
Marian: An Open Source RISC-V Processor with Zvk Vector
Cryptography Extensions

Thomas Szymkowiak
thomas.szymkowiak@tuni.fi

Tampere University
Tampere, Finland

Endrit Isufi
endrit.isufi@tuni.fi
Tampere University
Tampere, Finland

Markku-Juhani Saarinen
markku-juhani.saarinen@tuni.fi

Tampere University
Tampere, Finland

Abstract
The RISC-V Vector Cryptography Extensions (Zvk) were ratified in
2023 and integrated into the main ISA manuals in 2024. These ex-
tensions support high-speed symmetric cryptography (AES, SHA2,
SM3, SM4) operating on the vector register file and offer significant
performance improvements over scalar cryptography extensions
(Zk) due to data parallelism. As a ratified extension, Zvk is sup-
ported by compiler toolchains and is already being integrated into
popular cryptographic middleware such as OpenSSL. We report on
Marian, the first open-source hardware implementation of a vector
processor with the Zvk extensions. The design is based on the PULP
“Ara” vector unit, which itself is an extension of the popular CVA6
processor. The implementation is in SystemVerilog and has been
tested using Virtex Ultrascale+ FPGA prototyping, with a planned
tapeout targeting a 22nm process node. We offer an analysis of the
architectural requirements that vector cryptography imposes on a
processor, as well as the initial estimates of performance and area
for our implementation.

CCS Concepts
• Computer systems organization → Single instruction, mul-
tiple data; Embedded hardware; • Security and privacy →
Cryptography.

Keywords
RISC-V, Vector, Cryptography

1 Introduction
Modern operating systems and applications make extensive use
of cryptography to guarantee data confidentiality and integrity of
communications and data storage. According to CloudFlare Radar,
97% of web requests are now made with encrypted protocols such
as TLS, and only 3% with unencrypted HTTP.1 Other key areas
include the encryption of data storage media.

Application-class processors must be designed to meet the ever-
increasing computational demands of the domains in which they
are most heavily utilized, e.g., mobile and high-performance com-
puting. Multiple ISAs have addressed the need to efficiently perform
cryptographic operations by defining ISEs that target cryptographic
workloads (e.g., x86, SPARC, ARM, and Power ISAs define exten-
sions for cryptographic operations).

The RISC-V cryptography extensions come in two variants:
scalar cryptography (“Zk”, ratified in 2021), which operates on

1CloudFlare Radar, Adoption and Usage HTTP vs HTTPS, July 2024: https://radar.
cloudflare.com/adoption-and-usage?dateStart=2024-07-01&dateEnd=2024-07-31

the general register file (limited to 32 or 64 bits), and vector cryp-
tography (“Zvk”, ratified in 2023), which uses the scalable vector
register file (32 registers, usually between 128 and 2048 bits each),
allowing for improved performance via data-level parallelism. The
vector cryptography specification builds upon the instructions and
functionality specified within the RISC-V Vector (RVV) Extension.
Both Scalar and Vector Cryptography extensions have recently
been integrated into the RISC-V unprivileged ISA Manual [4].

Vector cryptography extensions have gained commercial signifi-
cance since they will be required in prominent RISC-V application
processor profiles, and in RISC-V-based devices running Google’s
Android operating system2. While there is existing research work
covering the implementation of the RISC-V scalar cryptography
specification [2], to our knowledge, there has yet to be an equivalent
analysis of the RISC-V vector cryptography specification.

Our Contributions. This work presents Marian [1], the first open-
source implementation of the RISC-V Vector Cryptography ex-
tensions. Marian is implemented in SystemVerilog and extends
the existing RISC-V Vector extension implementation provided by
Pulp Ara to fully support the NIST Algorithm Suite with GCM
extension (Zvkng), ShangMi Algorithm Suite with GCM extension
(Zvksg), and the Entropy Source extension (Zkr). All implemented
instructions conform with the “constant time” or Data Independent
Execution Latency (DIEL / Zvkt [4]) requirements.

