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Abstract. In this work we revisit the problem of using general-purpose
MPC schemes to emulate the trusted dataholder in differential privacy
(DP), to achieve the same accuracy but without the need to trust one
single dataholder. In particular, we consider the two-party model where
two computational parties (or dataholders), each with their own dataset,
wish to compute a canonical DP mechanism on their combined data and
to do so with active security. We start by remarking that available defini-
tions of computational DP (CDP) for protocols are somewhat ill-suited
for such a use-case, due to them either poorly capturing some strong
security guarantees commonly given by general-purpose MPC protocols,
or having too strict requirements in the sense that they need significant
adjustment in order to be satisfiable by using common DP and MPC
techniques. With this in mind, we propose a new version of simulation-
based CDP, called SIM∗-CDP, and prove it to be stronger than the IND-
CDP and SIM-CDP and incomparable to SIM+-CDP. We demonstrate
the usability of the SIM∗-CDP definition by showing how to satisfy it by
the use of an available distributed protocol for sampling truncated geo-
metric noise. Further, we use the protocol to compute two-party inner-
products with CDP and active security, and with accuracy equal to that
of the central model, being the first to do so. Finally, we provide an
open-sourced implementation and benchmark its practical performance.
Our implementation generates a truncated geometric sample in between
about 0.035 and 3.5 seconds (amortized), depending on network and pa-
rameter settings, comparing favourably to existing implementations.
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1 Introduction

The study of differential privacy in various distributed settings has given rise to
a plethora of new definitions of DP, such as DP in the local model (LDP) [49], the
shuffle model [6, 16] and definitions with a computationally bounded adversary,
giving guarantees of computational DP (CDP) [26, 4, 65]. Each of the definitions
is subject to its own restrictions in the adversarial model and in the accuracy
that can be achieved within them. For instance, it is well-studied that in LDP,
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which is a computationally efficient model with very few trust assumptions, one
must in some settings add much more noise than the standard central model
of statistical DP (SDP)1 [49, 32, 15, 4]. One recurring idea is that one can use
general-purpose multiparty computation (MPC) techniques to emulate a trusted
central dataholder and thus one may get the same accuracy as is in the central
model without having to trust a central computational party [29, 16]. The trou-
bles in realising this idea, which we can call generic emulation of the dataholder
(GED), are firstly that one must accept the, potentially, large computational
costs of MPC and secondly that it is not necessarily clear how one should define
DP in this new distributed and computational setting. In order to avoid or re-
duce the computational costs of using MPC, up until now, most of the works in
this area have opted for considering passive adversaries [4, 30, 69], only allowing
aggregate functions [19, 50] and/or requiring honest majorities [26]. We focus on
the case of two parties2, active (static) corruptions, and require efficient proto-
cols3 for non-aggregate functionalities that achieve the same accuracy as in the
central model. This work consists of two main parts. First, we consider existing
definitions of CDP for the setting above, conclude that they leave some things
to be wished for and we therefore propose an adjusted definition of CDP. In the
second part, we implement an existing protocol for noise sampling [30], prove
that it fulfills our new definition (but not some previous ones) and show that
when augmented to use a mixed-circuit approach, it is efficient also in practice.

Definitions of CDP. In order to design practical protocols for GED, we want a
DP notion that is directly compatible with security definitions of state-of-the-art
MPC schemes and that allows the emulated dataholder to compute common SDP
mechanisms. Since we consider the case of two parties and active corruptions,
for which information-theoretic general-purpose MPC is impossible [18, 38, 33],
we have to use CDP [65, 4]. Intuitively, compatibility with standard MPC secu-
rity definitions might seem immediate, since the possibility of general-purpose
MPC means that essentially any functionality can be securely realised as long
as it is computable in strict polynomial time. The restriction to polynomial-
time functionalities may look minor but we shall see that it causes quite some
intricacies, especially since it means that only functionalities whose output dis-
tribution is of a certain type can be securely realised. Critically, fundamental
SDP mechanisms such as the Laplace [28], geometric [37], Gaussian [29] and

1 Throughout this work we use ’DP’ to refer to definitions that are both statistical
(information-theoretic) and computational. When distinguishing between them we
use ’SDP’ and ’CDP’ respectively.

2 We consider both in the discussion about definition and in that of protocols only the
case of two-party computation, although since all the tools we use are also applicable
to settings with more parties (and all definitions can trivially be extended to those
settings), we will continue to speak of MPC at times. At all times, the reader can
suitably think of the special case of two parties whenever MPC is mentioned.

3 In particular, we require that the protocols are computable in strict polynomial time
in a finite computational model, as suggested in [2].



Practical 2PC Computational Differential Privacy with Active Security 3

discrete Gaussian [13] mechanisms have output distributions which cannot be
computed exactly in strict polynomial time.4 This means that the CDP defi-
nition we use needs to allow either that the protocol does not exactly emulate
the dataholder (imperfect correctness) or that the emulated dataholder does not
exactly compute the SDP mechanism, or both.

In Section 3, we revisit the CDP definitions for two-party protocols by [65].
Since we will refer to it recurrently, let us call the paper [65] MPRV, after its
authors. They are all applicable to the setting of active corruptions however we
find that they all fit unnaturally to the task of GED. For IND-CDP (Definition 6)
and SIM-CDP (Definition 7), the inconvenience lies in that by using MPC to
compute an SDP mechanism, one gets a protocol with much stronger guaran-
tees than is captured in those CDP definitions, such as guarantees of security
and correctness. This creates the need to analyse the desired properties of the
protocol (now correctness, accuracy, security and CDP) separately, contrary to
the custom when it comes to general-purpose MPC, which is typically analysed
in the ideal/real paradigm where all such properties are formulated and asserted
simultaneously. Intuitively, this ill-fitting is due to there not being a separation
in the definitions between the protocol, which we want to be efficient, and the
ideal DP mechanism, which we want to allow to be inefficient. For SIM+-CDP
(Definition 8) there is no such dissonance in the modeling of the protocol since it
is already formulated using the ideal/real paradigm. Here the troubles lie rather
in the details of the definition, which we will see are too restrictive to allow
the notion to be fulfilled by emulating most common SDP mechanisms. This is
fundamentally due to SIM+-CDP requiring perfect correctness in the MPC pro-
tocol, which together with a demand for protocols running in strict polynomial
time rules out any SDP mechanism that uses noise that is not samplable exactly
in strict polynomial time. Whereas SIM+-CDP could be achieved by using a
finite version of standard SDP mechanisms, for instance using the mechanisms
introduced in [2], it does mean a less direct realisation of GED, since the intu-
ition is still to, say, ’use MPC to run the geometric mechanism’. Therefore, in
Section 4, we propose an adapted version of SIM+-CDP, calling it SIM∗-CDP,
which indeed can be satisfied by emulating standard CDP mechanisms due to a
relaxation to computational correctness. Other large changes from SIM+-CDP
include using the UC (Universal Composability) security framework [10] instead
of standalone security [9, 38] and allowing other ideal functionalities than secure
function evaluation.5

4 For more details on this, see Appendix A. The core observation there is that they
cannot be computed exactly in strict polynomial time on a finite computer due to
having probability distributions containing densities that are not an inverse polyno-
mial power of 2.

5 We underscore that the merit of our new definition is not that it allows studying new
scenarios or is to be preferred over previous definitions in all cases, indeed there are
many cryptographic tasks for which UC-secure protocols are missing or for which
it is not the most desirable framework to use. Rather, the merit is that for settings
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We prove that SIM∗-CDP is of incomparable strength to SIM+-CDP, mean-
ing that there are in both ways computational tasks that can be solved with
one but not the other, and that (like SIM+-CDP) SIM∗-CDP is strictly stronger
than SIM-CDP and IND-CDP.

Implementing a protocol satisfying the new definition. To demonstrate
the advantages of SIM∗-CDP, we implement a generic protocol for satisfying
SIM∗-CDP for the ideal functionality computing the truncated geometric mech-
anism. In particular, we analyse the noise sampling protocol of [30], adjust it
to use mixed circuits for improved efficiency and give a very direct proof that
the resulting protocol satisfies SIM∗-CDP. Further, we implement the protocol
and thereby present the first implementation of the protocol of [30] and simul-
taneously the first implementation of the truncated geometric mechanism with
active security. Finally, we show how to use the protocol for computing integer
inner-products with CDP and accuracy equal to that of the central model and
benchmark the implementation, showing its practical efficiency. This treatment
might be of independent interest, perhaps primarily due to our considerations
relating to that the function sensitivity of the inner-product is dependent on the
input domain of the corrupted party, thus creating a need for input validation.
We note that whilst the definitions of CDP remain relatively unchanged when
going from passive to active corruptions, the concrete privacy proof of a given
protocol often changes significantly (as does the practical efficiency of its im-
plementation) thereby the simplicity of our analysis in this more complicated
setting showcases the usability of SIM∗-CDP.

Contributions:

– We identify aspects of existing CDP definitions that make them an unnatural
fit to the approach of generic emulation of a central trusted dataholder that
computes an inefficient SDP mechanism. Therefore, we present a new version
of SIM+-CDP, which we call SIM∗-CDP, and formally relate it to previous
definitions (Sections 3 and 4).

– We demonstrate the usability of the SIM∗-CDP definition by showing how
it can be satisfied with the truncated geometric mechanism by proving that
the efficient MPC protocol by [30] for sampling geometric noise satisfies our
definition (Sections 5 and 6).

– We improve the efficiency of the protocol by using mixed circuits and use the
protocol to compute two-party inner-products with CDP and active security,
to the best of our knowledge being the first to do so with accuracy equal
to that in the central model. Our open-sourced implementation is the first
implementation of the noise sampling protocol of [30]. We provide bench-
marks of the implementation and thereby show that it is efficient in practice
(Section 7).

where UC-secure protocols are readily available, then we have a formulation that
takes advantage of that to give results that are both stronger and easier to obtain.
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Related works. The first work that aims to emulate a central trusted party
for DP by use of MPC is Our data, ourselves [26], where a protocol is pro-
posed for computing sums with security against active adversaries corrupting
less than a third of the parties, a part of which is a method for distributed noise
generation. Following [26], other works have also proposed noise sampling pro-
tocols for DP in an MPC setting [1, 14, 30, 72] and the work most related to
ours is EIKN [30, 31]. EIKN gives an efficient MPC protocol for sampling an
approximate truncated geometric distribution, which we use in this work. The
mechanism is analysed with respect to IND-CDP, however the privacy proofs
given are only for honest majorities and thus do not apply to the two-party
case [30, 31]. In a recent work [51], efficient noise sampling protocols for passive
corruptions and dishonest majorities are provided. It is noted in passing that the
protocols can easily be made secure against active adversaries by implementing
them in a framework with active security but the type of CDP this would result
in is not discussed. Our proposed SIM∗-CDP definition offers an immediate an-
swer to that. The work of [14] proposes a method for performing Bernoulli trials
that is asymptotically superior to the one we use however their method relies
on implementing oblivious data structures hence making it unsuitable for direct
combination with the secret-sharing-based MPC schemes that we use. Further,
avoiding reasoning about oblivious data structures greatly simplifies our proofs
and the disposition of later sections, allowing us to focus more on details relating
to the CDP definitions.

Another line of work that is of relevance to ours due to it dealing with com-
bining definitions of security for MPC schemes and DP is the serie of papers
considering MPC with differentially private leakage [46, 60, 43], where the idea
is to improve the efficiency of an MPC protocol by allowing the protocol exe-
cution itself (not the result) to leak some extra information, but to restrict this
leakage to be differentially private. Whilst the task solved in this line of work
is quite different from the one we study, there are similarities in the formalities,
which we discuss after having introduced SIM∗-CDP.

2 Preliminaries and Notation

For a natural number n, let [n] := {1, . . . , n}. Let N−1 denote {1/n : n ∈ N}.

