
Another Walk for Monchi

Riccardo Taiello1, Emre Tosun2, Alberto Ibarrondo3, Hervé Chabanne4, and
Melek Önen2

1 Inria, Sophia Antipolis
2 Eurecom, Sophia Antipolis

3 Arcium, Zurich
4 Idemia, Paris

Abstract. Monchi is a new protocol aimed at privacy-preserving bio-
metric identification. It begins with scores computation in the encrypted
domain thanks to homomorphic encryption and ends with comparisons
of these scores to a given threshold with function secret sharing. We
here study the integration in that context of scores computation tech-
niques recently introduced by Bassit et al. that eliminate homomorphic
multiplications by replacing them by lookup tables. First, we extend this
lookup tables biometric recognition solution by adding the use of function
secret sharing for the final comparison of scores. Then, we introduce a
two-party computation of the scores with lookup tables which fits nicely
together with the function secret sharing scores comparison. Our solu-
tions accommodate well with the flight boarding use case introduced by
Monchi.

Keywords: Privacy-Preserving biometric systems, Homomorphic Encryption,
Two-Party Computation, Function Secret Sharing, MFBR schemes

1 Introduction

We investigate the use of biometric identification in an airplane boarding use
case, where passengers are authorized to enter the plane only if their faces are
identified with respect to an early prepared, privacy-preserving database of reg-
istered passengers’ faces. Set on this scenario, Monchi [10,11] makes use of (i) a
homomorphic encryption (HE) scheme and relevant packing solutions to protect
both the live templates and the reference ones stored in the database and enable
the computation of scalar products between them, and, inspired by Funshade
[9], (ii) a Function Secret Sharing (FSS) scheme to obliviously compare the score
obtained from the scalar product to a threshold. Combining these two primitives
enablesMonchi to only reveal the final authorization decision without disclosing
the identification scores.

We revisit that same goal, aiming to optimize even further the computation
cost incurred by the scalar products over encrypted templates. In [3,4], authors
propose a method to compute these identification scores over encrypted data

2 Authors Suppressed Due to Excessive Length

through the use of lookup tables that entirely replace the multiplication opera-
tions. [4] reports a faster runtime by a factor of 2 to 3 orders of magnitude on
facial features while keeping the biometric accuracy of the system. We integrate
this multiplication-free scheme while making it compatible with the underlying
BFV encryption scheme [1,6,7] and the FSS scheme [9].

To ensure the confidentiality of the values in the table and the computations
of the scores, we also propose – in addition to HE – to study the use of two-
party computation (2PC), and more specifically, additive secret sharing [15]. As
no multiplications are needed, no interactions between the two parties are nei-
ther required. In the next section 2, we detail how multiplication-free recognition
(MFBR) biometric schemes in the encrypted domain work. Sec. 3 describes our
first proposal, named MonchiLuts, where MFBR LUTs replace multiplications
with HE. Sec. 4 gives our second proposal, called Monchichi, where we imple-
ment scores computation in 2PC. Sec. 5 is devoted to the confidentiality of live
templates. Finally, Sec. 7 gives conclusive remarks.

2 Multiplication-Free Biometric Recognition (MFBR)

In biometric systems, discriminative features are extracted from images of cap-
tured biometric traits (e.g., faces, fingerprints. . .) and transformed into vectors
called templates via the execution of a neural network model. Two templates
are assumed belonging to the same person if they are close with respect to
some distance. To check whether a person is present in a database, scores of his
live template against existing reference templates are computed – in Monchi,
scores for faces’ templates are computed by a scalar product measuring their
cosine similarity – and then compared with a given threshold which depends of
the underlying biometric system (see [13] for more details).

To ease their use with cryptographic techniques, components of templates
are often quantized. We denote Y = (y1, . . . , yd) (resp. X = (x1, . . . , xd)) to a
quantized reference (resp. live) template with d components of n bits each.