The design targets ASIC using a 22nm process and has been
thoroughly verified in simulation and using FPGA prototyping.
The performance of the design has been evaluated using FPGA
prototyping as the ASIC physical design is currently underway.

The focus of this work is to investigate and assess the potential
development challenges and performance benefits when imple-
menting the RISC-V Vector Cryptography extensions on top of an
existing implementation of the RVV extension.

2 Development
2.1 Vector Unit Selection
A review of the available open-source implementations of RVV 1.0
vector extension was performed to determine which of the available
implementations would be most suitable for using a baseline for
extension. Criteria such as implementation maturity, verification
artefact availability, technology compatibility, and documentation
quality were used to guide the selection. “Ara” is an RVV 1.0 co-
processor developed in the PULP project [3]. Ara has been suc-
cessfully taped out, targeting a 22nm node at 1.35GHz, supports
Questasim and Verilator-based flows, and the repository contains a

2https://opensource.googleblog.com/2023/10/android-and-risc-v-what-you-need-
to-know.html

https://orcid.org/0009-0003-1942-994X
https://orcid.org/0009-0005-8035-3838
https://orcid.org/ 0000-0002-2555-235X
https://radar.cloudflare.com/adoption-and-usage?dateStart=2024-07-01&dateEnd=2024-07-31
https://radar.cloudflare.com/adoption-and-usage?dateStart=2024-07-01&dateEnd=2024-07-31
https://opensource.googleblog.com/2023/10/android-and-risc-v-what-you-need-to-know.html
https://opensource.googleblog.com/2023/10/android-and-risc-v-what-you-need-to-know.html


Thomas Szymkowiak, Endrit Isufi, and Markku-Juhani Saarinen

Vector Co-Processor

CVA6

Lane 0

Scalar L1
Caches

Scalar 
Decode
Vector 
Decode

IFPC

Issue

I$
D$

Accelerator
Dispatcher

Execute Commit

Dispatcher

Sequencer

Slide
Unit

Crypto
Unit

Mask
Unit

Load
Store Unit

Lane 0
Lane 1
Lane ...

Lane (n-1)

Lane
Sequencer

Operand
Requester

VRF 

ALU MFPU

Accel.
Interface

MODIFIED

NEW

UNTOUCHED

CSR
Regfile

LEGEND

Figure 1: CVA6 and Vector Unit Architecture (Ext. Interfaces
Omitted)

large set of software tests targeting the vector processor, making
it a suitable choice for extension. Ara is a parametrizable design,
allowing users to statically define the architectural configuration
values, such as the number of lanes and the vector register length
(VLEN). Ara also possesses a number of architectural constraints,
including the maximum element width (ELEN) and the bit width of
the lane data paths, which are both fixed at 64b.

2.2 Architecture
Many instructions defined within the RISC-V Vector Cryptography
specification perform operations on Element Groups (EG) with an
Element GroupWidth (EGW) greater than 64b. To reduce the design
complexity of extending Ara, we decided to separate the arithmetic
operations of the cryptographic operations from the lane logic.
The lanes would only be used for accessing the operands in the
Vector Register File (VRF), and a decoupled processing unit (Crypto
Unit) would be created to execute the cryptographic operations. In
addition to the insertion of the Crypto Unit, existing components
within Ara were modified to support the additional cryptography
instructions (see Figure 1). For tapeout, a vlen of 512b and four lanes
was selected to balance performance and area, as the vector unit
area increases significantly with the number of lanes. [3].

Marian is designed to be integrated as an IP within the next SoC
being developed by the SoCHub (Tampere University). Therefore, in
addition to the modifications made to the vector unit of Ara, several
peripherals and supporting components were added to enable the
IP’s use within an SoC context. These include PLL, CLINT, PLIC,
QSPI, Timer, RISC-V Debug module, and internal memories.