2.1 Secure Computation

We now briefly introduce necessary terminology regarding secure multiparty
computation, for a slightly more thorough introduction, see Appendix B. A pro-
tocol is described as a set of interactive machines. For our purposes, it is not
important exactly how those machines are formalised but for concreteness, we
will think of interactive Turing Machines, which are non-uniform unless other-
wise stated. We say that an algorithm (or machine or protocol) is efficient if
it is PPT, meaning it is probabilistic and runs in strict polynomial time. We
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quantify the security by a protocol by a computational security parameter κ.6

We consider both active and passive corruptions but assume they are static. For
a protocol π = {P1, ..., Pn} and a set C ⊂ [n], let {PC} denote {Pi : i ∈ C} and
let {P−C} denote {Pi : i /∈ C}. The information available to the coalition C of
parties in the protocol is formalised in their view, as defined below. The reason
for exchanging {PC} with {P̃C} is to model active corruptions.

Definition 1 (VIEW, reformulation from [4]). Let π = {P1, ..., Pn} be a
protocol and A be an adversary corrupting a set C ⊂ [n] of parties. For fixed
inputs D = (D1, ..., Dn) ∈ D, the view in π of the corrupted parties {P̃C},
denoted VIEWAπ,C(D), is defined as the random variable containing the inputs of
the parties in C, their random coins and the messages that they receive during
the execution of the protocol {P̃C} ∪ {P−C} on inputs D. The randomness is
over the random coins of the honest parties {P−C}.

Often it is clear from context what parties the adversary corrupts (for instance in
a symmetric two-party protocol) and then we omit C from notation. For defining
secure computation of protocols we use the standard definitions in the ideal/real-
paradigm, in both the standalone [9, 38, 57] and UC frameworks [10, 21]. Very
shortly one can say that security is defined by formulating an ideal world in
which an incorruptible trusted central party, an ideal functionality, performs
all computations (and is secure by definition) and then a real-world protocol is
deemed secure if no efficient distinguisher can distinguish it from the ideal world.

2.2 Differential Privacy

The notion of differential privacy (DP) [28, 25] considers a probabilistic algo-
rithm, or mechanism, that maps databases, i.e. sets of elements from some data
universe χ, to some output range R. We think of databases as ordered sets of
some fixed (public) size N , and thus a database D is an element of D := χN . We
say that two databases D,D′ are adjacent if they differ in at most one element.
There are however many other adjacency notions that may be more suitable to a
given use case, perhaps especially when considering different types of distributed
settings, so it is important to note that the definition of (S)DP in itself is agnos-
tic to the choice of adjacency notion, just like all CDP definitions considered in
this paper.7

6 Many of our results will be quantified by κ even if they also hold with respect to an
equal statistical security parameter since statistical security implies computational
security.

7 In particular, since the focus of this paper is on the CDP definition with respect
to GED and the choice of adjacency notion does not influence the merit of a CDP
definition over another, it is for our discussions not relevant what adjacency notion
one chooses to work with. On the practical side, there is however a potentially large
difference in how well an adjacency notion fits together with a given MPC technique
or setting, but these matters concern the realisation of GED rather than what the
approach of GED means for the definition of CDP.
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Definition 2 (Adjacency notion). An adjacency notion ADJ on the dataset
domain D is a set in D ×D that is symmetric, i.e. if (D,D′) ∈ ADJ then so is
(D′, D), and ∀D ∈ D, (D,D) ∈ ADJ. If (D,D′) ∈ ADJ the we say that D and
D′ are adjacent with respect to ADJ.

We recall the standard definition of SDP (reformulation of [25]):

Definition 3 ((ε, δ)-SDP [28, 25]). A probabilistic algorithm M : D → R is
(ε, δ)-differentially private (SDP) if for all pairs (D,D′) of adjacent databases
in D and all subsets S of R,

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ, (1)

where the probability is overM’s internal coin tosses.

As is standard in cryptography, we typically consider not single mechanisms
but rather ensembles of them and index the individual mechanisms within an
ensemble by a security parameter κ ∈ N. The security parameter is used to
quantitatively relate properties of a mechanism or protocol (for instance the
success probability of a given type of adversary) to specific parameter choices.
This approach applies also to DP, and we therefore often allow DP parameters
to depend on κ, letting εκ = ε(κ), δκ = δ(κ) denote sets of parameters. Then
we abuse notation by saying (for instance) that the ensembleM = {Mκ}κ∈N is
(εκ, δκ)-SDP if for all large enough κ,Mκ is (εκ, δκ)-SDP. Since the introduction
of a dependence on κ is most directly a consequence of relying on cryptographic
guarantees in the mechanism design, it might rightfully be more closely asso-
ciated with CDP than with SDP. We do however find that it is convenient
to include this dependence also when discussing SDP, partly because it allows
a more direct comparison to CDP and partly because the security parameter
readily arise during the design of algorithms, also for SDP mechanisms.

The formulation of SDP above is often called approximate SDP, whereas it is
called pure SDP if δ is fixed to 0. DP is typically studied in what is called the
central model, of which an illustration can be found in Figure 1. In the central
model, the database is simply a set of rows, each of which consists of informa-
tion about one individual, called a data subject. These data subjects send their
data to a trusted dataholder (without noise) that then computes a mechanism
on the accumulated data and then releases the result to an untrusted data ana-
lyst. In this work, we rather consider DP in the two-party model [65, 61] where
each data subject holds two database rows (xi, yi), each of which is sent to one
of two computational parties (or servers) that then store their respective row
into their database (x and y respectively) in the clear. Then these two servers
together wish to compute the query f on the concatenation of their databases
D := x||y, both learning the result, and they wish to do this in a differentially
private manner with respect to their database. An illustration of this model can
be seen in Figure 2.8 For more details on models of DP in multiparty settings,

8 We note that the two-party model is slightly but significantly different from the two-
server/multi-server models [5, 17], primarily in that those models do not allow any
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see [64].

When discussing DP mechanisms, it is critical to consider the usefulness of the
mechanism for approximating the query function f . We do this by using the
following notion of usefulness, as defined via a utility function.

Definition 4 (Utility function [7, 36]). A utility function is an efficiently
computable deterministic function u : D×R → {0, 1}∗. A mechanismM : D →
R is α-useful for u if for all D ∈ D:

P
z←M(D)

(u(D, z) = 1) ≥ α. (2)

A mechanism α-useful for u is said to solve the task (α, u).

A specific utility function we will consider is that which induces the notion
of (s, α)−additive-usefulness for a query function f , namely u(D, z) = 1 iff
|f(D) − z| ≤ s. Many popular DP mechanisms (such as the Gaussian, Laplace
and geometric mechanisms) work computing the query function and then add
noise of a specific distribution calibrated after the sensitivity of f (how much
any single database entry can change the function evaluation). In this work, we
consider this change only in the sense of l1−distance.

Definition 5 (l1-sensitivity). Let f : D → R be a deterministic function,
where R is a vector space on which the l1-norm ||v||1 :=

∑
i |vi| is defined, and

ADJ be an adjacency notion on D. The l1-sensitivity of f with respect to ADJ,
denoted ∆f , is defined as

∆f := max
(D,D′)∈ADJ

||f(D)− f(D′)||1. (3)

2.3 Mixed Binary-arithmetic MPC Schemes

In our definitions, we rely on general-purpose MPC schemes with active security.
In particular, we work with MPC protocols with restricted computation domain,
either in Zp for arithmetic or Z2k for binary circuits. For a discussion of active
security in these schemes, we refer to Appendix E. In general, MPC schemes
in Zp provide fast algorithms for addition and multiplication. In contrast, in
Z2k , comparisons, bit-wise operations, and non-linear functions can be evalu-
ated cheaply. However, storing larger integers results in substantial overhead,

server to have any part of the input dataset in the clear. This difference is of practical
relevance because it means the models are suitable for different scenarios. The two-
party model is mostly meant for joint computation between two entities each holding
their own dataset (which may have been collected over time and without respect to
the function evaluation in question) whereas the two-server model is rather tailored
towards data collection, where one or more entities are collecting the data specifically
for the purpose of performing the computation but wish to do so in a way that they
never see any part of the dataset in the clear.
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Data subjects

D1

D2

D3

...

Dataholder
Database D

Analyst

Output f(D) + noise

Fig. 1: In the central model, the data subjects trust the data holder with their
data (Di) but wish to keep it secret from an (possibly adversarial) analyst learn-
ing the (possibly noisy) function evaluation.

and evaluating arithmetic circuits in the binary domain incurs costs depending
on the encoded values’ bit size.

Several works have proposed solutions to convert shares between computation
domains. First, in ABY [24], the authors propose a semi-honest two-party MPC
scheme that allows switching between the binary, arithmetic, and garbled cir-
cuit domains (Garbled Circuits allow computation of binary circuits with low
communication rounds). More recently, Rotaru and Wood introduced doubly-
authenticated bits [67] and an efficient procedure to securely sample secret bits
in the arithmetic and binary domain in malicious settings. Given the shares of
an unknown random bit ([[b]]2, [[b]]p) we can transfer shared bits from the binary
to the arithmetic domain by computing the mask m← Reconstruct([[x]]2 ⊕ [[b]]2)
and setting [[x]]p ← m + [[b]]p − 2 ·m[[b]]p. Similarly, converting from arithmetic
to binary masks the value by addition and evaluates subtraction in the binary
domain. The conversion from the arithmetic to the binary domain gets more
expensive, depending on the domain size. Subsequent work introduced extended
doubly-authenticated bits (eda-bits) [34], where masking values are shared along
with their binary decomposition in the respective domains. The eda-bits repre-
sent an improvement in efficiency when converting larger values, and [34] presents
dedicated protocols to speed up comparisons in Zp.

3 CDP in the Two-party Model

We now briefly overview the literature on CDP in the two-party model and
argue why it is desired to look for new definitions. For more details on existing
definitions and how they relate, see [64].
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Data subjects

x1, y1

x2, y2

x3, y3

...

Party 1
Vector x

Party 2
Vector y

Output f(x||y) + noise

Fig. 2: In the two-party model, the data subjects trust two different data holders,
which we call parties, with a different part of their data, but not with the part of
the data that they send to the other data holder. In the end both parties learn
the noisy function evaluation. Thus, in a sense, each party plays both the role
of a data holder and a data analyst.

3.1 Existing CDP Definitions for Protocols

The formal study of both SDP and CDP in the two-party and multi-party models
is initiated in [4, 65], where three definitions of two-party CDP are proposed.
These are formulated for the two-party case but the definitions trivially extend
to the multi-party case. We also follow this convention. The notion of SDP in
the central model is extended to interactive protocols by requiring that the view
of the adversary is an SDP mechanism with respect to the input of the honest
party. In [4] it is established that there are computational tasks for which the
maximum utility in the two-party SDP model is strictly lower than in the central
model and therefore there is a need to relax SDP to CDP. The CDP definitions
come in two distinct variations, based on how they formalise a protocol execution
’looking SDP’ to a computationally bounded party. The first variation is called
indistinguishability-based and changes the demand that the output distributions
of the mechanism are close on adjacent inputs to that this must only hold for
all PPT distinguishers acting on the mechanism output. The second variation of
CDP is called simulation-based and here a mechanism is deemed CDP if there
exist an SDP mechanism from which it is computationally indistinguishable.
Below we include a reformulation of the definition of indistinguishability-based
CDP.9

9 Its original formulations [4, 65] differ slightly from one another, for instance in
that [4] allows only passive corruptions and that MPRV lets the distinguisher be
non-uniform. We consider these differences however to be of the sort making the
definitions more two different instantiations of the same definition rather than two
different ones. Note also that they both fix δκ as negligible (but non-zero) in κ.
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Definition 6 (IND-CDP for protocols, reformulation from [4, 69]). We
say that a 2-party protocol π is (εκ, δκ)-IND-CDP if for all efficient adversaries A
corrupting at most one party, for all efficient distinguishers T , every sufficiently
large κ and for all D,D′ adjacent with respect to the inputs of the honest party,
we have

P
(
T
(
VIEWAπ (D)

)
= 1

)
≤ eεκP

(
T
(
VIEWAπ (D

′)
)
= 1

)
+ δκ. (4)

The probabilities are taken over the randomness in π, A and T .