The first Multiplication-Free Biometric Recognition scheme was introduced
in [2] by Bassit et al. This work has then been extended in [3] and further in
[4]. MFBR schemes substitute scalar products for the scores computation with
well-crafted LookUp Tables (LUT) and additions. These system-dependent LUT
provide, for each of the i∈{1, . . . , d} components, a ”local” score between a live
template component xi and its corresponding reference template component yi.
The partial scores are stored in a 2D matrix Ti, accessible by indexing the desired
row with the value of yi and the column with xi. We compute the score s as:

s = T1(y1, x1) + . . .+ Td(yd, xd) (1)

where Ti(yi, xi) represents the lookup (indexing) operation.
Equation 1 can be easily adopted in the encrypted domain by virtue of homo-

morphic encryption (HE) or arithmetic secret sharing [15]. Instead of encrypting
the plain reference templates directly, rows Ti(yi, .) ∀i are stored in database, now
returning the corresponding looked-up values encrypted or secret-shared when

Another Walk for Monchi 3

𝑥!
0	 1	 2	 3	 … 	 2!-1

𝑦!

𝑇!(0,0)

0	
1	

2	
3	

…
	2

!-1

𝑇!(0,1) 𝑇!(0,2) 𝑇!(0,3)

𝑇!(1,0) 𝑇!(1,1) 𝑇!(1,2) 𝑇!(1,3)

𝑇!(2,0) 𝑇!(2,1) 𝑇!(2,2) 𝑇!(2,3)

𝑇!(3,0) 𝑇!(3,1) 𝑇!(3,2) 𝑇!(3,3)

… … … … … …

… … … … … …

… …

… …

… …

… …

𝑇" 𝑇# 𝑇! 𝑇$

… …

Fig. 1: Look-Up Table visualization.

queried. A cleartext live template (x1, . . . , xd) triggering a verification, leads to
picking all Ti(yi, xi) and then adding together the encrypted or secret-shared
partial score. No multiplications are needed.

3 MonchiLuts: Monchi with MFBR LUTs

This section describes our first proposal – called MonchiLuts – that combines
the use of MFBR LUTs and function secret sharing.

Participants Besides a trusted setup realized by a trusted key server, here are
the main participants of our identification protocol:

– BIP (Biometric Identity Provider) holding the database containing LUTs
corresponding to the reference templates and responsible for the computation
of the encrypted masked scores between a freshly live template and each
reference template.

– Gate, in charge of capturing the live biometric template of the users request-
ing access and forwarding them to the BIP, after protection, during the
identification phase. Later on, Gate receives the final decision on this actual
identification and allows or not the user to access the plane.

– Pj , (two) parties who decrypt the masked score and evaluate its comparison
operation to the threshold following the FSS Funshade scheme.

4 Authors Suppressed Due to Excessive Length

Notations We use the same notations as in [10]:

– The n log(d)-bit identification score is denoted by s.
– Each evaluation of the FSS Funshade scheme requires the use of a fresh

mask, which we denote by r. Let ŝ = s + r be the masked score, i.e., the
input of the FSS Interval Containment gate [5] employed for comparison.

– The encryption of the masked score is: cŝ = Enc(ŝ,pk) where pk stands
for the public key of the system. The corresponding private key is sk. The
decryption is denoted as Dec(., sk). In practice, as in Monchi, the private
key is shared among the Pj , j = 0, 1, each Pj holding the share ⟨sk⟩j .

– The parameters associated with the BFV scheme are:
• The plaintext space consists of polynomials of degree at most N−1 with
coefficients in Zt.

• The ciphertext modulus Rq = Zq[X]/(XN +1) is set based on the secu-
rity parameter q.

• ei ← χRq
stands for some error term (see Appendix A of [14]).

