. BASELINE)

length 5m 6h 1d
active accounts (mean) 4139 156646 340692

Random 6.0% 4.6% 4.2%
Huffman [14] 20.6% 28.3% 28.9%

Partition 33.3% 23.2% 23.0%
Pairs-first Huffman 30.0% 32.2% 32.5%

Weight Balance 19.4% 26.9% 27.5%
Partition-Balance 40.6% 42.4% 42.3%

We compared the transaction-frequency distribution of the
highest-occurring account pairs across different time points
across a month to see if significant shifts occur that might
impact the Merkle proof sizes. For this, we computed the trans-
action distribution for different periods, applied the Jensen-
Shannon divergence between all pairs and graphed these values
in a matrix in Fig. 11. In Fig. 11a, there are 15 periods of
6 hours at evenly-spaced time points across January 2022,
and a similar analysis for 24 periods of 1 hour throughout a
single day is illustrated in Fig. 11b. The color-coded matrix
shows the divergence values, with warmer colors representing
higher divergence. We observed that periods closer to each
other in time tend to have lower divergence values, indicating
more similar transaction patterns. In contrast, periods that are
temporally distant exhibit a higher divergence, highlighting a
shift in the transaction patterns over time. We note, however,
that this is only a trend, and in that comparison, the most
different distributions are the last two periods at the end of
the month. Our analysis shows that, while there are slight vari-
ations from time to time, the overall transaction distribution
remains stable. In addition to distribution shifts, it is equally
important to evaluate how such changes affect average proof
costs. We cover this analysis in the following section.

B. Evaluation of the Algorithms for Computing Merkle Trees
We experimentally evaluated the quality of the code outputs

of our algorithms (Section VI) on various period lengths of
Ethereum transactions. We used Ethereum transaction data of
approximately 1 month from block no. 13916166 (January 1,
2022) until block no. 14116760 (of January 31, 2022).

Each experiment has the following parameters:
Algorithm - The algorithm used to compute the code:

Algorithms 1-6 and a baseline that has separate proofs for the
two accounts having a fixed codeword length of

⌈
log2(n)

⌉
bits

for n active accounts. Among these, we include a comparison
with the Huffman (Algorithm 2) as of [14].

Time period length - The total period in which transactions
are considered as input to the algorithm. We refer to lengths
of 5 minutes, 6 hours and 1 day.

Start time - The time from which transactions are consid-
ered as input to the algorithm. There are a total of 120 start
times, evenly spaced between the above blocks. For example,
if the start time is 22/1/2022 15:00 and the length is 12 hours,
the input transactions are all those that occurred between
22/1/2022 15:00 to 23/1/2022 03:00.

Each algorithm is executed on all the above transaction pe-
riods with different start and time period length combinations.
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Fig. 12. The communication cost for the various algorithms for the Ethereum data in time periods of different lengths. The baseline refers to separate proofs
for the two accounts having a fixed length of
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Fig. 13. The cost of unseen transactions. 0 ≤ α ≤ 1 is a parameter that
indicates the fraction of the transaction period used to optimize the coding
tree by Algorithm 6. The cost is an average of periods of 5 minutes, 6 hours
and one day, respectively, in January 2022.

The achieved communication costs, measured in bits, can be
found in Fig. 12. The cost is influenced by the number of
active accounts in the time lengths, with averages of 4.14K,
157K, and 341K. We observe relatively steady communication
costs over the various start times. The average savings over
the entire month vs. the baseline appear in Table II.

Partition-and-weight-balance gives the lowest communica-
tion costs, with an average improvement of 40.6% - 42.4%
relative to the baseline for the tested time periods. Note the
difference between the algorithm to each of its components:
partition, and weight balance. The relative improvement for
both Huffman and the Pairs-fist Huffman (relative to the base-
line) slightly increases for longer periods. Partition performs
also well, especially for the short time length of 5 min,
improving 33.3% on average. For longer time lengths, its
savings are slightly lower than both Huffman and Pairs-first
Huffman but are still meaningful in the range of 27.4%-28.4%.

Following on the distribution-shift analysis in Sec-
tion VIII-A, we want to better understand how the average
proof size is affected by future transactions, as the distribution
that the tree was optimized for evolves. To investigate this,
we conducted an experiment where we constructed the coding
tree using only the first fraction of the testing period, denoted
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Fig. 14. Ethereum real data: Smart contract transaction size histogram for all
transactions during January 2022.

as α, and then observed the communication cost as α varies.
More formally, given a transaction distribution (TX,Q) and
a parameter 0 ≤ α ≤ 1, we define TXα to be the first α|TX|
transactions in TX , and similarly Qα is defined to be the
probability distribution corresponding to TXα. We first find
σα by Algorithm 6 with (TXα, Qα), and then calculate the
cost of the code C (Q,α).