It is noted in MPRV that if δκ = 0 then IND-CDP is equivalent to pure SDP.
IND-CDP was originally formulated with δκ fixed as negligible but the version
with non-negligible δκ has also seen practical use, for instance, EIKN [30]. In the
two-party model there are two different main formulations of simulation-based
CDP, which we include below. These were introduced originally with δκ = 0 but
similarly have been used with larger δκ also [5].

Definition 7 (SIM-CDP for protocols, reformulation from MPRV).
We say that a 2-party protocol π is (εκ, δκ)-SIM-CDP if for all efficient ad-
versaries A corrupting at most one party, for all efficient distinguishers T and
D,D′ adjacent with respect to the inputs of the honest party, there exists an
ensemble {Mκ(·)}κ∈N of (εκ, δκ)-SDP mechanismsMκ : D → Rκ such that for
every sufficiently large κ and every D ∈ D of size polynomial in κ, it holds that
VIEWAπ (D) andMκ(D) are indistinguishable to T .

Definition 8 (SIM+-CDP, Reformulation of MPRV). Let u be a utility
function. A 2-party protocol π is (α, εκ, δκ)-SIM

+-CDP for u if there exists an
(εκ, δκ)-SDP mechanismM such that:

– the mechanismM is α-useful for u;
– π is a secure protocol for the functionality M as per Definition 17 (stan-

dalone security with perfect correctness, efficient protocols and a potentially
inefficient simulator).

3.2 Relations Between CDP Definitions

There is substantial literature on how the CDP definitions relate to each other
and although the relations are far from tightly characterised, the rough picture
is quite clear. For the parameter regimes for which the definitions were originally
proposed (δκ = negl(κ) in IND-CDP and δκ = 0 in the others), it was shown in
MPRV that any protocol that is (εκ, 0)-SIM

+-CDP is also (εκ, 0)-SIM-CDP and
similarly (εκ, 0)-SIM-CDP implies (εκ, negl(κ))-IND-CDP. On the other hand,
there are tasks that can be solved with (εκ, 0)-SIM-CDP that cannot be solved
with (εκ, 0)-SIM

+-CDP. It was long unknown if there is a similar separation
between (εκ, negl(κ))-IND-CDP and (εκ, 0)-SIM-CDP but in 2023 such a task
was found [36]. The definitions have mostly been related to each other by either
considering a fixed task and showing that there are no complexity assumptions
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under which that task can lead to a separation or by considering a fixed com-
plexity assumption and showing that there are no tasks that lead to a separation
under that assumption alone [42, 7, 62]. There is also a line of work about find-
ing minimal complexity assumptions under which (various types of) CDP can
be separated from SDP via a specific task, like computing boolean functions or
integer inner-products with a given accuracy [41, 40, 44, 45, 54]. Whereas the re-
lationship between the involved DP definitions is quite well understood in these
cases, one should note that the same does not hold generally for other classes of
tasks or for more relaxed parameter regimes.

3.3 Using Existing Definitions for GED

Each of the CDP notions above can be satisfied by a protocol that uses general-
purpose MPC techniques to realise a functionality that computes an SDP mech-
anism, i.e. a protocol for GED. This has been shown for IND-CDP in [4, 69] and
for SIM-CDP in MPRV. For SIM+-CDP it is immediate, since there are general-
purpose MPC schemes for the notion of secure computation used in SIM+-CDP.
We argue that GED results in guarantees that are fundamentally stronger than
those in IND-CDP and SIM-CDP, therefore warranting a definition that cap-
tures them more closely, and that there are details in the SIM+-CDP definition
that make it inconvenient to work with for GED, although intuitively it is very
suitable.

On using IND-CDP or SIM-CDP. One strength of GED for constructing
CDP protocols is that one has guarantees about the behaviour of the protocol
which exceed that of the adversarial view appearing DP. More precisely, the use
of MPC allows guaranteeing security (dictating the influence an adversary may
have on the protocol) and correctness (specifying the accuracy requirement of an
honest execution). These properties are proven in the ideal/real paradigm (see
Appendix B), that is, by specifying an ideal functionality that defines all of the
desired properties of the protocol and then proving that the real protocol behaves
almost the same. Here there arises a dissonance in intuition to the perspective in
IND-CDP, since that notion considers only the real-world protocol. Therefore,
when one uses IND-CDP together with GED, one has CDP as a property of the
protocol in the real world, rather than in the ideal world with all other desired
properties. This type of dissonance is smaller when it comes to SIM-CDP since
the mechanism M in SIM-CDP is also in a way a description of the simulator
and ideal functionality. The dissonance here, however, is that the formalisation
of simulation is vastly relaxed in SIM-CDP, for instance in that the simulator
has access to all private inputs.

On using SIM+-CDP. SIM+-CDP does not suffer the modeling-wise disso-
nance described above and neither does it poorly capture the guarantees granted
by secure computation. The problem with using SIM+-CDP in the context of
GED lies rather in that some of the details in the definition are too restrictive,
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meaning that they rule our realising GED for many of the most fundamental
SDP mechanisms. In particular, the SIM+-CDP definition requires the real-world
protocol π to run in strict polynomial time and simultaneously have perfect cor-
rectness, meaning that its output distribution in an honest execution is identical
to that of the SDP mechanism in the ideal functionality. This implies that any
protocol satisfying SIM+-CDP must do so with respect to an SDP mechanism
that can be computed exactly in strict polynomial time. Unfortunately, this rules
out several commonly used SDP mechanisms, such as the Laplace or Gaussian
mechanisms, which we now showcase with the example of the Laplace mecha-
nism.

Impossibility of GED with the Laplace mechanism in SIM+-CDP. The
main question to ponder is whether there exists an efficient protocol that can
realise the Laplace mechanism in SIM+-CDP. Unfortunately, there is not.10 To
begin with, the support of the Laplace mechanism is the reals, meaning the out-
put cannot even be written in strictly finite time. Thus we can note that any
mechanism in the SIM+-CDP definition must have a finite support. Further,
even the (arguably) most Laplace-like such distribution, the geometric distribu-
tion [37] truncated to the output domain, cannot be realised in SIM+-CDP in
general, since it requires sampling probabilities that are not multiples of 2−poly(κ)

(for details on the impossibility of sampling certain distributions in strict poly-
nomial time, see Appendix A). This means that in order to realise GED with
distributions that cannot be sampled exactly in strict polynomial time (as is the
case for the Laplace, geometric, Gaussian, discrete Gaussian distributions and
truncated versions of them), there needs to be some slack introduced. This could
be either in the shape of allowing a small distance between the output of the
ideal functionality and that of the protocol (relaxing correctness) or relaxing the
demand for strict polynomial time to expected polynomial time, as is argued in
[13].

As remarked shortly in the introduction, one approach in practice could be to
use SIM+-CDP with non-zero δκ and have the ideal functionality compute an
efficiently computable approximation of a standard SDP mechanism. Then if the
SDP mechanism is (εκ, δκ)-SDP and the approximation of it is at a statistical
distance of δ′κ, then it is easy to see that the protocol which securely realises this
functionality (in the way required by SIM+-CDP) is (εκ, δκ + δ′κ)-SIM

+-CDP.
That is, the approximation error can be added to the δκ. In many settings, this
is a likely a suitable approach. One main drawback of it, however, is that the
approximation error is fundamentally different from the δκ term in both cause
and interpretation.

10 We note that this invalidates the claims in [1] of achieving SIM+-CDP for the (con-
tinuous, untruncated) Laplace mechanism. The protocol there does however seem to
satisfy a relaxation of SIM+-CDP, in line with the contents of Section 4, although
that remains to be formally shown.
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Another drawback is the need to introduce these efficient approximations of
standard mechanisms explicitly, rather than to handle all matters of approxima-
tion within the simulation argument.

4 A New Version of Simulation-based CDP in the
Ideal/real Paradigm

4.1 Our New Definition, SIM∗-CDP.

We now propose a new version of SIM+-CDP, which we call SIM∗-CDP and
then discuss its relationship to previous definitions further.

Definition 9 ((εκ, δκ)−SIM∗-CDP). We say that the two-party protocol π is
(εκ, δκ)-SIM

∗-CDP for the ideal functionality F and adjacency notion ADJ if π
UC-realises F and for all ideal-world adversaries S, the view of S is (εκ, δκ)-SDP
with respect to ADJ.

The main differences between SIM∗-CDP and SIM+-CDP are:

– UC-security is used as security notion.
– The ideal functionality is variable (and can be reactive).
– Correctness is computational rather than perfect.
– The ideal-world adversary (simulator) must be efficient (strict PPT).
– The requirement of usefulness is removed from the CDP definition.

We now expand on the motivation behind these changes.

Using UC-security. Although the standalone security framework is heavily
used, in the last two decades the security analyses of many popular schemes
have taken place in the more expressive UC framework [10]. The main merit of
this framework is that the security can be proven to be preserved under arbitrary
composition of protocols, leading to a stronger notion of security and an increased
modularity in security proofs. Thus, using UC security in the CDP notion is
natural for cases where this (stronger) type of security is already achieved by
the MPC scheme one intends to use. Further, as we will see below, this change
of security framework also directly leads to many other benefits.

A variable ideal functionality. The ideal functionality used in SIM+-CDP
is fixed to be that of secure function evaluation (SFE), i.e. the parties jointly
compute an SDP mechanism (with abort). With regards to capturing what it
means for a protocol to be CDP generally, this is a significant restriction as com-
pared to IND-CDP and SIM-CDP, where CDP is defined without dependence on
the functionality of the protocol. In particular, both IND-CDP and SIM-CDP
allow direct modeling of reactive functionalities, and as such our new definition
arguably lies closer to those definitions conceptually than SIM+-CDP does, in
that it is applicable to more functionalities than those that can be expressed as
SFE [43, 48, 47]. On the practical side, one relevant reactive functionality is that
of SFE with differentially private leakage as in, for instance, [43]. More details
about the setting of SFE with DP leakage are found in Appendix C.
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Computational correctness. Another positive consequence of changing se-
curity framework is that the correctness of the protocol is now (as is standard
in UC-security) computational rather than perfect. As explained in the previ-
ous section, this relaxation allows the ideal functionality to sample inefficiently
samplable distributions and still have an efficient protocol that realises it.

Efficient simulators. As one main goal of our new definition is to have it
align closely to common practice in MPC, we choose to require efficient simula-
tion. Whereas this does make fulfilling the definition harder, it also makes the
definition stronger.

Not including usefulness in the definition. A final difference between SIM∗-
CDP and SIM+-CDP is that we choose not to include the requirement for use-
fulness in the definition of CDP itself. This is done primarily to more closely
correspond to how the matter of usefulness is handled for IND-CDP and SIM-
CDP in MPRV, namely that the CDP definition is agnostic to the notion of
usefulness (Definition 6 in MPRV [65]) and that usefulness is then added later
(Definition 7 in MPRV). Another advantage of not having the usefulness as a
part of the CDP definition is that one can choose to consider the usefulness
simply of the ideal functionality (as is done in SIM+-CDP) or to consider the
usefulness of the protocol directly (as with IND-CDP and SIM-CDP in Defini-
tion 7 of MPRV) and then take, for instance, failure probabilities of the protocol
into account.11 The utility difference between the real protocol and the ideal
functionality is however bounded to be negligible by the simulation argument,
since the utility function is efficiently computable and if the utility difference was
non-negligible then the utility function would serve as an efficient distinguisher
between the real and ideal worlds.12

To round this subsection off, we re-iterate the standard ideal functionality for
SFE with abort, see Figure 3. In Section 6 we propose a protocol for realising
this ideal functionality with the geometric mechanism as the functions f1 and
f2 and prove it is SIM∗-CDP in the presence of active corruptions.