2.3 Crypto Unit Design
The Crypto Unit is a three-stage, latency-insensitive pipeline con-
sisting of an operand collection stage, an execution unit stage, and
a write-back stage (see Figure 2). When a cryptography instruction
is issued after decode, the instruction request is broadcast to both
the lane sequencing logic (to request the operands from the VRF)
and to the Crypto Unit. Once the request is received, the Crypto

Instruction Info Operand A
(VS2)

Operand B
(VD)

Operand C
(VS1)

OPERAND COLLECTION LOGIC

SHA2 GCM

WRITE BACK LOGIC

TO VRFTO SEQUENCER

FROM
SEQUENCER FROM VRF

AES SM4SM3

REG

REG

W
R

IT
E

BA
C

K
EX

EC
U

TI
O

N
O

PE
R

AN
D

 
C

O
LL

EC
TO

R

Figure 2: Crypto Unit Architecture

Unit then awaits the operand data from the VRF and, upon receipt,
assembles the 64b data components from each lane into the operand
format required by the cryptographic operation. After the operands
have been fully populated, they are propagated to the execution
stage of the pipeline. The execution unit stage contains the indi-
vidual arithmetic units for each operation and the routing logic to
access them. When valid results from the arithmetic units become
available, they are forwarded to the write-back stage. Within this
stage, the VRF addresses are calculated, and the data is organized
for storage within the destination vector register, which is then
written to the VRF. After all of the vector elements of the current
operation have been written, a notification is sent to the vector
sequencer to indicate that the instruction can be retired.

2.4 CVA6 Modifications
In RISC-V, Random Bit Generators (RBGs) are intended to be con-
structed using the Entropy Source Extension (Zkr). This was imple-
mented by extending the CVA6 CSR registers to support the seed
CSR that interfaces to an SP 800-90B Entropy Source placeholder.

2.5 Verification
A combination of randomized testbenches and software-driven test-
ing was used to verify Marian in both simulation and FPGA proto-
typing platform environments. Within the randomized testbenches,
the scoreboards were implemented using behavioral models based
on the Sail code contained within the RISC-V Cryptography Speci-
fication. For software-based testing, reference result vectors were
initially taken from the corresponding NIST specifications. Once
the design was verified with these values, additional result vec-
tors were generated using Spike ISA simulator with randomized
inputs. The same vectors were tested on Marian and the results



Marian: An Open Source RISC-V Processor with Zvk Vector Cryptography Extensions

were compared. The software tests were run in both simulation
and FPGA-based emulation environments.

3 Implementation and Benchmarking
An initial performance evaluation of Marian was performed against
C-language reference implementations of cryptographic primitives
taken from OpenSSL 3.3.1.3 OpenSSL contains open-source imple-
mentations of AES, SHA-2, SM3, and SM4 operations, targeting
numerous platforms with varying support for cryptographic ISEs.

The equivalent operations were subsequently executed using
code with Zvk instructions. The RISC-V instret and cycle per-
formance CSRs were used to measure the number of instructions
retired and CPU cycles elapsed during execution, respectively. As
the implemented Zvk extensions satisfy the data-independent exe-
cution latency requirements of the Zvkt extension, constant time
reference implementations of AES operations were selected for
use in benchmarking. A message length of 1kB was used to bench-
mark SHA256, SHA512 and SM3 operations. The cryptography
code was mostly based on the “sample code” contained within the
RISC-V Crypto Github repository.4 A minimum vl value was used
for each operation (equivalent to the instruction EGS) to determine
the worst-case performance of the vector operations. Averages of
the instructions retired and cycle count values attained through
benchmarking are presented within Table 1. More comprehensive
benchmarks, including a comparison against an implementation
of the RISC-V scalar cryptography extension, are out of the scope
of this work and are scheduled to be completed as a part of future
research.

Table 1: Initial Benchmark Results

Operation Reference Zvk
Cycles Instret Cycles Instret

AES128 Enc. 18,794 12,482 343 53
Dec. 23,731 15,077 226 53

AES256 Enc. 24,493 17,478 441 65
Dec. 32,677 21,213 278 65

SHA256 Hash 156,205 82,179 12,106 3,802
SHA512 Hash 109,905 45,903 9,140 2,712
SM3 Hash 304,031 70,075 8,134 1,410

SM4 Enc. 4,187 1,423 272 39
Dec. 2,564 1,425 178 39

Marian has been successfully prototyped on an AMD-Xilinx
VCU118 (Virtex Ultrascale+) FPGA running at 75MHz. The ASIC
physical design flow for Marian is currently underway, targeting a
22nm low-power process and an 𝐹𝑚𝑎𝑥 of 1GHz. FPGA component
utilization and ASIC post-synthesis logic area values for Marian
are listed within Table 2 and Table 3. The Gate Equivalent (GE)
values are calculated using a two-input NAND gate in the target
technology. Note that the ASIC flow is in-progress and therefore
the presented area numbers are not final.

