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Abstract. This paper studies the provable security of the deterministic
random bit generator (DRBG) utilized in Linux 6.4.8, marking the first
analysis of Linux-DRBG from a provable security perspective since its
substantial structural changes in Linux 4 and Linux 5.17. Specifically,

we prove its security up to O(min{2
n
2 , 2

λ
2 }) queries in the seedless ro-

bustness model, where n is the output size of the internal primitives and
λ is the min-entropy of the entropy source. Our result implies 128-bit
security given n = 256 and λ = 256 for Linux-DRBG. We also present

two distinguishing attacks using O(2
n
2 ) and O(2

λ
2 ) queries, respectively,

proving the tightness of our security bound.

Keywords: Deterministic random bit generator, Linux-DRBG, Seedless ro-
bustness, Provable security

1 Introduction

Deterministic Random Bit Generator. Producing random numbers plays
a crucial role in cryptography, serving for the generation of secret keys, IVs and
nonces (for encryption modes), and passwords (for identification protocols), to
name a few. In practice, random bits are often generated using a determinis-
tic random bit generator (DRBG), which refers to an algorithm that generates
random bits using a seed value obtained from a physical source with a sufficient
amount of entropy. The term “deterministic” means that there is no inherent
randomness in the algorithm itself. DRBGs find applications in various environ-
ments such as simulation, encryption, etc.

Provable Security of DRBG. The randomness of the bits produced by a
DRBG has typically been evaluated by statistical criteria. On the other hand,
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Fig. 1: Overall structure of Linux-DRBG. refresha and refreshf are entropy ab-
sorbing functions, next and next user are random bit generating functions.

there have been attempts to prove the security of DRBGs through the prov-
able security method in cryptography [4,19,6,15,21,24] as many constructions
are based on cryptographic primitives such as block ciphers and hash functions.
As part of this effort, Dodis et al. [11] proposed a security model for DRBGs,
demonstrated that a random bit generator used in the Linux operating sys-
tem is not secure under the proposed model, and suggested its modification.
In this paper, the security notions for DRBGs are distinguished as robustness,
forward security, backward security, and resilience. The security model incorpo-
rates a hardware random bit generator used to generate seeds in DRBGs and
a virtual system distribution sampler to model the hardware random bit gen-
erator and adversarial manipulation on it. Based on this model, the robustness
of the sponge structure has been proved [12], and subsequently, the robustness
of HMAC-DRBG and HASH-DRBG, both recommended by NIST.SP.800-90A,
was proved [22]. Recently, CTR-DRBG, also recommended by NIST.SP.800-90A,
has been proved [16].

Seedless Robustness Model. Dodis et al. [9] pointed out a limitation of the
existing model, which assumes and exploits randomness called a seed, unknown
to adversaries and kept secret. The assumption is not realistic in a practical sce-
nario, and a DRBG in such a model cannot be considered deterministic since the
seed implies the existence of randomness in addition to entropy. They proposed
a seedless robustness model and demonstrated that CTR-DRBG is not secure
under the new model. They also proposed new DRBGs that are secure under
the seedless robustness model.

Research on Linux-DRBG. Linux is one of the widely-used computer op-
erating systems developed as open-source software through collaborative efforts
within the community. Linux utilizes DRBGs to generate random bits. The incor-
poration of DRBGs in Linux dates back to version 1.3.30 in 1994, and since then,
modifications and enhancements have been ongoing. Barak et al. [2] suggested
the robustness model and discussed the robustness of Linux-DRBG, and Gutter-
man et al. [14] introduced an attack on Linux 2.6.10 DRBG, and Linux has fixed
the DRBG in following versions. Goichon et al. studied on entropy propagation
in Linux- DRBG [13] in 2012. Dodis et al. [11] mentioned above, modified the
robustness model, demonstrating that Linux-DRBG is not robust exploiting its
entropy estimating process with timer randomness. This vulnerability has been
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fixed in subsequent versions of Linux by modifying the Linux-DRBG to collect
and estimate entropy from a variety of entropy sources. The Linux-DRBG has
been significantly modified in Linux versions 4.0 and 5.174. However, the security
of the updated Linux-DRBG has not yet been proven.

The structure of Linux-DRBG. The overall structure of the Linux-DRBG
in version 6.4.8 of Linux is shown in Figure 1. Linux-DRBG collects and estimates
entropy from a variety of entropy sources such as hardware, timers, interrupts,
and bootloaders.

It then updates the base state with collected entropy, through entropy accu-
mulating functions like procedure refresha and refreshf .

When a user runs random bit generating functions such as nextk and nextu,
the state utilizes one of the CPU core’s states (CPU state) to update and then
generate random bits. During this process, the base state is also re-updated.

Linux-DRBG utilizes two cryptographic primitives: for the entropy accumu-
lating functions, refresha and refreshf , it uses the hash function BLAKE2s, and
for the random bit generating functions, nextk and nextu, it employs the stream
cipher ChaCha20. The internal structures of BLAKE2s and ChaCha20 have been
modeled by Luykx et al.[17] and Degabriele et al.[10], respectively.

1.1 Our Contribution

Since the significant structural changes in Linux 4 and Linux 5.17, there has
been no research on the provable security of Linux-DRBG. For the first time (to
the best of our knowledge), we formally model the Linux-DRBG in Linux 6.4.8
and prove its security in the seedless robustness model.

According to the source code of Linux 6.4.8, Linux-DRBG has two entropy
accumulating functions, refresha and refreshf , and two random bit generating
functions, nextk and nextu. We abstracted Linux-DRBG into the 4 functions
and adjusted its structure that does not fit into the existing seedless robustness
model. The process of analyzing the source code to abstract Linux-DRBG is
detailed in Section 4.

We prove that Linux-DRBG is secure up to O(min{2n/2, 2λ/2}) where n is
the output size of the internal primitives and λ is the min-entropy of the entropy
source. Since n = 256 and λ = 256 in Linux-DRBG, our security bound implies
the 128-bit security of Linux-DRBG in the seedless robustness model. We also
present two distinguishing attacks using O(2

n
2 ) and O(2

λ
2 ) queries, respectively,

proving the tightness of our security bound.
Dodis et.al. used the reducing technique(called game hopping) to prove ro-

bustness by splitting the security into r individual recovering security and pre-
serving security, where r is the number of random bit generating query [11]. Sub-
sequent papers proving the robustness of DRBGs, except for cases like the direct
proof of CTR-DRBG’s robustness in 2020 [16], have predominantly utilized this

4 The modified Linux-DRBG was primarily designed and developed by Jason
A. Donenfeld. See https://github.com/torvalds/linux/blob/master/drivers/

char/random.c

https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://github.com/torvalds/linux/blob/master/drivers/char/random.c
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approach [12,22]. This methodology is also applied in the seedless robustness
model [9]. However, applying this method directly to Linux-DRBG would only
yield n/3-bit security. In this paper, as shown in Lemma 3, we have adopted a
different game hopping technique to split Linux-DRBG’s robustness. Through
this methodology, we could prove that Linux-DRBG is secure up to O(2n/2)
adversarial queries. We believe that this proof method could be beneficial in
proving the robustness of other DRBGs.

2 Preliminaries

We write 0n to denote the n-bit string of all zeros. Given a non-empty finite set
X , x←$ X denotes that x is chosen uniformly at random from X . For a set X ,
|X | denotes the number of elements in X . The set of all permutations of {0, 1}n
is denoted Perm(n). For a keyed function F : K × X → Y with key space K
and non-empty sets X and Y, we will write FK(·) to denote F (K, ·) for K ∈ K.
Let S = {a1, . . . , as}. Then, we write S ⊕ x to denote {a1 ⊕ x, . . . , as ⊕ x}. Let
χ = (A,B,C) be a list. We write χ.append(D) to append an element to the χ.
Thus, after appending, χ = (A,B,C,D). We denote | as a bitwise OR operation.

For a (binary) string x, |x| denotes the length of x. The empty string is
denoted ε, where |ε| = 0. For an ℓ-bit string x, and m and n such that 0 ≤ m ≤
n ≤ ℓ − 1, x[m : n] denotes an (n −m + 1)-bit string from the m-th bit to the
n-th bit of x, and x[m :] denotes an (ℓ−m+ 1)-bit string from the m-th bit to
the last bit of x. When M = M1 ∥ · · · ∥Mw where |Mi| = t for 1 ≤ i ≤ w− 1 and

0 < |Mw| ≤ t, we write (M1, . . . ,Mw)
t←− M . For an integer 0 ≤ i < 2s, ⟨i⟩s

denotes s-bit representation of i. For a real number t, ⌈t⌉ is the smallest integer
that is the same as or bigger than t. For X ∈ {0, 1}n, we define msbm(X) (resp.
lsbm(X)) as m most significant bits of X (resp. m least significant bits of X).

For a tuple SA = (X,Y, Z), we can access X inside SA as SA.X.

Random permutation. A random permutation is a bijective mapping from a
finite set to itself, selected uniformly at random from all possible permutations
of the set. We treat 20 rounds of a ChaCha20 cipher as a random permutation
π which is selected from Perm(2n) [3,10].

Block ciphers. A block cipher, modeled as an ideal cipher, is a keyed function
E : {0, 1}k × {0, 1}n → {0, 1}n where for a fixed key K ∈ {0, 1}k, EK(·) is a
random permutation that is uniformly chosen from Perm(n). For the rest of the
paper, we let Π(k, n) denote the set of all n-bit block ciphers using k-bit keys.

If a security proof supposes a block cipher is picked uniformly random from
Π(k, n) at the beginning of the query and allows the adversary to make queries
to the block cipher, we call the proof is modeled under an ideal cipher model.

DRBG. From [11,20,9], a DRBG(Deterministic Random Bit Generator) is a
triple of algorithms G = (setup, refresh, next) where:

– setup : an algorithm that outputs an initial state S.
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– refresh : an entropy accumulating algorithm that, given a state S and an
input I, outputs a new state S′.

– next : a random bit generating algorithm that, given a state S, outputs a
new state S′ and random bits R.

However, Linux-DRBG does not fully fit in the above DRBG model, it has
two refresh functions and two next functions. These functions are described in
Algorithm 4 and we explained the reason that we modeled Linux-DRBG in this
format in Section 4.

Distinguishing Game. Throughout this paper, we prove the robustness of
Linux-DRBG by showing that Linux-DRBG and its subalgorithms are indis-
tinguishable from an ideal DRBG with a distinguishing game. Generally, let
G0 and G1 be algorithms and A be an adversary to distinguish them. Then the
distinguish game is composed as below.

1. b ←$ {0, 1}, then Gb make interfaces that A can access and get response.
The interfaces are called oracles.

2. Under the prescribed rule, A makes queries to the oracle and gets responses.
3. After querying phase, A outputs b′. If b′ = b, A wins.

Let the distinguishing game between G0 and G1 be dist. Then the distinguish-
ing advantage of A against dist, Advdist(A) is defined as below.

Advdist(A) = |Pr[1← A|b = 0]− Pr[1← A|b = 1]|
= |Pr[0← A|b = 0]− Pr[0← A|b = 1]| .

H-coefficient Technique. At the end of the distinguishing game, an adver-
sary obtains a certain transcript, containing all the information obtained during
the attack. A transcript is called attainable if the probability of obtaining it in
the ideal world is non-zero.

Lemma 1 (Patarin’s H-coefficient technique). Let T be the set of all
attainable transcripts. Suppose that T is partitioned as T = Tgood ⊔ Tbad for two
subsets Tgood and Tbad, where

pid [τ ∈ Tbad] ≤ ϵ1

for some ϵ1 ≥ 0, and there exists ϵ2 ≥ 0 such that

pre [τ ]

pid [τ ]
≥ 1− ϵ2

for any τ ∈ Tgood. Then for any distinguisher A, one has

Advdist(A) ≤ ϵ1 + ϵ2.
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Min Entropy. Let the prediction probability of a random variable X be

Pred(X) := max
x

Pr [X = x] .

Then for another random variable Y , Pred(X|y) := maxx Pr [X = x|Y = y].
Then conditional probability of X over Y is

Pred(X|Y ) := E(Pred(X|y)).

And (average-case) conditional min-entropy is

H∞(X|Y ) = − log(Pred(X|Y )).

3 Seedless Robustness Model

The seedless robustness model [9] is a modification of the “seeded” robustness
model [11], designed to relax the unrealistic assumption of the original model,
namely, the existence of a random seed that should be kept secret to an adversary
and independent of the entropy source.

Seedless Robustness Oracle. Let

G = (setup[P ], refresh[P ], next[P ])

be a DRBG based on an ideal primitive P (such as a random oracle, an ideal
cipher, or a random permutation), where P is chosen uniformly at random from
the set of all possible primitives, denoted P. Then the seedless robustness oracles
are defined as described in Algorithm 1, where c denotes the entropy accumu-
lated in the DRBG and λ is a fixed parameter (denoting the minimum required
for the accumulated entropy).

Seedless adversary. In seedless robustness model [9], an adversary A consists
of two algorithms A1 and A2. The relationship between A1 and A2 is as follows:

– A1 is allowed to make queries only to the entropy accumulating oracle REF,
while A2 is allowed to make queries to all the other oracles except REF,

– A1 knows all the queries made by A2 and the corresponding responses, while
A2 observes only the responses to the queries made by A1 without knowing
the queries themselves.