4.2 Relating SIM∗-CDP to Other Definitions

We now relate our new definition to existing ones. For all of the propositions,
the proofs are delegated to Appendix D. We prove separations only when δκ = 0
(or δκ = negl(κ), depending on the CDP notion), as is common in the literature,
and leave extending the separations to other settings for future work.

11 For SIM+-CDP one should note that the usefulness of the protocol is always the
same as that of the ideal functionality unless there are active corruptions, due to the
requirement of perfect correctness.

12 A similar remark is made in [36].
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Functionality Ff
SFE

Parameters:

– A function f = (f1, f2) : ({0, 1}∗)2 → ({0, 1}∗)2.

No corruptions:

– Upon x1 from P1 and x2 from P2, deliver f1(x1,x2) to P1 and f2(x1,x2) to P2.

Party Pc corrupted (Ph is honest):

– Upon (Input,xh) from Ph and (Input,xc) from Pc, send fc(x1,x2) to Pc.
– Upon (Deliver, b) from Pc, if b = 1 then send fh(x1,x2) to Ph, otherwise send ⊥.

Fig. 3: The ideal functionality for SFE with abort.

Relation to SIM+-CDP. There is no general hierarchy between SIM+-CDP
and SIM∗-CDP, in the sense that there are both tasks that can be solved with
SIM+-CDP but not SIM∗-CDP and the other way around. In one direction this is
due to SIM∗-CDP being more restrictive in that it demands UC-security instead
of standalone security since there are well known results of functionalities that
can be realised with standalone security but not UC-security unless certain setup
assumptions are made [11]. In the other direction, SIM∗-CDP is more relaxed
than SIM+-CDP with regard to the correctness of the protocol. In more formal
terms, see the propositions below.

Proposition 1. Using the plain UC model, i.e. without setup assumptions, and
assuming that enhanced trapdoor permutations (see [38]) exist, there exists εκ
for which there exists a task that is solvable with (εκ, 0)-SIM

+-CDP but not with
(εκ, 0)-SIM

∗-CDP. This holds regardless of whether the utility requirement is
placed on the real or the ideal protocol with respect to SIM∗-CDP.

Proposition 2. Using the UC model with the setup assumption of a common
reference string (CRS) (see, for instance, [11]) and with the utility in SIM∗-CDP
being considered in the ideal world (i.e. with regards to the utility of F), there
exists εκ for which there exists a task that is solvable with (εκ, 0)-SIM

∗-CDP but
not with (εκ, 0)-SIM

+-CDP.

Relation to SIM-CDP and IND-CDP. Just as with SIM+-CDP, on the
one side if a protocol is SIM∗-CDP then it is SIM-CDP (and thus also IND-
CDP, see [65]) but on the other side there are tasks that can be solved with
SIM-CDP but not in SIM∗-CDP. The second separation is a direct corollary of
Proposition 1 due to that all SIM+-CDP protocols also are SIM-CDP protocols
with unchanged parameters.

Proposition 3. For any parameters εκ, δκ, if a two-party protocol π is (εκ, δκ)-
SIM∗-CDP, then it is also (εκ, δκ)-SIM-CDP.
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Corollary 1 (of Proposition 1). Using the plain UC model, i.e. without setup
assumptions, and assuming that enhanced trapdoor permutations (see [38]) exist.
Then there exists εκ for which there exists a task that is solvable with (εκ, 0)-SIM-
CDP but not with (εκ, 0)-SIM

∗-CDP. This holds regardless of whether the utility
requirement is placed on the real or the ideal protocol with respect to SIM∗-CDP.

Relation to MPC-with-DP-leakage definition in [43]. Within the litera-
ture on relaxing definitions of secure computation by allowing there to be non-
negligible information leakage during protocol execution as long as this leakage
is SDP (for a longer discussion on such protocols, see Appendix C), there is a
definition (Definition 19) that, like SIM∗-CDP, uses UC-security and defines a
CDP property of a protocol. The fundamental difference between SIM∗-CDP
and that definition is that their definition is fixed for a given ideal functionality
and only a specific part of the view of the ideal-world adversary S is required to
be SDP, whereas SIM∗-CDP is defined for arbitrary ideal functionalities and the
entire view of S must be SDP. Thus SIM∗-CDP can be seen as both a restriction
of the definition in [43] (where one requires the remaining parts of S’s view to
be SDP also) and as a generalisation of it since the ideal functionality is left
variable. From another point of view, the definitions try to solve two distinct
problems, but one can suitably consider the need we see to propose an alterna-
tive CDP definition to those of (say) IND-CDP and SIM+-CDP as being the
analog in general CDP to the motivation in [43] for giving a definition separate
to those of [46, 60].

4.3 A More General Definition, SIM◦-CDP

The core idea of SIM+-CDP and SIM∗-CDP is the same (requiring the protocol
to realise an SDP ideal functionality) and this opens up a wide space of such
definitions since there is an abundance of different notions of secure computa-
tion in the MPC literature. One can for instance vary correctness, robustness or
efficiency requirements for the different involved entities. This suggests a gener-
alised definition of which SIM+-CDP, SIM∗-CDP and other natural variations
are instantiations of. Below we formulate such a generalised definition and call
it SIM◦-CDP.

Definition 10 (SIM◦-CDP). We say that a two-party protocol π is (εκ, δκ)

-SIM◦-CDP with respect to ideal/real security notion SEC for the ideal function-
ality F and adjacency notion ADJ if π realises F in the sense of SEC and for
all ideal-world adversaries S, the view of S is (εκ, δκ)-SDP with respect to ADJ.

In light of this definition, the bulk of the discussion in this section can be seen
as concerning the ways in which we regard the specific choice of security notion
in SIM+-CDP as being inconvenient with respect to GED. We are aware of only
one other used instantiation of SIM◦-CDP and that is in [5] where SIM◦-CDP is
instantiated using standard standalone security but with computational correct-
ness. That CDP notion is stronger than SIM+-CDP in that it requires efficient
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simulators but weaker in the sense of having relaxed correctness. The protocol
presented in [5] is not SIM+-CDP (imperfect correctness is needed) and neither
is it SIM∗-CDP (since no UC security proof is given).

5 A SIM∗-CDP Version of the Geometric Mechanism

To demonstrate the use of our new definition, we now go through in detail
how to satisfy it for the standard SFE ideal functionality with the truncated
geometric mechanism as the function. Conceptually, this is very simple; one can
simply use any PPT algorithm that samples a distribution with a sufficiently
small statistical distance to a truncated geometric distribution and then compute
that algorithm in MPC via some general-purpose, active secure, protocol. It is
however worth considering hurdles that arise in the details, such as how to handle
the mechanism’s dependence on the query function, having a query function
whose sensitivity depends on the inputs of both parties and the consequences of
working over a finite field. One core step is, naturally, to sample a distribution
that is close to a truncated geometric distribution. Sampling algorithms for such
distributions can be found in [37, 2, 30], however, the truncation is to a range
between 0 and some fixed positive integer. The results and methods however
extend to Zq, and general queries of bounded magnitude.

Definition 11 (Truncated geometric distribution). Define the truncated
geometric distribution Z ∼ Geoq,λ(f̄) centered at f̄ ∈ Zq, truncated to Zq :=
[⌈−q/2⌉, ⌊q/2⌋), by its probability mass function:

pZ(z) =
e1/λ − 1

e1/λ + 1
e

−|z−f̄|
λ (5)

for z /∈ {⌈−q/2⌉, ⌈q/2− 1⌉}, and

pZ(z) =
1

e1/λ + 1
e

−|z−f̄|
λ (6)

for z ∈ {⌈−q/2⌉, ⌈q/2− 1⌉}.

Definition 12 (Range-truncated geometric mechanism). Let λ ∈ N−1
and let f : D → Zq be a deterministic function. The Range-
truncated geometric mechanism (RTGeo) over Zq for f is defined as

Mq,f,λ
RTGeo(D) := Geoq,λ(f(D)). (7)

It is easy to verify that Mq,f,λ
RTGeo(D) is an (ε, 0)-SDP mechanism as long as

λ = ε
∆f . In line with [2], we only allow λ ∈ N−1, in order to avoid the need

to represent real numbers, and this also implies ε ∈ N−1. Whereas MRTGeo

gives SDP, it is inconvenient to sample the noise distribution directly, partly
because it requires knowledge of f(D) and partly because it may not be efficiently
samplable. Therefore we consider the following mechanism.
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Definition 13 (Subrange-truncated geometric mechanism). Let B ∈
{1, . . . , ⌈q/2⌉−1} and λ ∈ N−1. Let the Subrange-truncated geometric (SRTGeo)
mechanism over Zq with noise truncation to Z2B, for a function f : D → Zq,

be defined as M2B,f,λ
SRTGeo(D) := f(D) + Geo2B,λ(0), with the addition performed

over Zq.

In the simple lemma below we give a bound on the statistical distance between
the two mechanisms we have introduced this far. The proof, as the proofs of
all other lemmas, is found in Appendix D. We note that we need to introduce
a bound on the absolute value of the query function, so as to not have the
sensitivity of the function be affected by the modular arithmetics.

Lemma 1. Let fmax := max
D∈D
|f(D)|, B ∈ N, λ ∈ N−1 and q > 2fmax+2B. Then

the statistical distance betweenM2B,f,λ
SRTGeo(D) andMq,f,λ

RTGeo(D) for all D ∈ D is
at most e−B/λ.

We are now one step closer to a functionality that can be efficiently realised,
since the noise sampling is no longer dependent on the function evaluation and
the support of the noise is potentially much smaller than the entire Zq and
the support of f . The trouble still remains that the probabilities might not be
negative polynomial powers of two. In [26, 30] it is presented distributions that
can be exactly sampled under this constraint and that have a small statistical
distance from a truncated geometric distribution. We use the procedure FDL

(Finite-range Discrete Laplacian) introduced in EIKN [30].

Definition 14 (FDL function and procedure). Let r ∈ {0, 1}Bd+1 be inde-

pendent fair coins and 0 < e−1/λ < 1. Let α̂1 ← 1−e−1/λ

1+e−1/λ and α̂i ← 1 − α̂1 for
i = 2, ..., B be public parameters. Let ⊕ and ∧ denote addition and multiplication
over the binary field and let ∨ be shorthand for computing the OR operation by
using binary addition and multiplication. Let all other operands be defined as
normally over Zq. Define the function FDLλ,B,d : {0, 1}Bd+1 → Z2B ⊆ Zq by
the procedure in Algorithm 1. Let α = (α1, α2, ...) be the bit decomposition of α̂.
The subprocedure Berα̂ : {0, 1}d × {0, 1}d → {0, 1} for generating approximate
Bernoulli trials with parameter α̂ using a randomness seed in {0, 1}d is defined
by the procedure in Algorithm 2.

Note that FDL is an exact method for turning Bd + 1 fair coins into a sample
of a distribution that is statistically close to a truncated geometric one. It is
clear that if the number of fair coins is polynomial in κ then FDL runs in strict
polynomial time. With some abuse of notation, we use FDL to denote both the
procedure and the probability distribution it generates upon being given fair
coins.13

13 We also note that the requirement that e−1/λ < 1 is equivalent to λ > 0, which is
already guaranteed by λ ∈ N−1.
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Procedure FDL

Input: r ∈ {0, 1}Bd+1

1. Sample B approximate Bernoulli trials βi ← Berα̂i((rd(j−1)+1, ..., rdj)) for
i = 1, ..., B.

2. For i = 1, ..., B: set ci ← ∨i
j=1βj .

3. Set l← B −
∑B

i=1 ci.
4. Set σ ← 2 · rBd+1 − 1.
5. Output σ · l.

