
Falsifiability, Composability, and Comparability
of Game-based Security Models

for Key Exchange Protocols

Version 12.1, September 2024?

Chris Brzuska1, Cas Cremers2, H̊akon Jacobsen3,
Douglas Stebila4, and Bogdan Warinschi5

1 Aalto University
2 CISPA Helmholtz Center for Information Security

3 University of Oslo
4 University of Waterloo

5 University of Bristol & DFINITY

Abstract. A security proof for a key exchange protocol requires writing down a security
definition. Authors typically have a clear idea of the level of security they aim to achieve,
e.g., forward secrecy. Defining the model formally additionally requires making choices on
games vs. simulation-based models, partnering, on having one or more Test queries and on
adopting a style of avoiding trivial attacks: exclusion, penalizing or filtering. We elucidate
the consequences, advantages and disadvantages of the different possible model choices.
Concretely, we show that a model with multiple Test queries composes tightly with symmetric-
key protocols while models with a single Test query require a hybrid argument that loses a
factor in the number of sessions. To illustrate the usefulness of models with multiple Test
queries, we prove the Naxos protocol security in said model and obtain a tighter bound than
adding a hybrid argument on top of a proof in a single Test query model.
Our composition model exposes partnering information to the adversary, circumventing a
previous result by Brzuska, Fischlin, Warinschi, and Williams (CCS 2011) showing that the
protocol needs to provide public partnering. Moreover, our baseline theorem of key exchange
partnering shows that partnering by key equality provides a joint baseline for most known
partnering mechanisms, countering previous criticism by Li and Schäge (CCS 2017) that
security in models with existential quantification over session identifiers is non-falsifiable.

1 Introduction

Key exchange protocols are at the heart of most secure real world communication protocols: they
establish a shared secret session key for further use, typically a symmetric-key based secure channel.
Additionally they usually also provide a form of authentication, referred to as authenticated key
exchange (AKE).

Given the ubiquity of AKE protocols, one might expect that they meet a well-understood and
standard security notion. Unfortunately, this is not the case. Security models for AKE protocols are
surprisingly diverse and complex, mainly owing to the diversity and complexity of AKE protocols
themselves, but also because of the large number of different definitional choices one can make
when modeling them. Specifically, in coming up with a good security model for AKE protocols one
has to decide on the kind of adversary capabilities considered, what type of security properties the
protocol ought to provide, as well as various other functionality related aspects of the protocol. We
briefly expand upon these points below.

Adversary capabilities. An AKE protocol consists of a polynomial number of parties, running a
polynomial number of instances, or sessions, of the protocol concurrently. Following the seminal
work of Dolev and Yao [34] and Bellare and Rogaway [10], the adversary is typically assumed to

? We provide a changelog in Appendix C.

be in full control of the network, meaning that it can drop, re-order, delay, modify and re-route
messages as it sees fit. In addition, it is also assumed that the adversary can learn various secret
information from the parties. Here, the models differ significantly depending on the protocol being
modeled. For example, the adversary can typically corrupt long-term keys of parties (statically or
adaptively) and learn session keys of sessions of its choice. But many models go beyond this and
grant the adversary additional capabilities, such as the ability to register long-term keys of its own
choosing, reveal internal state, subvert random number generators, and so on.

Security properties. The main desired security property of an AKE protocol is to provide secrecy of
the established session keys. Technically, the keys should be indistinguishable from random keys,
since this makes them suitable for symmetric-key applications. In addition to session key secrecy,
an AKE protocol should possibly also provide authentication to one (unilateral), or both (mutual),
ends of a protocol run. By authentication we mean that a protocol participant is assured that the
established session key is only shared with its intended communication partner.

These security properties, however, cannot always hold. For example, if the adversary corrupts
all secrets of a party, it can impersonate this party and break authentication as well as break key
indistinguishability. Similarly, if the adversary learns the session key computed by one party, it
can easily distinguish the partner’s session key from random, since they computed the same key.
Both of these attacks are examples of trivial, i.e., unavoidable, attacks. However, other attacks
may or may not be avoidable, depending on the protocol. To delineate the trivial attacks from the
non-trivial attacks, security models typically come with a freshness predicate that marks sessions as
either fresh or non-fresh. With respect to key secrecy, the fresh sessions are those for whom the
model expects security to hold, i.e., their session keys should be indistinguishable from random.
Different models differ greatly in which sessions they consider fresh.

For example, the original Bellare-Rogaway model [10] considers sessions fresh only if their
long-term keys are not corrupted. Their next model [11] introduced forward secrecy, where sessions
remain fresh even when the long-term keys are corrupted after the session completed. Later, Bellare
and Rogaway, together with Pointcheval, introduced a model where sessions would remain fresh
even if their internal state is compromised [9]. Similar ideas are also present in the so-called (e)CK
model [25,54].

In addition to choosing a freshness predicate for key secrecy, an AKE model typically also
specifies the settings were we expect authentication guarantees to hold. These conditions are
similarly varied across different security models [33].

Protocol functionality. Finally, examples of protocol functionality choices are the number of parties
that can jointly establish a key; whether authentication is based on public keys, shared symmetric
keys, or passwords; whether a PKI is involved or not; whether parties know their intended peer’s
identity in advance or if it is learned during the execution of the protocol; whether keys are static
or evolving; and so on.

Additional model choices. The aforementioned security model choices (i.e., adversary capabilities,
security properties, and protocol functionality) have, in many different ways, all been incorporated
into distinct, and often incomparable security models. See [17, Ch. 2] for an extensive introduction
and further details on the impact of these three definitional choices on security models.

However, it turns out that there are other—less commonly discussed6—technical choices that
also must be made when defining an AKE security model. These choices might also make a model
stronger or weaker in subtle, technical ways (more details below), but they can also impact other
aspects of a security model, such as its ease-of-use or conceptual clarity. It is these additional
choices we focus on this paper.

6 Some of these definitional aspects are also covered in the Systemization of Knowledge (SoK) paper [63]
(although with a slightly different focus). In particular, [63] also discusses issues related to partnering,
compositional tightness, and misbehaving adversaries (in the context of protocol correctness). Note that
while [63] is primarily about models for group key exchange protocols, the aforementioned issues are
mostly independent of the two-party-model/group-model dichotomy.

2

Contributions. In this paper we provide conceptual discussions, and formally substantiated in-
sights, on the consequences of four different definitional choices for AKE security models. Specifically,
we consider the following four aspects (all expanded upon further in Sections 1.1 to 1.4).

– Game-based vs. simulation-based security: impact on composability. (Section 1.1)
– Partnering definitions (i.e., how a model defines which instances are expected to compute

the same key): impact on composability, falsifiability, comparability and agreement properties.
(Section 1.2)

– Single vs. multiple test queries: impact on the tightness of composition proofs. (Section 1.3)
– Exclusion vs. penalizing vs. filtering of trivial attacks: impact on expressibility, comparability,

strength and (subjective) clarity of the model. (Section 1.4)

Table 1 illustrates how these aspects are instantiated in existing key exchange models in the
literature. Having explored various consequences of these modeling choices, we then proceed to:

– develop a security model for key exchange protocols that deals consistently with each of the
above four choices;

– prove a general composition theorem that shows how to compose a key exchange protocol with
symmetric-key protocols, with weaker preconditions than previous results; and

– prove a lemma on key exchange partnering that partnering by key equality is a joint baseline
for most models.

As a case study for some of our model choices, we prove the Naxos protocol secure with a tighter
bound than in the original paper.

1.1 Game-based vs. Simulation-Based security

While it was originally thought that simulation-based security is inherently more composable than
game-based security, the lines between the two notions have become blurred over the years. In the
end, a security game can often be seen as an instantiation of a simulation-based definition. For
example, for key exchange security, the simulation-based definition postulates the existence of a
simulator which simulates a protocol run independently of the key, whereas the game-based security
notion can be seen as using a standard protocol run (independently from the session key) as a
simulation. Indeed, Canetti and Krawczyk [26] show that Bellare–Rogaway secure key exchange
protocols imply (a variant of) UC-security and thus compose securely with other UC-protocols.
Brzuska, Fischlin, Warinschi and Williams [22] later showed that Bellare–Rogaway secure key
exchange protocols compose securely also with arbitrary symmetric-key-based games. Nowadays,
there is a plethora of variants of game-based key exchange definitions with varying levels of strength,
each of which would require its own composition theorem. In this paper, we show via a unified
composition theorem that our security model composes securely with symmetric-key protocols; as
our security model is parameterizable to capture different variants, this yields composability for all
variants in our model.

1.2 Partnering Mechanisms

Partnering mechanisms are used in AKE security models to identify related sessions. Most AKE
security models give the adversary the power to reveal session keys, but only of sessions unrelated
to the target session that the adversary is supposed to attack (by trying to distinguishing its
real session key from random). If we want any protocol to be secure with respect to a model, the
adversary cannot be allowed to reveal the session key of the target session itself, since this is the real
key by design. But there is another session that also ought to be off-limits: the one residing at the
target session’s communication peer in a normal protocol run, because by correctness, this session
should compute the same key as the target session. To model this, we must be able to identify this
partner session within the model. This is one of the main purposes of the partnering mechanism.7

7 The partnering mechanism is also sometimes used to define authentication, e.g., authentication is broken
if there exists a session that accepted without a partner (provided the intended peer’s authentication
credential was uncompromised), or used to determine if the attacker was temporarily passive. For now, we
focus on partnering for defining session key indistinguishability, and deal with authentication separately
later.

3

We can divide security models into two main classes based on their partnering mechanism: ones
using universal partnering, and ones using existential partnering. For models based on universal
partnering there is a single fixed partnering mechanism used for all protocols within the model,
and a protocol is considered secure in the model if it can be proven secure with respect to this
single mechanism. On the other hand, for models based on existential partnering, there is not a
single fixed partnering mechanism. Instead, a protocol is considered secure in the model only if
there exists a partnering mechanism for which the protocol can be proven secure.

Universal partnering. The most common form of universal partnering is matching conversations,
where two sessions are partners if they have the same transcript of messages sent and received
(except possibly the last message which may have been dropped by the adversary); this partnering
mechanism originates from the first AKE security model by Bellare and Rogaway [10]8; a small
sample of important models that employ it include [13, 15, 30, 32, 46, 50, 55, 58]. Other forms of
universal partnering include key-partnering [43,49] and original-key-partnering [44,57].

Existential partnering. In their second AKE paper, Bellare and Rogaway [11] introduced existential
partnering via partner functions. In this model a protocol is secure if there exists some partnering
function for which it can be proven secure. It is up to the prover to demonstrate such a partner
function exists, either by construction or by proving that it must exist. Other papers working
with partnering functions generically include [19, 67]. Models using session identifiers (SIDs)
[3,9,21–25,35,39,48,52,65] can also be seen as using existential partnering. Specifically, the SID can
be viewed as a function that simply computes the SID string based on various inputs (including, e.g.,
a partial transcript, secret information, or externally provided information). Of course, matching
conversations, and any of the other universal partnering mechanisms, are also suitable, and thus
security models using partner functions can be seen as a generalization of security models using
universal partnering.

Falsifiability. We refer to the process of showing that a protocol is insecure in a model as falsifiability :
one falsifies the security of a protocol (with respect to a model, and the model should support
this possibility). To show that a protocol is insecure in a model with universal partnering, one can
demonstrate an attack that breaks security with respect to the partnering mechanism specified by
the model.

On the other hand, to show that a protocol is insecure in a model with existential partnering, one
would have to demonstrate attacks that break security for all possible partnering functions, which
could be substantially harder. How, then, should one interpret the absence of a proof of security
with respect to a particular session identifier or partner function? Is it possible to demonstrate an
attack against the same protocol in the same model with respect to a different session identifier?
What constitutes a good session identifier? And how do we know whether a protocol is insecure or
whether we merely failed to find a suitable session identifier?

Thus, models with universal partnering offer a more direct path to falsifiability. However,
partnering using, e.g., matching conversations could be too strong a requirement, since adding an
irrelevant bit to a secure protocol suddenly makes it insecure, defying our intuition. Indeed, Li
and Schäge [57] showed a class of “no-match” attacks that demonstrated flaws in several existing
security proofs in models based on matching conversations.

One alternative universal partnering mechanism is key partnering [43,49], where two sessions
are considered partners if they have computed the same session key. Li and Schäge [57] however
argue that original-key partnering should be used, where two sessions are considered partners if
they would have computed the same session key in the presence of a passive adversary.

Key partnering. We show that key partnering is a universal choice for AKE partnering mechanisms,
together with a partnering oracle that is added to the model and allows the adversary to determine
whether two sessions have the same key. From the perspective of writing proofs, key partnering is
relatively easy to work with, especially compared to original-key partnering.

8 Note that the Bellare and Rogaway version also required strict temporal ordering of the individual
messages sent and received, excluding e.g. pre-plays; this requirement was dropped by later works.

4

Importantly, we demonstrate in Section 3 that key partnering comes with strong falsifiability
properties: we show that if an attack is shown against a protocol in a model where key partnering
is used, then that attack would be present in the model with respect to any valid partnering
mechanism. We prove this falsifiability result by establishing the contrapositive. Namely, we show
what we call the baseline theorem of partnering in key exchange: for any fixed freshness condition, if
a key exchange protocol provides key indistinguishability in the model using a partnering mechanism
that satisfies certain soundness properties, then that protocol is also secure in the model using key
partnering.

A consequence of our baseline theorem of key exchange partnering is that researchers retain the
option of proving security using session identifiers or other partner functions, but can be assured of
falsifiability by also proving that their partner function satisfies the soundness conditions required
by the baseline theorem.

Composability. Our aforementioned composability result for key agreement protocols with symmetric-
key protocols indeed relies on key partnering, sidestepping a seeming no-go result of Brzuska, Fischlin,
Warinschi, and Williams [22], which states that composability requires the protocol to provide
public partnering mechanism. We circumvent their impossibility result by giving the adversary an
oracle to learn which two sessions are partnered. This only makes the model stronger and simplifies
composition, as we will show in Section 4.2.

Comparability. The central benchmark around which to compare models is normally the capabilities
granted to the attacker. For example, a model in which the adversary can learn both the parties’
long-term keys and the sessions’ internal randomness ought to be stronger than a model where it
can only do the former. Of course, not all models are formally comparable. For instance, a model
where only long-term keys can be revealed is not necessarily stronger nor weaker than a model
where only internal randomness can be revealed. But even in the case where two models do provide
the same attacker queries, they can still differ in strength due to how the access to these queries
are controlled, i.e., they have different freshness conditions.