A1 is modeled in a way that the adversary can influence entropy accumulation
but cannot ascertain specific values of entropy inputs. In the “seeded” robustness
model [11], the distribution sampler D provides entropy inputs. However, as
argued in [9], the security proof using D is based on an unrealistic assumption
thatD is independent of the underlying primitive of the DRBG (In Linux-DRBG,
E, and π). Instead, they replaced the distribution sampler with A1 that only
accumulates entropy in the DRBG.

To model the quality of the entropy source, we define legitimacy for A. Let Ii
be the random variable for i-th input A1 makes, and Ti be the random variable
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Algorithm 1 Oracles for Seedless Robustness Game

Procedure INIT()
1: b←$ {0, 1}
2: P ←$ P, c← 0
3: S ← setup[P ]()
4: return P

Procedure REF(I, γ)
1: S ← refresh[P ](S, I); c← c+ γ
2: return γ

Procedure ROR(len)
1: y0 ←$ {0, 1}len
2: (S, y1)← next[P ](S, len)
3: if c < λ then
4: c← 0; return y1
5: return yb

Procedure GET();
1: c← 0; return S

Procedure SET(S∗)
1: S ← S∗; c← 0

Procedure P (x)
1: return P (x)

Procedure P−1(x) //If exists
1: return P−1(x)

for all input-output list of robustness game, excluding Ii, the i-th entropy input.
Then A is γ∗-legitimate if

H∞(Ii|Ti) ≥ γi ≥ γ∗.

for every i. Against a γ∗-legitimate adversary A, the seedless robust game is
defined as follows.

Seedless Robustness Game.

1. INIT is executed.
2. A1 makes queries to REF, while A2 makes queries to ROR, GET, SET, P

and P−1 (if available) in an interleaved manner.
3. A2 outputs b′ ∈ {0, 1}.
4. If b′ = b, then A wins, and A loses otherwise.

The game begins with the procedure INIT, which chooses a random bit b and
a random primitive P . It then runs setup to make the initial state. The other
parts of the game are oracles offered to an adversary A:

– REF : state S is updated by calling refresh with input I of entropy at least
γ,

– ROR : state S is updated by calling next, and then y0 and y1 are prepared:
if c < λ, then it returns y1 regardless of b, while if c ≥ λ, then yb is returned
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– GET : returns the state S of the DRBG.

– SET(S∗) : sets the state S of the DRBG to S∗.

– P returns the result of a primitive query. If the primitive allows inverse
query(i.e., block cipher), the oracle should also provide P−1.

Now we can distinguish two worlds G0 and G1 from the seedless robust games
according to the bit b ∈ {0, 1}, and for any DRBG G, the seedless robustness
security of G against A is defined as follows.

AdvG
rob(A)

def
= Advdist(A).

4 Modeling the Linux DRBG

In this section, we model the Linux DRBG to fit into the Seedless Robustness
security model. In this paper, we studied the Linux version 6.4.8.5. We mainly
analyzed a random.c file in Linux 6.4.8, a collection of functions related to
the Linux DRBG. The Linux DRBG uses the hash function BLAKE2s and the
stream cipher ChaCha20 as internal primitives. We first describe the modeling
of the two internal primitives and then explain the overall structure of the Linux
DRBG.

4.1 Underlying primitives and their modeling

Algorithm 2 A Procedure in the BLAKE2s

COMP : {0, 1}n/4 × {0, 1}n × {0, 1}∗ → {0, 1}n
Procedure COMP[E](t, h, I)

1: len← |I|
2: rem← len− 2n(⌈len/2n⌉ − 1)

3: (I1, . . . , Iℓ)
2n←− I

4: Iℓ ← 02n−rem ∥ Iℓ
5: h1 ← h
6: for i← 1 to ℓ− 1 do
7: hi+1 ← B[E](hi, t+ i · 2n, Ii)
8: y ← B′[E](hℓ, t+ len, Iℓ)
9: return y

5 https://github.com/torvalds/linux/blob/master/drivers/char/random.c ©

https://github.com/torvalds/linux/blob/master/drivers/char/random.c
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Fig. 2: BLAKE2s and ChaCha20 internal structure

4.1.1 BLAKE2s The Linux DRBG uses the BLAKE2s hash function to ac-
cumulate entropy [1]. Due to the known structure of the BLAKE2s primitive E,
it cannot be modeled as an ideal cipher [5,7,17]. In this section, we first introduce
an appropriate model for E, the mappable weak block cipher, and then describe
the structure of BLAKE2s based on the model.
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Weak Block Cipher. Consider a partition {0, 1}n =W∪ ({0, 1}n\W). Define
the set of weakly ideal ciphers Πw(k, n,K,W) with a weak key set K as the
collection of all E ∈ Π(k, n) that satisfies the following properties: For every
K ∈ K, W ∈ W, and X ∈ {0, 1}n\W

EK(W ) ∈ W,

EK(X) ∈ {0, 1}n\W.

Similar to the ideal cipher model, if a security proof assumes a weak block cipher
is picked uniformly random from Πw(k, n,K,W) at the beginning of the query,
we call the proof is under weakly ideal cipher model.

Mappable Weak Block Cipher. To model BLAKE2s, we extend the defi-
nition of a weak block cipher to a mappable weak block cipher. An example of
a mappable block cipher, along with the reasoning behind its definition, is pro-
vided in the following subsection. Define a set of mappable weak block ciphers
Πmw(k, n,K,W, f,Wf ) with a function f , a set Wf , and Πw(k, n,K,W) as the
collection of all weak block cipher E ∈ Πw(k, n,K,W) that satisfies the following
property: For every W ∈ W,

f(W ) ∈ Wf .

Similar to the weakly ideal cipher model, if a security proof supposes a mappable
weak block cipher is picked uniformly random from Πmw(k, n,K,W, f,Wf ) at
the beginning of the query, we call the proof is under mappable weakly ideal
cipher model.

The Modeling of the primitive E. We model E as a mappable weak block
cipher. For the BLAKE2s, a weak key set K, a weak input set W, Wsum, and
sum :W →Wsum are defined as follows:

W = {aeaebfbfcgcgdhdh ∈ {0, 1}2n | a, b, c, d, e, f, g, h ∈ {0, 1}n/8},
K = {kkkkkkkkkkkkkkkk ∈ {0, 1}2n | k ∈ {0, 1}n/8}

Wsum = {wxwxyzyz ∈ {0, 1}n | w, x, y, z ∈ {0, 1}n/8},
sum(W ) = msbn(W )⊕ lsbn(W ).

Consequently, BLAKE2s’ primitive E belongs to Πmw(2n, 2n,K,W, sum,Wsum),
and we prove the security of Linux-DRBG under the mappable weakly ideal
cipher model for Πmw(2n, 2n,K,W, sum,Wsum).

To model the properties of E [7], at least the weakly ideal cipher model
is required. To prove the security of Linux-DRBG, we need to distinguish the
output of E from a random number. Due to the initialization vector (IV) of
BLAKE2s, it is impossible for E to receive an input that corresponds toW. Since
the compression function of BLAKE2s sums halves of E’s output, we need to
determine whether the random number falls withinWsum, notW. Consequently,
to use Wsum, we define and employ the mappable weakly ideal cipher model.
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The modeling of the compression function. For x ∈ {0, 1}2n, let TRSum(x) =
x[0 : n− 1]⊕ x[n :]. Then the 1 round of compression function of the BLAKE2s
is defined as follows:

B[E](h, t, I)← TRSum(E(I, h ∥ (0n/2 ∥ t ∥ 0n/4)⊕ IV ))⊕ h,

B′[E](h, t, I)← TRSum(E(I, h ∥ (0n/2 ∥ t ∥ 0n/8 ∥ 1n/8)⊕ IV ))⊕ h

where E ∈ Πmw(2n, 2n,K,W, sum,Wsum), h is a n-bit value, t is a n/4-bit
counter, I is an 2n-bit input, and IV = IV1 ∥ · · · ∥ IV8 is n-bit fixed string
where IVk ∈ {0, 1}n/8 for all 1 ≤ k ≤ 8 and IVi ̸= IVj for all 1 ≤ i ̸= j ≤ 8.
B[E](h, t, I) and B′[E](h, t, I) are described in Figure 2.(a). Here, B is used
when I is not the final input block, and B′ is used when I is the final input
block. We represent the Linux DRBG function blake2s compress as COMP in
Algorithm 2 and Figure 2.(b).

Avoiding the weak state. In BLAKE2s, the IV is a 256-bit string consisting
of a tuple of 32-bit values derived from the square roots of distinct primes starting
from 2 and ending at 19. Note that the square roots of primes are all different.
Hence, in actual usage, the weak input w ∈ W of BLAKE2s cannot be accessed
due to the distinct elements of IV. Therefore, we assume that the IV = IV1∥· · ·∥
IV8 is n-bit fixed string where IVk ∈ {0, 1}n/8 for all 1 ≤ k ≤ 8 and IVi ̸= IVj

for all 1 ≤ i ̸= j ≤ 8.

Algorithm 3 A Procedure in the ChaCha20

CB : {0, 1}n × {0, 1}n/2 × {0, 1}∗ → {0, 1}∗
Procedure CB[π](K,CNT, len)

1: out← ϵ
2: while len > 0 do
3: B ← π(Z ∥K ∥ CNT ) +n/8 (Z ∥K ∥ CNT )
4: CNT ← CNT + 1
5: out← out ∥B
6: len← len− 2n

7: return out

4.1.2 ChaCha20 The Linux DRBG produces pseudorandom outputs using
ChaCha20. The stream cipher ChaCha20 is known to be faster than AES when
hardware support for AES is not available. The ChaCha20 uses a fixed constant
Z, expressed as the hexadecimal representation of “expand 32-byte k”.

The random permutation model. The 20 rounds of the ChaCha20 can be
modeled as a random permutation π ←$ Perm(2n) [10]. Using the random per-
mutation π and a fixed constant Z, we model a function chacha block as CB in
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the Algorithm 3 and Figure 2.(c). The computation of CB on one 2n bits block
is expressed as follows:

out← π(Z ∥K ∥ CNT ) +n/8 (Z ∥K ∥ CNT )

where, Z is the fixed n/2-bit constant, K is an n-bit key, and CNT is an n/2-bit
counter, and +n/8 represents word-by-word modulo 2n/8 addition.

4.2 The Overall Structure of the Linux DRBG

We divide the Linux DRBG into three parts: Initialization, Entropy Accumu-
lation, and Random Bit Generation. The Linux DRBG is initialized when the
Linux kernel boots. Then, the Linux DRBG starts to accumulate entropy from
various hardware sources. When accumulated entropy is larger than 256-bit, a
character device file /dev/random, a system call getrandom, and a kernel inter-
face get random bytes of the Linux DRBG can produce random bits. In this
subsection, we describe the three parts of the Linux DRBG. We also describe how
we model each part in the Seedless Robustness model which will be described in
the Algorithm 4 and Figure 3 later.

4.2.1 Initialization When the Linux kernel boots, the Linux DRBG initial-
izes a state input pool of the BLAKE2s. Also, the Linux DRBG initializes
states base crng and crng of the ChaCha20. Then the Linux DRBG calls a
function random init early that accumulates entropy in the input pool with-
out accessing the timer in Linux. Finally, when the timer becomes available, the
Linux DRBG calls a function random init which accumulates entropy in the
input pool using the timer in Linux.

The Modeling of the Initialization.Wemodel the three states input pool,
base crng, and crng in a single state S. Using the state S, we model the ini-
tialization as a function setup() in the Algorithm 4. Note that the Linux DRBG
accumulates some entropy in the initialization. But we exclude entropy accumu-
lation in the setup. Then, we model an attacker to call entropy accumulation
functions with high entropy after entropy-draining events including setup.

4.2.2 Entropy Accumulation The Linux DRBG accumulates entropy from
various hardware entropy sources. The Linux DRBG calls functions to access
hardware entropy sources. The functions related to entropy accumulation and
estimation are listed as follows:

– add hwgenerator randomness,

– add bootloader randomness,

– add interrupt randomness,

– add timer randomness.
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When the Linux DRBG calls the functions, they return a string that contains
entropy which is called “entropy input”. Note that these functions also return an
estimation of the entropy within their entropy inputs. The Linux DRBG credits
the estimation using a function credit init bits, enabling it to track how much
entropy has been accumulated in the state of the DRBG. An analysis of Linux
kernel version 5.18.1 by the German Federal Office for Information Security (BSI)
shows that the Linux entropy sources and their entropy estimations satisfy their
security criteria [18]. Hence, we assume that all entropy sources and estimations
are functioning correctly.

Entropy accumulating functions. The Linux DRBG utilizes the function
mix pool bytes to use the BLAKE2s for accumulating entropy into its state.
Also, the Linux DRBG uses a function crng reseed to convert the BLAKE2s’
state into a key for a random bit generation. Entropy accumulation works as
follows:

1. The Linux DRBG obtains an entropy input from the entropy sources.
2. The Linux DRBG passes the entropy input to the hash function BLAKE2s.
3. mix pool bytes: BLAKE2s compresses the entropy input to its element h

of its state.
4. crng reseed: If the Linux DRBG needs to generate random bits, then the

BLAKE2s uses h to derive keys for the random bit generation.