We began with the baseline α = 0, where no prior trans-
actions are used to optimize the tree, and we incrementally
increase α to include a greater fraction of the transaction
period, thus refining the coding tree with more transaction
data. As expected, the results show that as α grew, the
communication cost decreased, and the coding tree became
better tailored to the transactions within that period. The
graph in Fig. 13 presents, unsurprisingly, a clear inverse
relationship between the communication cost and the value
of α, highlighting the importance of using a larger sample of
transactions to construct a more efficient coding tree. However,
the steepest part of the graph is when α became non-zero, and
the improvements became marginal as α grows, suggesting
a threshold in the benefit of using additional transaction
data for optimization. This plateau indicates that an optimal
balance can be found between computational resources and the
effectiveness of the coding tree. It also implies that regularly



14

2022-01-01

2022-01-06

2022-01-11

2022-01-16

2022-01-21

2022-01-26

2022-02-01

25

30

35

40

45

50

C
om

m
un

ic
at

io
n

co
st

(b
its

)
5 minutes

Random
Huffman
Heaviest-first Huffman

2022-01-01

2022-01-06

2022-01-11

2022-01-16

2022-01-21

2022-01-26

2022-02-01

1 hour

2022-01-01

2022-01-06

2022-01-11

2022-01-16

2022-01-21

2022-01-26

2022-02-01

6 hours

Fig. 15. Smart contract transactions: The communication cost for the applicable algorithms for the Ethereum data in time periods of different lengths. Random,
Huffman and Heaviest-first Huffman refer to Algorithm 1, Algorithm 2, and Algorithm 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25>25
transaction size

0.00

0.25

0.50

0.75

1.00

M
ea

n 
co

st
 fr

ac
tio

n
 fr

om
 B

as
el

in
e

multi-proof
traffic-aware

Fig. 16. The fraction of multi-proof aggregation with and without traffic-
aware tree construction from the baseline of traditional Merkle tree, where
the cost of multiple proofs is the sum of the individual proof sizes.

updating the tree with recent transaction data can ensure that
encoding remains efficient without constant recomputation.

So far, we evaluated algorithms for regular transactions of
two accounts. We now also evaluate the performance of the
algorithm for smart contract transactions. To derive real data
of such accounts accessed together, we use Ethereum smart
contract transaction data of approximately 1 month from block
no. 13916166 (January 1, 2022) until block no. 14116760
(January 31, 2022), over 38 million transactions in total. For
each transaction, we recorded the set of accounts that were
accessed during its execution. The average number of accounts
in a transaction was 3.98 with a range of 1-4638. Frequencies
of the transaction sizes for this time period appear in Fig. 14.

Fig. 15 shows the obtained communication cost for trans-
actions collected in time periods of 5 minutes, 1 hour and 6
hours. As before, the cost is affected by the number of active
accounts in the time lengths, with averages of roughly 5.6K,
41.3K, and 180K accounts for the three periods, respectively.
An average improvement of 25.2%-35.6% in the communi-
cation cost is demonstrated with the Huffman algorithm in
comparison with that of a random assignment. An additional
3.4%-5.9% is gained by using Algorithm 7 that also considers
relations between accounts in the most frequent transactions.

Multi-proof aggregation, as explained in Section VII-A,
utilizes the fact that some nodes in the tree are redundant
when several proofs are combined together. It is used in
several blockchain systems for their savings in communication
costs [10], [11], [12]. We conducted an experiment to quantify

the extra gains in proof size of traffic-aware Merkle trees over
multi-proof aggregation. This experiment aimed to compare
their gains against the baseline scenario, where the tree is
not traffic-aware and all proofs are summed without node
cancellations, namely, cbase(stx, σ) =

∑|stx|
j=1

∣∣∣σ (
aj
)∣∣∣. We

used 1 hour periods of smart contract transactions from the
blocks above to serve as the transaction distribution input,
and average the results over all periods. For each distribution,
we constructed a traditional Merkle tree and a traffic-aware
Merkle tree (using Algorithm 7), and tested the communication
cost of (1) the baseline, a traditional tree when all proofs are
summed, (2) the traditional tree with multi-proof aggregation
and (3) the traffic-aware tree with multi-proof aggregation.
The results are visualized in Fig. 16, with the x-axis represents
transactions by size and the y-axis represents the fraction of the
communication cost relative to the baseline. The data shows
that the benefit of our traffic-aware with simple transactions
of 2 accounts is subtle relative to smart contract transactions
with more than 2 accounts, and for transactions of size 3 there
is almost 50% reduction in communication costs relative to
baseline. Multi-proof aggregation has always inferior commu-
nication cost without the traffic-aware tree.

IX. CONCLUSION

We studied the design of traffic-aware codes for data orga-
nized as Merkle trees in blockchain networks for reducing the
communication cost in proofs for data membership. We pre-
sented the fundamental properties of the problem and analyzed
bounds of the optimal communication cost. We developed
various algorithms and demonstrated their efficiency based
on real data from the Ethereum network. We presented a
generalized problem for smart contract transactions, with a
corresponding encoding algorithm and evaluated its perfor-
mance. An open question sounds natural: Is there an optimal
polynomial solution to the problem or the problem is hard
to solve? Interestingly, we explained that codes based on
Huffman (that can be found in linear time), as well as codes
derived through balanced partitioning (which are difficult to
be computed), can both be found efficient.
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