Enrollment

𝐁𝐈𝐏
(MONCHILUT)

𝐏0

𝐏1

𝑻 = 𝑇𝑖 𝑖∈ 1..𝑑

1

2

𝑜0 + 𝑜1 = 𝑜
3 4

01

𝐁𝐈𝐏𝟎 𝐁𝐈𝐏𝟏
(MONCHICHI)

𝑐 Ƹ𝑠𝑏 𝑗
𝑐 Ƹ𝑠

Fig. 2: Biometric access control system using Monchichi’s protocol.

Score Evaluation by the BIP For one reference and one live template Y =
(y1, . . . , yd) andX = (x1, . . . , xd), BIP has to obliviously compute the encryption
of a score s masked with r in Z2n . This operation is no longer performed with
multiplications as in the original Monchi scheme but instead by using LUTs.

For each reference template, Y = (y1, . . . , yd), let SY,i(.) = Ti(yi, .) + ri
mod 2n, i = 1, . . . , d with r1 + . . . + rd = r. The masked score between a live
template X = (x1, . . . , xd) and Y , ŝ = s+ r mod 2n can thus be computed as:

ŝ = SY,1(x1) + . . .+ SY,d(xd) mod 2n (2)

We write ESY,i, i = 1, . . . , d to denote their encrypted counterparts, i.e.
ESY,i(xi) = Enc(SY,i(xi),pk), for all the xi’s (for the sake of simplicity, mentions
to mask r have been omitted).

Another Walk for Monchi 5

Hence, given one live template X, for each of its d features, the BIP will
look-up and retrieve the relevant cells from the corresponding LUT.

Funshade [9], i.e. the FSS protocol also used in [10] to compare scores with
a pre-defined threshold, requires as input the masked score which is defined in
Z2n where n is a small integer; typically, n = 16.

Correctness Our first proposal can be described as follows:

1. The Gate gets a new live quantized template X = (x1, . . . , xd) and sends it
to the BIP.

For each reference template:

2. The BIP computes the encrypted masked score and sends this cŝ to the Pj ’s.
3. The two Pj ’s decrypt the result. Let cŝ = (cŝa , cŝb). Each Pj computes:
⟨cŝb⟩j = ⟨sk⟩j cŝb + ei with ei ← χRq

and then sends it to the other. Finally,

each Pj gets the masked score as: ŝ =
[[

t
q

[
(cŝa + ⟨cŝb⟩0 + ⟨cŝb⟩1)

]
q

]
t

]
2n

4. Each Pj evaluates whether the score is under a threshold or not thanks to
the FSS Funshade scheme, and sends shares of this result to the Gate.

Step 4 is the same as the one in Monchi and Funshade [10]. Step 3 dis-
tributes BFV decryption [12,14] of the masked score. The correctness of our
scheme thus comes from the correctness of Step 2. We know that:

ŝ = Dec(

d∑
i=1

SY,i(xi)) mod 2n

Hence, our first proposal is correct.

4 Monchichi: Monchi with two-party look-up tables

We now describe Monchichi, our second proposal where the Biometric Identity
Provider is implemented by 2 entities, denoted as BIPk, k = 0, 1. LUTs are now
secret shared among the two BIPks, for k = 0, 1, we define Sk

Y,i(.), s.t.

S0
Y,i(.) + S1

Y,i(.) mod 2n = SY,i(.)

for all i = 1, . . . , d and all reference templates Y . Score computation (2) is
implemented by each BIPk which locally computes:

ŝk = Sk
Y,1(x1) + . . .+ Sk

Y,d(xd) mod 2n

With the introduction of the two BIPs, Pj ’s now receive shares of the masked
scores that first need to be reconstructed by simple addition: ŝ = ŝ0+ŝ1 mod 2n.

Pj ’s can then launch the FSS operation and output the final result of the
comparison.