Algorithm 1: The algorithm description for the FDL procedure.

Procedure Ber

Input: r ∈ {0, 1}d, α ∈ {0, 1}d
1. For i = 1, ..., d, set ci ← αi ⊕ ri.
2. For i = 1, ..., d, set ei ← ∨i

j=1cj .
3. For i = 1, ..., d, set vi ← ei ⊕ ei−1, with e0 ← 0.
4. Set β ← 1⊕d

i=1 (ri ∧ vi) and output β.

Algorithm 2: The algorithm description for the Ber procedure.

Definition 15 (FDL mechanism). Let B ∈ {1, . . . , ⌈q/2⌉ − 1}. Let the Finite
-range Discrete Laplace (FDL) mechanism over Zq for a function f : D → Zq

be defined asMλ,B,d,f
FDL (D) := f(D)+FDLλ,B,d, with the addition performed over

Zq.

The following lemma is proven in EIKN [30].

Lemma 2. Let fmax := max
D∈D
|f(D)|, q > 2fmax+2B and B ∈ {1, . . . , ⌈q/2⌉−1}.

If FDL is given independent fair coins and all the arithmetics are done over Zq,

then the statistical distance between Mλ,B,d,f
FDL (D) and M2B,f,λ

SRTGeo(D) is at most
B · 2−d.

Further, we have thatMq,f,ε/∆f
RTGeo (D) is a useful approximation of f , as we show

in the following lemma.

Lemma 3. Let q > 2fmax + 2B, B ∈ {1, . . . , ⌈q/2⌉ − 1}. Let f : D → Zq be

an arbitrary deterministic function with fmax := max
D∈D
|f(D)| and let f̂(D) :=

Mq,f,λ
RTGeo(D) : D → Zq. Then f̂ is

(
ν, 2e−1/λ

e−1/λ+1
e−ν/λ

)
-additive-useful for f for

any positive integer ν.

6 A Protocol for the FDL Mechanism

From the previous section, we know that the FDL mechanism is statistically
close to the Range-truncated geometric mechanism (MRTGeo), which is pure
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SDP, and that this holds under some restrictions on the query function and on
the parameter choices. At the same time, it is immediate that MRTGeo is sta-
tistically close to the untruncated geometric mechanism (i.e. when the noise is
not truncated and that the modular arithmetics thus might cause overflows), as
long as the value of the query function is somewhat far away from ±q/2. There-
fore, there is a choice to be made regarding which mechanism one chooses to
have in the ideal functionality (call this the ideal mechanism), given that we will
have the protocol compute the FDL mechanism via general-purpose MPC. The
trade-off in this choice is that havingMRTGeo as the ideal mechanism will lead
to (εκ, 0)-SIM

∗-CDP as long as the statistical distances mentioned above are
negligible in κ, essentially having the statistical distance be dealt with as part of
the correctness slack. On the other hand, this can be avoided by lettingMFDL be
the ideal mechanism, thus leading to (εκ, δκ)−SIM∗-CDP where the statistical
distance is rather incorporated into the δκ term. As having an ideal mechanism
as close as possible to a standard SDP mechanism is to be seen as a more direct
realisation of GED, we opt for havingMRTGeo as the ideal mechanism.

As stated in the preliminaries, we consider two-party computation schemes that
operate in Fq with q being either a prime larger than 2 or a power of 2. We elab-
orate on active secure schemes for both domains in Appendix E. Implementing
the FDL algorithm in either domain comes at a significant cost. Note that the
Ber procedure and the first 2 steps of the FDL procedure consist of only binary
arithmetics. However, the remainder of the FDL procedure consists of integer
arithmetics. While there are protocols to evaluate the binary steps in the arith-
metic domain, they are usually very costly. On the other hand, evaluating the
whole algorithm in the binary domain comes with two problems: the summa-
tion and addition in binary would incur a significant cost, and second, the result
would be a shared noise in the binary domain. Thus, applying the noise is limited
to the binary domain. The mixed circuit approach (see Section 2.3) gives us a
well-performing trade-off.

We accept inputs represented in the binary domain, perform all operations until
the fourth step through a binary circuit, translate all shares to the arithmetic
domain, and perform the rest of the operations through an arithmetic circuit. For
each of these ”phases”, we use protocols introduced before. We use SPDZ2k [20]
for the arithmetic computations, the FKOS protocol [35] for binary circuits and
daBits (doubly-authenticated bits) [67] for translating between the domains.
With correct parametrization, we can achieve the same security guarantees in
different computation domains. Thus, the feasibility of the mixed circuit ap-
proach is easily tested. The mixed circuit approach is feasible if switching be-
tween circuits is cheaper than the computation overhead in either domain. In
our application (Section 6.1), we will, as typically for DP applications, focus on
arithmetic computations. Evaluating the FDL mechanism in the binary domain
would, therefore, incur a cost that scales with the underlying application.
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For the arithmetic case, we have an additional cost of assuring all input ranges
(e.g., assert that binary coins ∈ {0, 1}) and evaluate binary gates with arithmetic
circuits. Section 7 has a longer discussion about input validation.

We describe our protocol using the Arithmetic Black Box (ABB), which is an
ideal functionality in the UC framework. Very roughly, the ABB is a functional-
ity that can take inputs from the parties and compute linear combinations and
multiplications between stored values and output stored values. We use a flavor
of the ABB that can do these operations over Z2k and Zq. Additionally, the ABB
can translate values stored as elements of the binary field to binary values within
the larger field. More concretely, we use the formulation of the ABB that can be
found in [34] and we include a definition of the ideal functionality in Appendix
B.1. Our protocol is presented in Figure 4.

Protocol πMFDL

Parameters: Natural numbers B, d, q,N , bit decomposition α̂1, ..., α̂d and an
efficiently computable function f : Z2N

q → Zq, meaning it can be computed using
polynomially many multiplications and linear combinations in Zq. Assume access to
FABB .

Initialisation:

1. Player i locally samples Bd+ 1 fair coins and stores them as ei.
2. Player i sends random seed vector ei ∈ ZBd+1

2 as Bd+ 1 consecutive inputs to
FABB to be stored as elements of the binary field.

3. For j = 1, ..., Bd+ 1 the players compute ri ← e1j ⊕ e2j via FABB .

Noise sampling:

1. Each operation in the first two steps of the FDL specification is performed via
FABB . This results in the binary values c1, ..., cB being computed as prefix-OR’s
of the Bernoulli trials.

2. In FABB , the values c1, ..., cB and rBd+1 are transformed to elements in the
arithmetic field.

3. All remaining operations in the FDL specification are performed via FABB .

Finishing:

1. Player 1 sends x ∈ ZN
q and player 2 sends y ∈ ZN

q to FABB and then f is
computed via FABB according to its specification. The result is stored as f̄ .

2. The sum of f̄ and the FDL sample is computed via FABB and the result is output
to the players.

Fig. 4: The protocol description for the FDL mechanism in the FABB-hybrid
world.
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We are now ready to present our main theorem, namely that the protocol we
have introduced indeed is (εκ, 0)-SIM

∗-CDP. Let decomp(λ, d) be short for the
bit-decomposition of λ truncated to d bits. The proof is found in Appendix D.7.

Theorem 1. Let q > 2fmax
κ + 2Bκ, Bκ ∈ {1, . . . , ⌈q/2⌉ − 1}, λκ = εκ

∆fκ
and let

e−Bκ/λκ and Bκ2
−dκ be negligible in κ. Let {fκ : Z2N

q → Zq}κ∈N be an ensemble
of efficiently computable deterministic functions with fmax

κ := max
D∈Z2N

q

|fκ(D)|. Let

{f̂κ(D)}κ∈N be {Mq,fκ,λκ

RTGeo (D)}κ∈N.

Then πMFDL
(Bκ, dκ, q,N, decomp(λκ, dκ), fκ) is an (εκ, 0)-SIM

∗-CDP protocol

for the ideal functionality F f̂κ
SFE, with respect to the same adjacency notion as

in the calculation of ∆fκ, in the FABB-hybrid world.

Asymptotic computational cost. We consider the computational cost of
πMFDL

in terms of calls to the ABB, ignoring the cost of computing f . This rough
model for calculating computation cost is reasonable in two ways: Firstly, local
operations are canonically negligible in terms of computation cost compared to
operations that require interaction. Secondly, in practice, the instantiation of
the ABB greatly influences the computation cost in practical terms. As is shown
in EIKN [30], the asymptotic computational complexity of the FDL function is
O(Bd). This complexity follows directly from Definition 14 since all steps of the
FDL procedure are repeated B times (that is, B Bernoulli trials are sampled and
there are B elements in the sum) and within the Bernoulli trial subprocedure,
all steps consist of d arithmetic operations.

It is important to note that the cost of sampling the noise is independent of
the data query f . Relative DP usefulness intuitively increases as the number of
elements in the input dataset grows. However, the performance of the sampling
protocol scales with the number of queries and not with the size of the input
dataset, thus amortizing its execution time further.

6.1 Application: Integer Inner-products with Bounded Elements

We now compute integer inner-products using the πMFDL
protocol. This query

type is particularly interesting for a few reasons. First, it is non-linear and cannot
be expressed as an aggregate function without knowledge of the other party’s
inputs. Second, it is a fundamental building block for more complicated queries
like matrix multiplications with vast applications in data processing, such as
machine learning. To use πMFDL

, the query needs a bounded maximal absolute
value, and for accuracy, we want the sensitivity of the query to be small. There-
fore, we consider only inner-products where the input vectors have elements
between a ∈ Zq and b ∈ Zq.
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Our setting provides security in the presence of active adversaries. Since these
parties can deviate arbitrarily from the protocol, they might send inputs violat-
ing the above bounds. It is, therefore, necessary to prove the correctness of the
input domain in both the FDL mechanism and the query function. There are
different strategies to achieve such a feat. We note that the ABB accepts inputs
of two types, either elements in the binary field or the larger finite field. We
need to restrict the values to the pre-defined range for inputs in the arithmetic
domain. Were we not to perform such an input validation, this would result in
an increased sensitivity of the function (in relationship to what is a priori agreed
upon by the two parties), thwarting the privacy level of the DP mechanism. In
the presence of passive adversaries, however, there is of course no need to validate
the inputs since the adversary will per definition not give out-of-range inputs.
This requirement of a proof of function sensitivity also arises in other scenarios
where the sensitivity is directly dependent on the secret data of multiple parties.

To provide such a validation that all given inputs fall within their allowed range,
we consider two main options: Firstly, one could accept the inputs as elements in
the larger field and then perform a zero-knowledge range proof14 within the MPC
domain. Alternatively, one could accept the inputs bit-by-bit and re-compose
those bits into elements of the larger field. These approaches present a trade-off
in input size and proof complexity. In the first approach, the cost of inputting a
value is constant (i.e., depending on 2k in our example) while proving the range
is linear in the bound. In the bit-by-bit setting, the input and proving costs
are both logarithmic in the bound. The second approach is thus more efficient
for larger bound values depending on the specific scheme. As noted before, we
opt for using the second method and we further assume that the difference be-
tween a and b is a power of 2, to facilitate inserting an input as a sequence of bits.

We consider DP with the bounded (’change-one’ ) adjacency notion and the
data universe is ([a, b])∗, such that each input D to f (as well as the protocol
and the mechanism) is a tuple of 2N elements from [a, b]. Let D := x||y, i.e. the
concatenation of the input vectors of the two parties. The inner-product f(D)

is defined as ⟨x,y⟩ := ∑N
i=1 xiyi with operations over Zq. The sensitivity ∆f of

the inner-product is max(|a2−ab|, |b2−ab|), under the assumption that |f(x||y)|
is smaller than ⌊q/2⌋ such that field operations mimic integer behavior. We also
have that fmax = N ·max(a2, b2).

