
32-bit and 64-bit CDC-7-XPUF Implementation
on a Zynq-7020 SoC

Oğuz Yayla1[0000−0001−8945−2780] and
Yunus Emre Yılmaz1,2[0000−0001−5857−5446]

1 Institute of Applied Mathematics, Middle East Technical University, 06800 Ankara,
Turkey

2 Aselsan Inc., Ankara, Turkey
oguz@metu.edu.tr, yeylmz@gmail.com

Abstract. Physically (Physical) Unclonable Functions (PUFs) are ba-
sic and useful primitives in designing cryptographic systems. PUFs are
designed to facilitate device authentication, secure boot and firmware
integrity, and secure communications. To achieve these objectives, PUFs
must exhibit both consistent repeatability and instance-specific random-
ness. The Arbiter PUF, recognized as the first silicon PUF, is capable
of generating a substantial number of secret keys instantaneously based
on the input, all while maintaining a lightweight design. This advan-
tageous characteristic makes it particularly well-suited for device au-
thentication in applications with constrained resources, especially for
Internet-of-Things (IoT) devices. Despite these advantages, arbiter PUFs
are vulnerable to machine learning attacks. Hence, those arbiter PUF de-
signs are improved to achieve increased resistance against such attacks.
In this work, a machine-learning-resistant 32-bit and 64-bit component-
differentially challenged XOR Arbiter PUF (CDC-XPUF) is implemented
based on a design found in the literature. The system is implemented us-
ing the ZC702 Rev1.1 Evaluation Board, which features the Xilinx Zynq
7020 SoC, and utilizes a configuration involving three boards for exper-
imental validation. The 32-bit and 64-bit 7-stream CDC-7-XPUFs are
evaluated using PUF metrics in the literature, and the utilization ratio
of both implementations is also presented. These improvements aim to
increase resilience against machine learning attacks while maintaining
usefulness and efficiency for IoT applications.

Keywords: PUF · Arbiter PUF · CDC-XPUF · SoC FPGA.

1 Introduction

A Physically Unclonable Function (PUF) is a mechanism that creates a unique
relationship between a set of inputs (challenges) and outputs (responses) based
on the complex physical properties of a system. This relationship is static and
unique to each physical instance. PUFs can only be evaluated through their spe-
cific physical systems, and even identical circuits will have different responses
due to manufacturing variations [1]. In this thesis, the focus is on silicon PUFs,



2 O. Yayla and Y. E. Yilmaz

which leverage timing and delay variations in integrated circuits. These varia-
tions arise from inconsistencies in the production process, even when circuits are
made with the same design layout.

PUFs enhance security by generating secrets from the complex properties
of physical systems, eliminating the need for storing them in memory. Another
advantage is that PUFs do not require any specialized manufacturing processes
or additional programming and testing steps. PUFs are typically compact and
durable, making them ideal for use in devices like RFID tags, smart cards, and
other low-cost Internet-of-Things (IoT) devices [2].

For hardware implementation, PUFs can be integrated into application-
specific integrated circuits (ASICs) or Field-Programmable Gate Arrays (FP-
GAs). While ASICs may offer better performance, they are difficult to mod-
ify once designed. In contrast, FPGAs allow for flexible reconfiguration, which
is particularly useful in hardware development. Modern System-on-Chip (SoC)
FPGAs combine programmable logic with processor cores, offering benefits like
higher integration, lower power consumption, smaller sizes, and faster commu-
nication between the processor and FPGA.

The Arbiter PUF, the first silicon-based PUF, generates numerous secret keys
efficiently from input data while maintaining a lightweight design. This makes
it well-suited for device authentication in environments with limited resources,
such as IoT applications. However, its vulnerability to machine learning attacks
highlights the need for enhanced design solutions to improve security.

Consequently, in order to improve resistance to machine learning (ML) at-
tacks, arbiter PUF designs have been enhanced. In this study, an ML attack-
resistant component-differentially challenged XOR arbiter PUF (CDC-XPUF)
is implemented, following the reference designs from [3] and [4]. The implemen-
tation utilizes the ZC702 Rev1.1 Evaluation Board [5], equipped with the Xilinx
Zynq 7020 SoC, and a configuration of three such boards for experimental valida-
tion. Research in [4] demonstrates that designs with 64-bit or longer challenges
and at least 7-stream PUFs are resistant to the most advanced ML attack tech-
niques. Consequently, this work implements a referenced 32-bit CDC-7-XPUF,
followed by an improved 64-bit version for enhanced ML attack resilience. The
performance results for both the 32-bit and 64-bit CDC-7-XPUFs are presented
and compared to the reference design. Additionally, the utilization rates of these
designs are evaluated, showing that they are well-suited for IoT systems by pro-
viding sufficient space for other software or firmware.