6 Authors Suppressed Due to Excessive Length

5 Confidentiality of live templates

[3,4] make use of client secret permutations to hide live template X as they are
otherwise leaked by which indexes in the rows Ti(yi, .) are used. The boarding
scenario of [10] cannot accommodate these permutations kept by passengers as
we want them to come to cross the gates hand-free. In our scheme, LUTs are
renewed at each score computation and we can implement secret permutations
both at the Gate and in LUTs stored by Biometric Identity Provider(s). We thus
turn the constraint to have to cope with the need to only consume single-use
pre-processed data for FSS to our advantage

Permutations are not picked by clients/passengers anymore but are rather
generated during the trusted setup by the system. At Step 1, Gate takes a new
secret permutation for the BIP or BIPk and applies it to the live template before
sending the permuted live template to the BIP or BIPk’s. The Gate and the BIP
or BIPk’s have to be synchronized as the LUTs held by BIPk’s have to take into
account these permutations.

6 Performance Evaluation

We implement MonchiLuts and Monchichi in Golang like the Monchi solu-
tion [10]. Similar to Monchi, these implementations use: (i) the Lattigo imple-
mentation [12] of the (2, 2) threshold-variant of BFV, the LUT implementation
from [4] the Funshade library [9] and a native Golang implementation for ad-
ditive secret sharing. The code can be found in https://anonymous.4open.

science/r/another-walk-for-monchi/. The performance of both solutions is
evaluated through experiments executed on a single core machine with an In-
tel(R) Core(TM) i7-7800X CPU @ 3.50GHz and 126 GB of RAM.

For MonchiLuts, BFV parameters are set to: polynomial degree N = 211,
ciphertext modulus size q = 183 bits, and plaintext modulus t is set to 32 bits.

For Monchichi, the two-party secret-sharing is executed in Z216 .
Regarding the implementation of LUTs, we use the same parameters as in [4],

specifically the quantization factor is set to 3 bits for LUT creation, reference,
and live template. Finally, for the FSS instantiation, we also use 16-bit modular
arithmetic.

To study and evaluate the performance of our protocols in the context of the
airport use case, we use the publicly available Labeled Faces in the Wild (LFW)
dataset [8], which includes 13,233 facial images of 5,749 individuals. The same
pre-processing steps proposed by [10] are applied, with template feature sizes set
to d = 128.

Table 1 presents the execution time (in ms) and the communication overhead
(in bytes) of the BIP for the different steps of an identification operation of one
fresh template in MonchiLuts and Monchichi. The measurements are the
result of an average across 20 executions.

Regarding the bandwidth cost, Monchichi only requires the transmission of
a secret-shared masked score (a single value in Z216) and the final masked score,

https://anonymous.4open.science/r/another-walk-for-monchi/
https://anonymous.4open.science/r/another-walk-for-monchi/

Another Walk for Monchi 7

MonchiLuts Monchichi

Time (ms) Comm. Time (ms) Comm.

DB Size (T) LUT FSS Total (Bytes) LUT FSS Total (Bytes)

1 8.86 0.12 8.98 196730 < 0.00 0.12 0.12 < 10

200 1772 24 1796 196730 < 0.01 24 24.01 < 10

1024 9072.64 122.88 9195.52 196730 0.5 122.93 122.88 < 10

Table 1: Performance comparison between MonchiLuts and Monchichi pro-
tocols across different metrics: LUTs, FSS, Total Time (in milliseconds), and
communication overhead (in bytes). The final three columns represent execution
times (in seconds) for varying dataset sizes T .

Multiplication Time (µs) Rotation Time (ms) Addition Time (µs)

415.81± 15.38 6.89± 0.40 98.96± 5.89

Table 2: Performance metrics for multiplication, rotation, and addition.

which is again a scalar value. Although as opposed toMonchichi,MonchiLuts
involves a single BIP, the latter sends two encrypted values to the Pi’s which
results in a non-negligible overhead compared to Monchichi.