Cremers and Feltz [32,38] formalized these observations, defining a security model to be precisely
the collection of adversary capabilities (queries) and a freshness condition. They could then compare
the relative strengths of a large number of models. However, it turns out that there are further factors
that can additionally influence the comparability between models, and which were not covered by
Cremers and Feltz [32]. The first is the choice of partnering mechanism. Indeed, Cremers [31] shows
that the extended Canetti–Krawczyk (eCK) model [54] is in fact formally incomparable with the
original CK model [24] – partially due to a mismatch in the partnering definitions.

Agreement properties. The model we develop, besides key indistinguishability, also covers agreement
and authentication properties. These properties provide guarantees of the following form: if two
parties agree on a session key, then they also agree on various other variables determined during
the protocol run. Examples of such variables include: party identities, communication roles, and
negotiated ciphersuites. An easy way to achieve such a property in practice is by hashing the
entire transcript into the key. In the case such a practice is adopted, the notions key partnering
and matching conversations coincide under the assumption that the key derivation function is
collision-resistant. Transcript hashing has been adopted in TLS 1.3 and is generally considered good
practice. In addition, the parties might hash further agreement data into their key. In this case,
agreement on the transcript alone does not imply agreement on further variables, while agreement
on the key still implies their equality.

1.3 Single vs. Multiple Test Queries

From the perspective of building an AKE protocol, we want a security model that facilitates a tight
reduction from the security of the AKE protocol to the security of its underlying primitives. Later
works have started to develop tight reductions of this form [4,5, 29,44].

In addition, from the perspective of using an AKE protocol, we also want a security model that
facilitates a tight reduction from the composition “AKE protocol + symmetric-key protocol” to the
security of the underlying AKE protocol. It is this composition we focus on here. Unfortunately,

5

traditional models tend to lose at least a factor in the number sessions, sometimes even a square.
To see why, recall that key exchange models like the BR model [10] typically have a single Test
query. This means that in the composition proof we cannot replace the session keys all at once, but
instead need to employ a hybrid argument where they are replaced one-by-one (as illustrated by the
proof of the composition result in [22]). Indeed, this incurs a tightness loss [27,28] in the number
of session keys replaced. If the AKE protocol itself had a non-tight proof with a linear loss in the
number of sessions n, then we are now up to an O(n2) loss of tightness for the whole composition;
in real-world protocols like TLS, the number of sessions could be on the order of billions, so an n2

tightness loss would have a substantial impact on the selection of parameters.

It seems more useful if an AKE model supports tight composition with the symmetric-key
protocol, and the natural response is to allow multiple Test queries. But how should these Test
queries be answered? Should each query be answered independently as real-or-random (and the
adversary wins if it can distinguish at least one query), or should all answers be either all-real or
all-random?

Let’s call the first approach n-FtG (for Find-then-Guess) and the second RoR (for Real-or-
Random), where n is the number of Test queries. Unfortunately, n-FtG is no better than 1-FtG
for the purposes of composability: even if n-FtG has multiple Test queries, during the composition
proof they cannot be used to replace the session keys with random all at once, since each query is
independently answered with either real or random.

In contrast, the RoR notion does allow all keys to be replaced all at once during the composition
proof, resulting in no additional security loss for the combined construction (we will make this
more precise in Section 5). The conclusion is that RoR is the most appropriate model to use for
composing AKE protocols, justifying its use in our model in Section 2.

Note that switching from 1-FtG to RoR does not necessarily move the tightness problem
elsewhere in the chain of results: perhaps surprisingly, our case study of NAXOS+ in Appendix A
achieves the same advantage bounds in RoR as the original proof in the 1-FtG notion. In general, we
suggest the use of multiple Test queries with the same secret bit to enable tightness of reductions.

1.4 Misbehaving adversaries: exclusion, penalizing, and filtering

A key exchange model needs to define which adversaries are considered valid. Specifically, the
freshness condition defines the class of misbehaving adversaries as those that trivially win by violating
the predicate. Naturally, we only want to measure the success probability of non-misbehaving
adversaries. In the literature, there are essentially three ways to do this: (a) the exclusion approach [8],
in which one only quantifies over the class of valid adversaries; (b) the penalizing approach [19],
where, posteriori, misbehaving adversaries are penalized for their actions; and (c) the filtering
approach [43,66] where responses to misbehaving adversaries are silenced.

Model strength and comparability. We argue that security with respect to the filtering approach
implies security with respect to the exclusion approach, while the implication in the other direction
is false. The reason is that an adversary which is valid according to the exclusion approach is valid
with respect to the filtering approach, but not vice versa. Additionally, the adversary might learn
additional information via the filtering feedback which it receives from the model. By the principle
of choosing the stronger model when in doubt, it seems useful to deploy the filtering approach. In
addition, this means that one’s security statement is at least as strong as those made by others, all
other things being equal (which, admittedly, is rarely the case in key exchange models).

Expressibility. It turns out that the penalizing approach is somewhat incomparable to filtering.
Namely, eCK-security inherently relies on the penalizing approach: The adversary is first permitted
to Test a session, even though the game does not know yet whether this session is fresh or not. The
adversary is then penalized in case it turns out the session does not become fresh. An analogous
mechanism cannot be achieved via exclusion or filtering. If such after-the-fact-freshness properties
are needed, one has to adapt a penalizing or exclusion approach. In all other cases, filtering seems
to be the preferred option which is why we adopt it in our model family.

6

2 Security model

In this section we specify a parameterized model that defines a family of key exchange models. Our
models can capture a variety of relevant security properties within the same carefully constructed
formalism that results in security definitions that are comparable (at least amongst each other),
support falsifiability and tight composition results. To formalize this family, we employ a two-step
approach. First, we abstract the main security goal into a security predicate, and give predicates
representing common key exchange security goals, such as session-key indistinguishability (in
Appendix B we also address authentication security goals). Second, we allow a freshness condition
to refine the security goal to capture security against different attacker models such as forward
secrecy, which also simplifies the comparison of models, in the spirit of works such as [16,37].

Both the issue of partnering and how misbehaving adversaries (cf. Section 1.4) are handled,
are in some sense technicalities. Unlike the attacker capabilities and freshness predicates, they
do not correspond to our intuitive idea of model strength. Thus, an essential step in facilitating
comparison between models is fixing as many of the components of the model as possible, with the
only variable being the freshness condition encoding different attacker capabilities. But what to
fix these to? In particular, which partnering mechanism should you choose, and how should you
capture misbehaving adversaries?

Following our earlier observations, we fix the partnering mechanism to key partnering. Our
baseline theorem of key exchange partnering implies that this choice does not sacrifice comparability,
as long as the partnering mechanism satisfies the required conditions.

As for dealing with a misbehaving adversary, we suggest the filtering approach which makes rules
of accepted behavior explicit in the game code (see Figure 2, lines 307–311) and yields monotonic
winning conditions. We showcase the filtering approach in our case study (Appendix A), where we
encode game hops by successively modifying the game’s filter function with each hop, until the
adversary can, information-theoretically, not win anymore.

For maximal comparability, we recommend encoding the filtering rules as publicly checkable
predicates, which makes exclusion-style and filtering-style definitions equivalent (see Section 6).
The IsPartnered oracle we use in our general security experiment is an instance of such a public
encoding: it allows publicly checking whether the adversary may reveal a session key or not.

We begin with the abstract algorithms (“syntax”) that we use as the interface to a key
exchange model and correctness thereof. Next we describe the AKE security experiment, which is
parameterized over a freshness condition and a security predicate. We can then define the security
properties of key indistinguishability and key confinement. Properties related to authentication are
given in Appendix B.

Notation. y ← A(x) denotes running a deterministic algorithm A with input x, and storing the
output in the variable y. Similarly, y←$ A(x) denotes running a probabilistic algorithm A with
(implicit) uniform random coins. We often use superscript to indicate function parameters, e.g.,
AO(x) to denote an algorithm with access to oracle O. We write A(x) 7→ y when presenting the
type of A: A takes arguments x and yields y, after which we describe A’s domain (for x) and range
(for y). We denote by L = [x1, . . . , xn] that L is a list of n elements, where L[i] denotes its i-th
element. We write L←←x to denote appending the element x to the list L, or adding x to the set L.
We write L1‖L2 to denote the concatenation of two lists. We also write L[x] to denote the entry for
key x in the dictionary L. Party identities are elements of N. The equality test ≡ treats two values
as equal only if they have previously been defined, i.e., x ≡ y ⇔ (x = y) ∧ (x and y are defined).

2.1 Syntax of key exchange

As noted above, for simplicity we focus on two-party key exchange algorithms authenticated using
public keys.

Definition 1 (Key exchange protocol). A key exchange protocol is a tuple of algorithms
Π = (KG,New,Run):

– KG() 7→ (sk, pk): a probabilistic long-term key generation algorithm that outputs a private/public
key pair (sk, pk).

7

Table 1: Various AKE security models in terms of our four characteristics

Model Partnering Mechanism
Existential / Public Test’s Parameterizable Adversary

Universal Partnering Hidden Bit Freshness Behaviour

BR family

BR93/BWM [10,15] matching conversations U 1-FtG penalize
BR95 [11] partner function E 1-FtG exclude
BPR [9] session identifiers + key partnering E 1-FtG penalize
AFP [3] session identifiers E RoR filter
KSS [49] key partnering U 1-FtG penalize
Tight (BHJKL) [4] matching conversations U n-FtG penalize
Tight (CCGJJ) [29] matching conversations U RoR exclude

CK family

CK01 [24] session identifiers E 1-FtG exclude
CKHMQV [50] transcript U 1-FtG exclude

eCK family

eCK [54] transcript U 1-FtG penalize
MU08 [58] matching conversations U 1-FtG penalize
eCK-PFS, eCKw [32] transcript + origin sessions U 1-FtG exclude

“Darmstadt family”

Composable BR [22] public session identifiers E 1-FtG penalize
Less is more [21] session identifiers E 1-FtG penalize
State-separating proofs [18] partner functions E via oracle RoR exclude
TLS 1.3 [35] session + contributive identifiers E n-FtG penalize

Others

George–Rackoff [43] key partnering U via oracle 1-FtG filter
ASICS [16] partner function E 1-FtG exclude
Li–Schage [57] original-key partnering U 1-FtG —

This paper key partnering U via oracle RoR filter

Legend: yes; not necessarily; no; — not applicable

– New(U, skU , pkU , role, V,PK) 7→ (π,m): the probabilistic protocol activation algorithm takes
as input the long-term key pair (skU , pkU) of party U , its role (role) in this protocol run, its
intended peer V (or an empty value ?), and a dictionary PK of all parties’ long-term public
keys, indexed by party identity. It outputs a new instance state π (defined next) at party U and
a (possibly empty) outgoing initial message m.

– Run(π,m) 7→ (π′,m′): the deterministic protocol execution algorithm takes as input an instance
state π and an incoming message m, and outputs an updated state π′ and (possibly empty)
outgoing message m′.9

We allow each party U to run multiple instances (“sessions”) of the protocol; all data related to
a specific instance is recorded in an instance state π, which contains the following variables set by
New:

– π.owner: the party to which the instance π belongs
– π.sk, π.pk: the long-term private/public key pair of party π.owner
– π.role: the role of this party in this run of the protocol, either init or resp
– π.peerID: the party identity of π’s intended peer
– π.PK: the dictionary of public keys
– π.status: π’s status: running, accepted, or rejected
– π.transcript: list of all messages sent and received by π in chronological10 order
– π.rand: randomness used by π
– π.k: the session key derived by π. If no key has been derived yet, we use the symbol ⊥; when

we compare the session keys of two sessions, if both are ⊥, we will not consider those session
keys to be equal

A key exchange protocol is correct if, when messages are relayed faithfully between two honest
sessions, both sessions accept, compute the same session key, and have each recorded the other as

9 Run is deterministic; all per-instance randomization is incorporated in the instance variable π.rand
generated during the New algorithm.

10 We do not assume a global clock; this denotes the local order within U ’s session.

8

its peer. Note that we have two versions of the correctness definition, one for protocols that allow
post-specified peers (i.e., the responder learns its intended peer’s identity during the execution
of the protocol), and one for protocols only allowing pre-specified peers (the responder must be
initialized with its intended peer’s identity at the beginning of the session).

Definition 2 (AKE correctness, post-specified peer model). A k-message AKE protocol Π
allowing post-specified peers is ε-correct if for all U, V ∈ N, and all u ∈ {U, ?}, we have

Pr[CorrΠ,U,V,u()⇒ 1] ≥ 1− ε ,

where Corr is the experiment defined in Figure 1.

AKE correctness for the pre-specified peer model is as Definition 2 except for requiring that the
responder is initialized with u = U .

CorrΠ,U,V,u()

101 // Set up long-term key pairs
102 (skU , pkU)←$ Π.KG(),PK[U]← pkU
103 (skV , pkV)←$ Π.KG(),PK[V]← pkV
104 // Initialize initiator and responder sessions
105 (π,m)←$ Π.New(U, skU , pkU , init, V,PK)
106 (π′,⊥)←$ Π.New(V, skV , pkV , resp, u,PK)
107 // Relay messages back and forth between initiator and responder,
108 // updating their respective states π and π′

109 for i← 1 to bk/2c:
110 (π′,m′)← Π.Run(π′,m)
111 (π,m)← Π.Run(π,m′)

112 if k odd:
113 (π′,⊥)← Π.Run(π′,m) // initiator sends the last message

114 // Check correctness condition
115 return (π.status = accepted) ∧ (π′.status = accepted) ∧
116 (π.k = π′.k) ∧ (π.peerID = V) ∧ (π′.peerID = U)

Fig. 1: Correctness experiment for a k-message key exchange protocol Π between parties U and V ,
with responder’s intended peer being u.

2.2 Security experiment

In experiment ExpSecPred,F
Π,n (A), shown in Figure 2, we specify a common execution model that

is parametrized by a security predicate SecPred which we later use to capture the different secu-
rity properties a key exchange protocol might have. In addition, experiment ExpSecPred,F

Π,n (A) is
parametrized on the protocol Π, the number of parties n to run in the experiment, and freshness
condition F .