The Modeling of the Entropy Accumulation. We put constants h, t, and
key knext of the BLAKE2s in the DRBG state S. Also, we put ChaCha20 key
kbase in the state S. In the Algorithm 4, the two entropy accumulating functions
mix pool bytes and crng reseed are modeled as refresha and refreshf . We depict
the two functions in the Figure 3.(a) and (b). In the Figure 3.(a), the refresha
uses an entropy input I to update h. In the Figure 3.(b), the refreshf uses h
and an entropy input I to generate knext for later BLAKE2s calls and kbase for
random bit generation.

4.2.3 Random Bit Generation The Linux DRBG uses either a function
get random bytes or a function get random bytes user to utilize the ChaCha20
for generating random bits. Note that Linux uses two types of the ChaCha20 for
a multi-core system. A base crng obtains the key kbase from the BLAKE2s and
produces ckeyCPU . A crng, within each CPU, generates random bits utilizing
the CPU with a key ckeyCPU . Random Bit Generation works as follows:

1. The Linux DRBG obtains the ChaCha20 key kbase from the BLAKE2s and
initializes the base crng using the kbase.

2. The Linux DRBG assigns a CPU the random bit generation task.
3. (a) If a flag G flagCPU is set, Linux generates the CPU-specific key ckeyCPU

from the base crng.
(b) Otherwise, Linux updates ckeyCPU by running crng with the old ckeyCPU

without accessing kbase.
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4. Using the crng in the CPU, the Linux DRBG uses either the get random bytes

or the get random bytes user to generate random bits.

Two types of random bit generators. In the Linux DRBG, there are two
types of random bit generation:

1. A first type generator produces random bits only if sufficient entropy is
accumulated. The /dev/random is a representative example of the type.

2. A second type generator produces random bits at any time. The /dev/urandom
is a representative example of the type.

The only difference between /dev/random and /dev/urandom is the fact that/dev/random
prohibits premature next and /dev/urandom allows it. There already exists the
study that any DRBG that allows premature next is insecure in the seedless
model [8]. Therefore in this paper, we only consider the first type. The charac-
ter device file /dev/random, the system call getrandom, and the kernel inter-
face get random bytes are the first type generators. The /dev/random and the
getrandom use the function get random bytes user to generate random bits.
The get random bytes kernel interface uses the function get random bytes to
generate random bits. These generators can produce random bits only if accu-
mulated entropy is more than 256-bit.

The Modeling of the Random Bit Generation. We put keys kbase, ckey1,
. . . , ckeyC , and flags G flag1, . . . , G flagC in the state S where C is the num-
ber of the CPUs. In the Algorithm 4, two random bit generation functions
get random bytes and get random bytes user are modeled as nextk amd nextu.
We depict the two functions in the Figure 3.(c) and (d).

4.3 Syntax of Linux DRBG in Robustness Model

From the previous subsection, we establish the state of the Linux DRBG. Build-
ing upon this state, we present the syntax of Linux DRBG, which constitutes
our model of the operation of Linux DRBG.

4.3.1 Internal State We define the internal state of the Linux DRBG S as
follows:

S := (h, t, knext, kbase, ckey1, · · · , ckeyC ,G flag1, · · · ,G flagC)

where C is the number of available CPUs. A description of each element in the
state S is as follows:

– h ∈ {0, 1}n: a value that is updated by the compression function of the
BLAKE2s,

– t ∈ {0, 1}n/4: a counter of the BLAKE2s,
– knext ∈ {0, 1}n: a key of the BLAKE2s,
– kbase ∈ {0, 1}n: a key of the ChaCha20 that is used to produce CPU-specific

keys ckey1, . . . , ckeyC ,



Provable Security of Linux-DRBG in the Seedless Robustness Model 15
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Fig. 3: Components of Linux-DRBG. States are defined in Section 4.3 and B,
CB and COMP are defined in Section 4.1



16 Woohyuk Chung, Hwigyeom Kim, Jooyoung Lee, and Yeongmin Lee

Algorithm 4 Syntax of the Linux DRBG

setup : ϵ→ S
Procedure setup()

1: S.h← const; S.t← 0
2: return S

refresha : S × ({0, 1}2n)∗ → S
Procedure refresha[E](S, I)

1: if S.knext ̸= ϵ then
2: I ← 0n ∥ S.knext ∥ I
3: S.knext ← ϵ

4: (I1, . . . , Iℓ)
2n←− I

5: for i← 1 to ℓ do
6: S.h← B(S.h, S.t+ i · 2n, Ii)
7: S.t← S.t+ |I|
8: return S

refreshf : S × {0, 1}∗ × {0, 1}n → S
Procedure refreshf [E](S, I, Icpu)

1: if S.knext ̸= ϵ then
2: I ← 0n ∥ S.knext ∥ I
3: k ← COMP[E](S.t, S.h, I)
4: Icpu ← 0n ∥ k ∥ Icpu ∥ 0c−1

5: S.knext ← COMP[E](0, const, Icpu∥
0)

6: S.kbase ← COMP[E](0, const, Icpu∥
1)

7: S.h← const; S.t← 2n
8: S.G flag1 ← 1; S.G flag2 ← 1; · · · ;

S.G flagC ← 1
9: return S

nextk : S × {0, 1}∗ × {0, 1}log(C) →
S × {0, 1}∗
Procedure nextk[π](S, len, ncpu)

1: if S.G flagncpu
= 1 then

2: tmp← CB[π](S.kbase, 0, 2n)
3: S.kbase ∥ S.ckeyncpu

← tmp
4: S.G flagncpu

← 0

5: k ← S.ckeyncpu

6: tmp← CB[π](S.ckeyncpu
, 0, 2n)

7: S.ckeyncpu
∥ out← tmp

8: B ← CB[π](k, 1, len− n)
9: out← (out ∥B)[0 : len− 1]

10: return (S, out)

nextu : S × {0, 1}∗ × {0, 1}log(C) →
S × {0, 1}∗
Procedure nextu[π](S, len, ncpu)

1: if S.G flagncpu
= 1 then

2: tmp← CB[π](S.kbase, 0, 2n)
3: S.kbase ∥ S.ckeyncpu

← tmp
4: S.G flagncpu

← 0

5: tmp← CB[π](S.ckeyncpu
, 0, 2n)

6: S.ckeyncpu
∥ k ← tmp

7: if len ≤ n then
8: return (S, k[0 : len− 1])

9: out← (CB[π](k, 1, len))[0 : len−1]
10: return (S, out)

– ckeyi ∈ {0, 1}n: a key of the ChaCha20 that is used to produce random bits
in the i-th CPU,

– G flagi ∈ {0, 1}: a flag that indicates whether ckeyi needs to be updated by
using kbase or not.

We define a set of states as

S = {0, 1}n × {0, 1}n/4 × {0, 1}n × {0, 1}n × ({0, 1}n)C × ({0, 1})C .
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Modeling the BLAKE2s state. The compression function of BLAKE2s up-
dates S.h ∈ {0, 1}n, and S.t ∈ {0, 1}n/4 serves as an input to BLAKE2s, accu-
mulating the bit length of the input compressed. In Linux, BLAKE2s maintains
a buffer and finalization flag in its state. The value to be compressed is stored
in the buffer, and when Linux DRBG reseeds, it initializes BLAKE2s’ state
and places a key in the buffer. We eliminated the buffer from S and stored the
BLAKE2s key in S.knext. By saving S.knext, we can simulate BLAKE2s without
the buffer. For the finalization flag in Linux, we explicitly incorporate it into the
COMP in the Algorithm 2.

Modeling the ChaCha20 state. The final output of the BLAKE2s serves as
the key for the ChaCha20, denoted as S.kbase ∈ {0, 1}n. To leverage a multi-core
system, each CPU has its ChaCha20 states. Their keys are stored in ckey1, . . . , ckeyC ∈
{0, 1}n, where C represents the maximum available CPU number. When Linux
DRBG is asked to produce pseudorandom outputs, it determines whether the
i-th CPU ChaCha20’s key needs to be updated by using S.kbase or not based on
G flag1, . . . ,G flagC ∈ {0, 1}. If G flagi = 1, then it needs to be updated using
S.kbase. Otherwise, it is updated using old S.ckeyi.

4.3.2 Linux DRBG Syntax We align the Linux DRBG with the syntax of
the PRNG used in the robustness model [11,9]. The syntax of the Linux DRBG
is detailed in Algorithm 4. Additionally, we illustrate the operations of each
function in Figure 3.

– setup(): This algorithm produces an initial Linux DRBG state S.
– refresha[E](S, I): Given a mappable weakly ideal cipher E, the state S and

a variable length entropy input I, refresha compresses the entropy input I
and store it to S.h.

– refreshf [E](S, I, Icpu): Given a mappable weakly ideal cipher E, the state
S, a variable length entropy input I, and a fixed n-bit input Icpu, refreshf
compresses I and Icpu to generate two keys S.knext and S.kbase. Note that
refreshf uses fixed constant const for compression. The const is defined as
follows:

const← IV ;

const[0 : n/8− 1]← const[0 : n/8− 1]⊕ (07 ∥ 1 ∥ 07 ∥ 1 ∥ 0n/8−16|n << 8|n).

where the IV is the fixed constant from the BLAKE2s, and | is the bit-wise
OR operation. S.knext is used in later calls to refresha or refreshf . S.kbase is
used to generate random bits through nextk or nextu. The refreshf also sets
flags S.G flag1, . . . , S.G flagC .

– nextk[π](S, len, ncpu): Given a random permutation π, the state S, a required
output length len, and a CPU number ncpu, nextk generates len-bit random
bits using S.ckeyncpu

in the ncpu-th CPU. If a S.G flagncpu
is set, then nextk

updates S.ckeyncpu
by using S.kbase. Otherwise, nextk updates S.ckeyncpu

by
its old S.ckeyncpu

.
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– nextu[π](S, len, ncpu): This algorithm works similar to the nextk. The nextk
directly uses S.ckeyncpu

to produce random bits. But the nextu first produces
a temporary key k, then it produces random bits using the k.

5 Robustness Proof

5.1 Linux-DRBG Robustness Game

Algorithm 5 Oracles for Linux-DRBG Seedless Robustness Game

Procedure INIT()
1: b←$ {0, 1}, c← 0
2: E ←$ Πmw(2n, 2n,K,W, sum,Wsum), π ←$ Perm(2n)
3: S ← setup()
4: return (E, π)

Procedure REFa[E](I, γ)
1: S ← refresha[E](S, I); c← c+ γ
2: return γ

Procedure REFf [E](I, γ, Icpu)
1: S ← refreshf [E](S, I, Icpu)
2: c← c+ γ
3: if c ≥ λ then
4: ready← 1
5: else
6: c← 0
7: return γ

Procedure RORk[π](len, ncpu)
1: (S, y1)← nextk[π](S, len, ncpu)
2: if c < λ or ready = 0 then
3: c← 0; ready← 0; return y1
4: y0 ←$ {0, 1}len
5: return yb

Procedure RORu[π](len, ncpu)
1: (S, y1)← nextu[π](S, len, ncpu)
2: if c < λ or ready = 0 then
3: c← 0; ready← 0; return y1
4: y0 ←$ {0, 1}len
5: return yb

Procedure GET();
1: c← 0; ready← 0; return S

Procedure SET(S∗)
1: S ← S∗; c← 0; ready← 0

Procedure E(k, x)
1: return E(k, x)

Procedure E−1(k, y)
1: return E−1(k, y)

Procedure π(x)
1: return π(x)

Procedure π−1(y)
1: return π−1(y)
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Difference from the general DRBG model. From procedures in Algo-
rithm 4, we can define robustness oracles for Linux-DRBG in Algorithm 5. Note
that there are several differences from oracles in Algotihm 1 as follows.

– The refresh oracle is divided into REFa and REFf since Linux-DRBG accu-
mulates the entropy gradually.

– If REFf is invoked without sufficient entropy, it sets c to 0. Therefore, it is
essential to supply sufficient entropy in a single REFf call. This assumption
is substantiated by the observation that, after system boot, Linux-DRBG
invokes crng reseed (equivalent to REFf) only if sufficient entropy is ac-
cumulated in its state. Also, after sufficient entropy is accumulated, Linux
invokes crng reseed every 60 seconds. After a sufficient amount of time has
passed since the Linux system booted, it can be considered that 60 seconds
is sufficient for accumulating enough entropy. Considering this behavior of
Linux, even when a Seedless adversary attempts to leak the state of the
DRBG, Linux DRBG can be assumed to accumulate sufficient entropy with
a single invocation of REFf . Therefore, REFf can be modeled always to
receive inputs with sufficient entropy.

– There are two ROR oracles, RORk and RORu.
– The ROR oracles do not work correctly if ready = 0, which means at least

one REFf call after entropy drain(will be defined in this section) is required.
– RORk and RORu requires the number of CPU to generate random bits, and

the process varies whether S.G flagncpu
is 0 or 1.

– Since Linux-DRBG uses two cryptographic primitives, the mappable weakly
ideal cipher E and the random permutation π, and they allow inverse query,
there exist four primitive query oracles for Linux-DRBG. E. E−1, π, π−1

are that.