Our work presents two primary contributions:

– We implement the referenced 32-bit CDC-7-XPUF detailed in [3] and [4], and
also the machine learning attack-resistant 64-bit version of CDC-7-XPUF.
By using the evaluation metrics of steadiness, correctness, diffuseness, uni-
formity, and uniqueness, which are presented in the literature to evaluate
PUFs, it is shown that both PUF design has good scores to use in IoT
systems.



32-bit and 64-bit CDC-7-XPUF Implementation on a Zynq-7020 SoC 3

– The utilization ratio of these 32-bit and 64-bit CDC-7-XPUF designs are
suitable to use in any IoT systems since they provide sufficient space for
other software or firmware.
The paper is organized as follows. Section 2 provides the basic background in-

formation to explain how both 32-bit and 64-bit CDC-7-XPUF works. In Section
3, the implementation details of both CDC-7-XPUFs are explained. In Section
4, the test results of PUF implementations are presented and compared with
the referenced design. In the end, Section 5 concludes the paper and states our
future works.

2 Background Information About 32-bit and 64-bit
CDC-7-XPUF

2.1 Basics of PUFs

PUF extracts entropy from the physical characteristics of an integrated circuit
(IC). Each chip exhibits variations due to the inherent unpredictability in the
manufacturing process. PUFs harness static entropy from the fluctuations in the
manufacturing process. Once the chip is fabricated, the disparities in the manu-
facturing process become consolidated and undergo minimal changes throughout
the chip’s lifespan. Consequently, this form of entropy is termed static entropy
[6].

Basically, a PUF generates a sequence (response) of the unique signature by
input initial states (challenge), so-called challenge-response pairs (CRPs). Each
PUF can be represented as a black box, R = f(C), as illustrated in Fig. 1, where
the f() is secret [6].

Fig. 1. Generic PUF model [6]

In the literature, there are various types of PUFs, and they can be classified
with respect to their entropy sources and their CRPs [7]. In this research, an
intrinsic and delay-based strong PUF, named Arbiter PUF, is implemented.

It is important to note that the Arbiter PUF is a strong PUF. A Strong
PUF can generate a vast number of challenge-response pairs (CRPs), making
it impractical to read all possible CRPs within a reasonable timeframe. This
property makes them suitable for applications requiring high security due to
their extensive challenge-response space.

2.2 Types of Arbiter PUFs

2.2.1 Basic Arbiter PUF

An Arbiter Physical Unclonable Function (APUF) is a robust PUF relying on
delay, featuring a race condition between two symmetrical digital paths. In each



4 O. Yayla and Y. E. Yilmaz

delay stage, two multiplexers (MUXes) are incorporated, and their operation is
governed by challenges (C0 Cn−1).

Upon activation, the APUF initiates its operation with a trigger signal. This
signal traverses two paths determined by a pre-input challenge, ultimately reach-
ing an arbiter. The arbiter then determines which of the two paths is faster in
generating the binary response that aligns with the black-box model (R = f(C)),
as it is illustrated in Fig. 1, where C is the challenge and R is the response.

2.2.2 XOR Arbiter PUF (XOR-PUF)

Due to the limited resistance of arbiter PUFs against machine learning modeling
attacks, a new PUF design was introduced in [1]. This new design incorporates
a non-linear XOR gate into multiple arbiter PUFs to generate the final response
and is referred to as the XOR arbiter PUF. An n-XOR-PUF consists of n-
component arbiter PUFs (also known as streams or sub-challenges), wherein the
responses from all n-component arbiter PUFs are XORed together at the XOR
gate to produce a single-bit response. It is important to note that all component
arbiter PUFs in an XOR-PUF are supplied with the same challenge bits [4].

2.2.3 Component-Differentially Challenged XOR-PUF (CDC-XPUF)

Component-differentially challenged XOR-PUF (CDC-XPUF) and XOR-PUF
share a similar architecture, comprising multiple arbiter PUF components and
XOR gates. The key distinction between CDC-XPUF and XOR-PUF lies in the
challenge inputs: each component arbiter PUF in a CDC-XPUF receives different
challenge inputs, whereas all component arbiter PUFs in an XOR-PUF receive
the same challenges [4]. Fig. 2 illustrates the structure of CDC-XPUF.