The session-key indistinguishability property is built into the experiment via the Test query;
but other properties can be considered as well. For instance, later in this section we show the
less-often-stated property of session key confinement (Confined), i.e., a session key should be shared
among at most two sessions. In subsequent sections, we provide additional security predicates to
prove our falsification theorem (the soundness and inverse soundness properties in Section 3) and
predicates capturing authentication properties in Appendix B.

The freshness condition F models different attacker capabilities (such as forward secrecy); see
Section 2.3.

Our approach of encoding each security goal explicitly in its own predicate is different from the
modern approach of encoding all goals implicitly through the key indistinguishability property. Our
approach yields a modular security model, in which different predicates can be used for protocols
with different goals.

9

ExpSecPred,F
Π,n (A)

201 b←$ {0, 1}
202 // Initialize lists for experiment
203 S ← [] // List of session states
204 Q ← [] // List of queries
205 T ← ∅ // Set of tested sessions
206 cnt← 0 // Session counter
207 // Generate all long-term key pairs
208 for all U ∈ {1, . . . , n}:
209 (skU , pkU)←$ Π.KG
210 PK[U]← pkU
211 // Global experiment state
212 Φ← {b,S,Q, T , cnt,PK}
213 // Run the adversary
214 b′←$AO(PK)
215 // If key indistinguishability, check guess
216 if SecPred = KI:
217 output (b = b′)
218 else
219 // Winning condition wasn’t triggered
220 output 0

// All adversary queries are “filtered” through O
O(Query, x)

301 // Save the current global experiment state
302 Φ′ ← Φ
303 // Run the adversary’s query
304 y ← Query(x)
305 Q←←〈Query, x, y〉
306 // Check if all tested sessions would remain fresh
307 if ∀i ∈ T . F (Φ, i):
308 return y
309 else
310 Φ← Φ′ // Revert effects of bad query
311 return 3 // Silence response

Init(U, role, V)

401 cnt← cnt + 1
402 (S[cnt],m)←$ Π.New(U, skU , pkU , role, V,PK)
403 // Evaluate whether adversary has won
404 if (SecPred 6= KI) ∧ ¬SecPred(Φ, cnt):
405 terminate experiment with output 1

406 return (cnt,m)

Send(i,m)

501 (S[i],m′)← Π.Run(S[i],m)
502 // Evaluate whether adversary has won
503 if (SecPred 6= KI) ∧ ¬SecPred(Φ, i):
504 terminate experiment with output 1

505 return (S[i].status,m′)

RevSK(i)

601 return S[i].k

RevRand(i)

701 return S[i].rand

RevLTK(U)

801 return skU

Test(i)

901 if i ∈ T :
902 return ⊥
903 if ∃j . S[i].k = S[j].k ∧ j ∈ T :
904 return ⊥
905 T ←← i
906 k0 ← S[i].k
907 k1←$K
908 return kb

IsPartnered(i, j)

1001 return (S[i].k ≡ S[j].k)

Fig. 2: Generic key exchange security experiment for protocol Π with n parties against an adver-
sary A, for security property specified by predicate SecPred with freshness condition F .

10

Experiment overview. Lines 200–210 of Figure 2 initialize the experiment, which includes: picking
a random challenge bit b for the session key indistinguishability game; setting up lists to record
session states (S), the adversary’s queries (Q), and the sessions that have been tested (T); and
generating long-term key pairs for all users. The global experiment state consists of all of those
values, and is represented as Φ. Line 214 runs the adversary, who is given all public keys as input,
has access to a single oracle O through which all queries are made, and finally outputs a guess bit
b′. For the session-key indistinguishability security property, the adversary’s guess of the hidden
challenge bit is checked on line 217. For the other security properties, the adversary’s success in
breaking the security property is checked throughout the experiment, specifically on line 503 of the
Send query.

For KI, which is a distinguishing property, we want to bound∣∣∣∣Pr
[
ExpKI,F

Π,n (A)⇒ 1
]
− 1

2

∣∣∣∣ . (1)

For our remaining properties SecPred, which are win/lose, we want to bound Pr
[
ExpSecPred,F

Π,n (A)⇒ 1
]
.

For the latter, we will sometimes write Pr[SecPred], when F , Π, n, and A are clear from context.

Oracle and queries. Our model provides queries that model an adversary’s ability to control all
network communications, as well as compromise certain secrets.

The following two queries model normal protocol operation. The adversary uses the Init query
to direct a party U to start a new session with a given role and optional intended peer identifier.
The adversary uses the Send query to deliver a message to a session. Due to the genericity of
our experiment, we decided that the Init and Send queries continuously evaluate the winning
condition SecPred every time they are called, and the experiment terminates immediately once the
condition is met. This avoids some problems that would develop if the winning condition is not
monotonic, i.e., if it was possible for a session to enter the winning state, then leave the winning
state by the end of the game. (Session-key indistinguishability is still evaluated at the end, since we
must wait for the adversary’s guess.)

The RevSK, RevRand, and RevLTK queries model the adversary’s ability to learn the session
key or randomness, or a party’s long-term key. Some AKE security models also allow the registration
of malicious public keys (e.g., [16]), but we omit that from our model for simplicity.

The Test query models the session key indistinguishability security property. As long as the
adversary has not already tested this session or its partner (if any), we give the adversary either the
real session key or a randomly chosen value. Note that the same hidden challenge bit b is used for
every Test query, so either all Test queries return real keys, or all Test queries return random
values; Section 5 gives the rationale behind using real-or-random with a single bit across all Test
queries.

The IsPartnered query permits the adversary to check whether two sessions are partnered,
i.e., have computed the same session key. This enables composability for protocols without public
partnering; see Section 4.

However, the adversary is not allowed to query any of these oracles directly. Instead, all queries
go through the oracle O. This follows the “silencing” approach of Rogaway and Zhang [66], where
the adversary only learns the output of a query if it does not cause tested sessions to become
unfresh. E.g., if the adversary queries RevSK for a tested session, this would be a “trivial win”
because it would allow the adversary to immediately determine the hidden challenge bit b. If O
silences the query, a special silence symbol 3 is returned, and any changes to the game state are
undone. Section 6 discusses alternatives: quantifying over adversaries that never violate freshness,
or “penalizing” such adversaries by artificially recording a “loss”.

2.3 Freshness

Our model is parameterized by a freshness condition F , which is used to capture security against
different attacker capabilities, such as forward secrecy or the different permitted reveal patterns
allowed in the CK [24] or eCK [54] models. Localizing the different attacker capabilities into a
parameterized freshness condition follows the approach of Boyd, Cremers, Feltz, Paterson, Poettering,

11

F eCK(Φ, i)

1101 // The session’s session key has not been revealed
1102 if 〈RevSK, i, ∗〉 ∈ Q:
1103 return false

1104 // At most one of the session’s ephemeral randomness or
1105 // the owner’s long-term key has been revealed
1106 if 〈RevLTK,S[i].owner, ∗〉 ∈ Q and 〈RevRand, i, ∗〉 ∈ Q:
1107 return false

1108

1109 // For all partner sessions
1110 for all j 6= i . S[i].k ≡ S[j].k:
1111 // The partner’s session key has not been revealed
1112 if 〈RevSK, j, ∗〉 ∈ Q:
1113 return false

1114 // At most one of the partner’s ephemeral randomness or
1115 // the peer’s long-term key has been revealed
1116 if 〈RevLTK,S[j].owner, ∗〉 ∈ Q and 〈RevRand, j, ∗〉 ∈ Q:
1117 return false

1118

1119 // If there is no partner session, the peer’s long-term key
1120 // has not been revealed
1121 if @j 6= i . S[i].k = S[j].k and 〈RevLTK,S[i].peerID, ∗〉 ∈ Q:
1122 return false

1123

1124 return true

Fig. 3: Freshness conditions capturing attacker capabilities similar to the eCK security model [54].
Recall that ≡ treats two values as equal only if they have previously been defined, see notation in
Section 2.

and Stebila [16] and permits comparing the relative strength of security models solely by comparing
their freshness conditions. For more discussion, we refer the reader to Section 6.

A freshness condition F with input (Φ, i) checks whether a particular session S[i] is fresh based
on the global experiment state Φ, which includes all current session states, the list of all non-filtered
queries, and the list of tested sessions.

For example, Figure 3 shows a freshness condition (F eCK) capturing the core attacker capabilities
of the extended Canetti–Krawczyk (eCK) model [54]. In the eCK model, a session is considered
fresh as long as all of the following are satisfied:

1. the session’s session key has not been revealed;
2. both the session’s ephemeral randomness and the session’s owner’s long-term secret key have

not been revealed (but revealing one or the other is okay);
3. for all partner sessions that exist, we have that both:

(a) the partner session’s session key has not been revealed;
(b) both the partner session’s ephemeral randomness and the peer’s long-term secret key have

not been revealed (revealing one or the other is okay); and

4. if no partner sessions exist, the peer’s long-term secret key has not been revealed.

Different freshness conditions can be used to capture different attacker capabilities, e.g., prohibiting
any RevRand query to capture the BR93/BWM model [10,15], or prohibiting revealing the peer’s
long-term key before acceptance to capture forward secrecy. Figure 4 shows example freshness
conditions for attacker capabilities in the BR93/BWM model and the eCK-PFS model [32].11

In the remainder of this section, we define two core security properties in our model.

11 We do not claim that our models with the corresponding freshness conditions are equivalent to the
original security models from the literature. For example, BR93 and BWM use matching conversations
for partnering, rather than key partnering. Our intention is to represent the permitted query patterns
that capture attacker capabilities at a high level.

12

F BWM(Φ, i)

1201 // The session’s session key has not been revealed
1202 if 〈RevSK, i, ∗〉 ∈ Q:
1203 return false

1204 // For all partner sessions
1205 for all j 6= i . S[i].k ≡ S[j].k:
1206 // The partner’s session key has not been revealed
1207 if 〈RevSK, j, ∗〉 ∈ Q:
1208 return false

1209 // Neither party’s long-term key was revealed
1210 if 〈RevLTK,S[i].owner, ∗〉 ∈ Q ∨ 〈RevLTK,S[i].peerID, ∗〉 ∈ Q:
1211 return false

1212 // No ephemeral randomness revealed anywhere
1213 if 〈RevRand, ∗, ∗〉 ∈ Q:
1214 return false

1215

1216 return true

F eCK-PFS(Φ, i)

1301 //
1302 // same as Lines 1101 to 1117 of F eCK

1315 //
1316 // If there is no partner session, the peer’s long-term key has not been revealed before the session

accepted
1317 if @j 6= i . S[i].k = S[j].k and ∃r < s . Q[r] = 〈RevLTK,S[i].peerID, ∗〉 and Q[s] =
〈Send, (i, ∗), (accepted, ∗)〉:

1318 return false

1319

1320 return true

Fig. 4: Freshness conditions capturing attacker capabilities similar to the Blake-Wilson–Menezes
model [15] (the public key analog of BR93 [10]) and the eCK model with forward secrecy (“eCK-PFS”
in [32]).

2.4 Session key indistinguishability

The first security property that we define using our experiment is session key indistinguishability.
As already mentioned, this property is often considered the most central security goal for key
exchange protocols. An adversary is deemed to have broken session key indistinguishability if it can
distinguish real session keys from random; this is captured in the adversary’s ability to guess the
hidden challenge bit b. We model this in the security experiment by checking if the security predicate
is equal to the distinguished symbol KI, which leads to several special cases in the experiment. This
allows us to define key indistinguishability as follows:

Definition 3. For a freshness condition F and number of parties n ∈ N, a protocol Π provides
ε-key-indistinguishability against an adversary A if

AdvKI,F
Π,n (A) :=

∣∣∣∣Pr
[
ExpKI,F

Π,n (A)⇒ 1
]
− 1

2

∣∣∣∣ ≤ ε . (2)

2.5 Session key confinement

Our second security property, session key confinement, models the common expectation of two-party
key exchange that a particular session key ends up in at most two different sessions. We can capture
this either implicitly through key-indistinguishability or explicitly as its own security goal.

In the implicit approach, the adversary is supposed to be able to capitalize on the event that
more than two sessions share the same session key by distinguishing the challenge key. That is, once

13

three sessions end up with the same key, they are by definition not considered partners anymore, so
the adversary can reveal the session key of one of them and use it to break any of the other two.

While this is a valid encoding of session key confinement, we prefer to state security properties
explicitly and thus reward the adversary directly if it manages to get more than two sessions to
agree on the same key. Thus, we define session key confinement via the event:

Confined(Φ, i) :
∣∣∣{j ∣∣ Φ.S[j].k ≡ Φ.S[i].k

}∣∣∣ ≤ 2. (3)

Definition 4 (Session key confinement). For a freshness condition F and number of parties
n ∈ N, a protocol Π provides ε-(session key) confinement against adversary A if

AdvConfined,F
Π,n (A) := Pr

[
ExpConfined,F

Π,n (A)⇒ 1
]
≤ ε (4)

When using key-partnering, key-indistinguishability does not imply confinement. For example,
consider the non-interactive key exchange protocols of Freire, Hofheinz, Kiltz, and Paterson [41],
where there may be several sessions between the same pair of parties, each of which is established
non-interactively using the same long-term keys and thus leads to the same session key every time.
Such protocols provide session key indistinguishability under key partnering (since none of the
sessions sharing the same session key can be revealed), but clearly violate confinement.

Note that Equation (3) does not require sessions to be fresh: the adversary may reveal all secrets
in the experiment. This might seem to make confinement very difficult to achieve. However, for
protocols that derive their session keys from a key derivation function (KDF), confinement can
usually be proven either by the random oracle assumption, or in the standard model, by assuming
collision resistance (satisfied by, e.g., HKDF [51]).

3 Falsifiability and partnering

As noted in the introduction, key exchange security models using existential partnering [3, 9, 11,
19,21–25,35,39,48,52,65,67] allow the prover to state a session identifier or partner function for
which their protocol can be proven secure, rather than the model providing one. We call this a
partnering mechanism: the security model explicitly defines a relation that decides whether two
sessions should be considered partners or not.

Without further restrictions on this relation, it is possible to define unnatural and pathological
mechanisms that allow intuitively insecure protocols to be proven secure, or mechanisms that make
all protocols insecure.