With the above definition, the procedure for Linux-DRBG Robust Game is
described as follows.

Linux-DRBG Robustness Game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries RORk, RORu, GET, SET, E, E−1, π and π−1. A1

queries REFa and REFf . All query orders are free and can be done multiple
times.

3. A2 outputs b′ ∈ {0, 1}, if b′ = b, A wins.

Entropy Drain. We define entropy drains, which are events that make the
DRBG lose its entropy by giving some information to the adversary. The follow-
ing events are called entropy drains:

– Exactly after INIT,
– Calling oracles to GET or SET,
– Calling an oracle RORk or RORu when c < λ or ready = 0.
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For convenient notation, we denote an entropy drain as ED from now on.

Canonical adversary: An adversary A is called canonical if it follow the
conditions below:

1. A2 queries RORk or RORu only when c ≥ λ and ready = 1.

2. A2 queries RORk or RORu, only when the last construction query made by
A1 is REFf .

3. A1 does not query REFa consecutively.

4. Between the last entropy drain and the first RORk or RORu query thereafter,
A2 does not query GET and SET in situations where c > 0.

5. Between the last entropy drain and the first RORk or RORu query thereafter,
A1 does not query REFa.

We claim that we can assume the Linux-DRBG Robustness adversaryA is canon-
ical. This assumption comes from the fact that the only difference between b = 0
and b = 1 is in RORk or RORu when c ≥ λ and ready = 1, and REFa only
accumulate entropy, and REFf is required to transfer the accumulated entropy
to S.kbase, the state used in RORk or RORu. Therefore, for any adversary A that
violates the above condition, one can construct canonical adversary A′ using A
holding or simulating queries made by A appropriately. The strategy of A′ is
like below.

– If A violates condition 1 or 4, A′ can easily simulate the query with primitive
queries, because in that case the ideal world and real world behaviors are
same.

– If A violates one of condition 2,3,5, A′ just simply store REFa queries after
the last REFf query. Then whenA queries GET or REFf ,A′ can concatenate
the queries into a REFa or REFf .

Therefore it is reasonable to assume the Linux-DRBG Robustness adversary A
is canonical.

5.2 Robustness Proof

The robustness advantage of the Linux DRBG is upper bounded in Theorem 1. In
the statement of Theorem 1, REF (resp. ROR) calls mean REFf and REFa (resp.
RORk and RORu) calls.

Theorem 1. Let A be a λ-legitimate robustness game adversary that makes p
primitive query, q1 REF query, q2 ROR query, ℓ1 maximum number of entropy
input block in a single REF call, ℓ2 maximum number of output block in a single
ROR call, σ1 total number of entropy input blocks in every REF , and σ2 total
number of output blocks in every ROR. Let Advrob(p, q1, q2, ℓ1, ℓ2, σ1, σ2, λ) be
the advantage upper bound of all possible adversaries A. If p+3q1+2σ1 ≤ 2n−1,
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the following inequality holds.

Advrob(p, q1, q2, ℓ1, ℓ2, σ1, σ2, λ)

≤ 42q1
20.5n

+
8q2ℓ2(p+ 2q2 + ℓ2 + σ2)

22n
+

8q1(p+ 3q1 + σ1)

2λ

+
2p(p+ 8q2 + 27q1 + 2σ1) + 2q1(72q1 + 2ℓ1 + 31σ1 + 2) + 4q2(8q2 + 4σ2 + 1) + 4σ2

1

2n

≤ 42σ1

20.5n
+

8σ2
2(p+ 4σ2)

22n
+

8σ1(p+ 4σ1)

2λ

+
2p2 + 2σ1(29p+ 107σ1 + 2) + 4σ2(4p+ 12σ2 + 1)

2n
.

Let S0 (resp. S1) be a system of ideal (resp. real) world robustness oracles.
In the INIT in Algorithm 5, if b = 0 (resp. b = 1), then the system of oracles is
S0 (resp. S1). Note that the only differences between S0 and S1 are the return
values of oracles RORk and RORu. If in S0 (resp. S1), they return y0 (resp. y1)
when c ≥ λ and ready = 1.

Methodology of the proof. Our proof involves dividing the robustness dis-
tinguish game into subgames, proving the security of each, and then combining
them. The subgames consist of the M-EXT game, which describes the distin-
guish game for REF calls, the pREFa game, the pREFf game, and the distinguish
games for ROR calls, which include the bRORk game, bRORu, cRORk game,
and cRORu game. In the text, we first define the hybrid world Sh for convenience
of proof, ensuring that the state updates uniformly randomly when accumulated
entropy c ≥ λ [16]. Subsequently, we define each subgame and its adversarial ad-
vantages, then claim Lemma 3 through game hopping with intermediate worlds
that can apply each subgame, and prove the security of each subgame to prove
Theorem 1 ultimately.

Among the subgames, the M-EXT game allows multiple M-EXT calls, dif-
fering from other subgames and previous proof methods that divided robustness
into recovering security and preserving security [11,12,9,23]. Using the traditional
method of splitting into several games with a single M-EXT call would result in
each game’s advantage having a p2/2n term, and when gathering these, a p2q1/2

n

term would emerge, and we only could prove O(2n/3) security for Linux-DRBG.
In contrast, the M-EXT game, by allowing multiple M-EXT calls, eliminates the
need to gather security bound, leading to O(2n/2) security as shown in ( 2), and
ultimately, we could prove that Linux-DRBG is secure up to O(min(2n/2, 2λ/2))
adversarial queries. We believe this technique could be applied to other DRBGs
as well, potentially helping to raise their security upper bounds.

We denote ∆A(S0, S1) for a seedless robustness distinguishing advantage of
S0 and S1 for an adversary A satisfying conditions in Theorem 1. Let Sh be a
system of hybrid words that contains oracle REFa

∗, REFf
∗, RORk

∗ and RORu
∗

in Algorithm 6 instead of REFa, REFf , RORk and RORu in Algorithm 5. That
means, when c ≥ λ, S0 outputs bit outputs randomly but updates its state with
Linux-DRBG algotirhm, and S1 outputs bit outputs and updates its state with
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Algorithm 6 Oracles for the hybrid world

Procedure REFa
∗(I, γ)

1: c← c+ γ //Update c first.
2: if c < λ then
3: S ← refresha[E](S, I)
4: else
5: S.h←$ {0, 1}n
6: S.t← S.t+ len

7: return γ

Procedure REFf
∗(I, γ, Icpu)

1: c← c+ γ //Update c first.
2: if c < λ then
3: S ← refreshf [E](S, I, Icpu)
4: else
5: knext ←$ {0, 1}n
6: S.kbase ←$ {0, 1}n
7: S.h← const
8: S.t← 2n
9: ready← 1

10: S.G flag1 ← 1; S.G flag2 ← 1;
· · · ; S.G flagC ← 1

11: return γ

Procedure RORk
∗[π](len, ncpu)

1: if c < λ or ready = 0 then
2: (S, y)← nextk[π](S, len, ncpu)
3: c← 0; ready← 0
4: else
5: if S.G flagncpu

= 1 then
6: S.kbase ←$ {0, 1}n
7: S.G flagncpu

← 0

8: S.ckeyncpu
∥ y ←$ {0, 1}n+len

9: return y

Procedure RORu
∗[π](len, ncpu)

1: if c < λ or ready = 0 then
2: (S, y)← nextu[π](S, len, ncpu)
3: c← 0; ready← 0
4: else
5: if S.G flagncpu

= 1 then
6: S.kbase ←$ {0, 1}n
7: S.G flagncpu

← 0

8: S.ckeyncpu
∥ y ←$ {0, 1}n+len

9: return y

Linux-DRBG algotirhm, Sh outputs bit outputs and updates its state randomly.
Then, by the triangle inequality, the following holds:

∆A(S0, S1) ≤ ∆A(S0, Sh) +∆A(Sh, S1). (1)

With (1), the following lemma holds.

Lemma 2. In a distinguishing game, b ∈ {0, 1} is uniformly randomly chosen to
select one of two worlds. For ∆A(Sh, S0), if b = 0 then Sh is selected. Otherwise,
S0 is selected. For ∆A′(Sh, S1), if b = 0 then Sh is selected. Otherwise, S1 is
selected. Then for any robustness adversary A, there exists A′ that satisfies the
following.

∆A(Sh, S0) ≤ ∆A′(Sh, S1).

Proof. We can construct a distinguishing adversary A′ between Sh and S1 using
an S0 and Sh distinguishing adversary A as a subalgorithm. A′ passes oracle
queries of A to its oracles and just returns results to A except when A queries
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RORk or RORu and conditions c ≥ λ and ready = 1 hold. If A queries RORk

or RORu and conditions c ≥ λ and ready = 1 hold, then A′ randomly picks a
bitstring and returns it to A. If b = 0, then A′ perfectly simulates Sh to A, and
if b = 1, then A′ perfectly simulates S0 to A. Finally, A′ outputs b′, which is the
final output of A.

Hence, the following holds:

∆A(S0, S1) ≤ 2∆A′(Sh, S1).

Therefore, we only need to upper bound ∆A′(Sh, S1).

5.2.1 Games for Robustness Proof. To upper bound ∆A′(Sh, S1), we sub-
stitute oracles used in S1 to oracles used in Sh using the game hopping technique.
We employ subgames for each substitution. The subgames are M-EXT game,
pREFa game, pREFf game, bRORk game, bRORu game, cRORk game, cRORu

game. The former 3 sub games are necessary to substitute REFa or REFf with
REF∗

a or REF∗
f , the latter 4 sub games are necessary to substitute RORk or

RORu with RORk or RORu
∗. One can see how the following subgames are used

to prove Theorem 1 via Lemma 3.
With oracles in Algorithm 7, M-EXT game, pREFa game, pREFf game pro-

cesses are defined like below.

M-EXT game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries E,E−1 and A1 queries

M-EXT[E](inc, h1, I, I cpu) multiple times, and gets the output.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

pREFa game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries E,E−1 multiple time and A1 queries pREFa[E](I)

once, and get returned value. Note that the order of queries is not specified.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

pREFf game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries E,E−1 multiple time and A1 queries

pREFf [E](I, I cpu) once, and get returned value. Note that the order
of queries is not specified.

3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.
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Algorithm 7 Oracles for refresh sub Games

Procedure INIT()
1: b←$ {0, 1}
2: E ←$ Πmw(2n, 2n,K,W, sum,Wsum)
3: k ←$ {0, 1}n //No usage in M-EXT game

Procedure M-EXT[E](inc, h1, I, I cpu)
1: if b = 0 then
2: s←$ {0, 1}2n
3: else
4: k ← COMP[E](inc, h1, I)
5: Icpu ← 0n ∥ k ∥ Icpu ∥ 0c−1

6: sL ← COMP[E](0, const, Icpu ∥ 0)
7: sR ← COMP[E](0, const, Icpu ∥ 1)
8: s← sL ∥ sR
9: return (inc, h1, s)

Procedure pREFa[E](I)
1: if b = 0 then
2: h←$ {0, 1}n
3: else
4: I0 ← 0n ∥ k
5: (I1, . . . , Iℓ)

2n←− I
6: h← const
7: for i← 0 to ℓ do
8: h← B[E](h, (i+ 1) · 2n, Ii)
9: return h

Procedure pREFf [E](I, I cpu)
1: if b = 0 then
2: s←$ {0, 1}2n
3: else
4: y ← k
5: y ← COMP[E](0, const, 0n ∥y ∥

I)
6: Icpu ← 0n ∥ y ∥ Icpu ∥ 0c−1

7: sL ← COMP[E](0, const, Icpu ∥
0)

8: sR ← COMP[E](0, const, Icpu ∥
1)

9: s← sL ∥ sR
10: return s

And define some values like below.

– AdvM-EXT(p, q, σ, λ) : The advantage upper bound against any λ-legitimate
adversary A that makes at most p queries to E or E−1, q queries to M-EXT,
and the total length of entropy input I is less than 2nσ bits.

– AdvpREFa(p, ℓ) : The advantage upper bound against any adversary A that
makes at most p queries to E or E−1, entropy input I’s length for pREFa

is less than 2nℓ bits.

– AdvpREFf
(p, ℓ) : The advantage upper bound against any adversary A that

makes at most p queries to E or E−1, r entropy input blocks to pREFf , and
the input block I and I cpu’s length is less than 2nℓ bits.