Parameter choices. From the properties above, the following parameter con-
siderations follow: Let the security parameter be the bit-length of a field element,
i.e. κ = ⌈log2(q)⌉, as is canonical. Let both εκ and ∆f (by choice of a, b) be in-
dependent of κ. Further, we can set the FDL specific parameters as B = d = κ.
Finally, we have q > 2fmax + 2B = 2N ·max(a2, b2) + 2B, where the inequality
holds for sufficiently large κ.

14 For instance, such as described in the Bulletproofs paper [8].
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In practice, one strategy is to choose κ as a canonical value for statistical se-
curity in cryptography, e.g., κ = 40, and then let this also be B and d.15 The
practical choice of ε is highly challenging, and there is a lively discussion in the
literature on it, although consensus is largely lacking [27, 56, 63, 55]. Luckily,
there is no direct dependence on the choice of ε in the other parameters. Finally,
this leaves the choices of a, b, and N . Here, we care about the distance |a−b| and
the size of N . Both parameters allow for wider usage scenarios when increased.
However, increasing N has adverse effects on runtime, and a larger distance
causes a higher sensitivity and decreased usefulness (if ε is kept fixed). Finally,
there is a trade-off between N and the sizes of a, b due to their dependence on
q. In practice, this can be circumvented by increasing the modulus size q in the
underlying MPC instantiation.

7 Implementation and Practical Performance

We tested our protocol by implementing it in the multi-protocol SPDZ (MP-
SPDZ) [52] library. Among others, it provides efficient implementations of the
SPDZ2k [20] and the FKOS [35] MPC schemes, and da-bit [67] and eda-bit [34]
implementations. We implement procedure Ber in the FKOS scheme and pro-
cedure FDL in the mixed-circuit setting with FKOS and SPDZ2k . We find that
only one switch between computation domains is necessary, making mixed-circuit
computation highly competitive in performance. More precisely, this approach
is faster than previous instantiations if the conversion cost is lower than the
additional overhead in the unfit computation domain. Given the protocol in
EIKN [30], circuit conversion has to be faster than the overhead of computing
the Bernoulli and prefix-or functionality in the arithmetic domain.

In MPC schemes, communication is typically the bottleneck of efficient func-
tion evaluation. While some communication is necessary during the computa-
tion, much of the data transfer happens in a pre-processing phase. In our setup,
we have three main components that require expensive pre-processing: shared
randomness for inputs, authenticated multiplication triples, and doubly authen-
ticated bits. In our inner-product use case, we only generate one FDL sample.
However, most pre-processing operations come in blocks of size B or d. In our
implementation, we take special care to minimize the communication rounds and
adapt the pre-processing batch sizes to accommodate our protocol execution.

15 Note that we use κ as a computational security parameter but that statistical se-
curity implies computational security. One appealing alternative is to introduce an
additional statistical parameter separate from κ, let them be proportional and align
B, d to the new parameter instead.
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7.1 Benchmarks

In this section, we present benchmarks of our FDL mechanism with B = d = κ
and measure performance for different settings16. Relevant for parameter α̂, the
bit decomposition of the Bernoulli bias, is the decomposition length d. When set-
ting a value α, the binary decomposition truncates this value to the predefined
precision. Although our code can be instantiated with any number of parties,
we fixed the number of parties to 2 as to align with the formalities of earlier
sections. We provide exemplary data points at 40- and 80-bit, typical statistical
security parameters. Next, we evaluate the mechanism at 128-bit, a usual con-
servative choice as a computational security parameter. Note that, in MP-SPDZ,
the underlying security parameters for SPDZ2k are fixed to 64-bit computational
and 64-bit statistical security. We run all benchmarks on a Linux server with an
AMD Ryzen 9 7900X CPU (4.7 GHz). Each party only has access to one thread
for computations. We separate our results into single sample computation and
amortized evaluation for 1000 samples. The single sample evaluation is further
split into the pre-processing and online phases of MPC, where the pre-processing
step consists of generating necessary multiplication triples and da-bits.

Table 1 presents the runtime metrics for different network settings. In Setting
1, we have an unrestricted LAN setup. Setting 2 simulates a less powerful LAN
setup by limiting the network to 1Gbit/s and the round-trip time (RTT) to 1ms.
Finally, in Setting 3, we simulate a WAN network with 100Mbit/s and 100ms
RTT, reflecting a solid but distant connection (e.g., intercontinental). Given the
asymptotic complexity O(Bd), the runtime results reflect the expected quadratic
growth in the security parameter. Regarding the network settings, communica-
tion is needed for inputs, binary AND gates, arithmetic multiplication, secret
share conversion, and outputs. Since inputs, conversions, and computations de-
pend on one or both parameters B, or d, the negative impact of a reduced net-
work speed and increased RTT is increased. Compared to concurrent work [51],
our mechanism outperforms theirs in runtime and memory for the overall com-
putation in the fast network settings.17 Arguably, their setup heavily optimizes
the online phase, making it more efficient if pre-processing can be performed
in advance. However, sampling geometric noise in MPC can generally be seen
as pre-processing since the sensitivity of a function is known before the data
is processed, and the parties can already engage in the noise sampling proce-
dure before their inputs to the query function have been fixed. Further, their
geometric mechanism has a low round complexity, showing improved perfor-
mance in WAN network settings. Comparing with [30] is challenging as only
asymptotic complexities are given there and the results are based on arithmetic
evaluations of binary computations from [66]. Our approach, on the other hand,
is based on mixed circuits [67] and includes substantial performance improve-
ments by dedicated parameter optimizations. In our benchmarks, we adhered to

16 The code can be found at https://github.com/Fable95/laplace_sampler.
17 One should further note that [51] is in the more efficient setting of passive adversaries,

thus making direct comparisons skewed in their favor.

https://github.com/Fable95/laplace_sampler
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the following principle. We aimed to reduce the communication complexity for
low-latency networks, while for the high-latency networks, we reduced the round
complexity. This trade-off can be determined with the pre-processing batch size
parameter. Given a high minimum batch size for the MPC schemes we use,
computing a single geometric sample leads to substantial overhead. Thus, it is
crucial to parametrize the implementation according to the number of samples
and expected network latency.

In Table 2, we present benchmarks for network costs for each security param-
eter. We see that the network cost of our implementation is lower than that
in [51], further showing that their round complexity is much lower than that of
the malicious secure SPDZ2k protocol. Given the network cost, we could further
reduce the network bandwidth before its limiting impact equals a slow RTT.
In our amortized costs column, we present the network traffic per sample in a
computation of 1 000 samples.

Table 1: Runtime in milliseconds of benchmarks with different security levels.
Total runtime is for a single sample, while amortized runtime assumes 1000
samples.

Protocol κ Prep. Online Total Amort.

10 Gbit/s with RTT of 1 ms

40 74.7 42 116.6 34.6
Ours 80 94.2 119.9 214.1 118.5

128 130 276.9 406.9 283.4

[51] 40 1606 37.72 1 643 992†

1 Gbit/s with RTT of 1 ms

40 182.9 248.4 431.2 69.7
Ours 80 245.6 650.2 895.7 209.7

128 345.6 1 362 1 707 520.3

[51] 40 4 707 4.81 − 4 711‡

100 Mbit/s with RTT of 100 ms

40 11 256 20 486 31 742 577.9
Ours 80 15 215 51 794 67 009 1 604

128 20 795 105 350 126 145 3 558

[51] 40 42 352 47.99 − 42 400‡

† Amortized over 40 samples
‡ Amortized over 10 samples, no single sample performance provided.
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Table 2: Network cost in MB of different geometric sampling settings. The amor-
tized cost assumes 1000 samples.

Protocol κ Prep. Online Total Amort.

40 14.7 17.9 65.3 23.8
Ours 80 20.9 58.3 158.3 75.3

128 29.2 143.4 345.2 173.6

[51] 40 − − 492.7† −

† Run with single sample, no amortized network cost provided.

8 Conclusion and Outlooks

In this work, we revisit the idea of generic emulation of the central dataholder
(GED) as a method to achieve accuracy equal to that of the central model of DP
without the need for a single trusted dataholder. The bulk of our work is spent
analysing existing definitions of computational DP (CDP) in the multiparty set-
ting, noting that whereas they are very well-suited for theoretic study and use
with special-purpose MPC schemes, they all fit somewhat suboptimally to the
task of GED. Since one of them, SIM+-CDP, appears to fit very well conceptu-
ally but has some details preventing its use together with canonical statistical
DP (SDP) mechanisms, we propose both a generalised version of it, SIM◦-CDP,
and another instantiation of that generalised definition, SIM∗-CDP, that we ar-
gue is more fitting to the current state-of-the-art in both general-purpose MPC
and SDP. We relate SIM∗-CDP to IND-CDP and SIM-CDP, showing that it
is a stronger notion in the sense that all SIM∗-CDP protocols are also SIM-
CDP (and thus also IND-CDP) with unchanged parameters, whilst there are
computational tasks (such as computing a given functionality to within a given
absolute error with constant probability) that can be solved with SIM-CDP but
are impossible with SIM∗-CDP. Further, we show that SIM+-CDP and SIM∗-
CDP are separated from each other in both directions in the sense that there
are tasks solvable for one of them but not the other. Some of these results, how-
ever, are established under specific parameter regimes (as is commonplace in the
CDP literature) and therefore extending them to wider regimes is an interesting
open problem. On the practical side, we show how to achieve SIM∗-CDP via the
truncated geometric (discrete Laplace) mechanism by using a state-of-the-art
protocol for distributed noise sampling and analyse the use of this protocol for
computing integer inner-products with active security in the two-party setting.
We then provide an open-sourced implementation of the protocol using the MP-
SPDZ library and show that it is very efficient in practice.

As always when formulating new definitions in cryptography questions arise,
such as whether the definition is intuitive, practically usable, and not overly
relaxed or strict. On the usability front, we present evidence that SIM∗-CDP is
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practical since it allows us to design efficient, quite general protocols of natural
tasks that fulfill it, and the proof that the definition is satisfied follows essen-
tially directly from the use of general-purpose MPC and an SDP mechanism.
Further, the definition appears intuitive due to its closeness to both previous
definitions and established formalities in both the DP and MPC domains. There
is, however, much need for additional scrutiny, and this is the case also for the
question about balance in the definition. Interesting open directions here are to
more tightly relate the definition to previous ones and explore whether there is
some characteristic trait of SDP that is captured in the previous ones but not
in SIM∗-CDP.
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A The Efficient Samplability of Distributions

We consider a probability distribution Dist efficiently samplable if there exists
a PPT Turing Machine (TM) that maps 1κ to a sample from Dist. That is, if
there exists a probabilistic TM that runs in strict polynomial time and, using
only its unbiased randomness tape, samples from Dist exactly. We do not delve
into the broader literature on what distributions can be sampled (exactly or ap-
proximately) under certain constraints (see, for instance [70, 39, 71]), but rather
settle for some basic remarks. Most critically, we note that since the sampler
runs in polynomial time, it can read at most poly(κ) coins from its randomness
tape, with poly(·) being some polynomial. Since the randomness tape is the only
source of randomness in the sampler, the sampler is deterministic if one considers
the coins as input. This means that there are only 2poly(κ) possible executions
of the sampler, each giving a fixed output.18 This has two direct consequences:

– All probability densities in Dist must be multiples of 2−poly(κ).
– The support of Dist can contain at most 2poly(κ) distinct elements.