For example, a partnering mechanism that partners all sessions artificially limits the adversary’s
powers, since it cannot reveal the session key of any session. As a result, protocols where the
session key of different sessions are not independent of each other can be proven secure. More
generally, allowing a partnering mechanism that partners everyone—even sessions with different
session keys—is an example of over-provisioning, since it partners sessions that intuitively should
have nothing to do with each other.

At the other end of the spectrum is a partnering mechanism which partners no one. This is an
example of partner under-provisioning since it allows attacks in the model that do not correspond
to any real-world attacks.

In this section we formalize soundness and “inverse soundness” that capture over- and under-
provisioning respectively. We then show that a protocol that is secure with respect to a partnering
mechanism that does not over- or under-provision is also secure with respect to key partnering; we
call this the baseline theorem of key exchange partnering.

3.1 Partnering

Definition 5 (Partnering mechanism). Let I be the space of all instance states. A partnering
mechanism is a binary relation on I.

14

For example, key partnering is Pkey(π, π′) = (π.k = π′.k); matching conversations is

Pmc(π, π′) = (π.transcript = π′.transcript)

∨ (∃m . π.transcript = π′.transcript‖[m]))

∨ (∃m . π.transcript‖[m] = π′.transcript))

(5)

Our security experiment and freshness conditions in Section 2 are stated with key-partnering already
built into the definitions. For the purposes of this section, we need to generalize them to an arbitrary
partnering mechanism P , which is done simply by replacing all session key equality checks with the
general partnering check.

In particular, we define ExpSecPred,F,P
Π,n by making the following modifications in Figure 2:

– Test line 903 becomes: “if ∃j . P (S[i],S[j]) and j ∈ T :”
– IsPartnered line 1001 becomes: “return P (S[i],S[j])”

The freshness condition F is also allowed to depend on the partnering mechanism P . For example,
in Figure 3:

– F eCK line 1110 becomes: “for all j . P (S[i],S[j]):”
– F eCK line 1121 becomes: “if @j . P (S[i],S[j]) and ∃ . . . ”

Note that our partnering mechanism compares session states, so our security experiment uses
indices i, j, etc. to index into the list of sessions S and then evaluates the partnering mechanism on
session states S[i],S[j].

We now turn to assessing whether a partnering mechanism over- or under-provisions session
partners, which we will model by certain soundness properties.12

Beginning with the problem of over-provisioning, we demand that partners should derive the same
session key. This is captured by the following event defined on security experiment ExpSecPred,F,P

Π,n :

SoundP (Φ, i) : ∀π, π′ ∈ Φ.S . P (π, π′) =⇒ π.k = π′.k. (6)

ε-soundness is defined analogously to Definition 4.
To deal with the issue of under-provisioning, we demand that any two sessions that derive the

same session key should also be partners. We call this inverse soundness, defined by the event:

InvSoundP (Φ, i) : ∀π, π′ ∈ Φ.S . π.k ≡ π′.k =⇒ P (π, π′). (7)

ε-inverse-soundness is defined analogously to Definition 4.
Notice both soundness and inverse soundness are required to hold unconditionally with respect

to session freshness: each must hold even when the adversary can obtain any secret value it wants.
Soundness is one of the conditions required of Match security [22]. Inverse soundness is seldom

mentioned in key exchange models, but was described by Kudla and Paterson [53] as strong
partnering. Together, these two properties allow us to prove in the next section our baseline theorem
relating security under key partnering to security under arbitrary partnering mechanisms.

3.2 Baseline theorem of key exchange partnering

Theorem 1 (Baseline theorem of key exchange partnering). Let Π be a key exchange
protocol. For any security property SecPred, Π is secure under key-partnering if and only if it is
secure under P -partnering, as long as the partnering mechanism P is sound and inverse-sound.
More precisely, for all SecPred, Π, n, F , P , and A,∣∣∣Adv

SecPred,F,Pkey

Π,n (A)− AdvSecPred,F,P
Π,n (A)

∣∣∣ ≤ Pr[SoundP] + Pr[InvSoundP]. (8)

12 Here, “soundness” refers to a property of the partnering mechanism; we use the term “correctness” for
the property that honest parties, in the absence of active adversarial interference, derive equal session
keys.

15

Note that while the same F is used in the two experiments in (8), that F may call the partnering
mechanism used in the respective experiment, so we would have “F -with-Pkey” or “F -with-P”. Also
recall that we use Pr[SoundP] and Pr[InvSoundP] as a short-hand for the advantage an adversary has
in breaking soundness or inverse-soundness of Π with P . Interestingly, de Saint Guilhem, Fischlin
and Warinschi [33, Theorem 5.1] prove that if Match security holds, then equal keys implies equal
partners already so that the requirement of inverse soundness might seem superfluous. However,
their implication only holds for fresh sessions and thus, the additional requirement of inverse
soundness is needed in our theorem.

A direct consequence of Theorem 1 is the falsifiability of security models using session identifiers
or general partnering functions. If an attack is shown against a security property of a key exchange
protocol when using a sound and inverse-sound partnering mechanism, then that is indeed an
attack against the protocol under key partnering or (by transitivity) under any other sound or
inverse-sound partnering mechanism.

Proof. Consider the run of ExpSecPred,F,P
Π,n (A) with the same random coins for the experiment and

the adversary as in the run of Exp
SecPred,F,Pkey

Π,n (A), but using P instead of Pkey. Let Same be the
event that P (π, π′) = Pkey(π, π′) at every evaluation of the partnering mechanism in the experiment
and freshness conditions, as described earlier in Section 3.1; Same is the complement of Same. Then
the two runs behave identically as long as Same does not occur, i.e.,∣∣∣Adv

SecPred,F,Pkey

Π,n (A)− AdvSecPred,F,P
Π,n (A)

∣∣∣ ≤ Pr[Same]. (9)

If Same occurs, and thus there is some point in time for which there is some pair of sessions
π, π′ for which P (π, π′) 6= Pkey(π, π′), then either (a) P (π, π′) but π.k 6= π′.k (which we will show
violates soundness for P), or (b) π.k = π′.k but ¬P (π, π′) (which will violate inverse-soundness for
P).

There are three places within the experiment which can cause the event Same to occur, namely
the three places where we modified ExpSecPred,F

Π,n to ExpSecPred,F,P
Π,n at the start of Section 3.1:

– Line 903 of the Test(i) query: If there is some j for which P (S[i],S[j]) 6= Pkey(S[i],S[j]), then
this would also have been true at the most recent Init or Send query involving either S[i]
or S[j]. Note that we only have to consider Init and Send queries since they are the only
queries that modify session variables, and we only have to consider the most recent such query
involving one of those sessions since Init or Send queries to other sessions do not affect the
partnering of S[i] or S[j].

– Line 1001 of the IsPartnered query: Similarly.
– Inside the call to F on line 307 of the O oracle: The freshness condition F may evaluate the

partner predicate zero or more times, on two arbitrary sessions π, π′ ∈ S. Note that F uses
the partnering mechanism of its experiment, therefore it is either F -with-Pkey or F -with-P ,

depending on whether we are in Exp
SecPred,F,Pkey

Π,n (A) or ExpSecPred,F,P
Π,n (A). If, at any of F ’s

evaluations of the partnering mechanism, we have that P (π, π′) 6= Pkey(π, π′), then it would
also have been true at the most recent Init or Send query involving either π or π′.

Thus, if Same occurs in ExpSecPred,F,P
Π,n (A), then either the game ExpSound,F,P

Π,n (A) or the experiment

ExpInvSound,F,P
Π,n (A) (with the same random coins for the experiment and adversary) outputs 1.

Hence
Pr[Same] ≤ Pr[SoundP] + Pr[InvSoundP]. (10)

Combining (9) with the above inequality yields the result.

Note that key partnering is clearly perfectly sound and inverse-sound.
At first glance, Theorem 1 might seem vacuous: security with P -partnering approximates security

with key-partnering if P -partnering approximates k-partnering. However, there are variants of
ExpSecPred,F

Π,n for which proving the baseline theorem becomes unclear. For example, we initially

tried to write ExpSecPred,F
Π,n with all security predicates evaluated at the end of the main experiment

on line 217, rather than continuously evaluating non-KI predicates in the Send query as Figure 2
shows. We were unable to prove the corresponding baseline theorem: soundness/inverse-soundness

16

would only be guaranteed at the end of the experiment, but there might have been intermediate
points where it was temporarily violated, which might result in different behavior between the
experiment using key-partnering versus P -partnering.

Theorem 1 uses a generic security predicate: it holds for, e.g., session-key indistinguishability,
confinement, and the authentication properties in Appendix B.

4 Composition should be possible

Brzuska, Fischlin, Warinschi, and Williams [22] (BFWW) show that if a key exchange protocol is
composable, then it is possible to (weakly) determine which sessions derive the same keys only based
on the public protocol transcript. However, BFWW consider a model that does not expose a session
matching oracle, and we argue now, that if the model itself exposes a session matching oracle, then
the key exchange protocol can actually be composable without admitting a public session-matching
algorithm based on transcripts only. That is, we show that the class of key exchange protocols
that are securely composable is bigger than the class identified by BFWW. In this section, we first
explain why a key exchange secure in security model with a session matching oracle is composable
and then discuss a separating example of a key exchange protocol that is composable, intuitively and
provably, but was excluded by BFWW due to the absence of a public session-matching algorithm.

4.1 Composability

In order to prove that a key exchange model provides composability with a symmetric-key primitive,
one first needs a definition of security for the symmetric-key primitive and a definition of a composed
game. Let’s think of k←$ {0, 1}n as being a line of pseudo-code in the game defining the security
of the symmetric primitive. The composed game will replace this line by using the session key of
the key exchange game. Besides, the composed game will expose the same queries to the adversary
as the game defining the security of the symmetric primitive and the key exchange game, except
for Test and Reveal queries. The composed game uses bit b = 0 for the key exchange, and the
adversary wins the composed game based on the winning condition of the symmetric primitive.

To reduce the composed security to the two underlying building blocks, one first reduces to the
key exchange security to replace real session keys with random session keys. Then, one can reduce to
the security of the symmetric-key protocol. Making this proof outline rigorous is less straightforward
than one might think. A tricky part in the proof is that the symmetric primitive game needs to be
multi-session and key exchange sessions that belong together must be mapped to the same instance
of the symmetric primitive. Therefore, in the reduction to the key exchange, the reduction needs to
know which two sessions are partnered. BFWW [22] thus argued that a protocol must have a public
matching algorithm. This approach was also followed by [20] for composition of non-forward secure
key exchange protocols and by Skrobot and Lancrenon [68] for password-based authenticated key
exchange. Moreover, due to the session identifiers in Universal Composability, also Canetti and
Krawczyk [26] assumed the protocol to have public partnering. In turn, Brzuska, Delignat-Levaud,
Fournet, Kohbrok, and Kohlweiss [18] and George and Rackoff [43] provide the adversary with a
session-matching oracle that tells the adversary which pairs of sessions are partnered. In this paper,
we argue for the advantages of the latter choice. Namely, it allows to establish secure composability
of a larger class of protocols.

4.2 A separating example

Let Π be a key exchange protocol that is secure in an arbitrary key exchange model with mutual
authentication and pre-specified peers. We now add public-keys for a re-randomizable encryption
scheme to Π and encrypt all messages of the original Π protocol with re-randomizable encryption
of the intended peer. (Here, we use mutual authentication and pre-specified peers). We obtain a
new protocol Π′. In the previous subsection, we showed that protocols secure in a model with a
partnering oracle are composable. In this section, we show that Π′ is indeed secure in a model with
a partnering oracle but Π′ does not have a public partnering mechanism.

17

Π′ is secure in a model with a partnering oracle. Let A be an adversary against Π′ in a model
with a partnering oracle. We now build an adversary B against Π. B first draws all keys for the
rerandomizable encryption scheme and whenever a party Pi with intended peer Pj sends a message
m, then B encrypts m under the public key of Pj with the rerandomizable encryption scheme. In
turn, when the adversary makes a Send(i,m) query to session i, and P is the owner of session i,
then B first decrypts m using the secret key of P of the rerandomizable encryption scheme and
forwards the decrypted message to the experiment. All other oracle queries are forwarded. The
soundness of the simulation is a bit hard to argue in an arbitrary model, but the emulation of the
Send query is perfect, RevSK, IsPartnered, RevLTK (here, we need to add the secret key) also
return the same answer, RevRand (here, we need to add the randomness for the rerandomizable
encryption scheme).

Π′ does not have public partnering. Consider an adversary A that creates two sessions for Pi and
two sessions for Pj , flips a bit to see which one is matched to which and then re-randomizes messages.
By security of rerandomizable encryption, from the public transcript, one cannot tell which session
is matched with which session. If one wants these probabilities to be more dramatic, one can take
many pairs of such sessions and gets a guessing probability of 1

2

c
, where c is the number of sessions:

the guessing probability is upper bounded by 1
2

c
or the probability of breaking the rerandomizable

encryption scheme. If c is polynomial, the guessing probability is negligible.

4.3 A general composition theorem

We can bypass the aforementioned counterexample and impossibility result by Brzuska, Fischlin,
Warinschi and Williams [22], as we added a partnering oracle to our model which tells the adversary
whether two sessions are partnered or not. A similar observation was made by Brzuska, Delignat-
Lavaud, Fournet, Kohbrok and Kohlweiss [18] who establish composability of a specific eCK variant.
We can generalize their theorem to arbitrary key exchange protocols which can be formalized in
our above model, regardless of their freshness predicate. To prove such a general composability
theorem, we need to formalize the above mechanism that defines the composition of a key exchange
protocol with a symmetric-key primitive. To be able to do this, we use the technique of [18] to slice
code into several pieces of code. The first object we need is a keys array which will replace some of
the code of the Test oracle.

SET(i, k)

2001 // store key
2002 T [i]← k
2003 return ()

GEN(i)

2101 if T [i] 6= ⊥:
2102 return ()

2103 T [i]←$K
2104 return ()

GET(i)

2201 return T [i]

Gameb

Keys
GET

GEN

Q SA

Fig. 5: Keys Array

Definition 6 (Keys Array). A Keys array is a piece of pseudocode which exposes the oracles
SET, GEN and GET which behave as specified in Figure 5.

Now, we first define a symmetric-key security game which relies on the Keys array and then modify
our key exchange experiment to interact with the Keys array, too.