Provable Security of Linux-DRBG in the Seedless Robustness Model 25

Algorithm 8 Oracles for Base ROR subgames

Procedure INIT()
1: kbase ←$ {0, 1}n
2: b←$ {0, 1}
3: π ←$ Perm(2n)

Procedure bRORk[π](len)
1: if b = 0 then
2: y0 ←$ {0, 1}len+2n

3: return y0
4: else
5: kbase∥c key← CB[π](kbase, 0, 2n)
6: k ← c key
7: c key ∥ y1 ← CB[π](c key, 0, 2n)
8: B ← CB[π](k, 1, len− n)
9: y1 ← y1 ∥B

10: y1 ← y1[0 : len− 1]
11: return kbase ∥ c key ∥ y1

Procedure bRORu[π](len)
1: if b = 0 then
2: y0 ←$ {0, 1}len+2n

3: return y0
4: else
5: kbase∥c key← CB[π](kbase, 0, 2n)
6: c key ∥ k ← CB[π](c key, 0, 2n)
7: if len ≤ n then
8: return kbase ∥ c key ∥ k[0 :

len− 1]

9: y1 ← CB[π](k, 1, len)
10: y1 ← y1[0 : len− 1]
11: return kbase ∥ c key ∥ y1

Algorithm 9 Oracles for CPU ROR subgames

Procedure INIT()
1: c key←$ {0, 1}n
2: b←$ {0, 1}
3: π ←$ Perm(2n)

Procedure cRORk[π](len)
1: if b = 0 then
2: y0 ←$ {0, 1}len+2n

3: return y0
4: else
5: k ← c key
6: c key ∥ y1 ← CB[π](c key, 0, 2n)
7: B ← CB[π](k, 1, len− n)
8: y1 ← y1 ∥B
9: y1 ← y1[0 : len− 1]

10: return kbase ∥ c key ∥ y1

Procedure cRORu[π](len)
1: if b = 0 then
2: y0 ←$ {0, 1}len+2n

3: return y0
4: else
5: c key ∥ k ← CB[π](c key, 0, 2n)
6: if len ≤ n then
7: return kbase ∥ c key ∥ k[0 :

len− 1]

8: y1 ← CB[π](k, 1, len)
9: y1 ← y1[0 : len− 1]

10: return kbase ∥ c key ∥ y1

With oracles in Algorithm 8 and in Algorithm 9, we can define bRORk game,
bRORu and cRORk game, cRORu game processes like below.
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bRORx game.(x ∈ {k, u})

1. Oracle runs INIT() procedure.
2. Adversary A2 queries π, π−1 multiple time and queries bRORx[π](len) once,

and get returned value. Note that the order of queries is not specified.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

cRORx game.(x ∈ {k, u})

1. Oracle runs INIT() procedure.
2. Adversary A2 queries π, π−1 multiple time and queries cRORx[π](len) once,

and get returned value. Note that the order of queries is not specified.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

And for all O ∈ {bRORk,bRORu, cRORk, cRORu}, let AdvO(p, ℓ) be the
advantage upper bound against any adversary A that makes at most p queries
to π or π−1, inputs 2nℓ to O.

After hopping every game, we obtain the upper bound of ∆A(Sh, S1). The
result is presented in the Lemma 3.

Lemma 3. For any λ-legitimate robustness adversary A satisfying conditions
in Theorem 1, the following holds.

∆A(S0, S1) ≤ 2∆A(Sh, S1)

≤ 2AdvM-EXT(p+ 3q1 + σ1, q1, σ1, λ)

+ 2q1 (AdvpREFa
(p+ 3q1 + σ1, ℓ1) +AdvpREFf

(p+ 3q1 + σ1, ℓ1))

+ 2q2 (AdvbRORk
(p+ 2q2 + σ2, ℓ2) +AdvcRORk

(p+ 2q2 + σ2, ℓ2))

+ 2q2 (AdvbRORu
(p+ 2q2 + σ2, ℓ2) +AdvcRORu

(p+ 2q2 + σ2, ℓ2)) .

The proof of Lemma 3 is deferred to Section 5.3. Now, it remains to calculate
the advantage of the subgames introduced in Lemma 3. This is summarized in
Lemma 4.
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Lemma 4. If p+ σ ≤ 2n−1 and p+ ℓ ≤ 2n−1, the following inequalities hold:

AdvM-EXT(p, q, σ, λ) ≤
9pq + 4qσ + σ2

2n
+

9q

20.5n
+

p2

2n
+

4pq

2λ
, (2)

AdvpREFa(p, ℓ) ≤
3p

2n
+

ℓ

2n
+

3

20.5n
, (3)

AdvpREFf
(p, ℓ) ≤ 9p

2n
+

ℓ+ 2

2n
+

9

20.5n
, (4)

AdvbRORk
(p, ℓ) ≤ 1 + 2p

2n
+

ℓ2 + ℓp

22n
, (5)

AdvcRORk
(p, ℓ) ≤ p

2n
+

ℓ2 + ℓp

22n
, (6)

AdvbRORu
(p, ℓ) ≤ 1 + 3p

2n
+

ℓ2 + ℓp

22n
, (7)

AdvcRORu(p, ℓ) ≤
2p

2n
+

ℓ2 + ℓp

22n
. (8)

The proof of Lemma 4 is deferred to Section 5.4.

5.3 Proof of Lemma 3

To upper bound ∆A(Sh, S1), we substitute oracles used in S1 to oracles used in
Sh using the game hopping technique. To substitute the first REFf query after
ED, we define a system R. Define R as a system based on S1. The only difference
between R and S1 is that the first REFf query after ED is REFf

∗ in R. By the
triangle inequality, the following holds:

∆A(Sh, S1) ≤ ∆A(Sh, R) +∆A(R,S1). (9)

To upper bound ∆A(Sh, S1) in (9), we first upper bound ∆A(R,S1) in Lemma 5.

Lemma 5. ∆A(R,S1) ≤ AdvM-EXT(p+ 3q1 + σ1, r, σ1, λ).

Proof. M-EXT game adversary A′ = (A′
1,A′

2) can be constructed using R and
S1 distinguishing adversary A = (A1,A2) by answering queries of A as follows.
First A′ get access to oracles for E and E−1 from M-EXT game, and then
prepares for simulation as follows:

– c← 0, ready← 0, π ←$ Perm(2n), S ← setup().

Then, A′ handles queries of A as follows:

– REFf [E](I, γ, Icpu): If this query is the first REFf query after ED, then A′
1

first checks S.knext ̸= ϵ. If S.knext ̸= ϵ, then A′
1 sets I as follows:

I ← 0n ∥ S.knext ∥ I.

After considering S.knext, A′
1 queries (S.t, S.h, I, Icpu) to the M-EXT. Then

A′
2 gets its return value (inc, h1, s = sL ∥ sR). Then, A′ updates
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• S.knext ← sL, S.h← const, S.t← 2n, S.kbase ← sR,
• S.G flag1 ← 1, S.G flag2 ← 1, · · · , S.G flagC ← 1.
A′

2 gives estimated entropy γ to A2. Finally, A′ sets c ← c + γ and sets
ready ← 1. Note that A′

1 does not give more information to A′
2 than A1

gives to A2. Therefore, if A1 is legitimate then A′
1 is legitimate.

– E and E−1: A′ queries to the E and E−1 oracles of the M-EXT game. Then
returns the value to A.

– Other queries: A′ properly simulates the queries. Note that A′ needs to query
E or E−1 at most 3q1 + σ1 times to simulate REFa and REFf itself.

Finally, A′ outputs the final output of A. If a random coin b of the M-EXT game
is 0, then A′ simulates R to A. Otherwise A′ simulates S1 to A.

To upper bound ∆A(Sh, R) in (9), we define a system Ti for i = 0, . . . , q1.
The system T0 is equal to R. The system Ti+1 is defined based on Ti. The only
difference between Ti and Ti+1 is that Ti+1 uses REFf

∗ instead of (i + 1)-th
REFf query. Then the following holds by the triangle inequality:

∆A(Sh, R) ≤
q1−1∑
i=0

∆A(Ti, Ti+1) +∆A(Sh, Tq1). (10)

To derive an upper bound of∆A(Sh, R) in (10), we first upper bound∆A(Ti, Ti+1)
for i = 0, . . . , q1 − 1 in Lemma 6.

Lemma 6. For all i = 0, . . . , q1 − 1, the following holds:

∆A(Ti, Ti+1) ≤ AdvpREFf
(p+ 3q1 + σ1, ℓ1).

Proof. We construct pREFf adversaryA′ as follows. FirstA′ get access to oracles
for E and E−1 from pREFf game, and then prepares for simulation as follows:

– c← 0, ready← 0, π ←$ Perm(2n), S ← setup().

Then, A′ handles queries of A as follows:

– REFf [E](I, γ, Icpu): If this query is the (i+1)-th REFf , then A′
1 first checks

S.knext ̸= ϵ. If S.knext ̸= ϵ, then A′
1 sets I as follows:

I ← 0n ∥ S.knext ∥ I.

After considering S.knext, A′
1 queries (I, Icpu) to the pREFf . Then A′

2 gets
its return value s = sL ∥ sR. Then, A′ updates
• S.knext ← sL, S.h← const, S.t← 2n, S.kbase ← sR,
• S.G flag1 ← 1, S.G flag2 ← 1, · · · , S.G flagC ← 1.
A′

2 gives estimated entropy γ to A2. Finally, A′ sets c← c+ γ.
– E and E−1: A′ queries to the E and E−1 oracles of the pREFf game. Then

returns the value to A.
– Other queries: A′ properly simulates the queries. Note that A′ needs to query

E or E−1 at most 3q1 + σ1 times to simulate REFa and REFf itself.
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Finally, A′ outputs the final output of A. If a random coin b of the pREFf game
is 0, then A′ simulates Ti+1 to A. Otherwise A′ simulates Ti to A. Hence, the
following holds:

∆A(Ti, Ti+1) ≤ AdvpREFf
(p+ 3q1 + σ1, ℓ1).

To upper bound ∆A(Sh, Tr) in (10), we define a system Wi for i = 0, . . . , q1.
The system W0 is equal to Tr. The system Wi+1 is defined based on Wi. The only
difference between Wi and Wi+1 is that Wi+1 uses REFa

∗ instead of (i + 1)-th
REFa query. Then the following holds by the triangle inequality:

∆A(Sh, Tr) ≤
r−1∑
i=0

∆A(Wi,Wi+1) +∆A(Sh,Wr). (11)

To derive an upper bound of ∆A(Sh, Tr) in (11), we upper bound ∆A(Wi,Wi+1)
for i = 0, . . . , q1 − 1 in Lemma 7.

Lemma 7. For all i = 0, . . . , q1 − 1, the following holds:

∆A(Wi,Wi+1) ≤ AdvpREFa(p+ 3q1 + σ1, ℓ1).

Proof. We construct pREFa adversary A′ as follows. First A′ gets access to
oracles for E and E−1 from pREFa game, and then prepares for simulation as
follows:

– c← 0, ready← 0, π ←$ Perm(2n), S ← setup().

Then, A′ handles queries of A as follows:

– REFa[E](I, γ): If this query is the (i + 1)-th REF, then A′
1 first checks

S.knext ̸= ϵ. If S.knext ̸= ϵ, then A′
1 sets I as follows:

I ← 0n ∥ S.knext ∥ I.

After considering S.knext, A′
1 queries I to the pREFa. Then A′

2 gets its return
value h. A′ calculates ℓ which is block length of I as the following:

(I1, . . . , Iℓ)
2n←− I.

Then, A′ updates
• S.h← h, S.t← S.t+ (ℓ+ 2) · 2n.
A′

2 gives estimated entropy γ to A2. Finally, A′ sets c← c+ γ.
– E and E−1: A′ queries to the E and E−1 oracles of the pREFa game. Then

returns the value to A.
– Other queries: A′ properly simulates the queries. Note that A′ needs to query

E or E−1 at most 3q1 + σ1 times to simulate REFa and REFf itself.

Finally, A′ outputs the final output of A. If a random coin b of the pREFa game
is 0, then A′ simulates Wi+1 to A. Otherwise A′ simulates Wi to A. Hence, the
following holds:

∆A(Wi,Wi+1) ≤ AdvpREFa
(p+ 3q1 + σ1, ℓ1)
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Now we need to derive an upper bound of ∆A(Wr, Sh) in (11). Note that the
differences between the two systems are usage of ROR or ROR∗. To substitute
ROR to ROR∗, we define a system HC

i for i = 0, . . . , q2. Let H
C
0 = Wr. Because

Linux DRBG uses a multi-core system, we need to define worlds as follows:

– HBn
i : if i-th ROR is RORk[π](len, ncpu) with S.G flagncpu

= 1, then it runs

RORk
∗[π](len, ncpu). Otherwise, it works like HC

i−1.
– HB

i : if i-th ROR is RORu[π](len, ncpu) with S.G flagncpu
= 1, then it runs

RORu
∗[π](len, ncpu). Otherwise, it works like HBn

i .
– HCn

i : if i-th ROR is RORk[π](len, ncpu) with S.G flagncpu
= 0, then it runs

RORk
∗[π](len, ncpu). Otherwise, it works like HB

i .
– HC

i : if i-th ROR is RORu[π](len, ncpu) with S.G flagncpu
= 0, then it runs

RORu
∗[π](len, ncpu). Otherwise, it works like HCn

i .

Then the following holds by the triangle inequality:

∆A(Sh,Wr) ≤
q−1∑
i=0

∆A(H
C
i , HC

i+1). (12)

Note that HC
q = Sh.

To bound ∆A(H
C
i , HC

i+1), we use the triangle inequality as follows:

∆A(H
C
i , HC

i+1) ≤ ∆A(H
C
i , HBn

i+1) +∆A(H
Bn
i+1, H

B
i+1)

+∆A(H
B
i+1, H

Cn
i+1) +∆A(H

Cn
i+1, H

C
i+1).

First, we upper bound ∆A(H
C
i , HBn

i+1).