The first of these, of course, implies the second and the second can similarly be
directly realised by that the sampler can write at most poly(κ) elements on its
output tape, since it is strict PPT. The restriction on the support is anyhow
useful to include explicitly, since it implies that only discrete distributions on a
sufficiently small support can be efficiently sampled. This rules out, most directly,
sampling from the reals (as in the usual Laplace or Gaussian distributions) but
also, a bit more subtly, sampling distributions whose support is of a finite size
q > 2poly(κ). The first restriction however is the more important one, and in
particular, it rules out distributions such as

– Bernoulli trials of general parameters: There are parameters α such
that the Bernoulli distribution Ber(α) can not be efficiently sampled. One
example of this is α = 1/3. In particular, Ber(α) is efficiently samplable iff
α is a multiple of 2−poly(κ) for some polymial poly(·).

– Truncated geometric and discrete gaussian distributions of general
parameters: There are parameters α such that the geometric distribution
(discrete Laplace) on a finite (small) support Geo(α) can not be efficiently
sampled. This is due to the need to generate probability densities of the form

18 This simple fact was made aware to us by [2, 13].
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1
2αe

−|z|
α , which generally cannot be expressed as a multiple of 2−poly(κ). The

same reasoning holds for the discrete gaussian.

The takeaway from these examples, since we still would like to use these kinds of
distributions when constructing DP mechanisms, is that one must either relax
the demand for strict polynomial time or the demand that the samples are from
exactly Dist rather than from a good approximation of Dist. Indeed, is is shown
in [13] that the discrete gaussian (with support on the integers) can be sampled
in expected polynomial time. In practice, settling for expected polynomial time
is arguably not at all problematic, at least in the central model. The problems
arise on the theory side when trying to prove security in a protocol, since the lit-
erature on secure computation heavily favours strict polynomial time, meaning
that directly slotting in a mechanism that potentially runs, say, exponentially
long might prove a large obstacle to proving security of the protocol as a whole.
The other alternative is to settle for approximating the distribution in question,
a strategy arguably more readily usable in conjunction with formally proving se-
cure computation, as we do in this work. The challenge to this approach however
is to include this sampling error into the DP guarantee in question, for instance
letting it be a part of the δ parameter or including it in a computational error
term in the CDP notion in question.

B The Ideal/real Paradigm, Standalone and UC security

We now give a brief introduction to the real/ideal-world paradigm of security
and it’s two standard versions, the standalone security model and the universal
composability (UC) security model. Due to their complicated nature, we will not
be able to describe them in full formal detail and we refer to [10, 21] for details
on the UC model and to [9, 38, 57] for details on the standalone model. In our
summary here, we lean upon those in [43, 58, 33].

The core idea of the ideal/real paradigm of security is to define an ideal world
that is secure by definition, i.e. which formulates what computations are sup-
posed to be done and what it means formally to have that done securely (for
instance, specifying what types of information leakage are not to be seen as a vi-
olation of security). Then the security of the actual protocol in question, defining
the real world, is asserted by a simulation proof that the adversary cannot know
if it is interacting with the ideal world or the real world. That is, the intuition
is that if the adversary cannot tell if it is interacting with the real protocol or a
version of the protocol that is secure by definition, then the protocol should be
seen as essentially as secure as that in the ideal world.

The ideal world works as follows: There is an incorruptible third party called the
ideal functionality which is given the inputs of all of the parties. The function-
ality then performs the computation in question, perhaps incorporating some
well-defined allowed influence of the adversary, and then forwards the result to
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the players who output it. The functionality thereby defines what it means to be
secure, and what computations should be possible, by merit of being incorrupt-
ible. However, when observing the protocol execution, it is potentially very easy
to distinguish such an ideal world from the real world, for instance by observ-
ing the number of messages sent. Therefore, the ideal world also must include a
simulator, or ideal-world adversary, whose task it is to generate a view that is
indistinguishable from that of the real-world adversary and to do this by using
only the information available to it in the ideal world (essentially, the information
given to it by the ideal functionality). An important quantifier of the strength of
the simulation argument is the efficiency of the simulator, since it describes how
much work is needed to turn the allowed information leakage into the real one,
with an efficient simulator giving a stronger guarantee of security. Therefore, in
the literature on secure computation, one typically requires the simulator to be
efficient, although this is not always the case for CDP using the ideal/real-world
paradigm.19

So the core idea is that the ideal world (with parties, ideal functionality and
simulator) in some sense looks like the real world (with parties and adversary).
This begs the question of who they should look the same to – who is the distin-
guisher? Here is where the standalone and UC security models start diverging.
In the standalone model, the distinguisher is the adversary, meaning that the
distinguisher itself takes part in the protocol. More precisely, the task of the
simulator is to use only information available in the ideal world and generate an
output distribution that is indistinguishable from the view20 of the real-world
adversary.

Definition 16 (Standalone security, reformulation of Def. 4 in [9]). We
say that a protocol π is a secure protocol for the functionality F if for all efficient
adversaries A, there exists an efficient simulator S (corrupting the same parties
as A) such that the joint output of the honest parties and A in the real world
is computationally indistinguishable from the joint output of the honest parties
and S in the ideal world, i.e. when the output distributions in the ideal and real
worlds are computationally indistinguishable.

There are many different flavors of the security definition, for instance in the type
of indistinguishability (sometimes one requires the distributions to be identical
or have negligible statistical distance) or in the inclusions of specific require-
ments on the correctness (such as requiring that the outputs in the real and
ideal worlds are identical or statistically close if there are no corruptions, as
done in [38, 57]).

19 Most notably, in MPRV [65], the simulators are allowed to be inefficient (computa-
tionally unbounded) in the definition of SIM+-CDP.

20 In Definition 16 it is the output rather than the view of the adversary that is consid-
ered. These two formulations are equivalent since the adversary is allowed to simply
output its entire view as output.
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The version of the notion which is used in MPRV [65] within the definition
of SIM+-CDP (Definition 8) has such an extra correctness requirement, as well
as demanding efficient protocols and removing the efficiency requirement of the
simulator.

Definition 17 (Standalone security as in MPRV [65], Reformulated).
We say that a protocol π is a secure protocol for the functionality F if it fulfills
Definition 16 with the following changes:

1. π must be efficiently computable (PPT);
2. π must have perfect correctness, that is, in an honest execution of π, its

output distribution is identical to that of F ;
3. the simulator is allowed to be inefficient.

In the standalone model, as the name implies, the security of the protocol is
considered in isolation, meaning that the distinguisher is constrained to what
other protocols it can run in order to try and distinguish the worlds. Making
such a restriction makes proving security technically easier, for example by al-
lowing so-called rewinding techniques. The drawback of the model is precisely
that it considers protocol security in isolation, opening up the possibility that a
protocol thought to be secure loses all of its security properties when it is run in
parallel to some other processes. Since it can be argued that such composition
of protocols and processes is the rule rather than the exception in modern com-
puter systems, it is highly desirable to be able to prove that a protocol remains
secure also when other protocols are run in composition to it.

There are many ways to compose protocols and some of them are easier to deal
with than others. For instance, the usual formulations of the standalone model
guarantee that security is preserved under sequential composition, meaning as
long as all the surrounding protocols are run sequentially (one after another).
The most powerful type of composition results are those when the security of
the protocol is preserved regardless of how the surrounding protocols are run (in
particular when they run concurrently to the protocol in question). This is called
universal composition and the entire point of the UC (Universal Composability)
security framework is that protocols proven within it remain secure under uni-
versal composition. This means, in particular, that if a protocol π realises the
ideal functionality F , then any other protocol that uses F as a subprocedure
does not lose its security properties if F is replaced by a copy of π. In the UC
framework, the distinguisher goes from taking part in the protocol (as in the
standalone model) to being an external entity that observes and interacts with
the system from the outside. The distinguisher is captured in an entity called
the environment, which is an entity in both worlds that selects the initial inputs
to all parties, interacts arbitrarily with the adversary and then, based on the
outputs of each party at the end, tries to distinguish between the two worlds. In
other words, the environment gets to play with one of the worlds and depending
only on the input-output behaviour of this world it tries to determine which
world it is playing with.
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Definition 18 (UC security [43, 10]). We say that an efficient protocol
π UC-securely realises the ideal functionality F if for all efficient real-world ad-

versaries A there exists an efficient simulator21 S (corrupting the same parties
as A) such that for all efficient environments E, the statistical distance between
E’s output when interacting with the ideal world and that when interacting with
the real world is negligible in the security parameter κ.

B.1 The Arithmetic Black-box

In Figure 5 we present the ideal functionality FABB of the arithmetic black-
box. The ABB is at times formulated slightly differently, such as only operating
within the arithmetic domain, not including conversions between the domains
or including conversions in both directions in between the binary and arithmetic
representations. We choose the flavor of ABB that is used in [34], simply because
it includes the operations we need but nothing more. For more details on the
ABB see, for instance, [22, 59].

C On SFE with DP Leakage

As noted shortly in Section 4, one cryptographic task that SIM∗-CDP can handle
but SIM+-CDP cannot is that of computing a differentially private mechanism
whilst allowing the adversary to receive leakage throughout the protocol, as long
as that leakage is DP, in particular when some leakage occurs before the cor-
rupted party chooses their input. Joint computation of functions whilst allowing
DP leakage has been studied in a few different settings with regards to output
functions and adversarial models [60, 43, 68, 5]. Of particular interest to us is
the work of [43] where it is proposed an ideal functionality in UC for this setting
which is then realised with respect to private set intersection (PSI) in the pres-
ence of active corruptions. One reason that the ideal functionality of [43] cannot
be expressed as an instantiation of SFE (the functionality used in SIM+-CDP) is
that the functionality in [43] relaxes the guarantee of input independence, mean-
ing that the corrupted party can choose their input based on the input of the
honest party.

The PSI protocol of [43] outputs the exact set intersection (to only one of the
parties, the other gets no output) and therefore their protocol as a whole intu-
itively cannot be SIM∗-CDP. If one would instead realise their ideal functionality
for computing a function with leakage, and enforce that all possible combina-
tions of leakage functions and the output function to the corrupted party is DP
(when seen as a composition), then SIM∗-CDP can be achieved. Below in Fig-
ure 6 we re-iterate the ideal functionality from [43] but augmented to have two
potentially different classes of leakage functions for each party. The need for this
is that since f1 and f2 need not be the same, as in the case when only one of

21 Also called ideal-world adversary.
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Functionality FABB

Parameters: A modulus q that is either a prime or a power of 2.

Input:

– Upon input (Input, Pi, type, id, x) from Pi and input (Input, Pi, type, id) from all
other parties, if id is a fresh identifier and (type, x) ∈ {{binary}×Z2, {arithmetic}×
Zq)} then store (type, id, x).

Linear combination:

– Upon input (LinComb, type, id, (idj)
m
j=1, c, (cj)

m
j=1) from all parties, if

• each idj is stored in memory, and,
• c, cj ∈ Z2 if type is binary and c, cj ∈ Zq if type is arithmetic,

then
• retrieve ((type, id1, x1), . . . , (type, idm, xm)),
• compute y ←

∑
cj · xj mod 2 if type is binary and y ←

∑
cj · xj mod q if

type is arithmetic,
• store (type, id, y).

Multiplication:

– Upon input (Mult, type, id, id1, id2) from all parties, if id1, id1 are stored in memory
then
• retrieve (type, id1, x1), (type, id2, x2)),
• compute y ← x1 · x2 mod 2 if type is binary and y ← x1 · x2 mod q if type is

arithmetic,
• store (type, id, y).

Converting from binary to arithmetic:

– Upon input (ConvertB2A, id, id′) from all parties, if id′ is present in memory then
retrieve (binary, id′, x) and store (arithmetic, id, x).

Output:

– Upon input (Output, type, id) from all honest parties, if id′ is present in memory
then retrieve (type, id, x) and output it to the adversary. Wait for input from the
adversary of the form (Deliver, b), where b ∈ Z2. if b = 1 then output x to all
parties, otherwise output ⊥.