Definition 7 (Symmetric-Key Security Game). Let G0 and G1 be stateful pieces of pseudocode
that expose the same set S of oracles to the adversary and make queries to the GET oracle of a
Keys array. Then, we define the game Gb → Keys as the game where an adversary can call oracles
S ∪ {GEN}, where GEN calls of the adversary are executed by Keys. Gb → Keys is depicted on the
right side of Figure 5. For an adversary A interacting with Gb → Keys, we define the advantage as

εG→Keys(A) :=
∣∣Pr[1 = A → G0 → Keys]− Pr[1 = A → G1 → Keys]

∣∣ (11)

18

The key exchange experiment ExpKI,F
Π,n (A) does not terminate early and it always terminates in

line 215. Additionally, it does not rewind the adversary. We can thus externalize the adversary and
write A → ExpKI,F

Π,n as an adversary which interacts with the oracles of ExpKI,F
Π,n . Additionally, we

can fix the bit b in ExpKI,F,b
Π,n and change the Test query such that, instead of returning a key to

the adversary, it writes the key into Keys via a SET(i, k) query if b = 0 and makes a GEN(i) query
to Keys if b = 1. The adversary is now given access to the GET oracle of Keys.

Definition 8 (Composable Key Exchange Game). Let A → ExpKI,F
Π,n be an adversary that

interacts with the oracles of ExpKI,F
Π,n , where we fix b in ExpKI,F,b

Π,n . Let the Test query write the key
into Keys via a SET(i, k) query if b = 0 and make a GEN(i) query to Keys if b = 1. The adversary
is given access to the GET oracle of Keys. We define the adversary’s external advantage as

εExpKI,F
Π,n→Keys(A) :=

∣∣∣Pr[1 = A → ExpKI,F,0
Π,n → Keys]− Pr[1 = A → ExpKI,F,1

Π,n → Keys]
∣∣∣ . (12)

We can now naturally define the composed game where ExpKI,F,b
Π,n is connected to Keys via a SET

query (if b = 0) or via a GEN query (if b = 1), Gb
′

is connected to Keys via a GET query, and

the adversary has access to the oracles of ExpKI,F
Π,n and G (but not to any oracle of Keys). In line

with [18], we denote the parallel composition of two games by a fraction notation.

Definition 9 (Composed Game). Let ExpKI,F
Π,n (A) be a key exchange game from our family,

let G0 and G1 be a symmetric-key security game, then we define the advantage of A against their
composition as

εcomp(A) :=

∣∣∣∣∣Pr[1 = A →
ExpKI,F,0

Π,n

G0
→ Keys]− Pr[1 = A →

ExpKI,F,1
Π,n

G1
→ Keys]

∣∣∣∣∣ . (13)

Theorem 2. Let ExpKI,F
Π,n (A) be a key exchange game from our family, let G0 and G1 be a

symmetric-key security game, then

εcomp(A) ≤ εExpKI,F
Π,n→Keys(A → G0) + εG→Keys(A → ExpKI,F,1

Π,n) (14)

Proof. The proof is purely syntactical. In the first game hop, we move from
ExpKI,F,0

Π,n

G0 → Keys

to
ExpKI,F,1

Π,n

G0 → Keys by making the code of G0 part of the adversary, i.e., we consider A → G0

together as an adversary against the key exchange. In the game-hop from
ExpKI,F,1

Π,n

G0 → Keys to
ExpKI,F,1

Π,n

G1 → Keys, we do the converse, i.e., we make the code of ExpKI,F,1
Π,n part of the adversary and

consider A → ExpKI,F,1
Π,n as an adversary against Gb. This concludes the proof.

5 Composition should be tight

In the previous section we argued that for an AKE security notion to be useful it should be possible
to compose it with other security notions. Here we go one step further and argue that composition
should also be efficient. By efficient we mean in the sense of practice-oriented provable security [64]:
a reduction from the composed protocol to the AKE should be tight [27, 28]. More concretely,
suppose you have a protocol Π = KE; Σ consisting of the composition of an AKE protocol KE and
symmetric protocol Σ, i.e., where the keys used by Σ are generated by KE. Now assume KE is secure
according to some composable AKE security notion AKE, Σ is secure according to some notion X,
and the goal is to show that Π is secure according to some notion Y . Then we want the Y -security
of Π to be tightly reducible to the AKE-security of KE and the X-security of Σ, informally stated:

AdvYKE;Σ ≤ AdvAKE
KE + AdvXΣ . (15)

For example, Σ could be an authenticated encryption scheme, X could be the security notion of multi-
user authenticated encryption (mu-AE) [47], and Y could be the security notion of authenticated
and confidential channel establishment (ACCE) [46].

19

Intuitively, this should be possible since an AKE protocol is fundamentally a multi-user object,
and so the security of KE should “line-up” with the multi-user security of Σ to provide security
for their composition Π. In particular, we want the AKE security notion to support the following
natural proof strategy: start by replacing the session keys of all fresh sessions with random keys
(which can be done since KE is secure), then appeal to the X-security of Σ to argue that the
composition Π = KE;Σ now satisfies Y -security. This argument has been formalized by Brzuska,
Fischlin, Warinschi, and Williams [22], showing that BR-secure AKE protocols can be composed
with arbitrary symmetric-key protocols. Unfortunately, the reduction given in [22] is not quite of
the form (15), but rather

AdvYKE;Σ ≤ q · AdvAKE
KE + AdvXΣ , (16)

where the factor q = n2
U · ns depends on the number of users nU and the number of sessions per

user ns. For systems with billions of users and sessions such as TLS, the factor q can become very
substantial. As a result, if parameters are to be selected in a theoretically sound manner supported
by reductions, they would have to be increased significantly, thereby hurting performance.

So where does the factor q in (16) come from? It comes from a hybrid argument in [22] where,
one-by-one, the session keys of all fresh sessions are replaced with random keys. The hybrid argument
is necessary since the AKE model in [22] only allows one Test query. A 1-Test model is thus not
conducive to a tight composition result like (15). More conceptually, we see the 1-Test model as
failing to reflect the multi-user nature of key exchange.

n-FtG vs. RoR. Given that a 1-Test model is inadequate for tight composition, the natural solution
is to use an n-Test model where the adversary can make multiple Test queries. But there are two
reasonable ways in which this can be done: the n-FtG (Find-then-Guess) model, where each session
is equipped with its own independent secret bit bi and each Test query is answered real-or-random
based on the corresponding session’s secret bit; or the RoR (Real-or-Random) model, where all
Test queries are either all answered with real keys, or all are answered with random keys, based a
single secret bit b.13 Both the n-FtG model [4, 35, 39, 44] and the RoR model [1–3] have seen use in
the literature. So which one should you prefer? Answer: RoR.

The n-FtG model is no better than the 1-FtG model when it comes to tight composition, because
in the reduction it does not allow replacement of all fresh session keys with random keys in one
big swoop due to the secret bits bi being independent. On the other hand, the RoR model allows
all fresh session keys to be replaced at once. Thus, the proof of (15) is simply a matter of “lining
up” the keys from KE with the correct instances of the symmetric protocol Σ. In fact, Skrobot
and Lancrenon [68] have carried out exactly this proof by adapting the composition framework of
BFWW [22] to the RoR setting (albeit for password-based protocols).

Comparing the RoR and n-FtG models (see Figure 6), one can show that RoR tightly implies
n-FtG, while n-FtG only implies RoR with a tightness loss of n. Moreover, this loss is inherent. All
of these claims can be proven by adapting the corresponding proofs in [3] to our model given in
Section 2. Note that this is not just an exercise in moving definitions around so that a tightness
gap is hidden elsewhere. For example, our proof in Appendix A of the security of the NAXOS++
protocol obtains the same tightness gap to the underlying hardness assumptions in the RoR model as
the original proof of the NAXOS+ protocol did in the 1-FtG model [56], but due to the RoR-model
there is no additional gap when composing the AKE protocol with a subsequent symmetric protocol.

Finally, we note a peculiarity of the n-FtG model. For security to be meaningfully defined in
the 1-FtG and RoR models all test sessions must be fresh, otherwise the adversary could trivially
win the game. However, in the n-FtG model—where the adversary’s output (i, b′) is a guess of
the singular session i’s secret bit—one could technically allow the compromise of all the other test
sessions, since this wouldn’t necessarily trivialize the game. But we do not recommend this variant
of n-FtG. First of all, we find it conceptually wrong, since the whole purpose of the Test query
is to measure the adversary’s ability to distinguish session keys of valid targets. If the adversary
really wanted to learn the keys of the other test sessions it should have used the Reveal query.
Second, with this variant we can no longer prove the implication RoR =⇒ n-FtG.

13 The FtG and RoR labels are inspired by the similarly-named IND-CPA security notions for symmetric
encryption [7].

20

RoR n-FtG 1-FtG

1 1

n
�1

n

Fig. 6: Relationship between notions; X
L−→ Y indicates that notion X implies notion Y with

security loss O(L).

Tight AKE constructions vs. tight AKE composition. This section has focused on the usefulness of
the AKE security notion itself, i.e., how tightly can the security of a complex protocol be reduced
to the security of the underlying AKE? In a sense, we have focused on the user of the AKE security
notion.

In contrast, tightness considerations in the literature have mainly focused on the construction
of the AKE protocol itself, i.e., how tightly can the security of the AKE protocol be reduced to the
security of some underlying assumptions, such as Diffie-Hellman or RSA? Some examples of AKE
protocols with tight, or nearly tight, reductions in this sense are [4, 5, 29,42,44,45,59–62].

Note that these two types of tightness considerations are complementary. For the security
proof of the overall system to be maximally meaningful (in the sense of practice-oriented provable
security [6, 28,64]), both the construction and the composition need to be tight.

6 Misbehaving adversaries

The main reason to compare key exchange security models is to compare the relative strength of
a considered adversary, i.e., which capabilities are the adversary assumed to have in the model?
However, existing models typically entangle the capabilities in slightly different ways, and hence
there are no common capability parameters that could serve as a basis for comparison.

If one commits to only using a specific family of models parametrized solely by a freshness
condition (such as the one in [32], [16], or our ExpSecPred,F

Π,n in Section 2), then the comparison boils
down to comparing the freshness conditions. However, in practice, other aspects may also differ,
such as the choice of partnering mechanism [31]. Nevertheless, our baseline theorem shows that the
behavior of different partnering mechanisms is approximately the same, provided they satisfy the
two natural soundness properties. Thus, here we focus instead on another source of incomparability,
namely the treatment of adversarial misbehavior, which has not been considered by previous works.

For a given property, we aim to determine a protocol’s security against adversaries that do not
violate the freshness condition; what we will call well-behaved adversaries. Surprisingly, there is
no consensus on how to ensure that only well-behaved adversaries are considered in the security
definition, as illustrated by the following different approaches taken in the literature.

A) Exclusion-style. In this approach one simply quantify over the well-behaved adversaries only.
The security experiment is typically formulated as follows (see, e.g., [16]):

1. The experiment begins, and the adversary can issue any permissible query.
2. At some point it issues a Test query to a fresh session.
3. It continues issuing queries, under the condition that the test session remains fresh.
4. Finally, the adversary outputs a guess b′.

While the exclusion-style formulation is probably the one most commonly found in the literature, it
has some conceptual drawbacks. Quoting Rogaway and Zhang [66]:

Exclusion-style definitions compel consideration of adversary classes. They disqualify adver-
saries that only rarely misbehave. They ignore whether or not an adversary can ‘know’ it
has misbehaved. And they promote ambiguity, as the relevant restrictions are not expressed
in game code.

We refer the reader to [66] for further details.

21

B) Penalty-style. Another approach is to quantify over all adversarial behaviors, but then penalize
the misbehavior at the end of the experiment (e.g, by outputting a random bit on the adversary’s
behalf, effectively nullifying the adversary’s influence). The difference between the exclusion-style
and the penalty-style definitions has previously been considered by Bellare, Hofheinz, and Kiltz [8]
in the context of IND-CCA security for public-key encryption. Examples of models using the
penalty-style are given in [9, 19, 36, 56]. For a proof using a penalty-style definition, the relevant
adversary restrictions will manifest themselves during the probability analysis where one needs to
check that indeed, the reduction will not be penalized by the game it is playing and/or that it is
penalized if and only if the original adversary would have been penalized in its game as well. These
analyses can sometimes be quite subtle.

C) Filtering-style. Finally, we have the approach we prefer, where queries that constitute adversarial
misbehavior are not executed, and no response is returned to the adversary. This filtering-style
definition is inspired by George and Rackoff [43] and the work of Rogaway and Zhang [66].14 The
advantage of a filtering-style definition is that it makes the accepted adversarial behaviour explicit
in the game code, and it avoids the need for subtle freshness analyses at the end of the proof.

Relations between notions. The relationship between the three notions is subtle. First, security in a
filter-style model implies security in an exclusion-style model, but not the other way around. The
problem is that one cannot always publicly check whether a query is valid or not. However, if the
validity can be publicly checked (i.e., if it does not depend on secret game state), then exclusion-style
security implies filter-style security. This is similar to a result by Rogaway and Zhang [66].

For penalty-style security the situation is much more complicated. First, similar to the direction
exclusion-style security→ filter-style security, security in a penalty-style model only implies security
in a filter-style model if one can publicly check validity. However, in the converse direction filter-style
security fails to imply penalty-style security. To illustrate this, consider a penalty-style adversary A
for which we aim to build a filter-style adversary B (against the same protocol) using the eCK-like
freshness predicate F eCK given in Figure 3. Now suppose A behaves as follows: (1) it reveals all
long-term keys; (2) it forwards messages passively between two sessions until one of them accepts;
(3) it tests this session; (4) it delivers the test session’s final message to the other one (so they
become partners); (5) it stops and outputs a guess. The problem for B occurs in step (3): at this
point the test-session is non-fresh according to F eCK, so it won’t get a response back if it forwards
A’s Test query to its own filter-style game. However, it can’t simply abort, because A is a valid
penalty-style adversary due to step (4) (since the test-session eventually gets a partner, it is fresh
by the time of step (5)).