Lemma 8. For i = 0, . . . , q2 − 1, the following holds:

∆A(H
C
i , HBn

i+1) ≤ AdvbRORk
(p+ 2q2 + σ2, ℓ2).

Proof. HC
i and HBn

i+1 have different behaviors only when the (i + 1)-th ROR
is RORk[π](len, ncpu) with S.G flagncpu

= 1. So we assume (i + 1)-th ROR is
RORk[π](len, ncpu) with S.G flagncpu

= 1. We can construct bRORk game ad-

versary A′ using HC
i and HBn

i+1 distinguishing adversary A as follows. First, A′

get access to oracles for π and π−1 from bRORk game, and then prepares for
simulation as follows:

– c← 0, ready← 0, E ←$ Πw(2n, 2n,K,W), S ← setup().

then A′ handles queries of A as follows:

– (i + 1)-th RORk[π](len, ncpu): A′ queries len to bRORk game and gets its
return value y. A′ partitions y as follows.

kbase||c key||y∗ ← y.

A′ updates the state S as S.kbase ← kbase and
S.ckeyncpu

← c key. Then give y∗ to A.
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– π and π−1: A′ queries to the π and π−1 oracles of the bRORk game. Then
returns the value to A.

– Other queries: A′ simulates the query to A. Note that A′ needs to query π
or π−1 at most 2q2 + σ2 times to simulate RORk and RORu itself.

Finally, A′ outputs the final output of A. If a random coin b of bRORk game is
0, then A′ simulates HBn

i+1 to A. Otherwise, A′ simulates HC
i to A.

Now we upper bound ∆A(H
Bn
i , HB

i ).

Lemma 9. ∆A(H
Bn
i , HB

i ) ≤ AdvbRORu(p+ 2q2 + σ2, ℓ2).

Proof. HB
i and HBn

i have different behaviors only when the i-th ROR is
RORu[π](len, ncpu) with S.G flagncpu

= 1. So we assume i-th ROR is the case.
Then this lemma can be proved similarly to the Lemma 8. The only difference
is for i-th RORu call, A′ queries to bRORu instead of bRORk.

Now we upper bound ∆A(H
B
i , HCn

i ).

Lemma 10. ∆A(H
B
i , HCn

i ) ≤ AdvcRORk
(p+ 2q2 + σ2, ℓ2).

Proof. HB
i and HCn

i have different behaviors only when i-th ROR call is
RORk[π](len, ncpu) with S.G flagncpu

= 0. So we assume i-th ROR call is the

case. We can construct cRORk game adversary A′ using HB
i and HCn

i distin-
guishing adversary A as follows. First, A′ get access to oracles for π and π−1

from cRORk game, and then prepares for simulation as follows:

– c← 0, ready← 0, E ←$ Πw(2n, 2n,K,W), S ← setup().

then A′ handles queries of A as follows:

– i-th RORk[π](len, ncpu): A′ queries len to cRORk and gets its return value
y. A′ partitions y as follows.

c key||y∗ ← y.

A′ updates the state S as S.ckeyncpu
← c key. Then give y∗ to A.

– π and π−1: A′ queries to the π and π−1 oracles of the cRORk game. Then
returns the value to A.

– Other queries: A′ simulates the query to A. Note that A′ needs to query π
or π−1 at most 2q2 + σ2 times to simulate RORk and RORu itself.

Finally, A′ outputs the final output of A. If a random coin b of cRORk game is
0, then A′ simulates HCn

i to A. Otherwise, A′ simulates HB
i to A.

Finally, we upper bound ∆A(H
Cn
i , HC

i ).

Lemma 11. ∆A(H
Cn
i , HC

i ) ≤ AdvcRORu
(p+ 2q2 + σ2, ℓ2).

Proof. HCn
i and HC

i have different behavior only when i-th ROR call is
RORu[π](len, ncpu) with S.G flagncpu

= 0. So we assume that i-th ROR call is
the case. This lemma can be proved similarly to the Lemma 10.

With Lemma 2, 5, 6, 7, 8, 9, 10, and 11, we can conclude the proof of
Lemma 3.
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5.4 Proof of Lemma 4

5.4.1 Proof of (4) Instead of proving the security of the whole pREFf game,
we first prove prf security of COMP function given the initial state S.knext has
sufficient entropy, named COMP prf (CPRF) game described in Algorithm 10.

Algorithm 10 Oracles for CPRF Game

Procedure INIT()
1: b←$ {0, 1}
2: E ←$ Πmw(2n, 2n,K,W, sum,Wsum)
3: k ←$ {0, 1}n

Procedure CPRF[E](I)
1: if b = 0 then
2: z ←$ {0, 1}n
3: else
4: z ← COMP[E](0, const, 0n ∥ k ∥ I)
5: return z

With oracles in Algorithm 10, CPRF game process is defined like below.

CPRF game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries E,E−1 multiple time and A1 queries CPRF[E](I)

once, and get returned value. Note that the order of queries is not specified.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

In the CPRF game, we can bound the adversary’s advantage using the fol-
lowing lemma.

Lemma 12. Let AdvCPRF(p, ℓ) be the advantage upper bound against any ad-
versary A that makes at most p queries to E or E−1, entropy input I’s length
for CPRF is less than 2nℓ. If p + ℓ ≤ 2n−1 and |Wsum| ≤ 20.5n, the following
inequality holds.

AdvCPRF (p, ℓ) ≤
3p

2n
+

ℓ

2n
+

3

20.5n
.

Proof. Assume that A2 can obtain input I for CPRF query and k at the end of
the game. Note that additional information never degrades adversarial advan-
tage. Then the transcript τ is defined as follows.

– The CPRF call input (I1, . . . , Iℓ, len) where

len = |I| ,

(I1, . . . , Iℓ−1, I
′
ℓ)

2n←− I,
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and Iℓ = 02n−rem ∥ I ′ℓ where

rem = len− 2n(⌈len/2n⌉ − 1).

– The CPRF call output z.

– Query results for block cipher E, (k, x, y) and their set, subtranscript τp.

– Additionally returned k.

For the notational convenience, let τq be (I0, I1, . . . , Iℓ, z) where I0 = 0n ∥ k.
Then, a transcript is the form of

τ = (τp, τq).

And let pi be the number of queries in τp such that (·, · ∥ (0n/2 ∥ (i + 1) · 2n ∥
0n/4) ⊕ IV, ·) for 0 ≤ i ≤ ℓ − 1, pℓ be the number of queries in τp such that
(·, · ∥ (0n/2 ∥ 2n+ len ∥ 0n/8 ∥ 1n/8)⊕ IV, ·), and T be the size of strong space for
E. Note that T ≥ 22n − 2n. We define a bad event like below.

– bad1 : (I0, const ∥ (0n/2 ∥ 2n ∥ 0n/4)⊕ IV, ·) ∈ τp.

– bad2 : ℓ = 0 and const⊕ z ∈ Wsum.

Then, we can get the probability that a bad event happens in the ideal world.

pid [bad1] ≤
p0
2n

,

pid [bad2] ≤
1

20.5n
.

For any good transcript τ = (τp, τq), we have

pre [(τp, τq)]

pid [(τp, τq)]

=
Pr [E ⊢ τp] Pr [E ⊢ τq | E ⊢ τp]

Pr [E ⊢ τp] Pr [z]

=
Pr [E ⊢ τq | E ⊢ τp]

1/2n

For 0 ≤ i ≤ ℓ, we recursively define a random variable Hi as

Hi+1 = B[E](hi, 2(i+ 1)n, Ii)

where H0 = const. We define the following events.

– FRESHi : (·, Hi ∥ (0n/2 ∥ (i+ 1) · 2n ∥ 0n/4)⊕ IV, ·) ̸∈ τp for 1 ≤ i ≤ ℓ− 1.

– FRESHℓ : (·, Hℓ ∥ (0n/2 ∥ len+ 2n ∥ 0n/8 ∥ 1n/8)⊕ IV, ·) ̸∈ τp.

– FREEℓ : Hℓ ⊕ z /∈ Wsum.
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Then, we have two following inequalities.

Pr

¬FRESHi | E ⊢ τp ∧

i−1∧
j=1

FRESHj

 ≤ pi2
n

T − p− ℓ− 1
,

Pr

¬FREEℓ | E ⊢ τp ∧

ℓ−1∧
j=1

FRESHj

 ≤ |Wsum| 2n

T − p− ℓ− 1
,

Pr

B′[E](Hℓ, 2n+ len, Iℓ) = z | E ⊢ τp ∧

 ℓ∧
j=0

FRESHj

 ∧ FREEℓ


≥ 2n − p− ℓ

22n
.

We can make a lower bound for good transcript probability with these two
inequalities.

pre [(τp, τq)]

pid [(τp, τq)]

=
Pr [E ⊢ τq | E ⊢ τp]

1/2n

≥ 2n · Pr

FREEℓ ∧
ℓ∧

j=1

FRESHj

∣∣∣∣E ⊢ τp


· Pr

E ⊢ τq

∣∣∣∣E ⊢ τp ∧ FREEℓ ∧

 ℓ∧
j=1

FRESHj


≥ 2n ·

ℓ−1∏
i=1

Pr

FRESHi

∣∣∣∣E ⊢ τp ∧

i−1∧
j=1

FRESHj


· Pr

[
FREEℓ ∧ FRESHℓ

∣∣∣∣E ⊢ τp ∧

(
ℓ−1∧
i=1

FRESHj

)]

· Pr

[
B′[E](Hℓ, 2n+ len, Iℓ) = z

∣∣∣∣E ⊢ τp ∧

(
ℓ∧

i=1

FRESHj

)
∧ FREEℓ

]

≥

(
1−

ℓ−1∑
i=1

pi2
n

T − p− ℓ− 1

)(
1− pℓ2

n + |Wsum| 2n

T − p− ℓ− 1

)(
1− p+ ℓ

2n

)
≥ 1−

(
3p− 2p0 + ℓ

2n
+

2

20.5n

)
(13)

From bad probability and good probability, we can conclude the proof.
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And because |Icpu| = n, we can show below inequality with triangle inequal-
ity.

AdvpREFf
(p, ℓ) ≤ AdvCPRF(p, ℓ) + 2AdvCPRF(p, 1).

With this inequality and Lemma 12, we can prove ( 4).

5.4.2 Proof of (2) Instead of proving the security of the whole M-EXT game,
we first prove prf security of COMP function given the input to COMP has suf-
ficient entropy, named multi-entropy (M-ENT) game described in Algorithm 11.

Algorithm 11 Oracles for Multi-Entropy Security Game

Procedure INIT()
1: b←$ {0, 1}
2: E ←$ Πmw(2n, 2n,K,W, sum,Wsum)

Procedure M-ENT[E](inc, h1, I)
1: if b = 0 then
2: y ←$ {0, 1}n
3: else
4: y ← COMP[E](inc, h1, I)

5: return (inc, h1, y)

With oracles in Algorithm 11, M-ENT game process is defined like below.

M-ENT game.

1. Oracle runs INIT() procedure.
2. Adversary A2 queries E,E−1 and A1 queries

M-ENT[E](inc, h1, I, len) multiple time, and get returned value.
3. Adversary outputs b′ ∈ {0, 1}, if b′ = b, adversary wins.

The adversarial advantage for the M-ENT game is defined as follows.

– AdvM-ENT(p, t, σ, λ) : The advantage upper bound against any λ-legitimate
adversary A that makes at most p queries to E or E−1, t queries to M-ENT,
and the total length of entropy input I is less than 2nσ.

In the M-ENT game, we can bound the adversarial advantage using the
following lemma.

Lemma 13. If p+ σ ≤ 2n−1, the following inequality holds:

AdvM-ENT(p, q, σ, λ) ≤
p2 + 3pq + 2qσ + σ2

2n
+

3q

20.5n
+

pq

2λ
.
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Proof. Assume that A2 can obtain inputs (inc, h1, I) for all M-ENT queries at
the end of the game. Note that additional information never degrades adversarial
advantage. Then the transcript τ is defined as follows.

– The M-ENT call results, Qj = (incj , hj
1, I

j
1 , · · · , I

j
ℓj
, lenj , yj) where yj is y-th

M-ENT call output and

lenj =
∣∣Ij∣∣ ,

(Ij1 , . . . , I
j
ℓj−1, I

′j
ℓj
)

2n←− Ij ,

and Ijℓj = 02n−rem ∥ I ′jℓj where

rem = lenj − 2n(⌈lenj/2n⌉ − 1).

and ℓj is the block length for j-th entropy input Ij . We denote τq = (Q1, . . . , Qq).
– query result for block cipher E, (k, x, y) and their set, subtranscript τp.

The transcript is form of τ = (τp, τq). Let pu be the number of queries in τp

s.t. (·, · ∥ (0n/2 ∥ u ∥ 0n/4)⊕ IV, ·). It is obvious that
∑2n−1

u=0 pu ≤ p. Let T be the
size of strong space for E. Note that T ≥ 22n − 2n. For each Qj , define ℓ′j like
below.

– The maximum number that satisfies (Iji , h
j
i ∥ (0n/2 ∥ incj + i · 2n ∥ 0n/4) ⊕

IV, yji ) ∈ τp for all 1 ≤ i ≤ ℓ′j , where hj
i+1 = TRSum(yji )⊕ hj

i .