Studies [8], [9], [10], [11] indicate that applying different challenges to the
components of an XOR-PUF can mitigate its vulnerability to ML modeling
attacks. Existing ML attack methods on 64-bit CDC-XPUFs with four compo-
nents achieve a success rate of less than 90% even when utilizing over one million
challenge-response pairs (CRPs). Experimental results consistently demonstrate
that CDC-XPUFs with four or more components are either unbreakable or pro-
hibitively expensive to breach with current attack methods. Consequently, CDC-
XPUFs are considered strong candidates in terms of security performance [4].

In order to generate different challenge bits in [4], a pseudorandom number
generator (PRNG) structure is proposed as follows:

Cn+1 = (a ∗ Cn + g) mod m (1)

where C is the sequence of the generated random number, a is a multiplier, g is
a given constant, and m is 2K , where K is the number of stages.

2.3 Evaluation Metrics of PUFs

This section outlines a set of PUF characteristics to evaluate the suitability of
a PUF design for security applications. Certain statistical properties, such as



32-bit and 64-bit CDC-7-XPUF Implementation on a Zynq-7020 SoC 5

Fig. 2. A CDC-XPUF with 2 sub-streams and n bits of each stream [4]

stability, correctness, diffuseness, uniformity, and uniqueness, can be empirically
demonstrated through silicon-based experimentation. Other attributes, includ-
ing the security vulnerability of PUFs, require computational analysis for thor-
ough assessment.

The first section explains how implemented PUFs are not vulnerable to ma-
chine learning (ML) attacks.

In the subsequent chapters following the initial chapter, the evaluation cri-
teria studied and constructed by either Hori et al. [12] or Maiti et al. [13] are
explained. They are grouped with respect to three different properties of the re-
sponses, and these groups are listed below and explained in detail in the following
sections.

The metrics in the first and the second groups evaluate the responses of the
same PUFs, although the metrics in the third group evaluate how the responses
vary between different devices.

The quality of random numbers is pivotal in cryptography, necessitating a
thorough evaluation of their properties. While Hori et al. [12] defines the ran-
domness metric, Maiti et al. [13] defines the uniformity metric. In this work,
we think that the uniformity metric is more suitable to use. Because, although
randomness in Hori et al. [12] indicates that randomness is evaluated, only some
kind of uniformity is evaluated as in [13]. This choice can be understood better
by the explanation in Section 2.3.4. In addition to these, as indicated in [14], in
general, how to determine the exact entropy of the PUF responses is another very
important open research problem. Consequently, for the PUF implementation,
only the uniformity and diffuseness metrics are used to evaluate entropy.



6 O. Yayla and Y. E. Yilmaz

2.3.1 Resistance to Machine Learning (ML) Attacks

PUFs are considered secure due to their inherently unclonable architecture. How-
ever, several successful studies have demonstrated that PUFs can be mathemati-
cally cloned using the additive delay model [15]. Additionally, if adversaries gain
access to a sufficient number of silicon CRPs, PUFs may become susceptible to
machine learning attacks, as explained in [16], [17], [18], [19]. Therefore, it is
imperative for users to ensure that PUFs are resistant to all forms of attacks
before deploying them in practical applications.

The study in [4], a comprehensive evaluation of the security of CDC-XPUFs
against advanced ML attack methods, utilizing problem-specific parameter val-
ues, was conducted to assess the robustness of CDC-XPUFs. Compared to previ-
ously reported findings, their study uncovered vulnerabilities in the CDC-XPUF
with PUF circuit parameter configurations that were previously not considered
insecure. Specifically, they successfully compromised 64-bit CDC-6-XPUFs us-
ing approximately 100 million simulated CRPs, and 64-bit CDC-5-XPUFs with
4.5 million simulated CRPs or 2.5 million silicon CRPs. Additionally, they man-
aged to break 128-bit CDC-5-XPUFs with 40 million simulated CRPs, instances
that had previously been considered resistant to any existing ML attack meth-
ods. Notably, the method in [4] was able to break 64-bit CDC-4-XPUFs using
only around 80,000 CRPs, significantly fewer than those used in earlier studies.
On the other hand, it also demonstrates that the security of CDC-XPUFs im-
proves substantially as the number of component PUFs increases, with 64-bit
CDC-XPUFs featuring seven components proving entirely resilient to the two
ML attack methods employed. This finding is particularly encouraging for the
IoT security community, as many CDC-XPUFs remain secure, especially those
with 64-bit or longer challenges and seven or more component PUFs, which are
resistant to the most advanced ML attack methods developed to date. Conse-
quently, the experimental attack study in [4] redefines the boundary between
secure and insecure regions within the PUF circuit parameter space, offering
valuable insights to PUF manufacturers and IoT security developers for refining
the protocols of CDC-XPUF-based applications and mitigating potential risks.