The reason for this issue is that in a penalty-style model the “intermediate” freshness state of a
session could be non-monotonic. That is, even though a session is fresh when the experiment ends,
it could have been considered unfresh at certain points during the experiment. In our view, this
non-monotonic aspect of the penalty-style model is counter-intuitive and complicates reasoning.
Also, it is not clear whether the obstacle to proving that filter-style security implies penalty-style
security represents an actual security difference, or whether it is merely a proof technicality.

7 Discussion

For the cryptographer developing a protocol, we offer a family of key exchange models in Section 2,
parameterized by a freshness condition tailored to capture the intended adversarial attack capabilities.
A proof in one of our models ensures that no attack exists under a different reasonable partnering
mechanism, and that efficient composition with a symmetric-key protocol is possible.

Our results are useful beyond the family of models: for those who prefer to use session identifiers
rather than key partnering for your proof, our baseline theorem of key exchange partnering says
this is fine, as long as soundness of the session identifiers is proven. For those who prefer to penalize
adversaries that violate the freshness condition, rather than filtering the response from unfresh

14 In the silencing definition of Rogaway and Zhang [66], the game state is updated and only the response is
suppressed, whereas our formulation in Figure 2 reverts the game state if the response is to be suppressed.

22

queries, the IsPartnered oracle provides the public checkability of partnering to show these
equivalent.

Our results show that by some careful choices for key exchange models, one can relatively easily
obtain sanity in interpreting and relating different key exchange security models, and assurance
that protocols satisfying those models can be composed in reasonable ways.

Acknowledgements

We thank Konrad Kohbrok for discussions on the baseline theorem of key partnering at early stages
of this work. We thank Eric Cornelissen for helpful comments on the presentation.

D.S. is supported in part by Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery grant RGPIN-2022-03187. This work was supported by the Research Council
of Finland.

References

1. Michel Abdalla, Fabrice Benhamouda, and Philip MacKenzie. Security of the J-PAKE password-
authenticated key exchange protocol. In 2015 IEEE Symposium on Security and Privacy, pages 571–587,
San Jose, CA, USA, May 17–21, 2015. IEEE Computer Society Press. doi:10.1109/SP.2015.41. 20

2. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Public-key encryption indistinguishable
under plaintext-checkable attacks. In Jonathan Katz, editor, PKC 2015: 18th International Conference
on Theory and Practice of Public Key Cryptography, volume 9020 of Lecture Notes in Computer Science,
pages 332–352, Gaithersburg, MD, USA, March 30 – April 1, 2015. Springer, Berlin, Heidelberg,
Germany. doi:10.1007/978-3-662-46447-2_15. 20

3. Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated key
exchange in the three-party setting. In Serge Vaudenay, editor, PKC 2005: 8th International Workshop
on Theory and Practice in Public Key Cryptography, volume 3386 of Lecture Notes in Computer Science,
pages 65–84, Les Diablerets, Switzerland, January 23–26, 2005. Springer, Berlin, Heidelberg, Germany.
doi:10.1007/978-3-540-30580-4_6. 4, 8, 14, 20

4. Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. Tightly-secure authenticated
key exchange. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of
Cryptography Conference, Part I, volume 9014 of Lecture Notes in Computer Science, pages 629–
658, Warsaw, Poland, March 23–25, 2015. Springer, Berlin, Heidelberg, Germany. doi:10.1007/

978-3-662-46494-6_26. 5, 8, 20, 21
5. José Becerra, Vincenzo Iovino, Dimiter Ostrev, Petra Sala, and Marjan Skrobot. Tightly-secure

PAK(E). In Srdjan Capkun and Sherman S. M. Chow, editors, CANS 17: 16th International Conference
on Cryptology and Network Security, volume 11261 of Lecture Notes in Computer Science, pages
27–48, Hong Kong, China, November 30 – December 2, 2017. Springer, Cham, Switzerland. doi:

10.1007/978-3-030-02641-7_2. 5, 21
6. Mihir Bellare. Practice-oriented provable-security. In Eiji Okamoto, George I. Davida, and Masahiro

Mambo, editors, First International Workshop on Information Security ISW ’97, volume 1396 of LNCS,
pages 221–231. Springer, 1997. doi:10.1007/BFb0030423. 21

7. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security treatment of
symmetric encryption. In 38th Annual Symposium on Foundations of Computer Science, pages 394–403,
Miami Beach, Florida, October 19–22, 1997. IEEE Computer Society Press. doi:10.1109/SFCS.1997.

646128. 20
8. Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. Subtleties in the definition of IND-CCA: When and

how should challenge decryption be disallowed? Journal of Cryptology, 28(1):29–48, January 2015.
doi:10.1007/s00145-013-9167-4. 6, 22

9. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure against
dictionary attacks. In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 139–155, Bruges, Belgium, May 14–18, 2000. Springer,
Berlin, Heidelberg, Germany. doi:10.1007/3-540-45539-6_11. 2, 4, 8, 14, 22

10. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R. Stinson,
editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Computer Science,
pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994. Springer, Berlin, Heidelberg, Germany.
doi:10.1007/3-540-48329-2_21. 1, 2, 4, 6, 8, 12, 13, 31

11. Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: The three party case. In 27th
Annual ACM Symposium on Theory of Computing, pages 57–66, Las Vegas, NV, USA, May 29 – June 1,
1995. ACM Press. doi:10.1145/225058.225084. 2, 4, 8, 14

23

https://doi.org/10.1109/SP.2015.41
https://doi.org/10.1007/978-3-662-46447-2_15
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-030-02641-7_2
https://doi.org/10.1007/978-3-030-02641-7_2
https://doi.org/10.1007/BFb0030423
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1007/s00145-013-9167-4
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1145/225058.225084

12. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1,
2006. Springer, Berlin, Heidelberg, Germany. doi:10.1007/11761679_25. 29

13. Florian Bergsma, Benjamin Dowling, Florian Kohlar, Jörg Schwenk, and Douglas Stebila. Multi-
ciphersuite security of the Secure Shell (SSH) protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li,
editors, ACM CCS 2014: 21st Conference on Computer and Communications Security, pages 369–381,
Scottsdale, AZ, USA, November 3–7, 2014. ACM Press. doi:10.1145/2660267.2660286. 4

14. Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green, Markulf Kohlweiss, and
Santiago Zanella-Béguelin. Downgrade resilience in key-exchange protocols. In 2016 IEEE Symposium
on Security and Privacy, pages 506–525, San Jose, CA, USA, May 22–26, 2016. IEEE Computer Society
Press. doi:10.1109/SP.2016.37. 31

15. Simon Blake-Wilson and Alfred Menezes. Entity authentication and authenticated key transport
protocols employing asymmetric techniques. In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas,
and Michael Roe, editors, 5th International Workshop on Security Protocols, volume 1361 of LNCS,
pages 137–158. Springer, 1997. 4, 8, 12, 13

16. Colin Boyd, Cas Cremers, Michele Feltz, Kenneth G. Paterson, Bertram Poettering, and Douglas Stebila.
ASICS: Authenticated key exchange security incorporating certification systems. In Jason Crampton,
Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013: 18th European Symposium on Research in
Computer Security, volume 8134 of Lecture Notes in Computer Science, pages 381–399, Egham, UK,
September 9–13, 2013. Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-642-40203-6_22.
7, 8, 11, 12, 21

17. Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for Authentication and Key Estab-
lishment. Information Security and Cryptography. Springer, second edition, 2019. doi:10.1007/

978-3-662-58146-9. 2
18. Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and Markulf Kohlweiss.

State separation for code-based game-playing proofs. In Thomas Peyrin and Steven Galbraith, editors,
Advances in Cryptology – ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer Sci-
ence, pages 222–249, Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Cham, Switzerland.
doi:10.1007/978-3-030-03332-3_9. 8, 17, 18, 19

19. Chris Brzuska and H̊akon Jacobsen. A modular security analysis of EAP and IEEE 802.11. In
Serge Fehr, editor, PKC 2017: 20th International Conference on Theory and Practice of Public
Key Cryptography, Part II, volume 10175 of Lecture Notes in Computer Science, pages 335–365,
Amsterdam, The Netherlands, March 28–31, 2017. Springer, Berlin, Heidelberg, Germany. doi:

10.1007/978-3-662-54388-7_12. 4, 6, 14, 22
20. Christina Brzuska. On the foundations of key exchange. PhD thesis, Darmstadt University of Technology,

Germany, 2013. URL: http://tuprints.ulb.tu-darmstadt.de/3414/. 17
21. Christina Brzuska, Marc Fischlin, Nigel P. Smart, Bogdan Warinschi, and Stephen C. Williams. Less is

more: relaxed yet composable security notions for key exchange. International Journal of Information
Security, 12(4):267–297, 2013. doi:10.1007/s10207-013-0192-y. 4, 8, 14

22. Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. Composability of
Bellare-Rogaway key exchange protocols. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors,
ACM CCS 2011: 18th Conference on Computer and Communications Security, pages 51–62, Chicago,
Illinois, USA, October 17–21, 2011. ACM Press. doi:10.1145/2046707.2046716. 3, 4, 5, 6, 8, 14, 15,
17, 18, 20

23. Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An analysis of the EMV
channel establishment protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013: 20th Conference on Computer and Communications Security, pages 373–386, Berlin,
Germany, November 4–8, 2013. ACM Press. doi:10.1145/2508859.2516748. 4, 14

24. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045
of Lecture Notes in Computer Science, pages 453–474, Innsbruck, Austria, May 6–10, 2001. Springer,
Berlin, Heidelberg, Germany. doi:10.1007/3-540-44987-6_28. 4, 5, 8, 11, 14

25. Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange protocol.
In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 143–161, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin,
Heidelberg, Germany. URL: https://eprint.iacr.org/2002/120/, doi:10.1007/3-540-45708-9_10.
2, 4, 14

26. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure channels.
In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture
Notes in Computer Science, pages 337–351, Amsterdam, The Netherlands, April 28 – May 2, 2002.
Springer, Berlin, Heidelberg, Germany. doi:10.1007/3-540-46035-7_22. 3, 17

24

https://doi.org/10.1007/11761679_25
https://doi.org/10.1145/2660267.2660286
https://doi.org/10.1109/SP.2016.37
https://doi.org/10.1007/978-3-642-40203-6_22
https://doi.org/10.1007/978-3-662-58146-9
https://doi.org/10.1007/978-3-662-58146-9
https://doi.org/10.1007/978-3-030-03332-3_9
https://doi.org/10.1007/978-3-662-54388-7_12
https://doi.org/10.1007/978-3-662-54388-7_12
http://tuprints.ulb.tu-darmstadt.de/3414/
https://doi.org/10.1007/s10207-013-0192-y
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1145/2508859.2516748
https://doi.org/10.1007/3-540-44987-6_28
https://eprint.iacr.org/2002/120/
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/3-540-46035-7_22

27. Sanjit Chatterjee, Neal Koblitz, Alfred Menezes, and Palash Sarkar. Another look at tightness II:
practical issues in cryptography. In Raphael C.-W. Phan and Moti Yung, editors, Paradigms in
Cryptology - Mycrypt 2016, volume 10311 of LNCS, pages 21–55. Springer, 2016. 6, 19

28. Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at tightness. In Ali Miri and Serge
Vaudenay, editors, SAC 2011: 18th Annual International Workshop on Selected Areas in Cryptography,
volume 7118 of Lecture Notes in Computer Science, pages 293–319, Toronto, Ontario, Canada, August 11–
12, 2012. Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-642-28496-0_18. 6, 19, 21

29. Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, H̊akon Jacobsen, and Tibor Jager. Highly
efficient key exchange protocols with optimal tightness. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 767–797, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Cham, Switzerland.
doi:10.1007/978-3-030-26954-8_25. 5, 8, 21

30. Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On post-compromise security. In IEEE
29th Computer Security Foundations Symposium, CSF 2016, pages 164–178. IEEE Computer Society,
2016. doi:10.1109/CSF.2016.19. 4

31. Cas Cremers. Examining indistinguishability-based security models for key exchange protocols: the
case of CK, CK-HMQV, and eCK. In Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu,
and Duncan S. Wong, editors, ASIACCS 11: 6th ACM Symposium on Information, Computer and
Communications Security, pages 80–91, Hong Kong, China, March 22–24, 2011. ACM Press. doi:

10.1145/1966913.1966925. 5, 21

32. Cas J. F. Cremers and Michele Feltz. Beyond eCK: Perfect forward secrecy under actor compromise and
ephemeral-key reveal. In Sara Foresti, Moti Yung, and Fabio Martinelli, editors, ESORICS 2012: 17th
European Symposium on Research in Computer Security, volume 7459 of Lecture Notes in Computer
Science, pages 734–751, Pisa, Italy, September 10–12, 2012. Springer, Berlin, Heidelberg, Germany.
doi:10.1007/978-3-642-33167-1_42. 4, 5, 8, 12, 13, 21

33. Cyprien Delpech de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi. Authentication in key-
exchange: Definitions, relations and composition. In 33rd IEEE Computer Security Foundations
Symposium, CSF 2020,, pages 288–303. IEEE Computer Society, 2020. doi:10.1109/CSF49147.2020.

