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Abstract We specify a wallet provider issued attestation called Wal-
let Trust Evidence (WTE) and three related specific instructions for the
EUDI Wallet cryptographic hardware, most notably the generation of a
Proof of Association (PoA). These allow the EUDI Wallet providing veri-
fiable assurance to third parties (issuers, relying parties) that attestation
private keys are not only bound to conformant cryptographic hardware
but also that they are bound to the same such hardware. This allows the
EUDI Wallet meeting eIDAS Level of Assurance “high” as well as oper-
ating in a privacy friendly manner. The instructions specified in this doc-
ument cater for convenient implementation in all envisioned EUDI Wal-
let architectures including those based on a GlobalPlatform [17] based
Secure Element such as an eID-card or an embedded SIM (eSIM). By
their simplicity, the three instructions also allow for convenient Common
Criteria certification. This document is a further refinement and cryp-
tographic concretisation of the WTE/PoA logic specified in the wallet
Wallet Architecture and Reference Framework [1], which is based on the
EPIC-09 result developed in a cooperation between the NI-Scy consor-
tium and the eIDAS expert group. However, the present draft document
is meant for discussion only and not approved by the NI-Scy consortium,
the eIDAS expert group or Dutch government.

Keywords: eIDAS assurance level High, EUDI Wallet, Key attesta-
tion, Privacy friendly attestation issuance and presentation, Wallet
Trust Evidence
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1. INTRODUCTION

1 Introduction
The update on 11 April 2024 [13] to the 2014 eIDAS regulation [12] introduces
an European Digital Identity Wallet (hereafter: EUDI Wallet or for brevity some-
times simply wallet). According to [13], the EUDI Wallet “shall enable the user,
in a manner that is user-friendly, transparent, and traceable by the user, to [..]
securely request, obtain, select, combine, store, delete, share and present, under
the sole control of the user, person identification data and, where applicable, in
combination with electronic attestations of attributes, to authenticate to relying
parties”.

These Relying Parties can be public and private services. The EUDI Wallet
is provided to users by a Wallet Provider. As every European member state
is required to provide an EUDI Wallet to its citizens, each member state shall
have at least one Wallet Provider. An EUDI Wallet allows the user to present
attributes to relying parties in the form of electronic attestation of attributes
(hereafter: attestations). According to [13] an attribute means“a characteristic,
quality, right or permission of a natural or legal person or of an object. Also,
“electronic attestation of attributes” means an attestation in electronic form
that allows attributes to be authenticated. Compare Figure 1 below.

Attestations are issued by Attestation Providers. Both provider types are con-
sidered trusted and can either be private or public. Public providers are typically
government or state-affiliated organizations offering services to the public, while
private providers are owned and operated by independent, non-governmental
entities. Particular public providers provide Personal Identification Data (PID)
which contain the basic identification data of the user comparable with a con-
ventional identity document but then usable online. Although a PID technically
resembles an attestation it formally is not necessarily an attestation. For ease
of presentation we sometimes speak of the issuance or presentation of (PID)
attestations. Typically, the PID are the first data issued to the EUDI Wallet.

The update of the eIDAS regulation stipulates a “Common Interface” between
the EUDI Wallet, attestation providers and relying parties. This interface shall
be further specified in implementation regulations and standards such as ISO
23220 and OpenID for Verifiable Credentials [34]. The EUDI Wallet is described
in more detail in the Architecture and Reference Framework [1].
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1. INTRODUCTION

Figure 1. EUDI Wallet overview

Although [13] allows for other types of attestations, in the context of this
document an attestation is functionally considered a PKI-certificate. That is, an
attestation is a collection of user attributes supplemented with a public key and
signed by a (PID) attestation provider. The user can prove attestation ownership
to a party by electronically signing a message, e.g. a challenge, generated by the
party. In this paper focus on the signature algorithms stipulated in the mobile
driving licence standard [26], i.e., EdDSA [21,32], ECDSA [5,24,32] and “ECDH-
MAC” signing as defined in [26] itself. Strictly speaking ECDH-MAC is not a
digital signature scheme as it lacks the non-repudiation property which actually
is the reason it is part of the mobile driving licence standard. For convenience we
have also specified the generation and verification of ECDSA and ECDH-MAC
signatures in Annex E in Algorithms 5 - 8.

During issuance of the attestation to a user, the attestation provider per-
forms identity proofing of the user, ensuring that the issued attributes belong
to the user. Typically, the PID issuance could be based on a national eID-card
from whereas other attestations could be issued based on the PID itself. A fun-
damental security property of an attestation is that during attestation presence,
the EUDI Wallet user can cryptographically prove holdership to relying parties.
This is accomplished by proving possession of the private key of which the corres-
ponding public key is bound by the attestation issuer during attestation issuance.

The attestation public/private keypair are managed by the EUDI Wallet in
a component called the Wallet Secure Cryptographic Device (WSCD) in the [1],
cf. Figure 1. The WSCD can perform basic key-management operations (e.g.,
generate signing public/private keypair, sign with certain private key, delete key),
whereby keys are managed and controlled in a secure fashion. This includes that
private keys managed in the WSCD (indicates as keys in Figure 1) cannot be
exported in plaintext from the WCSD and that they are protected against other
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1. INTRODUCTION

type of attacks on the WSCD. This property is fundamental for EUDI Wallet
security as otherwise attestations could for instance be cloned.

Both the issuance and presentation of (PID) attestations need to conform
to [14] which includes that the EUDI Wallet authentication mechanism should
protect against attackers with a “high attack potential”. Although not form-
alized, the general interpretation of this protection is that this implies that at
least the WSCD residing in the EUDI Wallet is Common Criteria certified [25]
at assurance level EAL4+.

Next to security, also privacy protection plays an important role in the EUDI
Wallet. Several articles of the eIDAS regulation update [13] stipulate specific
privacy requirements the EUDI Wallet must adhere to. For instance, Article 12
stipulates adherence to the privacy by design principle. Also, adherence to data
minimisation is stipulated in the preamble of the eIDAS regulation. Four WSCD
architectures are envisioned:

External (“Smart Card”) The WSCD here is a chip external to the mobile
device, e.g., a GlobalPlatform [17] based Javacard Secure Element.

Internal (eUICC, eSIM, eSE) The WSCD here is based on a dedicated, in-
ternal chip integrated in the mobile device, e.g. eUICC, supporting Javacard
based on GlobalPlatform.

Remote HSM The WSCD here is based on a Hardware Security Module (HSM)
at the Wallet Provider and where the WSCA takes the form of a Wallet Pro-
vider Trusted Service Application interacting with the HSM.

Internal Native The WSCD is solely based on the native cryptographic hard-
ware of a mobile device (Apple iOS/Secure Enclave and Android/Hardware
Backed Keystore or Strongbox). In this situation it is hardest meeting the
high EUDI Wallet security requirements.

This document
In this document we specify a wallet provider issued attestation called Wallet
Trust Evidence (WTE) and three related specific WSCD instructions. These
allow the EUDI Wallet providing verifiable assurance to third parties (issuers,
relying parties) that attestation private keys are not only bound to a conform-
ant WSCD but also that they are bound to the same WSCD. This allows the
EUDI Wallet meeting eIDAS Level of Assurance “high” as well as operating in
a privacy friendly manner. The instructions specified cater for convenient im-
plementation in all envisioned EUDI Wallet architectures including those based
on a GlobalPlatform [17] based Secure Element [17] such as an eID-card or
an eSIM. By their simplicity, the three instructions also allow for convenient
Common Criteria certification [25]. This document is a further refinement and
concretisation of the EPIC-09 result [29] developed in a cooperation between the
NI-Scy and the eIDAS expert group. The focus of this document are WSCD im-
plementations allowing for trusted logic (e.g. Javacard), i.e. the first two WSCD
architectures. The first instruction (“key-attestation”) is quite common practice
for cryptographic hardware and the second is easily implemented in trusted lo-
gic. Therefore this document focusses on the cryptographic specification of the
third WSCD instruction, i.e., the generation of a proof of Association.
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2. SECURITY PROBLEM DESCRIPTION

Document outline

• Section 2 starts with a security problem description from which we derive
three fundamental WSCD security requirements leading us to three specific
WSCD instructions. The last instruction is the generation of a proof of as-
sociation.

• Section 3 is the core of the document. It proposes a proof of association
based the on a Schnorr non-interactive zero-knowledge proof.

• In Section 4 we provide further implementation notes including an indicating
that the WTE construction and the proof of association proposed in this
document can also be implemented in the context of anonymous credentials
such as based on BBS+ [2,7] or Idemix [8].

• Section 5 contains the references used in this document.
• Annex A is informative and contains an illustration of Android StrongBox

key-attestation.
• Annexes B, C and D are informative illustrations of the use of the three

WSCD instruction in three use-cases.
• Annex E contains the cryptographic and mathematical background used in

Section 3.
• Annex G contains three example applications of Proposition 3.6, two of which

avoid the use of raw ECDSA signing.
• Annex H contains a proposal for a proof of association specification in ASN.1

format.