2.3.2 Reliability of Responses From the Same PUFs

PUF responses must be reliable and trusted in real-world applications. A PUF is
considered reliable if it consistently generates the same response when the same
challenge is applied to the same device. Several factors can affect the reliability of
these responses, particularly changes in the operating environment. These factors
include, but are not limited to, ambient temperature, humidity, the junction
temperature of the circuit, power supply voltage, and circuit aging.

In this work, the environmental variances listed above have not been changed.
We have worked at an ambient room temperature of approximately 27oC, stable
humidity, and stable core voltage of Zynq SoC.

In terms of the reliability of responses from the same PUFs, steadiness, and
correctness are examined in this section.



32-bit and 64-bit CDC-7-XPUF Implementation on a Zynq-7020 SoC 7

Steadiness
Steadiness is a reliability metric that is defined by Hori et al. [12]. When

generating the same responses multiple times on the same device, it is expected
that all responses must be identical. Steadiness indicates how stably a PUF
outputs the same responses to the same challenge sets. The steadiness result
is 1 if there are no changes in the responses that were recorded during the
experiment. Steadiness can be calculated as follows:

S = 1 +
1

Nc

Nc∑
k=1

log2 max{
∑Na

j=1 bk,j

Na
, 1−

∑Na

j=1 bk,j

Na
} (2)

whereNc denotes the number of different challenges used,Na denotes the number
of times each challenge is applied, and bk,j denotes the j-th response among all
Na responses to the k-th challenge in the set of all Nc challenges. The stable
CRPs that pass the steadiness test are known as ”Correct ID” [3].

Correctness
This metric is defined by Hori et al. [12] and is almost the same metric as

reliability, which is defined by Maiti et al. [13]. The only difference between their
equations is the normalization factor. Correctness is normalized by the maximum
value of the Fractional Hamming Distance of the responses, while reliability is
normalized by the average. Hence, we only computed the correctness value and
ignored the reliability. The ideal value of the correctness is 1, which can be
calculated as follows:

C = 1− 2

Nc ×Na

Nc∑
k=1

Na∑
j=1

(bk ⊕ bk,j) (3)

where bk is the ”Correct ID”. This ”Correct ID” is determined by the majority
voting of all of the giving responses for the input challenge. Nc is the number of
challenges in the dataset. bk,j is the response of the j-th response in the set of
all Na responses to the k-th challenge.

2.3.3 Entropy of Responses From the Same PUFs

A PUF is considered uniform if it generates an equal distribution of zeros and
ones in response to a set of challenges. This characteristic is particularly desir-
able in block and stream cipher processes, as repeated patterns in secret keys
are deemed detrimental. In terms of entropy, Hori et al. [12] introduced the dif-
fuseness metric, while Maiti et al. [13] proposed the uniformity metric. Given
the close resemblance between Hori’s [12] randomness metric and Maiti’s [13]
uniformity metric, only the uniformity metric is assessed in this context.

Diffuseness
The diffuseness metric, introduced by Hori et al. [12], is an intra-chip metric

that assesses the variability of a PUF’s responses to different challenges. A PUF



8 O. Yayla and Y. E. Yilmaz

is considered to exhibit diffuseness if it produces distinct responses for distinct
challenges; for instance, the response to a specific challenge X should differ
from the responses generated by other challenges. Diffuseness is quantified by
calculating the fractional Hamming distance between the responses produced
by the same device in response to a set of challenges. The diffuseness can be
computed using the following formula:

D =
4

K2 × L

L∑
l=1

K−1∑
i=1

K∑
j=i+1

(bi,l ⊕ bj,l) (4)

where L is the responses’ length, counted in bits, and K is the number of such
multi-bit responses used in the experimental study.