– If ℓ′j = ℓj − 1 and (Ijℓj , h
j
ℓj
∥ (0n/2 ∥ incj + lenj ∥ 0n/8 ∥ 1n/8) ⊕ IV, ·) ∈ τp

where hj
ℓj

= TRSum(yjℓj−1)⊕ hj
ℓ−1, we let ℓ′j = ℓj .

Then we define bad events for M-ENT game like below.

– bad1 : there exist two distinct (k, x ∥ ·, y), (k′, x′ ∥ ·, y′) ∈ τp such that x ⊕
TRSum(y) = x′ ⊕ TRSum(y′).

– badj2 : for all 1 ≤ i ≤ ℓj − 1, (Iji , h
j
i ∥ (0n/2 ∥ incj + i · 2n ∥ 0n/4)⊕ IV, yji ) ∈ τp

and (Ijℓj , h
j
ℓj
∥ (0n/2 ∥ incj + lenj ∥ 0n/8 ∥ 1n/8) ⊕ IV, ·) ∈ τp where hj

i+1 =

TRSum(yji )⊕ hj
i for 1 ≤ i ≤ ℓj − 1. Namely, ℓ′j = ℓj .

– bad3 : there exists some j that satisfies ℓj − ℓ′j = 1 and hj
ℓj
⊕ yj ∈ Wsum.

Then we can bound bad1 probability like below.

pid [bad1] ≤
p2

2

2n

T − 1
≤ p2

2n
.

To bound pid
[
badj2 ∧ ¬bad1

]
, define a potential chain as the tuple (incj , hj

1, · · · , h
j
ℓ , t

j)

for some ℓ, which satisfies for all 1 ≤ i ≤ ℓ − 1, (·, hj
i ∥ 0n/2 ∥ incj + i · 2n ∥

0n/4, yji ) ∈ τp and (·, hj
ℓ ∥ 0n/2 ∥ incj + (ℓ− 1)2n+ tj ∥ 0n/8 ∥ 1n/8, ·) ∈ τp where

hj
i+1 = TRSum(yji )⊕hj

i for 1 ≤ i ≤ ℓj − 1 and 1 < tj ≤ 2n. Then assuming bad1
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doesn’t happen, which means there is no collision in τp, we can bound the num-
ber of potential chains as at most p. Therefore by the legitimacy of A, for any
τj = (τp, τq \Qj) that satisfies τp doesn’t make bad1 event and Ij , the random
variable about Ij , we have

pid
[
badj2|τj

]
≤ p · Pred(Ij |τj).

Let Γj be the set of all possible τj and gΓj be the set of all possible τj =
(τp, τq \ Qj) that satisfies τp doesn’t make bad1 event. Then with inequality
above, we can get below inequality.

pid
[
badj2 ∧ ¬bad1

]
=
∑
τj∈Γj

pid [τj ] · pid
[
badj2 ∧ ¬bad1|τj

]
=

∑
τj∈gΓj

pid [τj ] · pid
[
badj2|τj

]
≤

∑
τj∈gΓj

pid [τj ] p · Pred(Ij |τj)

≤ p · Pred(Ij |Tj) ≤
p

2λ

where Tj is random variable about τj .
And it is trivial that

Pr [bad3] ≤
q |Wsum|

2n
=

q

20.5n
.

Therefore we can bound bad event probability.

pid [bad] = pid

bad1 ∨
 q∨

j=1

badj2

 ∨ bad3


≤ pid [bad1] +

q∑
j=1

pid
[
badj2 ∧ ¬bad1

]
+ pid [bad3]

≤ p2

2n
+

pq

2λ
+

q

20.5n
. (14)

For good transcript τ = (τp, τq), we have

pre [(τp, τq)]

pid [(τp, τq)]

=
Pr [E ⊢ τp] Pr [E ⊢ τq | E ⊢ τp]

Pr [E ⊢ τp] Pr [y1, · · · , yq]

=
Pr [E ⊢ τq | E ⊢ τp]

1/2qn

= 2qn Pr [E ⊢ τq | E ⊢ τp] .
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For 1 ≤ j ≤ q, ℓ′t < i ≤ ℓt, and any vji ∈ {0, 1}2n, let Vj be a tuple of

intermediate values (v1ℓ′1+1, · · · , v1ℓ1 , v
2
ℓ′2+1, · · · , v

j
ℓj
) that satisfies

yt = TRSum(vtℓt)⊕ ht
ℓt ,

where ht
i+1 = TRSum(vti)⊕ ht

i, with ht
ℓ′t+1 = TRSum(ytℓ′t

)⊕ ht
ℓ′t
, for 1 ≤ t ≤ j.

For each Vj , we define a set τ jp that contains:

– For 1 ≤ t ≤ j and ℓ′t < i ≤ ℓt − 1, the tuple (Iti , h
t
i ∥ (0n/2 ∥ inct + i · 2n ∥

0n/4)⊕ IV, vti).
– For 1 ≤ t ≤ j, the tuple (Itℓt , h

t
ℓt
∥ (0n/2 ∥ inct + lent ∥ 0n/8 ∥ 1n/8)⊕ IV, vtℓt).

For the rest of the proof, we assume τ ip as a pseudo-transcript, which means

E ⊢ τ ip means for all (k, x, y) ∈ τ ip, Ek(x) = y.

And let Γ ′
j be the set of all possible τ jp that satisfies the following condition:

– For any g ∈ {0, 1}n/4 and every distinct (k, h ∥ (0n/2 ∥ g ∥ 0)⊕ IV, y), (k′, h′ ∥
(0n/2 ∥ g ∥ 0)⊕ IV, y′) ∈ τp ∪ τ jp , h⊕ TRSum(y) ̸= h′ ⊕ TRSum(y′).

By the definition of Γ ′
j , we can acknowledge that for any τ jp ∈ Γ ′

j , E ⊢ τp∪τ jp also
means E ⊢ (τp, Q1, · · · , Qj). Let E ⊢ Γ ′

j be the event that there exists τ ∈ Γ ′
j

that satisfies E ⊢ τ with some abuse of notation. Then with Γ ′
0 = ∅, we have

Pr [E ⊢ τq | E ⊢ τp]

≥ Pr
[
E ⊢ Γ ′

q | E ⊢ τp
]

≥
q∏

j=1

Pr
[
E ⊢ Γ ′

j | E ⊢ τp ∧ E ⊢ Γ ′
j−1

]
.

For 1 ≤ j ≤ q, ℓ′j < i ≤ ℓj , we recursively define a random variable Hj
i as

Hj
i+1 = B[E](Hj

i , inc
j + i · 2n, Iji ).

Where Hj
ℓ′j

= hj
ℓ′j
. With any τ j−1

p ∈ Γ ′
j−1, define following events.

– FRESHj
i : (·, H

j
i ∥ (0n/2 ∥ incj + i · 2n ∥ 0n/4)⊕ IV, ·) ̸∈ τp ∪ τ j−1

p for ℓ′j + 1 ≤
i ≤ ℓj − 1.

– FRESHj
ℓj
: (·, Hj

ℓ ∥ (0n/2 ∥ incj + lenj ∥ 0n/8 ∥ 0n/8)⊕ IV, ·) ̸∈ τp ∪ τ j−1
p .

– FREEj
ℓj
: Hj

ℓj
⊕ yj /∈ Wsum.

Then we have three below inequalities.

– For ℓ′j + 1 ≤ i ≤ ℓj ,

Pr

¬FRESHj
i | E ⊢ τp ∪ τ j−1

p ∧

 i−1∧
t=ℓ′j+1

FRESHj
t

 ≤ (pincj+i + j − 1)2n

T − p− σ + 1
.
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–

Pr

¬FREEj
ℓj
| E ⊢ τp ∪ τ j−1

p ∧

 ℓj−1∧
t=ℓ′j+1

FRESHj
t

 ≤ |Wsum| 2n

T − p− σ + 1
.

–

Pr

B′[E](Hj
ℓj
, incj + lenj , Ijℓj ) = sj | E ⊢ τp ∪ τ j−1

p ∧ FREEj
ℓj
∧

 ℓj∧
t=ℓ′j+1

FRESHj
t


≥ 2n − p− σ

22n
.

Similarly to (13), we have

Pr
[
E ⊢ Γ ′

j | E ⊢ τp ∧ E ⊢ τ j−1
p

]
≥
(
1−

(
2p+ 2qℓj + 2 · 20.5n

2n
+

p+ σ

2n

))
· 1/2n.

for all τ j−1
p ∈ Γ ′

j , then it also means

Pr
[
E ⊢ Γ ′

j | E ⊢ τp ∧ E ⊢ Γ ′
j−1

]
≥
(
1−

(
2p+ 2qℓj + 2 · 20.5n

2n
+

p+ σ

2n

))
· 1/2n. (15)

With (15), we can bound good transcript probability. With that bound and (14),
we can conclude the proof.

pre [(τp, τq)]

pid [(τp, τq)]

≥ 2qn
q∏

j=1

Pr
[
E ⊢ Γ ′

j |E ⊢ τp ∧ E ⊢ Γ ′
j−1

]
≥ 2qn

q∏
j=1

((
1−

(
2p+ 2qℓj + 2 · 20.5n

2n
+

p+ σ

2n

))
· 1/2n

)

≥ 1−
(
3pq + 2qσ + σ2

2n
+

2q

20.5n

)
.

We can show the below inequality with triangle inequality.

AdvM-EXT(p, q, σ) ≤ AdvM-ENT(p, q, σ) + 2qAdvCPRF(p, σ).

With this inequality and because M-EXT security means the indistinguisha-
bility of ’base key’ and ’crng key’, we can trivially prove (2) with M-ENT and
prf security of BLAKE2s with Lemma 12 and Lemma 13.
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5.4.3 Proof of (3) Assume that A2 can obtain input I for pREFa query
and k at the end of the game. Note that additional information never degrades
adversarial advantage. Then the transcript τ is defined as follows.

– The pREFa call input (I1, . . . , Iℓ, len) where

len = |I| ,

(I1, . . . , Iℓ−1, Iℓ)
2n←− I,

– The pREFa call output h.
– Query results for block cipher E, (k, x, y) and their set, subtranscript τp.
– Additionally returned k.

For the notational convenience, let τq be (I0, I1, . . . , Iℓ, h) where I0 = 0n ∥ k.
Then, a transcript is the form of

τ = (τp, τq).

And let pi be the number of queries in τp such that (·, · ∥ (0n/2 ∥ (i + 1) · 2n ∥
0n/4) ⊕ IV, ·) for 0 ≤ i ≤ ℓ, and T be the size of strong space for E. Note that
T ≥ 22n − 2n. We define a bad event like below.

– bad1 : (I0, const ∥ (0n/2 ∥ 2n ∥ 0n/4)⊕ IV, ·) ∈ τp.
– bad2 : ℓ = 0 and const⊕ h ∈ Wsum.

Then, we can get the probability that a bad event happen in the ideal world.

pid [bad1] =
p0
2n

,

pid [bad2] =
|Wsum|
2n

≤ 1

20.5n
,

pid [bad] ≤
p0
2n

+
1

20.5n
.

For any good transcript τ = (τp, τq), we have

pre [(τp, τq)]

pid [(τp, τq)]

=
Pr [E ⊢ τp] Pr [E ⊢ τq | E ⊢ τp]

Pr [E ⊢ τp] Pr [h]

=
Pr [E ⊢ τq | E ⊢ τp]

1/2n

For 0 ≤ i ≤ ℓ, we recursively define a random variable Hi as

Hi+1 = B[E](hi, 2(i+ 1)n, Ii)

where H0 = const. We define the following events.
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– FRESHi : (·, Hi ∥ (0n/2 ∥ (i+ 1) · 2n ∥ 0n/4)⊕ IV, ·) ̸∈ τp for 1 ≤ i ≤ ℓ.
– FREEℓ : Hℓ ⊕ z /∈ Wsum.

Then, we have two following inequalities.

Pr

¬FRESHi | E ⊢ τp ∧

i−1∧
j=1

FRESHj

 ≤ pi2
n

T − p− ℓ+ 1
,

Pr

¬FREEℓ | E ⊢ τp ∧

ℓ−1∧
j=1

FRESHj

 ≤ |Wsum| 2n

T − p− ℓ+ 1
,

Pr

B[E](hℓ, 2n+ len, Iℓ) = h | E ⊢ τp ∧

 ℓ∧
j=0

FRESHj

 ∧ FREEℓ


≥ 2n − p− ℓ

22n
.