2 Security problem description
In Section 2.1 we first heuristically derive three fundamental WSCD security
requirements by analysing the following three common EUDI Wallet use cases:

1. Attestation issuance (in general).
2. Issuance of another attestation based on the PID.
3. Presentation of multiple attestations to a relying party.

These security requirements then lead us in Section 2.2 to three fundamental
instructions a WSCD should support. We motivate that the first two instructions
are either common practice or easily implemented in cryptographic hardware
supporting trusted logic such as GlobalPlatform [17]. In Section 3 we propose
cryptographic specifications implementing the third instruction.

2.1 Three fundamental WSCD security requirements

Historically, high assurance (e.g. qualified) PKI-certificates are based on smart
cards, i.e. cryptographic hardware, holding private cryptographic keys in a non-
exportable fashion. The public/private key generation in the smartcard is under
full control of the certificate issuer taking place on the issuer premise. In this
way, the issuer is assured that the public key he binds in the certificate has its
private key residing in the smartcard and not for instance in a software based
keystore.
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2. SECURITY PROBLEM DESCRIPTION

The nature of the EUDI Wallet completely changes this setup. Here the
public/private key generation takes place in the WSCD based on an instruction
from the Wallet App which is under control of the user. Without further arrange-
ments, an attestation provider has no assurance that the public key he binds in
the attestation has its private key bound to the cryptographic hardware, i.e.
resides in it. Indeed, a fraudulent user or malicious software running on the user
mobile device could manipulate the key generation instruction from the Wallet
App to the WSCD and replace it with a software based key generation or by a
key generation instruction to a EUDI Wallet/WSCD of another user. In the first
abuse case the attestation private key would be copyable making the attestation
clonable. In the second abuse case the other user could present the attestation
of the first user, e.g. a diploma, as being hers. Modern mobile operation sys-
tems support something called “Mobile App attestation” allowing parties (like
an issuer in our context) to assess that a mobile application or the device is
not tampered with (“rooted” or “jailbroken”). Both Apple’s devicecheck [9] and
Google’s Safetynet [10] provide for Mobile App attestation. However, as Mobile
App attestation is provided by the operation system, i.e. software, it has a large
attack surface1 and it commonly accepted amongst experts that it can never
protect against a high attack potential as the eIDAS regulation requires.

In other words, an attestation provider cannot simply trust the EUDI Wallet,
even when it is APP-attested, that the public key sent during attestation issuance
is indeed bound to a WSCD. This brings us to the first fundamental WSCD
security requirement:

ICW (InCertWSCD) During issuance the attestation provider must be able
to verify that the (PID) attestation public key sent by the EUDI Wallet to
be included in the attestation by the issuer, is bound to a certified WSCD.
That is, that the corresponding private key resides in a certified WSCD.

If the attestation provides assurance that the attestation private key is bound
to a WSCD, then the WSCD certification shall be such that it implies that the
attestation private key cannot be exported out of the WSCD. Requirement ICW
is well-known and is commonly addressed by a technique called key-attestation, a
somewhat overloaded term in our context given the use of the term “attestation”
in the eIDAS regulation and in Mobile App attestation.

A simple key-attestation implementation is that the cryptographic hardware
supplier places a certified signing key (“attestation key”) in the hardware dur-
ing its production. That is, the attestation private key is placed in the hardware
and the attestation public key is bound in an attestation signer certificate that
is part of trusted certificate chain. During key generation, the hardware not only
returns the newly generated public key but also a key-attestation certificate on
this key signed by the attestation key. This certificate can also include a chal-
lenge of a relying party ensuring freshness of the generated key. This technique
is supported by GlobalPlatform [17] but also by the Android Keystore for both
its Hardware Backed Keystore (TEE based) and its EAL4+ certified StrongBox

1 Compare https://github.com/kdrag0n/safetynet-fix
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2. SECURITY PROBLEM DESCRIPTION

chip, cf. [38]. In Figure 6 of Annex A this setup and the introduced terminology
is shown based a StrongBox chip of a Google Pixel 3a. We also remark that
this key-attestation certificate can also be fulfilled by the Secure Area Attest-
ation Object (SAAO) specified in the emerging ISO 23220-3 standard [27]. In
the terminology of ISO 23220-3 the attested key is called the “SA-Attestation
PublicKey”.

Now assume that the EUDI Wallet of a user has been issued a PID meeting
property ICW, i.e. the PID provider could verify that the PID private key is
bound to a certified WSCD. Suppose that the EUDI Wallet user wants to have
issued two additional attestations based on her PID:

• an “adult” attestation proving that she is over 18 years old, and
• a “photo” (facial image) attestation from a trusted photographer.

The issuance of both attestations starts with an identification of the user based
on her PID. During the attestation issuance the issuer does not only need assur-
ance that the diploma/photo public keys sent by the EUDI Wallet are bound to a
certified WSCD, e.g. Requirement ICW, but also that the public keys are bound
to the same WSCD as the PID is. Indeed, without such assurance a fraudulent
user or malicious software running on the user mobile device could manipulate
the key generation instruction from the Wallet App to the WSCD and replace
it with a key generation instruction to a EUDI Wallet/WSCD of another user.
In this abuse case the other user could then present the attestations of the first
user, as being hers. This brings us to the second fundamental WSCD security
requirement.

SW1 (SameWSCD1) During attestation issuance an issuer must be able to
verify that the attestation public key sent by the EUDI Wallet to be included
in the attestation is not only bound to a certified WSCD but is also bound
to the same certified WSCD as the PID public key is.

The third fundamental WSCD security requirement is the counterpart of the
second fundamental WSCD security requirement for relying parties. Assume that
the EUDI Wallet user has been issued the adult and the photo attestations as
discussed above and that the issuers have been assured of Requirement SW1,
i.e. that the adult/photo private keys reside in the same WSCD as the PID
private key. Now suppose that the user wants to present her adult and photo
attestation in a shop, e.g. as part of buying cigarettes or alcohol. Then the shop
would also need to be assured that adult/photo public key correspond to one and
the same user, i.e. that they are bound to the same WSCD as the user PID is.
Indeed, without such assurance a fraudulent user or malicious software running
on the user mobile device could present the photo attestation of one user and
the adult attestation of another user. This brings us to the third fundamental
WSCD security requirement.

SW2 (SameWSCD2) During presentation of multiple attestations a relying
party must be able to verify that public keys in different attestations are not
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2. SECURITY PROBLEM DESCRIPTION

only bound to a certified WSCD but are also bound to the same certified
WSCD as the PID public key is.

Claim-based binding
One can also base a EUDI Wallet on security requirement ICW only whereby
avoiding the necessity of security requirements SW1 and SW2 by a technique
called “claim-based binding”, cf. [34]. In this context only the PID contains a
WSCD bound public key, i.e. based on security requirement ICW. All other
attestations are linked to the PID by letting the attestation issuer copy all PID
data in the other attestations as well. So, during the issuance of, say, a diploma
attestation the user presents her PID to the issuer. After the appropriate veri-
fications the diploma issuer lets all PID data be part of the diploma attestation
itself. During diploma attestation presentation the user also presents her PID
and the diploma attestation. By verifying the common PID data the relying
party can determine the diploma belongs to the PID user. One does not need to
copy all PID data to the other attestations but only a part that is directly identi-
fying, e.g. a social security number. The PID issuer could also place specifically
designated data (‘linking attributes’) in the PID for this purpose.

In the discussed claim-based setup the non-PID attestations do not contain
a public key and security requirements SW1 and SW2 are met in an empty
way. Note that such non-PID attestations are not in scope of this document as
we assumed that all attestations contain their own public key. If in the discussed
claim-based setup the non-PID attestation would contain their own public key,
then security requirements SW1 and SW2 are not met as the second abuse
case discussed above would apply. Alternatively we could also reuse the PID
public key in all attestations but that would give linkability issues (the public
key becomes a “supercookie”) and conflicts with several key management good
practices, cf. [33]. One of the conflicting good practices is that cryptographic
keys should only have one purpose. As an EUDI Wallet illustration for this: a
signature that verifies with the PID public key would then also verify with the
(diploma) attestation public key (as it is the same public key). This can give rise
to a dispute between user and a relying party on whether the user authenticated
with her PID or with the diploma attestation.

Although claim-based binding can be a valuable way of binding attestations
to the user, its use of shared linking data in claim-based binding introduces
privacy challenges related to linkability. The approach introduced in this doc-
ument is based on binding (PID) attestations cryptographically which has less
privacy and security challenges. Wallet implementations could use a mix of both
techniques.

2.2 Three fundamental WSCD instructions

We first discuss a basic method to meet all three WSCD security requirements
from Section 2.1 and motivate that method this is not suitable on ground of
insufficient privacy protection and complexity.