00028. 2, 16, 30

34. Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE Trans. Inf.
Theory, 29(2):198–207, 1983. doi:10.1109/TIT.1983.1056650. 1

35. Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic analysis of the
TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
ACM CCS 2015: 22nd Conference on Computer and Communications Security, pages 1197–1210,
Denver, CO, USA, October 12–16, 2015. ACM Press. doi:10.1145/2810103.2813653. 4, 8, 14, 20

36. Benjamin Dowling and Kenneth G. Paterson. A cryptographic analysis of the WireGuard protocol. In
Bart Preneel and Frederik Vercauteren, editors, ACNS 18: 16th International Conference on Applied
Cryptography and Network Security, volume 10892 of Lecture Notes in Computer Science, pages 3–21,
Leuven, Belgium, July 2–4, 2018. Springer, Cham, Switzerland. doi:10.1007/978-3-319-93387-0_1.
22

37. Michèle Feltz and Cas Cremers. On the limits of authenticated key exchange security with an
application to bad randomness. Cryptology ePrint Archive, Report 2014/369, 2014. URL: https:
//eprint.iacr.org/2014/369. 7

38. Michèle Feltz and Cas Cremers. Strengthening the security of authenticated key exchange against bad
randomness. Des. Codes Cryptography, 86(3):481–516, 2018. doi:10.1007/s10623-017-0337-5. 5

39. Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC protocol.
In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st Conference on Computer
and Communications Security, pages 1193–1204, Scottsdale, AZ, USA, November 3–7, 2014. ACM
Press. doi:10.1145/2660267.2660308. 4, 14, 20

40. Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi. Key confirmation in key
exchange: A formal treatment and implications for TLS 1.3. In 2016 IEEE Symposium on Security
and Privacy, pages 452–469, San Jose, CA, USA, May 22–26, 2016. IEEE Computer Society Press.
doi:10.1109/SP.2016.34. 32

41. Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-interactive key
exchange. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013: 16th International Conference
on Theory and Practice of Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science,
pages 254–271, Nara, Japan, February 26 – March 1, 2013. Springer, Berlin, Heidelberg, Germany.
doi:10.1007/978-3-642-36362-7_17. 14

42. Kai Gellert, Kristian Gjøsteen, H̊akon Jacobsen, and Tibor Jager. On optimal tightness for key
exchange with full forward secrecy via key confirmation. In Helena Handschuh and Anna Lysyanskaya,
editors, Advances in Cryptology – CRYPTO 2023, Part IV, volume 14084 of Lecture Notes in Computer

25

https://doi.org/10.1007/978-3-642-28496-0_18
https://doi.org/10.1007/978-3-030-26954-8_25
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1145/1966913.1966925
https://doi.org/10.1145/1966913.1966925
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1007/978-3-319-93387-0_1
https://eprint.iacr.org/2014/369
https://eprint.iacr.org/2014/369
https://doi.org/10.1007/s10623-017-0337-5
https://doi.org/10.1145/2660267.2660308
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1007/978-3-642-36362-7_17

Science, pages 297–329, Santa Barbara, CA, USA, August 20–24, 2023. Springer, Cham, Switzerland.
doi:10.1007/978-3-031-38551-3_10. 21

43. Wesley George and Charles Rackoff. Rethinking definitions of security for session key agreement.
Cryptology ePrint Archive, Report 2013/139, 2013. URL: https://eprint.iacr.org/2013/139. 4, 6,
8, 17, 22

44. Kristian Gjøsteen and Tibor Jager. Practical and tightly-secure digital signatures and authenti-
cated key exchange. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science, pages 95–125, Santa Bar-
bara, CA, USA, August 19–23, 2018. Springer, Cham, Switzerland. doi:10.1007/978-3-319-96881-0_
4. 4, 5, 20, 21

45. Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel, and Sven Schäge. Authen-
ticated key exchange and signatures with tight security in the standard model. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part IV, volume 12828 of Lecture Notes in
Computer Science, pages 670–700, Virtual Event, August 16–20, 2021. Springer, Cham, Switzerland.
doi:10.1007/978-3-030-84259-8_23. 21

46. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in
the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 273–293, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-642-32009-5_

17. 4, 19
47. Tibor Jager, Martijn Stam, Ryan Stanley-Oakes, and Bogdan Warinschi. Multi-key authenticated

encryption with corruptions: Reductions are lossy. In Yael Kalai and Leonid Reyzin, editors, TCC 2017:
15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 409–441, Baltimore, MD, USA, November 12–15, 2017. Springer, Cham, Switzerland. doi:

10.1007/978-3-319-70500-2_14. 19
48. Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee. One-round protocols for two-party authenticated key

exchange. In Markus Jakobsson, Moti Yung, and Jianying Zhou, editors, ACNS 04: 2nd International
Conference on Applied Cryptography and Network Security, volume 3089 of Lecture Notes in Computer
Science, pages 220–232, Yellow Mountain, China, June 8–11, 2004. Springer, Berlin, Heidelberg, Germany.
doi:10.1007/978-3-540-24852-1_16. 4, 14

49. Kazukuni Kobara, SeongHan Shin, and Mario Strefler. Partnership in key exchange protocols. In
Wanqing Li, Willy Susilo, Udaya Kiran Tupakula, Reihaneh Safavi-Naini, and Vijay Varadharajan,
editors, ASIACCS 09: 4th ACM Symposium on Information, Computer and Communications Security,
pages 161–170, Sydney, Australia, March 10–12, 2009. ACM Press. doi:10.1145/1533057.1533081. 4,
8

50. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 546–566, Santa Barbara, CA, USA, August 14–18, 2005. Springer, Berlin, Heidelberg, Germany.
doi:10.1007/11535218_33. 4, 8

51. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal Rabin,
editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 631–648, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Heidelberg, Germany.
doi:10.1007/978-3-642-14623-7_34. 14

52. Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the TLS protocol: A sys-
tematic analysis. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013,
Part I, volume 8042 of Lecture Notes in Computer Science, pages 429–448, Santa Barbara, CA, USA,
August 18–22, 2013. Springer, Berlin, Heidelberg, Germany. doi:10.1007/978-3-642-40041-4_24. 4,
14

53. Caroline Kudla and Kenneth G. Paterson. Modular security proofs for key agreement protocols. In
Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of Lecture Notes in
Computer Science, pages 549–565, Chennai, India, December 4–8, 2005. Springer, Berlin, Heidelberg,
Germany. doi:10.1007/11593447_30. 15

54. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated key
exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007: 1st International
Conference on Provable Security, volume 4784 of Lecture Notes in Computer Science, pages 1–16,
Wollongong, Australia, November 1–2, 2007. Springer, Berlin, Heidelberg, Germany. doi:10.1007/

978-3-540-75670-5_1. 2, 5, 8, 11, 12
55. Kristin Lauter and Anton Mityagin. Security analysis of KEA authenticated key exchange protocol. In

Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006: 9th International
Conference on Theory and Practice of Public Key Cryptography, volume 3958 of Lecture Notes in
Computer Science, pages 378–394, New York, NY, USA, April 24–26, 2006. Springer, Berlin, Heidelberg,
Germany. doi:10.1007/11745853_25. 4

26

https://doi.org/10.1007/978-3-031-38551-3_10
https://eprint.iacr.org/2013/139
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-319-70500-2_14
https://doi.org/10.1007/978-3-540-24852-1_16
https://doi.org/10.1145/1533057.1533081
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/11593447_30
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/11745853_25

56. Jooyoung Lee and Je Hong Park. Authenticated key exchange secure under the computational Diffie-
Hellman assumption. Cryptology ePrint Archive, Report 2008/344, 2008. URL: https://eprint.iacr.
org/2008/344. 20, 22, 28, 30

57. Yong Li and Sven Schäge. No-match attacks and robust partnering definitions: Defining trivial attacks for
security protocols is not trivial. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 1343–
1360, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press. doi:10.1145/3133956.3134006.
4, 8

58. Alfred Menezes and Berkant Ustaoglu. Security arguments for the UM key agreement protocol in the
NIST SP 800-56A standard. In Masayuki Abe and Virgil Gligor, editors, ASIACCS 08: 3rd ACM
Symposium on Information, Computer and Communications Security, pages 261–270, Tokyo, Japan,
March 18–20, 2008. ACM Press. doi:10.1145/1368310.1368348. 4, 8

59. Jiaxin Pan, Chen Qian, and Magnus Ringerud. Signed (group) Diffie-Hellman key exchange with tight
security. Journal of Cryptology, 35(4):26, October 2022. doi:10.1007/s00145-022-09438-y. 21

60. Jiaxin Pan, Doreen Riepel, and Runzhi Zeng. Key exchange with tight (full) forward secrecy via key
confirmation. In Marc Joye and Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024,
Part VII, volume 14657 of Lecture Notes in Computer Science, pages 59–89, Zurich, Switzerland,
May 26–30, 2024. Springer, Cham, Switzerland. doi:10.1007/978-3-031-58754-2_3. 21

61. Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng. Lattice-based authenticated key exchange with tight
security. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,
Part V, volume 14085 of Lecture Notes in Computer Science, pages 616–647, Santa Barbara, CA, USA,
August 20–24, 2023. Springer, Cham, Switzerland. doi:10.1007/978-3-031-38554-4_20. 21

62. Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng. Tighter security for generic authenticated key exchange
in the QROM. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023,
Part IV, volume 14441 of Lecture Notes in Computer Science, pages 401–433, Guangzhou, China,
December 4–8, 2023. Springer, Singapore, Singapore. doi:10.1007/978-981-99-8730-6_13. 21

63. Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas Stebila. SoK: Game-based security models
for group key exchange. In Kenneth G. Paterson, editor, Topics in Cryptology – CT-RSA 2021, volume
12704 of Lecture Notes in Computer Science, pages 148–176, Virtual Event, May 17–20, 2021. Springer,
Cham, Switzerland. doi:10.1007/978-3-030-75539-3_7. 2, 33

64. Phillip Rogaway. On the of role of definitions in and beyond cryptography. In ASIAN, volume 3321 of
LNCS, pages 13–32. Springer, 2004. 19, 21

65. Phillip Rogaway and Till Stegers. Authentication without elision: Partially specified protocols, associated
data, and cryptographic models described by code. In 22nd IEEE Computer Security Foundations
Symposium, CSF 2009, pages 26–39. IEEE Computer Society, 2009. doi:10.1109/CSF.2009.23. 4, 14

66. Phillip Rogaway and Yusi Zhang. Simplifying game-based definitions - indistinguishability up to
correctness and its application to stateful AE. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer
Science, pages 3–32, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Cham, Switzerland.
doi:10.1007/978-3-319-96881-0_1. 6, 11, 21, 22

67. Victor Shoup and Aviel D. Rubin. Session key distribution using smart cards. In Ueli M. Maurer,
editor, Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lecture Notes in Computer
Science, pages 321–331, Saragossa, Spain, May 12–16, 1996. Springer, Berlin, Heidelberg, Germany.
doi:10.1007/3-540-68339-9_28. 4, 14

68. Marjan Skrobot and Jean Lancrenon. On composability of game-based password authenticated key
exchange. In 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018, pages 443–457.
IEEE, 2018. doi:10.1109/EuroSP.2018.00038. 17, 20

27

https://eprint.iacr.org/2008/344
https://eprint.iacr.org/2008/344
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/1368310.1368348
https://doi.org/10.1007/s00145-022-09438-y
https://doi.org/10.1007/978-3-031-58754-2_3
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.1007/978-981-99-8730-6_13
https://doi.org/10.1007/978-3-030-75539-3_7
https://doi.org/10.1109/CSF.2009.23
https://doi.org/10.1007/978-3-319-96881-0_1
https://doi.org/10.1007/3-540-68339-9_28
https://doi.org/10.1109/EuroSP.2018.00038

A Case Study: Analyzing NAXOS+ in our model

In this section we showcase the security model we defined in Section 2 by providing a proof of
the NAXOS+ protocol [56]. In fact, we consider a slight variant of NAXOS+ we call NAXOS++,
whose only difference is that it includes the full protocol transcript into the key derivation function.

Specifically, in NAXOS++, each party U has a long-term Diffie-Hellman key pair over a group
G of prime order p, generated by a generator g, i.e.:

KG() 7→ (sk, pk) : a←$ {1, .., p}, sk← a, pk← ga

Each party draws an ephemeral random string esk and computes its ephemeral Diffie-Hellman
exponent using the NAXOS trick, i.e.:

New(U, skU , pkU , role, V,PK) 7→ (π,m) :

esk←$ {1, .., p},
if role = init : x← H1(esk, skU), X ← gx, m← X

if role = resp : y ← H1(esk, skU), Y ← gy, m← ⊥

The initiator and responder then both compute all possible combinations of Diffie-Hellman secrets
and hash them together with their long-term public-keys and the ephemeral Diffie-Hellman public
shares (including these public-shares is somewhat redundant, but it makes the key material
uniqueness argument for NAXOS++ a little easier than the analogous argument about NAXOS+),
i.e.:

Run(π,m) 7→ (π′,m′) : // π.owner = U, π.pid = V

if role = init :

m′ ← ⊥, parse Y ← m

keymat← (pkU , pkV , X, Y, pkskU
V , Y skU , pkxV , Y

x)

if role = resp :

m′ ← Y, parse X ← m

keymat← (pkV , pkU , X, Y, pkskU
V , pkyV , X

skU , Xy)

k ← H2(keymat)

We now state our theorem for NAXOS++ Π = (KG,New,Run) and observe that, although we
prove security for an arbitrary number of Test sessions, the bounds and the conceptual reduction
arguments remain essentially the same as in Lee and Park [56], only the additive statistical terms
Theorem 3 are slightly increased. Recall that we prove security in the tightly composable RoR
model while Lee and Park [56] prove security in the 1-FtG model, cf. Figure 6.

Theorem 3. For all adversaries A, there are efficient, explicit constructions of adversaries B1(A),
B2(A) and B3(A) such that

AdvKI,F eCK

Π,n (A) ≤ n · Advdlog
G,g (B1(A))

+ n2
s · AdvCDH

G,g (B2(A))

+ nns · AdvCDH
G,g (B3(A))

+
q2
1 + q2

2 + 2n3
sq2 + 2n2

sq1q2 + n2
sq

2
2

2λ

+
n2 + n2

s + 2nnsq2 + 2nn2
sq1q2

p

(17)

where n denotes number of users, ns is the (total) number of sessions, q1 is the number of queries to
random oracle H1, q2 is the number of queries to random oracle H2, dlog is the Discrete Logarithm
problem, and CDH is the Computational Diffie-Hellman problem.

28

Proof. The proof proceeds through a sequence of six game-hops that are summarized in Figure 7. G0

is equal to ExpKI,F eCK

Π,n (A). The lines following G` are only executed in games Gm with m ≥ `. Note
that in our game-hops, we use our filtering mechanism to ensure that fewer and fewer bad events can
occur. Essentially, this captures “identical-up-to-bad” reasoning [12], but without the complexity of
conditional probabilities. Instead, we simply modify the game such that the undesirable behavior
cannot occur anymore.

From game G0 to G1, we remove collisions on the long-term keys. From game G1 to G2, we
remove random oracle collisions on the random oracles H1 and H2. From game G2 to G3, we
remove collisions between the randomness that is drawn by each session. From game G3 to G4, we
remove the case that there exists a party U with long-term secret sk such that the adversary A
makes a random oracle query H1(∗, skU) before, or without, making a RevLTK(U) query. From
game G4 to G5, we remove random oracle queries to H2 with the key material of a Test session
i that is not partnered. From game G5 to G6, we remove random oracle queries to H2 with the
key material of a Test session i that is partnered. In game G6, the adversary cannot make random
oracle queries to the random oracle H2 with the key material of any Test session, and thus, the
adversary’s advantage in G6 is the statistical distance between random keys and non-colliding keys
(since several collisions have been removed).