Uniformity
The uniformity, which was introduced by Maiti et al. [13], of a PUF measures

the degree of zeros and ones in the produced responses. Its ideal value is 0.5.
The uniformity can be calculated as follows:

U =
1

Nr

Nr∑
i=1

bi (5)

where Nr is the response length in a set, and bi is the i-th response bit.
It is stated that the randomness metric, defined by Hori et al. [12], is not

used for the evaluation since it is very similar to the uniformity. In order to
make this statement more clear, the equations to calculate the randomness are
provided below:

H = − log2 max(p, 1− p) (6)

where p is the frequency of ’1’ in the response set given by:

p =
1

Nr

Nr∑
i=1

bi (7)

where Nr is the response length in a set, and bi is the i-th response bit.
It is obvious that the Equation 5 and 7 are nearly the same. Hence, it makes

our decision more clear.

2.3.4 Fingerprint Property

Uniqueness
The uniqueness was introduced by Maiti et al. [13], and it can be calculated

using a Hamming Distance between two devices’ responses. The calculation is
as follows:

Uk =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

HD(IDi, IDj)

L
(8)



32-bit and 64-bit CDC-7-XPUF Implementation on a Zynq-7020 SoC 9

where IDi and IDj are two L-bit responses of a PUF installed on two different
chips (the i-th and j-th chip) to the k-th challenge repeatedly applied L times.
The ideal value of the Maiti’s uniqueness [13] is 0.5.

In addition to these metrics, the resource utilization rate is a metric for both
TRNGs and PUFs.

3 32-bit and 64-bit CDC-7-XPUF Implementation
Details

In this study, our aim is to implement an ML-resistant PUF with good crypto-
graphic properties explained in Section 2.3.2 - 2.3.4. As it is stated in [4], 64-bit
CDC-7-XPUF is ML-resistant. However, in [4], the cryptographic properties are
examined. These are examined in [3], but only for a maximum of 32-bit CDC-7-
XPUF. Hence, we decided that firstly, we implemented 32-bit CDC-7-XPUF and
showed that the design satisfies good cryptographic properties, as the referenced
PUF design does. After that, we implemented the 64-bit, in other words, ML-
resistant version of CDC-7-XPUF. In this chapter, we present all of our results
with respect to the metrics explained in Section 2.3.2 - 2.3.4 and compare our
results to the referenced design [3].

The implementation details of CDC-XPUF are given in both [3] and [4] and
also explained in Section2.2.3. The results of the implementation and compar-
isons with the previous works are presented in Section 4.

The MUX-based CDC-XPUF arbiter structures are implemented using Vi-
vado 2019.1 [20] in VHDL [23].

Since the CDC-XPUF is a delay-based PUF, relying on the calculation of
delays incurred by the internal gates and interconnections, the correct placement
of its components is crucial. To ensure equal delay lines, the top and bottom of
each stage in the CDC XPUF must be precisely aligned in the placement phase
of SoC design in Vivado 2019.1.

For generating different challenges for different stages, a PRNG is proposed
in Equation 1. Obviously, two PRNGs with two different parameter sets are used
for the 32-bit and 64-bit designs.

The implementation setup illustrated in Figure 3 is used. The software de-
veloped in Python [22] using Visual Studio 2022 [21] is utilized to calculate the
scores for the five evaluation metrics, which are detailed in Section 2.3 from the
generated bitstreams.Using the setup in Figure 3, for the statistical characteristics CRPs, we gener-
ated up to 16,000 (challenges) ×32 (iterations) ×128 (response length) ×3 (Zynq
7020 SoCs) CRPs out of each design. The repetition of the CRPs is needed to
study the statistical characteristics and investigate related metrics such as cor-
rectness and steadiness. The CRPs were captured at an ambient temperature of
approximately 27oC, and the core voltage was set to 1.0V. The ambient temper-
ature does not reflect the temperature of the chip, which has changed as long as
the experiments continue. Through a dual-access BRAM, CRPs are sent to the
PS part. From the PS part via UART, the CRPs are sent to the PC with a baud
rate of 230,400 bits/second between the PuTTY [24] terminal and the SoCs.



10 O. Yayla and Y. E. Yilmaz

Fig. 3. Block Diagram of Implementation Setup of CDC-7-XPUFes

4 32-bit and 64-bit CDC-7-XPUF Experimental Results
and Comparisons

The evaluation metrics of PUFs are explained in Section 2.3. As explained in
Section 2.3, respectively, the implementation results of steadiness, correctness,
diffuseness, uniformity, and uniqueness are presented in Table 1 for the referenced
32-bit CDC-7-XPUF in [3], our implemented 32-bit CDC-7-XPUF, and 64-bit
CDC-7-XPUF. In the following sections, the results in this table are analyzed.