In the basic method the WSCD has the ability to generate attested keys as
indicated in Section 2.1. Each newly generated (PID) attestation key is part
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2. SECURITY PROBLEM DESCRIPTION

of an attestation certificate that is part of a trusted certificate chain, cf. Fig-
ure 6 of Annex A. The key-attestation certificate holds a supplier statement on
the WSCD (eIDAS conformity) certification. From this statement an issuer can
also be assured that the attestation private key is WSCD bound and is properly
managed there. This would allow for adherence with security requirement ICW.
Additionally, to allow issuers and relying parties verification that two attesta-
tion private keys are bound to the same WSCD, the EUDI Wallet sends along
a common attestation signer certificate. This would give adherence to security
requirements SW1 and SW2.

The basic method has the following issues:

(A) It conflicts with the EUDI Wallet privacy by design and data minimisation
principles stipulated in the eIDAS regulation update [13]. Indeed, the com-
mon attestation signer certificate allows linking the user over various issuers
and relying parties.

(B) The basic method uses that key-attestations uniquely identify the WSCD,
e.g., to a serial number of the WSCD, which is avoided in modern key-
attestation methods, e.g. used by Android [11] or [16] exactly to avoid the
linking issue indicated in the previous point. That is, the basic method does
not work and in fact conflicts with current privacy friendly key-attestation
methods.

(C) The attestation signer certificate might contain WSCD information, e.g.
serial numbers, date of production that is unnecessary for the issuers and
relying parties. Such information might allow for further user linking or even
allow for identification of the EUDI Wallet user. To illustrate, another mobile
application can also use the cryptographic hardware the WSCD is based on.
Then the other mobile application can link the user through the attestation
signer certificate. Actually, the other mobile application might be specifically
developed to facilitate this linking and designed such that users are tempted
to install it.

(D) It burdens issuers and relying parties as they would need to have access to
all WSCD supplier trust chains and to be able verify if the WSCD statement
in the attestation certificate is adequate for use in an eIDAS EUDI Wallet.

To address issues (C) and (D) point we start by introducing the Wallet Trust
Evidence (WTE)). The WTE is an attestation itself issued by the Wallet Pro-
vider based on a WSCD specific key-attestation certificate. During WTE issu-
ance, the EUDI Wallet generates an attested public/private key pair (PubWTE,PrivWTE)
on request of the wallet provider, i.e. a limited version of Requirement ICW.
The wallet provider verifies the key-attestation certificate, the WSCD conformity
statement therein and the trust chain. Additionally, the wallet provider requires
the wallet to prove possession of the private key PrivWTE. If these verifications
are successful, then the Wallet Provider issues the WTE attestation on the pub-
lic key PubWTE. The WTE only contains minimal data; essentially nothing more
than that the WSCD is eIDAS-conformant. Also, the WTE public key PubWTE
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2. SECURITY PROBLEM DESCRIPTION

uniquely identifies the WTE and the WSCD it refers to. As indicated in Sec-
tion 2.1, such key-attestation certificate are supported by GlobalPlatform, the
Android Keystore and in the emerging ISO 23220-3 standard (“SAAO”).

For the WTE construction, we do require the WSCD to support general key-
attestation as in the basic method but only its use it as part of WTE issuance.
We formalize this as a first WSCD instruction.

WSCD-Instruction 1 Generate attested WTE-key
Input: key properties, challenge C
Output: WTE public key PubWTE,

WTE Key-Attestation Certificate K containing PubWTE, C

Return PubWTE, K // WSCD specific

Replacing the key-attestation certificate with the WTE addresses issues (C) and
(D) but not issues (A) and (B). For this we introduce the new mechanism of key
association. This mechanism avoids that each newly generated attestation key is
issued a new key-attestation certificate but instead builds further on the WTE
itself. Key association allows the EUDI wallet:

(a) to generate a new key in the WSCD that is associated to the WTE public
key, and

(b) to cryptographically prove this association to issuers and relying parties.

The WSCD trusted logic then ensures that the new key resides in the same
WSCD as is referred to by the WTE, or more specific referred to by the WTE
public key PubWTE. If a public key Pub is associated to a WTE public key
PubWTE, we will also allow the generation of new keypair that is associated to
Pub and then by inheritance also to the WTE public key PubWTE. In this way
we mathematically model association as a transitive relation.

The association mechanism is based on two additional WSCD instructions
formalized below. Instruction #2 allows the generation of a new key associated
with a given WTE key and Instruction #3 provides a proof of association for
two keys that are associated. To support association, the WSCD maintains a
secure association registration. One can think of an internal Association File
holding multiple lines each of which corresponds to the associated keys in the
WSCD. Instruction #1 (Generate attested WTE-key) then creates a new line in
the Association File holding a reference to the newly generated WTE-key.

WSCD-Instruction 2 Generate key associated to WTE
Input: Reference RfWTE to WTE key, key properties
Output: Generated public key Pub associated to WTE key

1: Look up Association File line of WTE key RfWTE // error on failure

2: Generate new keypair Pub,Priv with requested key properties

3: Write entry in Association File line reflecting that public key Pub
is associated with WTE key

4: Return public key Pub

9
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WSCD-Instruction 3 Generate Proof of Association
Input: Associated public keys Pub1,Pub2
Output: PoA(Pub1,Pub2)

1: Verify in Association File that public keys Pub1,Pub2 are associated

// error on failure

2: Generate proof of association PoA(Pub1,Pub2) // WSCD specific

3: Return proof of association PoA(Pub1,Pub2)

In Annexes B, C and D we show how the WTE and the three WSCD instructions
provide for the three fundamental WSCD security requirements formulated in
Section 2.1. In the next Section 3 we propose a cryptographic algorithm for the
generation of a proof of association, i.e. WSCD Instruction #3.

Draft ISO 23220-3 approach to WTE
We briefly discuss the approach in Annex C.6.5 of the emerging ISO 23220-3
standard [27] and compare it with the WTE/PoA approach. In the ISO 23220-
3 approach the “mdoc app provider”, i.e. the wallet provider in our context,
re-issues individually attested keys in the form of a public key array as part
of the issuing process. This approach implies that the wallet provider always
observes all attestation public keys as he puts them in the public key array.
This can be considered conflicting with [13, Article 5a(14)] and the GDPR data
minimalization principle. This issue is avoided in the WTE/PoA approach; the
wallet provider only observes the WTEs but not the attestation keys. Also, as
the ISO 23220-3 approach is dedicated to one issuer only, one cannot provide for
security objective SW2, cryptographically binding different attestations during
presentation. Finally, as indicated as Issue (B) on page 8 this approach does not
work with modern, privacy friendly key-attestation.

3 A proof of association proposal

In this section we specify a cryptographic method for the generation of a proof
of association. The cryptographic and mathematical background and notation
this section builds upon is placed in Annex E. In this proposal we only associate
public keys that are based on the same elliptic curve group represented in ad-
ditive notation as G = (〈G〉,+) of order q generated by a base point (generator)
G. That is, we can associate two public keys that are based on the same elliptic
curve, e.g. the NIST P-256 curve or the brainpoolP256r1 curve. However, we
cannot associate a NIST P-256 based public key with a brainpoolP256r1 based
public, nor can we associate RSA public keys. We think that this drawback is
acceptable in practice.

The cryptographic heuristic behind the association proposal is as follows. The
context is a WSCD that supports WSCD-Instruction 1 as discussed in Section
2.1. Let W = w·G be a certified WTE public key based on WSCD-Instruction
1. That is, the key W is bound to an attestation/certificate verifiably issued by
the wallet provider. From this attestation/certificate, parties can infer that the
private key w is managed in a WSCD that is certified to be compliant with the
updated eIDAS regulation [13]. What this means will be clarified later, but at

10
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this moment we assume that this at least includes that the WSCD adheres to
good practice key management and also that it supports the proof of associ-
ation trusted logic (which follows). For ease of reference we formulate this as a
definition.

Definition 3.1 A certified WSCD is compliant with the updated eIDAS regula-
tion [13], adheres to good practice key management, supports WSCD-Instruction
1 and also supports the proof of association trusted logic.

Now suppose that P = p·G is a public key bound to the same WSCD as the
WTE, i.e. the private key p is managed in the same WSCD as w is. The key
idea is that when the WSCD has registered that public key P is associated to
the WTE public key, the WSCD trusted logic will allow the computation of
the association key z = p·w−1 mod q. The proof of association is based on this
association key. It follows that

z·W = p·w−1·W = p·w−1·w·G = p·G = P.

That is, the key P can be considered a public key with respect to generator W
with private key z, i.e. the association key. Now suppose that a party can prove
to a verifying party that it has full control over both private keys z and p, i.e.,
can do arbitrary mathematical operations with these. Then this party can also
compute p·z−1 = w. That is, the party has full control over the private key w
too. By construction this means that this party must be the WSCD, as that is
the only party having full control over key w by construction.

Following this heuristic brings us to the following definition of proof of as-
sociation. The definition encompasses association between general public keys
and is thus broader than only between a WTE public key and an attestation
public key as in the heuristic. We formally define that a public key is associated
to itself, but we do not need a proof of association to prove this.

Definition 3.2 We use the context described above. A proof of association (PoA)
between different public keys P1 and P2 conveys to the verifier(issuer, relying
party) that the party that generated the PoA has full control over the association
key z = p2·p−11 , i.e., can do arbitrary mathematical operations with it.