In the scenario with a database with 1,000 faces, Monchichi (with 1-core
machine) outperforms the original Monchi scheme (with 4-core machine) by
60%. On the other hand, MonchiLuts exhibits significant overhead compared
to Monchi.

7 Conclusion

This work introduces two new protocols:

– MonchiLuts which is an extension of the work by Bassit et al. [3,4] to
handle secure scores comparison to a threshold;

– Monchichi a full 2PC biometric identification solution combining MFBR
LUTs and FSS.

These two schemes enable us to integrate at a system level the permutations
needed to protect the confidentiality of live templates. These permutations were
originally given to the users which forbids the hand-free boarding plane sce-
nario introduced byMonchi. Our experiments confirm the practicability of both
MonchiLuts and Monchichi for this use case.

8 Authors Suppressed Due to Excessive Length

References

1. Bajard, J., Eynard, J., Hasan, M. A., and Zucca, V. A full RNS variant of
FV like somewhat homomorphic encryption schemes. In SAC (2016), vol. 10532
of LNCS.

2. Bassit, A., Hahn, F., Peeters, J., Kevenaar, T., Veldhuis, R. N. J., and
Peter, A. Fast and accurate likelihood ratio-based biometric verification secure
against malicious adversaries. IEEE Trans. Inf. Forensics Secur. 16 (2021).

3. Bassit, A., Hahn, F., Veldhuis, R. N. J., and Peter, A. Multiplication-
free biometric recognition for faster processing under encryption. In IJCB (2022),
IEEE.

4. Bassit, A., Hahn, F., Veldhuis, R. N. J., and Peter, A. Improved
multiplication-free biometric recognition under encryption. In IEEE Transactions
on Biometrics, Behavior, and Identity Science (2023), IEEE, p. Advance online
publication. https://doi.org/10.1109/TBIOM.2023.3340306.

5. Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y., Kumar, N.,
and Rathee, M. Function secret sharing for mixed-mode and fixed-point secure
computation. In EUROCRYPT (2) (2021), vol. 12697 of LNCS.

6. Fan, J., and Vercauteren, F. Somewhat practical fully homomorphic encryp-
tion. IACR Cryptol. ePrint Arch. (2012).

7. Halevi, S., Polyakov, Y., and Shoup, V. An improved RNS variant of the
BFV homomorphic encryption scheme. In CT-RSA (2019), vol. 11405 of LNCS.

8. Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. Labeled
faces in the wild: A database for studying face recognition in unconstrained envi-
ronments. Tech. Rep. 07-49, University of Massachusetts, Amherst, October 2007.

9. Ibarrondo, A., Chabanne, H., and Önen, M. Funshade: Function secret shar-
ing for two-party secure thresholded distance evaluation. Proc. Priv. Enhancing
Technol. 2023, 4 (2023).

10. Ibarrondo, A., Kerenciler, I., Chabanne, H., Despiegel, V., and Önen, M.
Monchi: Multi-scheme optimization for collaborative homomorphic identification.
In IH&MMSec (2024), ACM.

11. Ibarrondo, A., Kerenciler, I., Chabanne, H., Despiegel, V., and Önen, M.
Monchi: Multi-scheme optimization for collaborative homomorphic identification.
In IACR Cryptol. ePrint Arch. (2024).

12. Insight, T. Lattigo v5. Online: https://github.com/tuneinsight/lattigo,
Nov. 2023. EPFL-LDS, Tune Insight SA.

13. Jain, A. K., Flynn, P., and Ross, A. A. Handbook of biometrics. Springer
Science & Business Media, USA, 2007.

14. Mouchet, C., Troncoso-Pastoriza, J. R., Bossuat, J., and Hubaux, J.
Multiparty homomorphic encryption from ring-learning-with-errors. Proc. Priv.
Enhancing Technol. 2021, 4 (2021).

15. Shamir, A. How to share a secret. Commun. ACM 22, 11 (1979).

https://github.com/tuneinsight/lattigo

	Another Walk for Monchi