3OpenSSL Github https://github.com/openssl/openssl/tree/openssl-3.3.1
4RISC-V Crypto Github Repository https://github.com/riscv/riscv-crypto/tree/
v20230823

Table 2: FPGA Resource Utilisation

Top Registers LUT LUT BRAM DSPModule (logic) (RAM) (kB)
Marian 115,767 420,056 1908 360 225
CVA6 24,924 40,900 884 117 28

Vector Unit 67,680 322,474 1,024 0 197
Lane (single) 14,513 57,175 256 0 49
Crypto Unit 2,800 33,465 0 0 0

Table 3: Initial ASIC Resource Report

Top Logic Cell Area (kGE) % of Total
Module Area (𝑚𝑚2) Area
Marian 2.08 1834.263 100%
CVA6 0.28 242.973 13.25%

Vector Unit 1.04 915.536 49.91%
Lane (single) 0.21 181.040 9.87%
Crypto Unit 0.14 118.131 6.44%

4 Conclusion
We have presented Marian [1], an open-source implementation
of the RISC-V vector cryptography extensions, using Pulp Ara as
a baseline. To efficiently implement the RISC-V Zvk extensions
in a traditional vector style (i.e., arithmetic operations performed
with the lanes) the data width of each lane should be at least as
wide as the largest cryptographic operation (256b). Alternatively,
logic external to the lanes can be utilized to implement the exten-
sion efficiently. To ease implementation complexity, we have used
this alternative approach within Marian, and initial benchmarks
indicate that a significant performance gain can still be achieved.
Furthermore, both the FPGA and ASIC area estimates for the Crypto
Unit have been presented and indicate that its addition does not
substantially increase the area of the existing vector unit.

References
[1] SoC Hub. 2024. Marian. https://github.com/soc-hub-fi/Marian.
[2] Ben Marshall, G. Richard Newell, Dan Page, Markku-Juhani O. Saarinen, and

Claire Wolf. 2020. The design of scalar AES Instruction Set Extensions for RISC-V.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 1 (December 2020), 109–136.
https://doi.org/10.46586/tches.v2021.i1.109-136

[3] Matteo Perotti, Matheus Cavalcante, Renzo Andri, Lukas Cavigelli, and Luca
Benini. 2024. Ara2: Exploring Single- and Multi-Core Vector Processing with an
Efficient RVV 1.0 Compliant Open-Source Processor. IEEE Trans. Comput. 73, 7
(2024), 1822–1836.

[4] RISC-V. 2024. The RISC-V Instruction SetManual Volume I: Unprivileged Architecture.
Ratified ISA Release 20240411. RISC-V International. https://github.com/riscv/
riscv-isa-manual/releases/download/20240411/unpriv-isa-asciidoc.pdf

https://github.com/openssl/openssl/tree/openssl-3.3.1
https://github.com/riscv/riscv-crypto/tree/v20230823
https://github.com/riscv/riscv-crypto/tree/v20230823
https://github.com/soc-hub-fi/Marian
https://doi.org/10.46586/tches.v2021.i1.109-136
https://github.com/riscv/riscv-isa-manual/releases/download/20240411/unpriv-isa-asciidoc.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/20240411/unpriv-isa-asciidoc.pdf

	Abstract
	1 Introduction
	2 Development
	2.1 Vector Unit Selection
	2.2 Architecture
	2.3 Crypto Unit Design
	2.4 CVA6 Modifications
	2.5 Verification

	3 Implementation and Benchmarking
	4 Conclusion
	References