In Algorithm 1 we have specified a proposal for the generation of a PoA based on
a Schnorr non-interactive zero-knowledge proof using the Fiat-Shamir heuristic
[15] similar to RFC 8235 [22].

11
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Algorithm 1 Proof of Association (PoA) generation
Input: optional verifier challenge C (byte array), two associated public keys
P1 = p1·G, P2 = p2·G with respective private keys p1, p2.
Output: PoA = {P1, P2, C, (r, s)}.
1: If P1 = P2 return error // P1, P2 need to be different

2: Compute association key z = p2·p−1
1 mod q. // note P2 = z·P1

3: Convert public keys P1 and P2 to byte arrays P̄1, P̄2 respectively

4: Select random k ∈ {1, ..., q − 1}.
5: Compute P ′1 = k·P1 = (x, y) and convert to byte array P̄ ′1. // commitment

6: Compute byte array H(P̄ ′1 ||P̄1 ||P̄2 ||C) and convert it to an integer r.
7: If r mod q = 0 then go to Line 4.

8: Compute s = k + r · z mod q.
9: If s = 0 then go to Line 4.

10: Return PoA = {P1, P2, C, (r, s)}.

The following algorithm specifies the verification of a PoA.

Algorithm 2 Proof of Association (PoA) verification
Input: WTE, PoA = {P1, P2, C, (r, s)}
Output: Acceptance of rejection of the PoA.

1: Verify P1 6= P2 on failure Return Error // P1, P2 need to be different

2: Verify the input, including that

r ∈ {1, 28·|q| − 1} and s ∈ {1, q − 1}, on failure Return False.

3: Convert public keys P1 and P2 to byte arrays P̄1, P̄2 respectively

4: Compute Q = s · P1 − r · P2 if Q = O Return False.

5: Convert Q to byte array Q̄. // i.e. of size 2·|p|
6: Compute byte array H(Q̄ ||P̄1 ||P̄2 ||C) and convert it to an integer v.
7: If v = r accept the PoA otherwise reject it.

The following proposition proves that the proof of attestation generated by Al-
gorithm 1 meets the requirements.

Proposition 3.3 The PoA generated by Algorithm 1 will be accepted by Al-
gorithm 2 and meets Definition 3.2.

Proof: For the first part of the proposition, let {P1, P2, C, (r, s)} be a PoA
generated by Algorithm 1. Then the following equalities hold for the point Q
appearing in Line 4 of Algorithm 2:

Q = s · P1 − r · P2 = (k + r · z)·P1 − r · P2 = k·P1 + r·(z·P1 − P2) = k·P1 (1)

The first equality is Line 4 of Algorithm 2, the second equality follows from the
construction of s in Line 8 of Algorithm 1, the third equality is straightforward
and the last equality follows as z·P1 = P2 by the definition of z in Line 2 of
Algorithm 1. From Equality (1) it follows that point Q is equal to point P ′1
appearing in Line 5 of Algorithm 1. It now follows that the hash inputs in Line
6 of both Algorithms 1 and 2 are equal and so are their outputs, i.e. r = v. It
follows that Algorithm 2 accepts the PoA.

12
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That the PoA generated by Algorithm 1 meets Definition 3.2 follows from
the soundness of the Schnorr non-interactive zero-knowledge proof. Compare [36,
Theorem 9.1]. �

We make some further notes on Algorithms 1 and 2:

1. As the Schnorr non-interactive zero-knowledge proof operates in zero-knowledge
the PoA based on it can be securely used in combination with various attest-
ation signing algorithms. Even simultaneous use is possible such as indicated
in ISO 18013-5 [26] that allows a signing key to be used for EdDSA, ECDSA
and ECDH-MAC signing.

2. The optional challenge choice in Algorithm 1 allows to make the PoA in-
teractive allowing a challenge of a verifier, e.g. a (PID) issuer in the EUDI
Wallet context, to be included in the PoA. Compare the notes in Section
4.2.

3. One can naturally extend Algorithm 1 for an arbitrary number of associated
public keys by returning the pairwise proofs of association, e.g. PoA[P1, P2, P3]
consists of PoA[P1, P2] and PoA[P2, P3]. The order of the public keys is ir-
relevant.

4. Generation of a PoA (Algorithm 1)and verification of a PoA (Algorithm 2)
closely resembles the generation and a verification of an ECSDSA (Elliptic
Curve Schnorr Digital Signature Algorithm) signature [5,24,35]. This means
that if a platform supports ECSDSA then the proof of association is easily
implemented.

We require that a certified WSCD only generates a proof of association for public
keys that are bound to it and that are associated to the same WTE public key.
Conversely, if we have two public keys P1, P2 that are known to be bound to
certified WSCDs and for which a proof of association exists then the public
keys must be bound to the same certified WSCD. Indeed, if they were bound
to different certified WSCDs, then the party generating the proof of association
would be able to solve the Discrete Logarithm problem with respect to public
key P1 generated by the first WSCD and public key P2 generated by the second
WSCD. This is not possible as public keys P1, P2 are randomly generated as
certified WSCDs adhere to good key management practices (Definition 3.1). For
easy reference, we formulate this result as a proposition.

Proposition 3.4 If two associated public keys are known to be bound to certified
WSCDs, then they must be bound to the same certified WSCD and associated to
the same WTE public key.

To solve the security problem described in Section 2 we need to show that this
proof of association implementation coincides with the WSCD notion of associ-
ation for which we need to prove the following fundamental result.

If a verifier is provided two proofs:

1. a proof of association passing Algorithm 2 between public key P = p·G and
a certified WTE public key W = w·G, and

13



3. A PROOF OF ASSOCIATION PROPOSAL

2. a “suitable” proof of possession of the private key p,

then the public key P is bound to the WSCD the WTE refers to and is associated
to the WTE public key W .

Note that the part “and is associated to the WTE public key W” allows for
recursion whereby the public key P can take the role of W . Metaphorically
this resembles the folktale “Swan, stick on” whereby the WTE public key is
the swan and the public keys are the people recursively sticking to the swan.
What “suitable” means depends on the attestation signature algorithm used; we
distinguish EdDSA (or more generally “sound” signature algorithms), ECDSA
and ECDH-MAC. The corresponding results are respectively Propositions 3.5,
3.6 and 3.8.

A proof of association by itself does not provide any guarantee on the as-
sociation by the WSCD between the WTE public key W and public key P .
Indeed, the wallet user (or an attacker) can choose any association key z, com-
pute P = z·W and generate a proof of association following Algorithm 1. That is
why the above heuristic also requires that the verifier was also provided a proof
that the WSCD have full control over the private key p. In the situation where
the user/attacker chooses the association key z itself this private key is equal to
z·w to which the user/attacker has no full access.

This leads us to the question how the wallet can convey to the verifier (issuer,
relying party) it has full access to the private key p. One might expect that
by letting the wallet digitally sign a challenge of the verifier, i.e. a proof of
possession, would cater for that. This actually holds for the EdDSA signature
algorithm as explained in the proof of Proposition 3.5. However, it does not hold
for the ECDSA and ECDH-MAC signature algorithms: there the user can sign
with the private key p with only having partial access to it, cf. Algorithms 3 and
4. We will explain that this can be considered a feature too as it allows for an
easily implementable WSCD supporting association.

The following proposition shows that the proof of association Algorithm 1
in combination with EdDSA based attestation keys is meeting the PoA require-
ments.

Proposition 3.5 We use the context described above whereby the public key
P = p·G with private key p is an EdDSA keypair. Suppose a party provides to a
verifier a proof of association that passes Algorithm 2 and a proof of possession
of private key p consisting of EdDSA signature on a random challenge generated
by the verifier. Then the public key P is bound to the WSCD the WTE refers to
and is associated to the WTE public key W .

Proof: Suppose that public key P is not managed in the WSCD the WTE refers
to. This means that the proof of association is not generated by the WSCD the
WTE refers to. As the PoA generated by Algorithm 1 meets Definition 3.1 (see
the notes following Algorithm 1) it follows there is another party than the WSCD
having full control over the key z for which it holds P = z·W . As public key P
is not managed in the WSCD it follows that the proof of possession of private
key p is also not generated by the WSCD the WTE refers to but by a second
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party, perhaps the first and second party are the same. The EdDSA signature
algorithm is (like the Proof of Assocation) based on a Schnorr non-interactive
zero-knowledge proof and is thus sound. Compare the notes following Algorithm
1. So it follows that the second party has full control over the key p. This means
that if the first and second party work together they can compute p·z−1 = w
which contradicts that private key w is stored in the WSCD in a non-extractable
manner. We conclude that public key P is managed in the WSCD the WTE refers
to.

Now suppose that the proof of association was not generated by the WSCD.
As before this means there is another party than the WSCD having full control
over the key z for which it holds P = z·W . As the certified WSCD adheres
to good practice key management, public keys W,P are randomly generated.
This means that the other party is able to solve the Discrete Logarithm problem
of P with respect to W , which is not possible. We conclude that the proof of
association was generated by the WSCD and that public key P is associated to
public key W . �

The practical application of Proposition 3.5 is during the issuance of an at-
testation on the public key P . From this attestation parties can infer that public
key P is bound to a certified WSCD and associated to the WTE public key. This
allows the proof of association to be used recursively like in the folktale “Swan,
stick on” mentioned above. This also means that further proof of association
applications involving P can be based on Proposition 3.4.