4.1 Steadiness

In Equation 2, the steadiness score is calculated between 0 and 1. Hence, we
normalize it using percentages to calculate the score in Table 1. As stated before,
32 iterations of 128-bit responses are generated. In the steadiness calculation,
these 4096-bit long responses are used.

Our result for the 32-bit is only slightly worse than the reference design in an
acceptable range. Also, the 64-bit result is slightly worse than the 32-bit results.
As it can be seen in [3], increasing the stage number has a negative effect on the
steadiness.

Table 1. Results of CDC-XPUFs with Respect to Evaluation Metrics

Evaluation
Metric

Score of
Referenced Work

32-bit
CDC-7-XPUF [3]

Score of
32-bit

CDC-7-XPUF
Implementation

Score of
64-bit

CDC-7-XPUF
Implementation

Steadiness 98.18% 97.09% 96.70%

Correctness 97.63% 96.64% 96.19%

Diffuseness 99.90% 99.96% 99.99%

Uniformity 50.40% 50.94% 49.89%

Uniqueness 17.90% 18.06% 18.96%



32-bit and 64-bit CDC-7-XPUF Implementation on a Zynq-7020 SoC 11

4.2 Correctness

In Equation 3, the correctness score is calculated between 0 and 1. Hence, we
normalize it using percentages to calculate the score in Table 1.

Our result for the 32-bit is only slightly worse than the reference design in an
acceptable range. Also, the 64-bit result is slightly worse than the 32-bit results.
As it can be seen in [3], increasing the stage number has a negative effect on the
correctness.

4.3 Diffuseness

In Equation 4, the diffuseness score is calculated between 0 and 1. Hence, we
normalize it using percentages to calculate the score in Table 1. For the diffusion
calculation, ”Correct ID”s are used.

Our result for the 32-bit is only slightly better than the reference design.
Also, the 64-bit result is slightly better than the 32-bit results. As it can be seen
in [3], increasing the stage number has a positive effect on the diffuseness.

4.4 Uniformity

In Equation 5, the uniformity score is calculated between 0 and 1, whose expected
score is 0.5. Hence, we normalize it using percentages to calculate the score in
Table 1. For the uniformity calculation, ”Correct ID”s are used. In [3], the results
of the uniformity are not direct, yet they can be inferred from the results of the
randomness, as it can be seen from Equations 5, 6, and 7. However, the result of
this inference is ambiguous. Since it can not be known that p or 1− p is greater,
the result in Table 1 for the referenced 32-bit work can be 49.60% also. But it
is not important. Because, in terms of uniformity, the proximity of the value
to 50% is important, not the percentage value. Hence, in terms of proximity,
50.40% and 49.60% are the same. Consequently, that approach is applied to the
comparison in the following paragraph.

Our result for the 32-bit is only slightly worse than the reference design.
However, the 64-bit result is slightly better than the result of our 32-bit design
and the referenced 32-bit design. Although, as it can be seen in [3], increasing
the stage number has a negative effect on the uniformity, in our case, it increased
the uniformity.

4.5 Uniqueness

In Equation 8, the uniqueness score is calculated between 0 and 1. Hence, we nor-
malize it using percentages to calculate the score in Table 1. For the uniqueness
calculation, ”Correct ID”s are used.

Our result for the 32-bit is only slightly better than the reference design.
Also, the 64-bit result is slightly better than the 32-bit results. As it can be seen
in [3], increasing the stage number has a positive effect on the uniqueness.



12 O. Yayla and Y. E. Yilmaz

4.6 Utilization Results of CDC-7-XPUFs in Zynq-7020 SoC FPGA

For the implementation, we use state machines in the PL part so that we can
take the challenges from the PS part, and we can send responses derived from
these challenges through the Dual Access BRAM. Although the PL part consists
of not only CDC-7-XPUFs but also state machines which are necessary for the
implementation, the utilization rate is relatively low, as it can be seen in Table
2 for both 32-bit and 64-bit CDC-7-XPUF implementations.

As expected, the 64-bit design has a higher utilization rate, especially in DSP
resources. In order to generate different challenges for each of the streams, we use
PRNGs, which multiply 64-bit numbers requiring more DSP than 32-bit design.
That relatively low utilization result makes 64-bit CDC-7-XPUF a promising
candidate for applications that require a PUF.