ExpKI,F eCK

Π,n (A)

201 b←$ {0, 1} // Pick hidden challenge bit
202 S ← [] // Initialize list of session states
203 Q ← [] // Initialize list of queries
204 T ← ∅ // Initialize set of tested sessions
205 cnt← 0 // Initialize session counter
206

207 for all U ∈ {1, . . . , n}: // Generate all long-term key pairs
208 a←$ {1, .., p}
209 a←$ {1, .., p} \ {skV : V < U} // G1: No long-term key collisions
210 skU ← a, pkU ← ga

211 PK[U]← pkU
212

213 Φ← {b,S,Q, T , cnt,PK} // Global experiment state
214 b′←$AO(PK) // Run the adversary
215 output b = b′

// All adversary queries are “filtered” through O
O(Query, x)

301 Φ′ ← Φ // Save the current global experiment state
302 y ← Query(x) // Run the adversary’s query
303 Q←←〈Query, x, y〉
304

305 if // Check if all tested sessions would remain fresh
306 ∀i ∈ T . F eCK(Φ, i)
307 // Check if there are RO collisions
308 G2 : ∀x, x′ . T1[x] ≡ T1[x′] orT2[x] ≡ T2[x′]
309 =⇒ x = x′

310 // Check if there are randomness collisions
311 G3 : ∀i, i′ . S[i].esk ≡ S[i′].esk =⇒ i = i′

312 // Check if there are secret longterm key guesses
313 G4 : ∀U . ∃〈H1, (∗, skU), ∗〉 ∈ Q
314 =⇒ ∃〈RevLTK, U, ∗〉 ∈ Q
315 // Check if there are session-key guesses for non-partnered sessions
316 G5 : ∃i . ∃〈Test, i, ∗〉 ∈ Q
317 and @j 6= i . S[i].k ≡ S[j].k
318 =⇒ @〈H2, (S[i].keymat), ∗〉 ∈ Q
319 // Any session-key guesses for partnered sessions?
320 G6 : ∃i . ∃〈Test, i, ∗〉 ∈ Q
321 and ∃j 6= i . S[i].k ≡ S[j].k
322 =⇒ @〈H2, (S[i].keymat), ∗〉 ∈ Q :
323 return y
324 else
325 Φ← Φ′ // Revert effects of bad query
326 return 3 // Silence response

Init(U, role, V)

401 cnt← cnt + 1
402 (S[cnt],m)←$ Π.New(U,

skU , pkU , role, V,PK)
403 return (cnt,m)

Send(i,m)

501 (S[i],m′)← Π.Run(S[i],m)
502 return (S[i].status,m′)

RevSK(i)

601 return S[i].k

RevRand(i)

701 return S[i].rand

RevLTK(U)

801 return skU

Test(i)

901 if i ∈ T :
902 return ⊥
903 if ∃j . S[i].k = S[j].k ∧ j ∈ T :
904 return ⊥
905 T ←← i
906 k0 ← S[i].k
907 k1←$K
908 return kb

IsPartnered(i, j)

1001 return (S[i].k ≡ S[j].k)

H1(esk, sk)

1101 if T1[esk, sk] = ⊥:
1102 T1[esk, sk]←$ {0, 1}λ

1103 return T1[esk, sk]

H2(keymat)

1201 if T2[keymat] = ⊥:
1202 T2[keymat]←$ {0, 1}λ

1203 return T2[keymat]

Fig. 7: Key Exchange Experiment for NAXOS++ protocol and freshness F eCK. The lines following
G` are only executed in games Gm with m ≥ `. Recall that ≡ treats two values as equal only if
they have previously been defined, see Section 2.2.

29

We now bound the difference between each subsequent pair of games. In the following, let εi
denote A’s advantage in game Gi. For the first three game hops, simple collision arguments gives

|ε0 − ε1| ≤
n2

p
, |ε1 − ε2| ≤

q2
1

2λ
+
q2
2

2λ
and |ε2 − ε3| ≤

n2
s

p
. (18)

Bounding game G3 and game G4 is analogous to the reduction to the discrete logarithm problem
(DLOG) given by Lee and Park [56]. They lose a factor n when guessing a random party whereas
we simply perform a hybrid argument over the number of parties, yielding a stronger claim with
the same security loss and the same reasoning. Only the constant additive term gets increased by
the hybrid argument when compared with the guessing argument.

ε3 − ε4 ≤ n ·
(

Advdlog
G,g (B1(A)) +

2nsq2

p

)
(19)

The two remaining game-hops involve reductions to the Computational Diffie-Hellman (CDH)
assumption. Again, the proofs are analogous to reductions for the corresponding events in [56]. For
the step from G4 to G5, Lee and Park [56] guess a pair of random sessions where they embed the
challenge Diffie-Hellman share. We, instead of guessing them at random, perform a hybrid over
all pairs. If it turns out that the pair in consideration does not end up in a a Test session, the
reduction outputs a random bit (and moreover, the condition introduced for G4 for this pair does
not affect the game behavior, so the adversary’s advantage in this hybrid step is indeed 0). For the
step from G5 to G6, we replace guessing one party and one session by a hybrid argument over all
possible combinations of a session and a party.

ε4 − ε5 ≤ n2
s ·
(

AdvCDH
G,g (B2(A)) +

ns + q1

2λ−1

)
, (20)

and

ε5 − ε6 ≤ nns ·
(

AdvCDH
G,g (B3(A)) +

2nsq1

p

)
. (21)

In game G6, the adversary cannot make random oracle queries to the random oracle H2 with the
key material of any Test session, and thus, the adversary’s advantage in G6 is the statistical distance

between uniformly random keys and actual keys, and ε6 is upper bounded by
n2
sq

2
2

2λ
.

B Authentication

To be useful, a key exchange protocol typically needs to provide authentication guarantees in
addition to key-indistinguishability. For example, when a key is locally accepted by some session, it
should be clear who else (if anyone) is in possession of the same key. One can also demand that one
or both parties involved in the exchange are authenticated (mutual vs. one-way), that the guarantee
holds as soon as the exchange has ended or when the key is actually used (explicit vs. implicit).
Furthermore, the guarantees can be considered under a variety of trust assumptions where the
adversary can corrupt long term keys of parties or not (i.e. key-compromise impersonation attacks)
and can corrupt ephemeral keys.

In this section we show how authentication guarantees can be expressed as security predicates
in our model. However, an exhaustive treatment of all different combinations is outside the scope of
this paper, and we refer to de Saint Guilhem, Fischlin and Warinschi [33] for a thorough survey.
We focus on providing definitions for some minimal set of authentication / agreement guarantees
which we would normally expect to be satisfied.

B.1 Implicit authentication

We start with a minimal agreement guarantee we would expect a good key-exchange protocol
to satisfy: entity agreement, a.k.a. implicit authentication. Implicit authentication is a useful
property to prove in addition to secrecy of the session key. We demand that if an accepted sessions

30

has a partner, then that partner should be at the session’s intended peer. Our formulation uses
key-partnering.

ImplAuthF : ∀i 6= j .
((
S[i].status = accepted ∧ S[i].k = S[j].k ∧ F (Φ, i)

)
=⇒ S[i].pid = S[j].owner

) (22)

Definition 10 (Implicit authentication). For a freshness condition F and number of parties
n ∈ N, a protocol Π provides ε-implicit authentication against an adversary A if

AdvImplAuth,F
Π,n (A) := Pr

[
Exp

ImplAuthF ,F
Π,n (A)⇒ 1

]
≤ ε . (23)

We stress that our formulation is generic in that it does not fix any particular freshness predicate.
Different instantiations of the freshness lead to (substantially) different guarantees. E.g., if freshness
allows the adversary to compromise the long term key of the owner of S[i], then the notion captures
security against key-compromise impersonation (KCI) attacks. If freshness allows for the intended
partner of S[i] to be compromised, then one captures unknown-key share attacks under this more
liberal corruption model.

Furthermore, our requirement for implicit authentication is minimal. It only demands that
partners agree upon the protocol participants. However, it is straightforward to extend this agreement
property to cover additional variables. For instance, to ensure that the participants have different
roles in the protocol, one can add this as an extra requirement to the ImplAuth event. In fact,
agreement could be used to define a more fine-grained version of matching conversations, by
demanding that partners should agree upon specific parts of their communication transcripts
(and possibly leaving other parts open to manipulation). E.g., see the use of agreement related to
transcripts and downgrade attacks in [14].

Additionally, the supposition of ImplAuth depends on key partnering. It would be possible to
formulate ImplAuth to depend on a generic partnering mechanism, which would potentially imply
subtly different authentication properties. However, as Appendix B.3 notes, our baseline theorem
of key exchange partnering implies that implicit authentication under key-partnering or a generic
partnering mechanism behave similarly if the partnering mechanism is sound and inverse-sound.

Finally, we note that implicit authentication does not provide any meaningful guarantees for
protocols that do not satisfy key secrecy, since in such a case no meaningful authentication is
achieved.

B.2 Explicit Authentication

The “implicit” aspect of implicit authentication means that a partner session satisfying the
requirements is not actually guaranteed to exist. Some protocols also provide an explicit assurance
that such a partner session exists: this is explicit entity authentication [10].

Explicit authentication demands that when a session i accepts, it is partnered with a session of
the intended partner j. For stateless protocols, a minimal requirement to achieve this is that the
intended peer is not corrupted before session i accepts. We capture this property via the predicate
FPNC below, in which the antecedent of the implication identifies the acceptance in the list of
queries, and the consequent excludes any preceding long-term key reveals for the peer:

FPNC(Φ, i) : ∀r < s .
(
Q[s] = 〈Send, (i, ∗), (accepted, ∗)〉

=⇒ Q[r] 6= 〈RevLTK,S[i].peerID, ∗〉
)
.

(24)

We can then state explicit authentication as:

ExplAuth : ∀i .
((
S[i].status = accepted ∧ FPNC(Φ, i)

)
=⇒ ∃j 6= i .

(
S[i].k = S[j].k ∧ S[i].pid = S[j].owner

)) (25)

Notice that the predicates which define implicit authentication and explicit authentication have
potentially different trust assumptions: ImplAuth allows for an arbitrary freshness predicate, while

31

ExplAuth hard-codes the requirement that the intended peer was not corrupted before the session
accepted. This is because implicit agreement guarantees can make sense even if the intended partner
of session S[i] is corrupt (for example, with eCK-type protocols), but do not make sense for explicit
authentication.

The following weaker intermediate property captures just the aliveness property of authentication:
when a session accepts, and the intended partner is not corrupt, a session of the peer exists.

Alive : ∀i .
((
S[i].status = accepted ∧ FPNC(Φ, i)

)
=⇒ ∃j .

(
S[i].pid = S[j].owner

))
(26)

Relationship with key-confirmation. Another property which is sometimes mentioned alongside
explicit authentication is key-confirmation. I.e., if a session accepts a key, then it is assured that some
other session must also have computed the same key.15 Intuitively, if key-confirmation is combined
with a protocol that provides secrecy and implicit authentication, explicit authentication is achieved.
Note that secrecy is strictly required here: a protocol that satisfies implicit authentication with an
added key-confirmation step need not achieve explicit authentication.

B.3 Falsifiability and partnering for authentication properties

A consequence of the baseline theorem of key exchange partnering (Theorem 1) is the following.
Let Π be a protocol, let φ be one of the three authentication properties in this section, and let P
be a sound and inverse-sound partnering mechanism. Then, Π provides φ under key-partnering if
and only if it provides φ under P -partnering.16

One might initially think that one can prove falsifiability of some of the authentication properties
relying only on one of soundness or inverse-soundness. E.g., consider implicit authentication. In
the ImplAuth predicate, the key equality-partnering check is in the supposition of the predicate. So
in order to argue, e.g., that, if implicit authentication holds with P -partnering, it also holds with
key-partnering, one might think that it suffices to have soundness: the set of sessions satisfying the
supposition of the ImplAuth predicate under key partnering would then be a subset of the set of
sessions satisfying the predicate under P -partnering. However, we cannot consider the ImplAuth
predicate in isolation: while the predicate itself only uses partnering in one way, there are other
parts of the overall security experiment which use partnering in various ways. In particular, the
IsPartnered oracle allows the adversary to exactly learn the partner status of every session under
the partnering mechanism in use (key partnering or P -partnering), which means we must have
both soundness and inverse-soundness to guarantee the whole experiment behaves identically.

15 Modulo some technicalities regarding which session sent/received the last message of the protocol. See [40]
for a more extensive treatment of key-confirmation, including these details.

16 Strictly speaking, to apply the baseline theorem, we need to consider the adaptations of ImplAuth,
ExplAuth to P -partnering rather than key-partnering, by replacing the key equality checks S[i].k = S[j].k
on lines (22) and (25) with a partnering check P (S[i],S[j]).

32

C Changelog

Here we list the main differences between the publicly available versions.

– v12.0, July 2024: After a “slightly” protracted process, released the first public version.
– v12.1, September 2024: Minor clarifications around adversary model, context, and design choices.

Some visual cleanup and better formatting overall. Added reference [63] as related work.

33

	Falsifiability, Composability, and Comparability of Game-based Security Models for Key Exchange Protocols[3ex] Version 12.1, September 2024
	1 Introduction
	1.1 Game-based vs. Simulation-Based security
	1.2 Partnering Mechanisms
	1.3 Single vs. Multiple Test Queries
	1.4 Misbehaving adversaries: exclusion, penalizing, and filtering

	2 Security model
	2.1 Syntax of key exchange
	2.2 Security experiment
	2.3 Freshness
	2.4 Session key indistinguishability
	2.5 Session key confinement

	3 Falsifiability and partnering
	3.1 Partnering
	3.2 Baseline theorem of key exchange partnering

	4 Composition should be possible
	4.1 Composability
	4.2 A separating example
	4.3 A general composition theorem

	5 Composition should be tight
	6 Misbehaving adversaries
	7 Discussion
	References
	A Case Study: Analyzing NAXOS+ in our model
	B Authentication
	B.1 Implicit authentication
	B.2 Explicit Authentication
	B.3 Falsifiability and partnering for authentication properties

	C Changelog