We now show that an ECDSA proof of possession signature does not prove
that the signer has full control over the private key, i.e., can do arbitrary math-
ematical operations with it. We work in the same context as before: a wallet
user has generated an association key z itself and computed the corresponding
WTE associated key P = z·W . As the user has access to the association key,
he can also generate a proof of association using Algorithm 1. The following al-
gorithm from [37] shows the user is also able to generate ECDSA signatures on
messages with the private key corresponding to P , i.e. z·w, provided the WTE
key w allows for raw signing. Raw signing is the generation by the WSCD of a
signature directly on basis of a hash value input, i.e., without the WSCD de-
ploying the hash operation. In the remarks following Algorithm 5 in Annex E
we have provided background on this and its common use in practice. We show
in Proposition 3.6 that by precluding ECDSA raw signing by the WTE key, it
can be proven that this ability is no longer possible.
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Algorithm 3 Split-ECDSA (SECDSA) signature generation
Input: message M , WTE private key w ∈ F∗q supporting ECDSA raw signing,
association key z ∈ F∗q
Output signature (r, s).

1: Compute H(M) and convert this to an integer e.
2: Compute e′ = z−1·e mod q
3: Select random k ∈ {1, ..., q − 1}
4: Compute kG = (x, y) and convert x to integer x̄
5: Compute r = x̄ mod q. If r = 0 go to Line 3

6: If r mod q = 0 then go to Line 3

7: Compute s = k−1(e′ + w·r) mod q. If s = 0 go to Line 3

8: Compute s′ = z·s mod q
9: Return (r, s′)

It is shown in [37, Proposition 3.1] that Algorithm 3 returns a valid ECDSA
signature corresponding to public key P . Note that the pair (r, s) appearing in
Lines 3-7 of Algorithm 3 is just a ECDSA raw signature on e′ with respect to
the WTE private key w. Compare the remarks following Algorithm 5 describing
ECDSA. This means that Lines 3-7 simply consist of calling the WSCD to gen-
erate a raw signature on e′ with respect to the WTE private key w. In Line 2 the
input of the hardware generated signature is modified using association key as
is the outputted signature itself in Line 8. From [37, Proposition 3.2] it follows
that forging an ECDSA signature for private key p is equivalent to forging an
ECDSA signature for private key w.

Based on Algorithm 3 one can envision an ECDSA based distributed WSCD.
This wallet is based on only one (WTE) ECDSA hardware bound pubic key W
under PIN access control. All attestation keys are then constructed as P = z·W
with association keys w managed in the wallet mobile application. Compare
Figure 2. This model is not further explored in this document.

The following proposition shows that the proof of association generated by
Algorithm 1 in combination with ECDSA based attestation keys is meeting the
requirements provided the WTE private key does not provide for ECDSA raw
signing while the attestation keys do support this. That also means that by
precluding raw signing by the WTE key, the distributed WSCD is no longer
possible making it an option controllable by the WSCD configuration of the
WTE key. We remark that the WTE Key-Attestation Certificate produced by
WSCD Instruction 1 must convey to the wallet provider that the WTE key only
supports regular ECDSA signing where the WSCD performs the hash operation.
This obviously implies that the WTE key does not support raw signing. Indeed,
an attacker able to sign a chosen hashvalue not implicitly requested in a regular
ECDSA signing request would be able to break ECDSA signing.

Proposition 3.6 We use the context described above whereby the public key
P = p·G with private key p is an ECDSA key. The WTE private key w only
supports ECDSA signing where the WSCD performs the hash operation, i.e. does
not support ECDSA raw signing. Suppose a party provides a verifier a proof of
association that passes Algorithm 2 and a proof that it can generate ECDSA raw
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signatures based on private key p. Then public key P is bound to the WSCD the
WTE refers to and is associated to the WTE public key W .

Proof: Assume that the proof of association was generated by another party
than the WSCD the WTE refers to. As the PoA generated by Algorithm 1
meets Definition 3.1 (see the notes following Algorithm 1) it follows that this
party has full control over the key z for which it holds P = z·W , i.e. p = z·w. As
private key p allows for raw signing, it follows that also private key w allows for
raw signing by Algorithm 3. This contradicts that the WTE private key w does
not support raw signing. This means that the proof of association is generated by
the WSCD the WTE refers to and consequently that public key P is associated
to public key W . �

The practical application of Proposition 3.6 is during the issuance of an at-
testation on the public key P proposed by the EUDI Wallet. The issuer indicates
in the attestation that public key P is bound to a certified WSCD, i.e. the res-
ult of Proposition 3.6. Further proof of association applications involving P by
relying parties can then be based on Proposition 3.4.

Proposition 3.6 is kept generic allowing for various ways the EUDI Wallet
can prove to the issuer that it can compute raw ECDSA signatures. The simplest
way to prove this is, is letting the EUDI Wallet rawly sign a challenge generated
by the attestation issuer with the private key p corresponding to the attestation
public key P proposed by the EUDI Wallet. In this case the challenge is of
the byte size of the hash function used, e.g. 32 bytes in case of P-256 based
ECDSA. Note that this is required only during attestation issuance, i.e. only
once. This is indicated in Figure 8 in Appendix G. As argued in the remarks
following Algorithm 5 in Annex E, raw ECDSA signing is commonly use in
practice so one can argue that rawly signing an issuer generated challenge once
is not a security issue. Theoretically, there could exist an attack whereby a rogue
issuer sends such a challenge whereby secret information leaks in the resulting
signature. If desired this theoretical issue can be easily addressed by forcing
the issuer to generate the challenge as the hash of another challenge and to
prove that later on in the process. In this way the issuer only receives a regular
ECDSA signature on a challenge which is common practice. That is, the issuer
generates a challenge C, computes the hash C ′ = H(C) and requests a raw
ECDSA signature on challenge C ′ with private key p. Through the WSCD the
EUDI wallet computes this signature (r, s), computes hSig = H(r||s) and sends
this to the issuer. The issuer send challenge C to the EUDI Wallet that verifies
that C ′ = H(C). If this correct, the EUDI Wallet sends (r, s) to the issuer that
verifies that hSig = H(r||s) and that (r, s) is a correct signature for public key
P . In this way, the EUDI wallet can prove to the issuer it can rawly ECDSA sign
with p without actually doing it. This setup is indicated in Figure 9 in Appendix
G.

The following proposition provides for another method avoiding raw signa-
tures and can also more be conveniently implemented; it is indicated in Figure
10 in Appendix G.
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Proposition 3.7 We use the context described above whereby the public key
P = p·G with private key p is an ECDSA key. The WTE private key w only
supports ECDSA signing where the WSCD performs the hash operation, i.e. does
not support ECDSA raw signing. Suppose a party provides a verifier a proof of
association that passes Algorithm 2 and an ECDSA signature (r, s) for public
key P on the message M of form C||P where C is a random challenge generated
by the verifier. Then public key P is bound to the WSCD the WTE refers to and
is associated to the WTE public key W .

Proof: We argue as in Proposition 3.6. Assume that the proof of association
was generated by another party than the WSCD the WTE refers to. As the
PoA generated by Algorithm 1 meets Definition 3.1 (see the notes following
Algorithm 1) it follows that this party has full control over the key z for which
it holds P = z·W , i.e. p = z·w. By construction (r, s) is a raw signature on
H(C||P ) mod q for public key P . From Algorithm 3 it follows z·H(C||P ) mod q
is a raw signature for z−1·P = W . As the WTE private key w only supports
ECDSA signing where the WSCD performs the hash operation, there must be a
message M ′ such that H(M ′) = z·H(C||P ) mod q. As P = z·W the hash value
H(C||P ) commits to z and by the challenge C, the hash value H(C||P ) cannot
be predicted by the party. That is, the message M ′ must be constructed after the
z has been chosen. As further z 6= 1 mod q the party cannot choose M ′ = C||P .
It follows that the party is able to find pre-images for hash function H(.) which
is not possible. �

Similary to ECDSA, we now show that an ECDH-MAC proof of possession
signature does not prove that the signer has full control over the private key,
i.e., can do arbitrary mathematical operations with it.. We work in the same
context as before: a wallet user that has generated an association key z itself
and the corresponding WTE associated key P = z·W . As the user has access to
the association key, he can generate a proof of association following Algorithm
1. The following algorithm shows the user is also able to generate ECDH-MAC
signatures on messages/challenges with the private key corresponding to P , i.e.
z·w, provided the WTE key allows for full Diffie-Hellman, i.e. returning the
full Diffie-Hellman key. See the remarks following Algorithm 8 in Annex E for
background. By precluding that the WTE key supports full Diffie-Hellman, we
prove in Proposition 3.8 that this is no longer possible.
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Algorithm 4 Split-ECDH-MAC signature generation
Input: message M , WTE private key w supporting full Diffie-Hellman, ephemeral
public key E, byte array SharedInfo, association key z ∈ F∗q ,
Output byte array MAC

1: Verify that E ∈ 〈G〉, on error algorithm stops

2: Compute E′ = z·E
3: Compute SAB = w·E′ // compute shared Diffie-Hellman key

4: Convert SAB to byte array ZAB

5: Compute K = HKDF(ZAB, SharedInfo) // derive MAC-key K
6: Compute HMAC = EMAC(K,M).
7: Return MAC.