Table 2. Utilization Table Generated Using Vivado 2019.1 [20] for 32-bit and 64-bit
CDC-7-XPUF Implementations

Resource
Type

Avaliable Resource
Quantity

Utilization Quantity
(Utilization Rate as %)
of 32-bit CDC-7-XPUF

Utilization Quantity
(Utilization Rate as %)
of 64-bit CDC-7-XPUF

LUT 53200
1500

(2.82%)
1740

(3.27%)

LUTRAM 17400
72

(0.41%)
72

(0.41%)

FF 106400
1781

(1.67%)
1933

(1.82%)

BRAM 140
2

(1.43%)
2

(1.43%)

DSP 220
12

(5.45%)
68

(30.91%)

IO 200
8

(4.00%)
4

(100.00%)

5 Conclusion and Future Works

We have thoroughly examined the resilience against machine learning attacks in
Section 2.3.1. As discussed in this section and demonstrated in [3], the 64-bit
CDC-XPUF designs with 7 streams are resistant to machine learning attacks.

In the following part, evaluation criteria are examined. The PL part of Zynq
7020 has a very similar architecture to Artix-7, which is used to implement the
reference design of CDC-XPUF in [3]. Hence, we expected similar results found
in [3], and, as expected, we observed similar results as can be seen in the previous
sections.

In the last part, the utilization rate of both 32-bit and 64-bit designs are
examined, and it is shown that both designs are suitable for an IoT application
since they provide a lot of space in the PL part.

As the future works, the following two items can be listed:

– CDC-7-XPUF designs will be implemented in different FPGAs and SoCs
using the evaluation criteria given in this work.

– CDC-7-XPUF designs will be tested in various environmental conditions
such as varying temperature and varying voltage SoC core voltages.



32-bit and 64-bit CDC-7-XPUF Implementation on a Zynq-7020 SoC 13

References

1. Suh, G. E., Devadas, S.: Physical Unclonable Functions for Device Authentication
and Secret Key Generation, in 2007 44th ACM/IEEE Design Automation Confer-
ence, pp. 9–14 (2007)

2. Ebrahimabadi M., Younis M., Lalouani W., Karimi N.: A Novel Modeling- Attack
Resilient Arbiter-PUF Design, in 2021 34th International Conference on VLSI De-
sign and 2021 20th International Conference on Embedded Systems (VLSID), pp.
123–128 (2021)

3. Mursi K. T.: From XOR PUF to CDC XOR PUF: Cost-Effectiveness, Statistical
Characteristics, and Security Assessment, Ph.D. Thesis (2021)

4. Li G., Mursi K. T., Aseeri A. O., Alkatheiri M. S., Zhuang Y.: A
New Security Boundary of Component Differentially Challenged XOR
PUFs Against Machine Learning Modeling Attacks, International Jour-
nal of Computer Networks & Communications, vol. 14, p. 3 (2022).
https://aircconline.com/ijcnc/V14N3/14322cnc01.pdf

5. Xilinx Zynq-7000 SoC ZC702 Evaluation Kit,
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html.

6. Cao Y., Liu W., Qin L., Liu B., Chen S., Ye J., Xia X., Wang C.: Entropy Sources
Based on Silicon Chips: True Random Number Generator and Physical Unclonable
Function, Entropy, 24(11), ISSN 1099-4300 (2022)

7. Srinivas M. B. R., Elango K.: ”Era of Sentinel Tech: Charting Hardware
Security Landscapes Through Post-Silicon Innovation, Threat Mitigation and
Future Trajectories,” in IEEE Access, vol. 12, pp. 68061-68108 (2024). doi:
https://doi.org/10.1109/ACCESS.2024.3400624

8. Mursi K. T., Zhuang Y.: Experimental Examination of Component-Differentially-
Challenged XOR PUF Circuits, 1729(1), p. 012006 (2021)

9. Mursi K. T., Thapaliya B., Zhuang Y., Aseeri A. O., Alkatheiri M.S.: A Fast Deep
Learning Method for Security Vulnerability Study of XOR PUFs, Electronics, 9(10),
ISSN 2079-9292 (2020)

10. Wisiol N., Becker G. T., Margraf M., Soroceanu T. A. A., J. Tobisch, Zengin B.:
Breaking the Lightweight Secure PUF: Understanding the Relation of Input Trans-
formations and Machine Learning Resistance, Cryptology ePrint Archive, Paper
2019/799 (2019) https://eprint.iacr.org/2019/799