We can make a lower bound for good transcript probability with these two
inequalities.

pre [(τp, τq)]

pid [(τp, τq)]

=
Pr [E ⊢ τq | E ⊢ τp]

1/2n

≥ 2n · Pr

FREEℓ ∧
ℓ∧

j=1

FRESHj

∣∣∣∣E ⊢ τp


· Pr

E ⊢ τq

∣∣∣∣E ⊢ τp ∧ FREEℓ ∧

 ℓ∧
j=1

FRESHj


≥ 2n ·

ℓ−1∏
i=1

Pr

FRESHi

∣∣∣∣E ⊢ τp ∧

i−1∧
j=1

FRESHj


· Pr

[
FREEℓ ∧ FRESHℓ

∣∣∣∣E ⊢ τp ∧

(
ℓ−1∧
i=1

FRESHj

)]

· Pr

[
B[E](Hℓ, 2n+ len, Iℓ) = z

∣∣∣∣E ⊢ τp ∧

(
ℓ∧

i=1

FRESHj

)
∧ FREEℓ

]

≥

(
1−

ℓ−1∑
i=1

pi2
n

T − p− ℓ− 1

)(
1− pℓ2

n + |Wsum| 2n

T − p− ℓ− 1

)(
1− p+ ℓ

2n

)
≥ 1−

(
3p− 2p0 + ℓ

2n
+

2

20.5n

)
(16)

From bad probability and good probability, we can conclude the proof.
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5.4.4 Proof of (5) Define a transcript τ as

τ =
(
kbase

∗, {(Xi, Yi)}ℓi=1 , {(xj , yj)}pj=1

)
where elements of the τ is defined as follows:

– kbase
∗: the random key picked in the security game, the key is given to the

attacker when the attacker finishes querying,
– {(Xi, Yi)}ℓi=1: for every i = 1, . . . , ℓ,
• In real world, Yi = Xi +n/8 π(Xi)
• In ideal world, Yi ←$ {0, 1}2n,

where X1 = Z∥kbase∗∥0, and Xi has Z∥Y1[n :]∥(i−2) format for i = 2, . . . , ℓ.
Y1[n :] is given to the attacker when the attacker finishes querying,

– {(xj , yj)}pj=1: for every j = 1, . . . , p yi = π(xi).

Now we define bad cases:

– bad1 ⇔ kbase
∗ = Y1[n :].

– bad2 ⇔ ∃i ̸= j ∈ [ℓ] s.t. Yi −n/8 Xi = Yj −n/8 Xj .
– bad3 ⇔ ∃j ∈ [p] s.t. xj [n/2 : 3n/2− 1] = kbase

∗.
– bad4 ⇔ ∃j ∈ [p] s.t. xj [n/2 : 3n/2− 1] = Y1[n :].
– bad5 ⇔ ∃i ∈ [ℓ] and j ∈ [p] s.t. Yi = Xi +n/8 yj .

Note that we only consider the ideal world when analyzing bad cases. For bad1,
both keys are uniformly randomly picked from {0, 1}n. Hence

Pr [bad1] ≤
1

2n
.

For bad2, Yi and Yj are uniform randomly picked from {0, 1}2n and they are
independent with Xi and Xj . Hence

Pr [bad2] ≤
(
ℓ

2

)
1

22n
≤ ℓ2

22n
.

For bad3 and bad4, as kbase
∗ and Y1[n :] is chosen uniform randomly from

{0, 1}n,

Pr [bad3] ≤
p

2n
,

Pr [bad4] ≤
p

2n
.

For bad5, in ideal world, Yi is chosen uniform randomly from {0, 1}2n indepen-
dent with Xi.

Pr [bad5] ≤
ℓp

22n
.

Therefore we have

Pr [bad] ≤ p

2n
+

ℓ2 + ℓp

22n
.



Provable Security of Linux-DRBG in the Seedless Robustness Model 43

For good case,

pre [τ ]

pid [τ ]
=

1
(22n)ℓ+p(
1

22n

)ℓ+p
≥ 1.

Therefore, by H-Coefficient technique,

AdvbRORk
(p, ℓ) ≤ 1 + 2p

2n
+

ℓ2 + ℓp

22n
.

5.5 Proof of (6)

Define a transcript τ as

τ =
(
c key∗, {(Xi, Yi)}ℓi=1 , {(xj , yj)}pj=1 , r

)
where elements of the τ is defined as follows:

– c key∗: the random key picked in the security game, the key is given to the
attacker when the attacker finishes querying,

– {(Xi, Yi)}ℓi=1: for every i = 1, . . . , ℓ
• In real world, Yi = Xi +n/8 π(Xi)
• In ideal world, Yi ←$ {0, 1}2n

where
X1 = Z ∥ c key∗ ∥ 0,

and Xi has Z ∥ c key∗ ∥ (i− 1) format for i = 2, . . . , ℓ,
– {(xj , yj)}pj=1: for every j = 1, . . . , p yi = π(xi).

Now we define bad cases:

– bad1 ⇔ ∃i ̸= j ∈ [ℓ] s.t. Yi −n/8 Xi = Yj −n/8 Xj .
– bad2 ⇔ ∃j ∈ [p] s.t. xj [n/2 : 3n/2− 1] = c key∗.
– bad3 ⇔ ∃i ∈ [ℓ] and j ∈ [p] s.t. Yi = Xi +n/8 yj .

For bad1, Yi and Yj are uniform randomly picked from {0, 1}2n and they are
independent with Xi and Xj . Hence

Pr [bad1] ≤
ℓ2

22n
.

For bad2, as c key∗ is chosen uniform randomly from {0, 1}n,

Pr [bad2] ≤
p

2n
.

For bad3, in ideal world, Yi is chosen uniform randomly from {0, 1}2n indepen-
dent with Xi.

Pr [bad3] ≤
ℓp

22n
.
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Therefore we have

Pr [bad] ≤ p

2n
+

ℓ2 + ℓp

22n
.

For good case,

pre [τ ]

pid [τ ]
=

1
(22n)ℓ+p(
1

22n

)ℓ+p
≥ 1.

Therefore, by H-Coefficient technique,

AdvcRORk
(p, ℓ) ≤ p

2n
+

ℓ2 + ℓp

22n
.

5.6 Proof of (7)

Define a transcript τ as

τ =
(
kbase

∗, {(Xi, Yi)}ℓi=1 , {(xj , yj)}pj=1

)
where elements of the τ is defined as follows:

– kbase
∗: the random key picked in the security game, the key is given to the

attacker when the attacker finishes querying,
– {(Xi, Yi)}ℓi=1: for every i = 1, . . . , ℓ
• In real world, Yi = Xi +n/8 π(Xi)
• In ideal world, Yi ←$ {0, 1}2n

where X1 = Z ∥ kbase∗ ∥ 0, X2 = Z ∥Y1[n :] ∥ 0, and Xi has Z ∥Y2[n :] ∥ (i− 2)
format for i = 3, . . . , ℓ. Y1[n :] and Y2[n :] are given to the attacker when the
attacker finishes querying,

– {(xj , yj)}pj=1: for every j = 1, . . . , p yi = π(xi).

Now we define bad cases:

– bad1 ⇔ kbase
∗ = Y1[n :].

– bad2 ⇔ ∃i ̸= j ∈ [ℓ] s.t. Yi −n/8 Xi = Yj −n/8 Xj .
– bad3 ⇔ ∃j ∈ [p] s.t. xj [n/2 : 3n/2− 1] = kbase

∗.
– bad4 ⇔ ∃j ∈ [p] s.t. xj [n/2 : 3n/2− 1] = Y1[n :].
– bad5 ⇔ ∃j ∈ [p] s.t. xj [n/2 : 3n/2− 1] = Y2[n :].
– bad6 ⇔ ∃i ∈ [ℓ] and j ∈ [p] s.t. Yi = Xi +n/8 yj .

Note that we only consider the ideal world when analyzing bad cases. For bad1,
both keys are uniformly randomly picked from {0, 1}n. Hence

Pr [bad1] ≤
1

2n
.

For bad2, Yi and Yj are uniform randomly picked from {0, 1}2n and they are
independent with Xi and Xj . Hence

Pr [bad2] ≤
(
ℓ

2

)
1

22n
≤ ℓ2

22n
.
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For bad3, bad4 and bad5, as kbase
∗, Y1[n :] and Y2[n :] is chosen uniform ran-

domly from {0, 1}n,

Pr [bad3] ≤
p

2n
,

Pr [bad4] ≤
p

2n
,

Pr [bad5] ≤
p

2n
.

For bad6, in ideal world, Yi is chosen uniform randomly from {0, 1}2n indepen-
dent with Xi.

Pr [bad6] ≤
ℓp

22n
.

Therefore we have

Pr [bad] ≤ 1 + 3p

2n
+

ℓ2 + ℓp

22n
.

For good case,

pre [τ ]

pid [τ ]
=

1
(22n)ℓ+p(
1

22n

)ℓ+p
≥ 1.

Therefore, by H-Coefficient technique,

AdvbRORu(p, ℓ) ≤
1 + 3p

2n
+

ℓ2 + ℓp

22n
.

5.7 Proof of (8)

Define a transcript τ as

τ =
(
c key∗, {(Xi, Yi)}ℓi=1 , {(xj , yj)}pj=1

)
where elements of the τ is defined as follows:

– c key∗: the random key picked in the security game, the key is given to the
attacker when the attacker finishes querying,

– {(Xi, Yi)}ℓi=1: for every i = 1, . . . , ℓ
• In real world, Yi = Xi +n/8 π(Xi)
• In ideal world, Yi ←$ {0, 1}2n

where
X1 = Z ∥ c key∗ ∥ 0,

and Xi has Z ∥ Y1[n :] ∥ (i− 1) format for i = 2, . . . , ℓ. Y1[n :] is given to the
attacker when the attacker finishes querying,

– {(xj , yj)}pj=1: for every j = 1, . . . , p yi = π(xi).
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Now we define bad cases:

– bad1 ⇔ ∃i ̸= j ∈ [ℓ] s.t. Yi −n/8 Xi = Yj −n/8 Xj .
– bad2 ⇔ ∃j ∈ [p] s.t. xj [n/2 : 3n/2− 1] = c key∗.
– bad3 ⇔ ∃j ∈ [p] s.t. xj [n/2 : 3n/2− 1] = Y1[n :].
– bad4 ⇔ ∃i ∈ [ℓ] and j ∈ [p] s.t. Yi = Xi +n/8 yj .

For bad1, Yi and Yj are uniform randomly picked from {0, 1}2n and they are
independent with Xi and Xj . Hence

Pr [bad1] ≤
ℓ2

22n
.

For bad2 and bad3, as c key∗ and Y1[n :] are chosen uniform randomly from
{0, 1}n,

Pr [bad2] ≤
p

2n
,

Pr [bad3] ≤
p

2n
.

For bad4, in ideal world, Yi is chosen uniform randomly from {0, 1}2n indepen-
dent with Xi.

Pr [bad4] ≤
ℓp

22n
.

Therefore we have

Pr [bad] ≤ 2p

2n
+

ℓ2 + ℓp

22n
.

For good case,

pre [τ ]

pid [τ ]
=

1
(22n)ℓ+p(
1

22n

)ℓ+p
≥ 1.

Therefore, by H-Coefficient technique,

AdvcRORu
(p, ℓ) ≤ 2p

2n
+

ℓ2 + ℓp

22n
.

6 Tight attack for Linux-DRBG.

In this section, we briefly explain attacks to demonstrate the tightness of our
proof. We will present two attacks: the first attack can be executed when λ < n
with O(2λ/2) complexity, and the second attack has O(2n/2) complexity.

Attack 1: When λ < n, a λ-legitimate adversary A can win the robustness
game with high probability with the following method.
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1. Make A1 to pick entropy inputs uniformly random from set T where |T | =
2λ, regardless of query result. Note that A is still λ-legitimate.

2. For any S∗ ∈ S, and distinct I1 · · · , Ip ∈ T , A2 simulates
Si ← refreshf [E](S∗, Ii, 0

n) by repeatedly querying E and calculate p Si

values.
3. For any positive integer c, A2 simulates nextk[π](Si, 3n, 1) by repeatedly

querying π and calculates p output random bits. Then save the outputs in
X .

4. A2 queries SET(S∗) and A1 picks I and queries REFf [E](I, λ, 0n), then A2

makes RORu[π](3n, 1) to get random bits. Repeat this procedure q times
and save the values in Y.

5. If X ∩ Y = ∅, A2 outputs 0. Else, A2 outputs 1.

To make an intersection, in the real world, it is sufficient to make the collision
between entropy input and simulated entropy input. However, in the ideal world,
the output bits are generated uniformly randomly. Therefore we have

Pr [1← A | b = 0] =
pq

23n

Pr [1← A | b = 1] = 1−
(
1− p

2λ

)q
≥ pq

2λ
− (pq)2

22λ+1
.

Therefore, if p = q = 2λ/2, the advantage of A is sufficiently non-negligible.

Attack 2: A λ-legitimate adversary A can win a robustness game with high
probability with the following method.

1. A picks key K ←$ {0, 1}n and A simulates nextk[π](S, 3n, 1) as if S.ckey1 =
K and S.G flag1 = 0 by repeatedly querying π. Then save the outputs in X .
Repeat this procedure p times.

2. A1 generates I with min-entropy λ, then queries
REFf [E](I, λ, 0n) and A2 queries RORk[π](3n, 1) and save the outputs in Y.
Repeat this procedure until |Y| becomes q.

3. If X ∩ Y = ∅, A outputs 0. Else, A outputs 1.

To make an intersection, in the real world, it is sufficient to make the collision
on S.ckey1. However, in the ideal world, the output bits are generated uniformly
randomly. Therefore we have

Pr [1← A | b = 0] =
pq

23n

Pr [1← A | b = 1] = 1−
(
1− q

2n

)p
≥ pq

2n
− (pq)2

22n+1
.

Therefore, if p = q = 2n/2, the advantage of A is sufficiently non-negligible.
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