Observe that the shared Diffie-Hellman key in Step 3 for public key E′ and
private key w is equal to the shared Diffie-Hellman key for ephemeral public
key E and private key z·w. One can easily verify that Algorithm 4 returns an
ECDH-MAC signature with respect to public key P . It is also easily verified
that forging an ECDH-MAC attestation signature corresponding to public key
P is equivalent to forging a WTE ECDH-MAC signature. That is, the security of
ECDH-MAC attestation signing using Algorithm 4 is equivalent to ECDH-MAC
WTE signing.

Based on Algorithm 4 one can envision an ECDH-MAC based distributed
WSCD, similar to the ECDSA based distributed WSCD. This wallet is based on
only one (WTE) ECDH-MAC hardware bound pubic key W under PIN access
control that supports full Diffie-Hellman. Compare Figure 2. All attestation keys
are then constructed as P = z·W with association keys w managed in the wallet
mobile application. This model is not further explored in this document.

Figure 2. The distributed WSCD

The following proposition shows that the proof of association generated by
Algorithm 1 in combination with ECDH-MAC based attestation keys is meet-
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ing the requirements providing the WTE private key does not provide for full
Diffie-Hellman but the attestation private keys do support that. The WTE Key-
Attestation Certificate produced by WSCD Instruction 1 must provide assurance
to the wallet provider that the WTE key only supports returning a derived key
from the exchanged Diffie-Hellman key SAB and does not provide for returning
the full Diffie-Hellman key. This can be arranged by letting the WTE key only
support returning the key derived from SAB using the X9.63 Key Derivation
Function [5, Section 4.3.3] or the HKDF algorithm [20] as in ISO 18013-5 [26].
As both derivation functions are based on hashing the exchanged Diffie-Hellman
key SAB it is guaranteed one cannot derive this key from the derived key.

Proposition 3.8 We use the context described above whereby the public key
P = p·G with private key p is an ECDH-MAC key. The WTE private key w does
not support for full Diffie-Hellman. Suppose a party can provide to a verifier a
proof of association that passes Algorithm 2 and a proof of possession of private
key p consisting of the full Diffie-Hellman key based on an ephemeral public key
E randomly generated by the verifier. Then the public key P is bound to this
WSCD and is associated to the WTE public key W .

Proof: Assume that the proof of association was generated by another party
than the WSCD the WTE refers to. As the PoA generated by Algorithm 1
meets Definition 3.1 (see the notes following Algorithm 1) it follows that this
party has full control over the key z for which it holds P = z·W , i.e. p = z·w.
As private key p supports for full Diffie-Hellman so does private key w, cf. the
observation after Algorithm 4. This contradicts that the WTE private key w
does not support full Diffie-Hellman. This means that the proof of association
is generated by the WSCD the WTE refers to and consequently that public key
P is associated to public key W . �

The practical application of Proposition 3.8 is during the issuance of an at-
testation on the public key P proposed by the EUDI Wallet. The issuer indicates
in the attestation that public key P is bound to a certified WSCD, i.e. the res-
ult of Proposition 3.8. Further proof of association applications involving P by
relying parties can then be based on Proposition 3.4.

For proof simplicity we have chosen in Proposition 3.8 to let the wallet prove
to the verifier it can compute full Diffie-Hellman keys by simply sending them
to the verifier. This would constitute a Diffie-Hellman oracle allowing for a spe-
cific recovery attack on private key d, cf. [3]. This attack can be argued not to
be of practical concern for the EUDI Wallet context, e.g. as only one full Diffie-
Hellman key per new attestation key will be provided and only to the attestation
issuer. However, avoiding the attack could be considered beneficial from a the-
oretical perspective. The essence of Proposition 3.8 is that a regular attestation
private key is able to show an essentially different use of the exchanged Diffie-
Hellman key SAB than can performed with the WTE key. This can be conveni-
ently catered for by letting regular attestation keys support ECDH-MAC signing
using a derived key of form K ′ = HKDF(ZAB||0x02,SharedInfo), i.e. different
from the regular derived key K = HKDF(ZAB,SharedInfo) used in ECDH-MAC
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signing and verification. Here 0x02||ZAB represents concatenating the byte 0x02
to the byte string ZAB. Note that the MAC-key is formed similarly as the MAC-
key used in electronic passport secure messaging based on Chip Authentication,
cf. the ICAO9303 specification [19]. Compare Algorithms 7, 8 in Annex E.

4 Further implementation notes

4.1 Three example WTE architectures (efficient, privacy friendly,
PID-bound)

In Section 2.2 we have introduced the WTE/Proof-of-Association logic and in
Section 3 we proposed a cryptographic method implementing this logic. In this
section we demonstrate that the WTE/Proof-of-Association logic can be used
to form different EUDI wallet architectures by varying the WTE role. Each
of these EUDI wallet architectures have a different tradeoff between efficiency,
privacy, functionality and security. That is, a WSCD supporting WTE/Proof-of-
Association allows wallet providers a broad choice in developing different EUDI
wallet architectures with very different properties. We demonstrate this flexibil-
ity by three example EUDI wallet architectures; further variants exist.

Optimally efficient WTE architecture
In an optimally efficient architecture the EUDI Wallet uses the WTE for all
issuers, cf. Figure 3. It can be considered as the straightforward usage of the
WTE/Proof-of-Association logic.

Figure 3. Optimally efficient WTE architecture

Privacy friendly WTE architecture
In the previous (optimally efficient) architecture the WTE becomes an object
linking the EUDI wallet/user amongst the issuers. The resulting privacy risk
can be accepted, e.g. in the situation that issuers process information directly
identifying the user anyway, but can also be avoided. To this end, we introduce
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Issuer Trust Evidences (ITEs) which are functionally the same as the WTE, i.e.,
hold the same information, but are not linkable to it. An ITE is issued by the
Wallet Provider based on (and associated to) the WTE similar to Protocol 1 in
Annex B. Figure 4 illustrates the role of the ITEs; each attestation issuer gets
it owns ITE.

Figure 4. Privacy friendly WTE architecture

PID-bound WTE architecture
It can be beneficial from a security, privacy and functional perspective to let
the PID issuer ensure that only one PID is associated to the WTE. This can be
easily accomplished by combining the WTE and PID issuance whereby a PID
challenge is part of the WTE and the key-attestation it is based on. By verifying
that the PID challenge is indeed part of the WTE, the PID issuer can be sure it
has never associated a PID to it. Such usage of challenges in key-attestation is
actually standard and supported in GlobalPlatform [17], the ISO 23220-3 SAAO
[27] and the Android Keystore. For the latter compare Figure 7 in Annex A.

As is indicated in Annexes B, C and D a uniquely associated PID gives
rise to PID-bound attestations. These are attestations whereby the issuer has
performed identity proofing using the PID and indicates this in the attestation.
If there is only one PID associated to the WTE, then two associated and PID-
bound attestations must then belong to the same PID holder. In other words,
when a relying party is presented two PID-bound attestations and a proof of their
association then they belong to the same PID holder, i.e. without having to show
this PID. This constitutes a “privacy preserving technique ensuring unlikeability,
where the attestation of attributes does not require the identification of the
user” as requested in [13, Article 5a(16b)]. Compare Annex D where this further
elaborated on. Figure 5 depicts the PID-bound WTE architecture.
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Figure 5. PID-bound WTE architecture

4.2 Freshness of associated keys

The proposed proof of association Algorithm 1 can be bound to a verifier chal-
lenge. Like in regular key-attestation, such challenges can constitute a mechan-
ism to convey to a verifier that a proof and a certain key is fresh. For instance, we
can include a 16 byte challenge of the verifier whereas the proofs of association
binds to a 32 byte challenge where the last 16 bytes are chosen by the WSCD. By
letting these bytes be all zero, the WSCD conveys that the key attested through
the proof of association is fresh as otherwise it is not. For such fresh attested key
generation, it seems convenient to combine the key generation and the proof-of-
association in one WSCD instruction, i.e. a combination of WSCD instruction
#1 and #2. This functionality is not further explored in this document.

4.3 Relation to Idemix/BBS+ protocols

The WTE construction and the proof of association proposed in this document
can also easily implemented in the context of anonymous credentials such as
based on BBS+ [2,7] or Idemix [8]. This means that the WTE construction
and the proof of association are future proof constructions which are also in line
with the GSM Association (GSMA) vision of BBS+/Idemix support in the EUDI
Wallet through the embedded SIM (eSIM). Compare [18]. Although the WTE/-
Proof of Concept functionality in the context of anonymous credentials is the
same, we note that the WTE format and the proof of association cryptographic
specifications are somewhat different.