11. Yu M.-D., Hiller M., Delvaux J., Sowell R., Devadas S., Verbauwhede I. M. R.: A
Lockdown Technique to Prevent Machine Learning on PUFs for Lightweight Au-
thentication, IEEE Transactions on Multi-Scale Computing Systems, 2, pp. 146–159
(2016)

12. Hori Y., Yoshida T., Katashita T., Satoh A.: Quantitative and Statistical Perfor-
mance Evaluation of Arbiter Physical Unclonable Functions on FPGAs, 2010 Inter-
national Conference on Reconfigurable Computing and FPGAs, Cancun, Mexico,
pp. 298-303 (2010). https://doi.org/10.1109/ReConFig.2010.24

13. Maiti, A., Gunreddy, V., Schaumont, P.: A Systematic Method to Evaluate and
Compare the Performance of Physical Unclonable Functions. In: Athanas, P., Pnev-
matikatos, D., Sklavos, N. (eds) Embedded Systems Design with FPGAs. Springer,
New York, NY. (2013). https://doi.org/10.1007/978-1-4614-1362-2 11.

14. Anandakumar N. N., Hashmi M., Tehranipoor M.: FPGA-based Physical Unclon-
able Functions: A Comprehensive Overview of Theory and Architectures, Integra-
tion, 81, 07 (2021)

https://aircconline.com/ijcnc/V14N3/14322cnc01.pdf
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
https://doi.org/10.1109/ACCESS.2024.3400624
https://eprint.iacr.org/2019/799
https://doi.org/10.1109/ReConFig.2010.24
https://doi.org/10.1007/978-1-4614-1362-2_11


14 O. Yayla and Y. E. Yilmaz

15. Lim D.: Extracting Secret Keys from Integrated Circuits, Master Thesis, Mas-
sachusetts Institute of Technology (2004)

16. Alamro M.A., Mursi K.T., Zhuang Y., Aseeri A.O., Alkatheiri M.S.: Ro-
bustness and Unpredictability for Double Arbiter PUFs on Silicon Data: Per-
formance Evaluation and Modeling Accuracy. Electronics 2020, 9, 870 (2020)
https://doi.org/10.3390/electronics9050870.

17. Alkatheiri M. S., Zhuang Y.: Towards Fast and Accurate Machine Learn-
ing Attacks of Feed-Forward Arbiter PUFs, 2017 IEEE Conference on
Dependable and Secure Computing, Taipei, Taiwan, pp. 181-187 (2017).
https://doi.org/10.1109/DESEC.2017.8073845

18. Aseeri A. O., Zhuang Y., Alkatheiri M. S.: A Machine Learning-Based Security
Vulnerability Study on XOR PUFs for Resource-Constraint Internet of Things, 2018
IEEE International Congress on Internet of Things (ICIOT), San Francisco, CA,
USA, pp. 49-56 (2018). https://doi.org/10.1109/ICIOT.2018.00014

19. Mursi K. T., Zhuang Y., Alkatheiri M. S., Aseeri A. O.: Extensive Examination of
XOR Arbiter PUFs as Security Primitives for Resource-Constrained IoT Devices,
2019 17th International Conference on Privacy, Security and Trust (PST), Frederic-
ton, NB, Canada, pp. 1-9 (2019). https://doi.org/10.1109/PST47121.2019.8949070

20. Xilinx (AMD) Vivado and SDK 2019.1 Design Software for Xilinx
(AMD) Adaptive SoCs and FPGAs, https://www.xilinx.com/support/downlo
ad/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html.

21. Microsoft Corporation, Visual Studio 2022 (2022).
https://visualstudio.microsoft.com/ Accessed: 2023-01-12.

22. Python Software Foundation, Python Language Reference, version 3.x.
Accessed:2023-01-12 https://www.python.org/Accessed:2023-01-12.

23. IEEE Computer Society, IEEE Standard VHDL Language Reference Manual,
IEEE Std 1076-2008 (2008)

24. PuTTY - a free and open-source terminal emulator, serial console, and network
file transfer application. https://www.putty.org/, accessed: 2023-12-25.

https://doi.org/10.3390/electronics9050870
https://doi.org/10.1109/DESEC.2017.8073845
https://doi.org/10.1109/ICIOT.2018.00014
https://doi.org/10.1109/PST47121.2019.8949070
https://www.xilinx.com/support/ download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://www.xilinx.com/support/ download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html
https://visualstudio.microsoft.com/
https://www.python.org/
https://www.putty.org/

	32-bit and 64-bit CDC-7-XPUF Implementation on a Zynq-7020 SoC