To further elaborate; anonymous credentials attributes contain encrypted at-
tributes in such a way that the EUDI wallet can selectively disclose attributes
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with the additional property of “multi-show unlinkablity”. This means that,
other than through the disclosed attributes themselves, the presentation leaves
no trace allowing relying parties to link various presentations at relying parties.
So if the user has shown she is over 18 years old at two relying parties, these
parties cannot link both presentations to one person. To show that multiple an-
onymous credentials belong to one EUDI wallet, one typically shares a common
secret attribute value over all the anonymous credentials. The user then uses a
zero-knowledge proof of knowledge to show the existence of the common secret
attribute value to verifying parties.

The WTE construction and the proof of association naturally extend to an-
onymous credentials. The wallet provider then provides a WTE in the form of a
anonymous credential holding a secret attribute value. The WSCD certification
as indicted by the Wallet Provider in the WTE then ensures all anonymous cre-
dential secrets are securely managed. Issuers of BBS+/Idemix credentials then
associate anonymous credentials to the WTE, by incorporating the common
secret attribute value. The proof of association then constitutes to the zero-
knowledge proof of knowledge showing existence of the common secret attribute
value in the anonymous credentials.
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A. ANDROID STRONGBOX KEY-ATTESTATION

A Android StrongBox key-attestation

Figure 6. Android StrongBox attested key (leaf)

Figure 7. Third party challenge in key attestation
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B. USE OF WSCD INSTRUCTIONS IN PID ISSUANCE (INFORMATIVE)

B Use of WSCD instructions in PID issuance
(informative)

In Protocol 1 below we illustrate how we can use the WTE and the three WSCD
instruction to issue a PID that is associated to the WTE. This is just an illus-
tration on which many variants can be based. For simplicity we leave out the
user (consent) involvement. In this particular variant we have chosen to let the
WTE be fresh as it easily allows the PID issuer validation an issued PID is only
associated to one WTE which can be security beneficial.

Protocol 1 PID issuance
Input: -
Output: User PID

1: Wallet requests PID from PID issuer

2: Issuer performs ‘‘proofing’’ // could also be elsewhere in process

3: PID issuer generates challenge C and requests WTE bound to C
// guaranteed fresh WTE

4: Wallet calls WSCD with Instruction #1 including challenge C
5: WSCD returns Attestation Cert K containing WTE public key PubWTE and C
6: Wallet requests WP for WTE and sends Attestation Cert K
7: WP verifies Attestation Cert K, if unsuccessful the protocol ends in error

8: WP returns WTE on containing WTE public key PubWTE and C
9: Wallet sends WTE on PubWTE and C to PID issuer in response to Step 3

10: PID Issuer verifies WTE, if unsuccessful the protocol ends in error

11: The PID issuer requests a PID public key associated with PubWTE
12: Wallet calls WSCD for a key associated with PubWTE // Instruction #2

13: WSCD returns public key PubPID associated with PubWTE
14: Wallet calls WSCD for a signature on challenge C with PrivPID // PoP

15: WSCD returns PoP

16: Wallet calls WSCD for PoA[PubWTE,PubPID] // Instruction #3

17: WSCD returns PoA[PubWTE,PubPID] // proof PubWTE,PubPID are associated

18: Wallet sends Pub, PoP and PoA[PubWTE,PubPID] to (PID) issuer

19: PID Issuer verifies PoP, PoA[PubWTE,PubPID], on failure protocol ends

20: PID Issuer issues PID on public key PubPID indicating it is WTE associated

21: PID Issuer sends PID to wallet

The PoP (proof of possession) in Step 14 (verified in Step 19) depends on the sig-
nature algorithm it is based on. For EdDSA there are no particular requirements
but for ECDSA (respectively ECDH-MAC) the requirements of Proposition 3.6
(respectively Proposition 3.8) apply.

As indicated in Section 4.2 we can arrange that the issuer can verify that the
PID keypair is fresh by combining WSCD Instructions #2 and #3 in Steps 16
and 17 and the use of an issuer challenge.

The PID issuer indication in Step 20 that the PID is associated with the WTE
is fundamental. It not only allows relying parties to verify that the PID private
key is WSCD bound but it also allows other issuers to further bind attestations
to this WSCD by associating their attestations to the PID public key. This makes
thus use of the transitivity property of association. If we further arrange that
there can only be one PID associated the WTE (as we have arranged in Protocol
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1) then from the indication that two attestations are associated to a PID (and
implicitly to a WTE) a relying party infer that these attestations are bound to
the same PID, i.e. person. We further elaborate on this in Annexes C and D.
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(INFORMATIVE)

C Use of WSCD instructions in PID based issuance
(informative)

In Protocol 2 below we illustrate how we can use the WTE and the three WSCD
instructions to issue attestations based on the PID. For simplicity we leave out
the user (consent) involvement. Protocol 2 is just an illustration on which many
variants can be based. In Step 10 of this protocol we use the proof of association
of three public keys as introduced in the notes following Algorithm 2.

Protocol 2 Attestation issuance based on PID
Input: WTE, User PID associated to WTE
Output: Attestation associated to both PID and WTE

1: Wallet sends WTE, PID and requests attestation from issuer based on PID

2: Issuer verifies validity WTE, PID // signatures etc.

3: Issuer generates challenge C and sends it to wallet

4: Wallet signs C with PrivPID and sends result to issuer

5: Issuer verifies signature with PubPID // Proof of Possession

6: Issuer uses PID data to form attestation attributes // e.g. diploma

7: Issuer requests for attestation public key associated to PubWTE
8: Wallet calls WSCD for keypair associated with PubWTE // Instruction #2

9: WSCD returns WTE associated public key Pub
10: Wallet calls WSCD for PoA[PubWTE,PubPID,Pub]
11: WSCD returns PoA[PubWTE,PubPID,Pub] // proof PubWTE,PubPID,Pub associated

12: Wallet calls WSCD for a signature on challenge C with Priv // PoP

13: WSCD returns PoP

14: Wallet sends Pub, PoP and PoA[PubWTE,PubPID,Pub] to issuer

15: Issuer verifies PoP, PoA[PubWTE,PubPID,Pub], on failure protocol ends

16: Issuer issues attestation on the attributes from Step 6 and Pub indicating

it is both PID & WTE associated

17: Issuer sends attestation to wallet

The PoP (proof of possession) in Step 12 (verified in Step 15) depends on the sig-
nature algorithm it is based on. For EdDSA there are no particular requirements
but for ECDSA (respectively ECDH-MAC) the requirements of Proposition 3.6
(respectively Proposition 3.8) apply.
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BASED ATTESTATIONS (INFORMATIVE)

D Use of WSCD instructions in presentations of PID
based attestations (informative)

In Protocol 3 below we illustrate how we can use the third WSCD instruction
(proof of association) to prove to a relying party that multiple attestations ori-
ginate from one EUDI Wallet and correspond to one person. This is just an
illustration on which many variants can be based. For simplicity we only have
two attestations (think of the “adult” (over 18 years old) and “photo” attestation
from Section 2.1) and leave out the user (consent) involvement.

Protocol 3 is just an illustration on which many variants can be based.

Protocol 3 Multiple attestation presentation to relying party
Input: two PID-based attestations A1, A2 on public keys Pub1,Pub2
Output: User PID

1: Wallet sends PID based attestations A1, A2 to relying party (RP)

2: Relying party verifies validity attestations A1, A2 // signatures etc.

3: Relying party verifies A1, A2 are both WTE & PID based

// attestations are bound to both one WSCD and one PID

4: Relying party generates challenge C and sends it to wallet

5: Wallet signs C with Priv1,Priv2 and sends results to RP

6: RP verifies signatures with Pub1,Pub2 // Proof of possession

7: RP requests for proof-of-association Pub1,Pub2
8: Wallet calls WSCD for PoA[Pub1,Pub2]
9: WSCD returns PoA[Pub1,Pub2] // proof Pub1 and Pub2 are associated

10: Wallet sends PoA[Pub1,Pub2] to RP

11: RP verifies PoA[Pub1,Pub2], on failure protocol ends

12: RP accepts attestations A1, A2 and infers attestations are bound to one

WSCD and one PID (person)
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E Cryptographic and mathematical background

We let Fr denote the Galois field consisting of the integers modulo a prime num-
ber r. We let F∗r denote the multiplicative subgroup, i.e. the non-zero elements.
See [36]. We sometimes implicitly use that Fr, respectively F∗r , corresponds to
the integers in the interval [0, r − 1], respectively [1, r − 1] and write operations
in combination with “mod r”. We let |r| = dlog256(r)e denote the size in bytes
of r, i.e. the minimal number of bytes to represent r.

Central in our constructions is an additive group G = (〈G〉,+) of order q
generated by a base point (generator) G. We use additive notation as this is
customary in the context of elliptic curve groups we deploy in practice. We
require that q is prime. For any natural scalar n and element H ∈ 〈G〉 we
define the (point) multiplication nH as adding H n-times, e.g. 2H = H +H. As
nH = mH if and only if n = m mod q we can represent scalars as elements of Fq.
This allows for compact notation as x·G, −x·G for x ∈ Fq and y−1 ·G for y ∈ F∗q .
We sometimes omit the “·” symbol and simply write xG. A cryptographically
secure (pseudo) randomly chosen element from a set is denoted by ∈R.

The required cryptographic security of the group (〈G〉,+) can be formu-
lated in the intractability of three problems. The first one is the Diffie-Hellman
problem: computing the values of the function DHG(xG, yG) = xyG for any
x, y ∈ Fq (implicitly given but unknown). The second problem is the Decision
Diffie-Hellman (DDH) problem: given A,B,C ∈R 〈G〉 decide whether C =
DHG(A,B) or not. An equivalent definition is as follows. Any quadruple of
points (G,A,B,C) in 〈G〉 can be written as (G,A, xG, yA) for some (unknown)
x, y ∈ Fq. DDH amounts to deciding whether a random quadruple of points in G
is a DDH quadruple, i.e. if x = y. The DH problem is at least as difficult as the
DDH problem. The last related problem is the discrete logarithm (DL) problem
in 〈G〉: given A = xG ∈ 〈G〉, with x ∈ Fq then find x = DLG(A). It easily follows
that the DL problem is at least as difficult as the DH problem.

We assume that all three introduced problems in 〈G〉 are intractable which
implies that the size |q| of the group order should be at least 256 bits. A prom-
inent example of G is a group of points over a field Fp on a curve with simplified
Weierstrass equation

y2 = x3 + ax + b (2)

for some suitable a, b ∈ Fp. That is, each non-zero group element takes the form
(x, y) where 0 ≤ x, y < p satisfying Equation (2) modulo p. Compare [23]. We
denote the zero element (point at infinity) as O. For practical implementations
one can use one of the NIST curves [32], e.g. P-256 or Brainpool curves [4], e.g.
brainpoolP320r1.
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Below we describe the working of the ECDSA [32] and ECDH-MAC [26]
signature generation and verification algorithms. In all settings the user has a
private key d ∈ F∗q and a corresponding public key D = d·G. In these specification
a secure hash function H(.) appears, cf. [36,31]. Such a function takes as input
byte arrays of arbitrary size and outputs a byte array of fixed length equal to |q|.
The latter can be accomplished by taking a secure hash function of appropriate
output size or one with larger output size and truncating its output.

Algorithms 5 and 6 below specify ECDSA signing and verification following [23].

Algorithm 5 ECDSA signature generation
Input: message M , private key d
Output: signature (r, s).

1: Compute H(M) and convert this to an integer e.
2: Select random k ∈ {1, ..., q − 1}.
3: Compute kG = (x, y) and convert x to integer x̄. // commitment

4: Compute r = x̄ mod q. If r = 0 go to Line 2.

5: Compute s = k−1(e + d·r) mod q. If s = 0 go to Line 2.
6: Return (r, s).

We remark that in the situations where cryptographic hardware is used, the cal-
culation of the hash value of message M in Line 1 of Algorithm 5 is typically not
performed by this hardware. This is typically due to communicational or com-
putational restrictions in using the hardware. In these circumstances the hash
value H of message M is pre-computed in the application calling the hardware
and then sent to the hardware as input. The hardware then converts the hash
value directly to the integer e of Line 1 of Algorithm 5 and performs the follow-
ing Lines 2-6. This setup is known as raw signing, i.e. generation of a signature
directly on basis of a hash value without a deploying a hash operation. Similarly
one has raw verification where the hash value is directly converted to the integer
e in Step 2 of Algorithm 6.

Algorithm 6 ECDSA signature verification
Input: message M , signature (r, s), public key D = d·G
Output: Acceptance or rejection of the signature.

1: Verify r, s are integers in [1, q − 1], on failure reject signature.

2: Compute H(M) and convert this to an integer e.
3: Compute w = s−1 mod q.
4: Compute t1 = e·w mod q and t2 = r·w mod q.
5: Compute X = t1·G + t2·D.
6: If X = O reject the signature.
7: Convert the x-coordinate of X to an integer x̄; compute v = x̄ mod q.
8: If v = r accept the signature otherwise reject it.

Algorithms 7 and 8 specify ECDH-MAC signing and verification based on ISO
18013-5 [26]. It is based on a Message Authentication Code (MAC) on a message
M generated using a conventional MAC Algorithm. ISO 18013-5 [26] stipulates
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the use of the HMAC algorithm [30]. This MAC is based on a key K of type
byte array; the MAC computation is denoted by HMAC(K,M).

Key K is derived from a byte array representation ZAB of the Diffie-Hellman
key SAB shared between the signer and verifier and a byte array SharedInfo. The
latter holds additional information shared between the signer and the verifier. In
[26] the shared information includes a session transcript. For this key derivation,
ISO 18013-5 [26] stipulates the use of the HKDF algorithm [20]. We therefore
denote the key derivation by HKDF(ZAB,SharedInfo).

ISO standard 18013-5 [26, Section 9.1.3.5] only implicitly defines ECDH-
MAC signing and verification. This is also done in the particular context of a
mobile driving license. Algorithms 7 and 8 are generic, explicit specifications
meeting the essence of [26]. The notation used is also in line with Section 4.3 of
BSI publication TR-03111 [5] specifying the Diffie-Hellman protocol. Algorithm
7 takes an ephemeral public key E as input, whereas Algorithm 8 takes an
ephemeral private key k as input. This ephemeral public key takes the form
E = k·G and is based on a (fresh) ephemeral private key k generated by the
verifying party, e.g. the issuer or relying party in the context of the EUDI Wal-
let. The verifying party is guaranteed that the message is correctly signed by
the signer but cannot transfer this guarantee to another party. Compare the
comment following Algorithm 8. In other words ECDH-MAC signing supports
plausible deniability for the user, i.e. the opposite of non-repudiation, which can
be beneficial in certain use cases. As it lacks non-repudiation, an ECDH-MAC
signature is strictly speaking not a digital signature.

Algorithm 7 Generic ECDH-MAC signature generation
Input: message M , private key d, ephemeral public key E, byte array SharedInfo
Output: byte array MAC.

1: Verify that E ∈ 〈G〉, on error algorithm stops

2: Compute SAB = d·E // compute shared Diffie-Hellman key

3: Convert SAB to byte array ZAB

4: Compute K = HKDF(ZAB, SharedInfo) // derive MAC-key K
5: Compute MAC = HMAC((K,M).
6: Return MAC.

Algorithm 8 ECDH-MAC signature verification
Input: message M , ephemeral private key k, SharedInfo, byte array MAC, public
key D = d·G
Output: Acceptance of rejection of the MAC.

1: Compute SAB = k·D // shared Diffie-Hellman key

2: Convert SAB to byte array ZAB

3: Compute K = HKDF(ZAB, SharedInfo) // derive MAC-key K
4: Compute MAC’ = HMAC(K,M)
5: If MAC’ = MAC accept the MAC otherwise reject it
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Note that in Algorithm 8 the verifier re-generates the MAC value itself based
on the public key of the signer. This means that signer can always deny having
generated the MAC.

When using cryptographic hardware, e.g. the WSCD in EUDI Wallet con-
text, Steps 1-2 of Algorithm 7 are always performed there. In that context, an
important design decision is where the MAC-key K in computed, i.e. Step 4. Step
4 can be performed in the cryptographic hardware or in the application calling
the hardware. In the second case the cryptographic hardware returns ZAB to
the calling application following Step 3 which then generates the MAC-key K
in Step 4. In the first case the calling application sends the ephemeral public
key E and the shared information SharedInfo to the cryptographic hardware.
The cryptographic hardware then performs Steps 2-4 and returns MAC-key K
to the calling application. If cryptographic hardware for a private key d sup-
ports the second case, i.e. returning the full Diffie-Hellman key ZAB, we say that
private key d supports full Diffie-Hellman. With saying that private key d does
not support full Diffie-Hellman we mean that it only returns the HKDF-derived
key from Step 4 in Algorithm 7, i.e., a hash based value of ZAB.

We note that with full Diffie-Hellman support, the cryptographic hardware
provides for a so-called Diffie-Hellman oracle allowing for a specific recovery
attack on private key d, cf. [3]. This attack can be argued not to be of practical
issue for the EUDI Wallet context, but avoiding the attack could be considered
beneficial from a theoretical perspective.
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F. THE EC-SCHNORR-SOUND ALGORITHM

F The EC-Schnorr-Sound algorithm

G Example applications of Proposition 3.5 (informative)

Figure 8. Straightforward application of Proposition 3.6
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G. EXAMPLE APPLICATIONS OF PROPOSITION 3.5 (INFORMATIVE)

Figure 9. Demonstrating raw ECDSA signing without actually doing it

Figure 10. Application of Proposition 3.7
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H. ASN.1 FORMAT FOR PROOF OF ASSOCIATION (INFORMATIVE)

H ASN.1 format for Proof of Association (informative)

Below we have specified a proposal for the proof of association in ASN.1 format,
cf. [28]
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