Fig. 5: The ideal functionality for the arithmetic black-box.

them gets an output, then one can allow the party whose output function is DP
with better parameters to have leakage functions that use up more of the privacy
budget. In Definition 19 we reiterate [43]’s definition of SFE with DP leakage,
reformulated for consistency with our notation.

Definition 19 (SFE with DP leakage [43]). A protocol π securely realises f

with leakage (L1,L2) if π is a UC-secure protocol for Ff,L1,L2

SFE with leakage (see Fig-
ure 6). We say that the protocol realises f with (εκ, εκ)-SDP leakage if it realises
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f with (L1,L2) if for every (Lpre
ji , Lpost

ji ) ∈ L1 ∪ L2, the probabilistic function

D := D1||D2 → (Lpre
ji (D), Lpost

ji (D)) is (εκ, εκ)-SDP.

Functionality Ff,L1,L2
SFE with leakage

Parameters:

– A function f = (f1, f2) : ({0, 1}∗)2 → ({0, 1}∗)2.
– Two classes of functions Lj = {(Lpre, Lpost)j1, . . .}, j ∈ {1, 2}, with Lpre

ji , Lpost
ji :

{0, 1}∗ → {0, 1}∗.

No corruptions:

– Upon D1 from P1 and D2 from P2, deliver f1(D1||D2) to P1 and f2(D1||D2) to P2.

Party Pc corrupted (Ph is honest):

– Upon Dh from Ph and (Leak, Lpre) from Pc, if there exists an element (Lpre, ·) in
Lc then send Lpre(Dh) to Pc, otherwise send ⊥.

– Upon Dc and (Leak, Lpost) from Pc, if there exists an element (Lpre, Lpost) in Lc

then send Lpost(Dh) to Pc, otherwise send ⊥. Regardless, also send fc(D1||D2) to
Pc.

– Upon (Deliver, b) from Pc, if b = 1 then send fh(D1||D2) to Ph, otherwise send ⊥.

Fig. 6: The ideal functionality for reactive two-party SFE with abort and leakage.

D Proofs

D.1 Proof of Proposition 1

Proof overview. We now prove Proposition 1, which in short says that in
the plain model (without setup assumptions) there exists tasks and parameter
regimes for which SIM+-CDP can be satisfied but not SIM∗-CDP with the same
parameters. This follows from the results that some ideal functionalities cannot
be realised with UC security in the plain model, and this particularly holds for
a large class of same-output probabilistic two-party functionalities, as proven
in [11]. Such results yield the desired separation after noting that some optimal
SDP mechanisms fall within that class of functionalities, and that they are di-
rectly computable with SIM+-CDP by use of general-purpose standalone secure
two-party computation, which does not require setup assumptions.

Background. The UC part of the proof is in the plain model, meaning that no
setup assumptions (such as having a common reference string) are made, and
that one by default only has access to authenticated (not necessarily secure)
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channels [11, 12]. In the plain model, it has been shown that there are many
functionalities that cannot be realised with UC-security. At the same time, it is
known that in the standalone model (also here without any setup assumptions
apart from that there are authenticated channels), all two-party PPT function-
alities can be realised. Further, any protocol that securely realises an ideal func-
tionality computing an SDP mechanism in the standalone model also satisfies
SIM+-CDP with unchanged parameters. Therefore, if there exists a task for
which there is an optimal mechanism and this mechanism can be realised with
standalone security but not UC-security (without setup assumptions), then our
desired protocol will follow. We now state some definitions and results needed
for our proof.

Definition 20 (Unpredictable function family [11]). A probabilistic func-
tion family f = {fκ}κ∈N with fκ : D2 → R is said to be unpredictable if there
exists a polynomial p(·) such that for infinitely many κ: ∃D1, D2 ∈ D such that:

1. ∀D′2 ∈ D, z ∈ R : P(fκ(D1, D
′
2) = z) ≤ 1

p(κ) .

2. ∀D′1 ∈ D, z ∈ R : P(fκ(D′1, D2) = z) ≤ 1
p(κ) .

Intuitively, f is unpredictable if (asymptotically) there are no choices of inputs
any one of the parties can make such that the function output is almost al-
ways the same, regardless of the inputs of the other party. In other words, each
party can choose its input such that the function output will not have almost
all its probability mass at one output event. This is a pretty weak require-
ment on a probabilistic function. In particular, we have that the randomised
response mechanism for binary functionalities (i.e. where for a binary function
f : {0, 1}2 → {0, 1}, f(D1, D2) is output with probability eε

eε+1 and otherwise its
negation is output) is unpredictable, with p in the definition of unpredictabil-
ity being chosen as a suitable constant. Further, it is easy to verify that for
all binary functions, no pure SDP mechanism can have a higher probability of
returning the true value than randomised response. Thus we can set u to be
1 iff the mechanism outputs the correct evaluation of a fixed arbitrary binary
function, and α to be eε

eε+1 , i.e. the probability of a correct answer when using
randomised response with parameter ε.

Lemma 4 (Reformulation of Theorem 6.1 in [11]). LetM = {Mκ} be a
family of unpredictable PPT two-input same-output functions and let F be the
ideal functionality that returns (to both players) a sample fromM(D1, D2) when
given D1 from party 1 and D2 from party 2. Then F cannot be UC-realised in
the plain model by any non-trivial protocol.

The notion of a non-trivial protocol is an extremely broad one, essentially only
requiring that all parties get outputs in the case that all parties are honest
and the adversary does not prevent any messages from being delivered. It is
immediately clear that the protocol which realises the ideal functionality of ran-
domised response in the standalone model with perfect correctness by use of
general-purpose two-party computation is indeed non-trivial.
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Proof (Proof of Proposition 1). What needs to be presented is a choice of ε
and a task (α, u) together with proofs that it can be solved with (ε, 0)-SIM+-
CDP but not (ε, 0)-SIM∗-CDP in the plain model. As explained in the preceding
paragraphs, we define the utility function by choosing the boolean XOR function
f : {0, 1}2 → {0, 1} and set u(D, z) = 1 ⇐⇒ z = f(D1, D2) := D1⊕D2. We set
α := eε

eε+1 . Further, set ε such that there exists a polynomial p in κ such that α

is a multiple of 2−p(κ) for large enough κ. The randomised response mechanism
with parameter ε, by construction, has α-usefulness for u, since α is exactly the
probability with which the mechanism outputs the true answer. We may now
make the following observations:

– There is no (ε, 0)-SDP mechanism with higher utility than α for u. This fol-
lows directly from a simple contradiction argument, namely that if a boolean
mechanism has utility above α, then it cannot be (ε, 0)-SDP since there ex-
ists a choice of database such that the privacy loss random variable is above
eε.

– If there exists a polynomial p in κ such that α is a multiple of 2−p(κ) for
large enough κ, then randomised response is computable in strict polynomial
time, which implies (by the possibility of computational perfect-correctness
general-purpose two-party computation in the standalone model, see e.g.
Theorem 7.1.2 of [38]) that the ideal functionality that computes randomised
response with respect to f can be realised in the standalone model.

The second observation above implies that there is a protocol which is (ε, 0)-
SIM+-CDP for the task (α, u), namely the one that uses general-purpose two-
party computation to realise (with perfect correctness) the ideal functionality
which performs randomised response with respect to f . The first observation
above gives that randomised response is optimal in the sense that no other mech-
anism has higher utility and that any mechanism with utility indistinguishable
from that of randomised response, also must have an output distribution which
is indistinguishable from that of randomised response, due to the boolean output
range.

Thus the only thing that remains to be shown is that there is no protocol that
has a utility indistinguishable from that of the protocol above whilst satisfy-
ing (ε, 0)-SIM∗-CDP. This follows directly from the fact that the randomised
response ideal functionality is unpredictable (in the sense of Definition 20) to-
gether with Lemma 4. In particular, any (ε, 0)-SIM∗-CDP protocol which has
utility indistinguishable from α has an output distribution that is indistinguish-
able from that the randomised response ideal functionality, which implies that
the protocol UC-realises said functionality, which is a contradiction to Lemma 4
since randomised response is unpredictable. Finally, we note that since the im-
possibility holds not only for protocols with exactly the utility α but also those
with utility computationally indistinguishable from α, the impossibility result
holds for SIM∗-CDP protocols both with respect to real-world accuracy and
ideal-world accuracy.
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D.2 Proof of Proposition 2

Proof overview We now prove Proposition 2, which says that there are tasks
such that in some parameter regimes, they can be solved with SIM∗-CDP but
not SIM+-CDP. The whole idea of the proof is that, under sufficient complexity
assumptions, both UC-security and standalone security allow general-purpose
two-party computation, meaning that any PPT functionality can be realised.
Now the requirement of perfect correctness in SIM+-CDP means on the other
side that no non-PPT ideal functionalities can be used to achieve SIM+-CDP,
whereas this is not the case for SIM∗-CDP, since there the correctness require-
ment is computational rather than perfect. Again, we use the concrete proof
strategy applied in Section D.1, namely showing that there is a parameter regime
for which the randomised response mechanism can be realised with SIM∗-CDP
but not with SIM+-CDP and this gives the result by the fact that randomised
response is optimal for pure SDP boolean mechanisms.

Proof (Proof of Proposition 2). As in the proof of Proposition 1, define u(D, z) =
1 ⇐⇒ z = f(D1, D2) := D1 ⊕ D2 i.e. with f being the XOR function. Set
α(κ) := eεκ

eεκ+1 . Now, as opposed to the previous proof, we set ε such that the
resulting randomised response mechanism can not be computed in strict poly-

nomial time. In particular, set εκ such that α(κ) = 1− 2−2
κ

, i.e. εκ := 2−2κ

1−2−2κ .

That is, the mechanism we consider is that in which f(D) is returned except for
which probability 2−2

κ

.

This mechanism can be realised (with computational correctness) with UC se-
curity under the common reference string (CRS) setup assumption, since that
model allows general-purpose two-party computation (see, for instance [11, 12]).
That is, with utility considered in the ideal world (i.e. the ideal functionality F
is α-useful for u), the task (α, u) can be solved with SIM∗-CDP.

On the other hand, the mechanism above can not be realised in the standalone
model with perfect correctness, since it requires sampling a Bernoulli trial with
parameter α, which is impossible in strict polynomial time since α is not a
multiple of an inverse polynomial power of 2 (see Appendix A). Further, since
randomised response is optimal for boolean functionalities, there is no (εκ, 0)-
SDP mechanism that runs in strict polynomial time and has utility above α.
Thus there is no PPT mechanism which is α-useful for u and consequently there
is no (εκ, 0)-SIM

+-CDP protocol which is α-useful for u either.

D.3 Proof of Proposition 3

We now prove Proposition 3, which in short says that for all protocols SIM∗-CDP
implies SIM-CDP with unchanged parameters. Note that this proof is analogous
to that of the same relation between SIM+-CDP and SIM-CDP, which is found
in the long version of MPRV [65]. The proof follows essentially directly from the
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two definitions involved after noting that the mechanism (simulator) in SIM-
CDP has access to all of the inputs and thus can run copies of the ideal world
internally.

Proof (Proof of Proposition 3). Let εκ ≥ 0, δκ ∈ [0, 1] be arbitrary fixed classes
of parameters. Let π be a two-party protocol that satisfies (εκ, δκ)-SIM

∗-CDP
with respect to some arbitrary fixed ideal functionality F . This implies that for
all PPT adversaries A, the view of SA (the ideal-world adversary corresponding
to A) is (εκ, δκ)-SDP and that the views of A and SA are computationally indis-
tinguishable. That is, ∀D ∈ D,A : VIEWAπreal

≈
c
VIEWSAπideal

. This is due to the

definition of UC-security, because if these two random variables are not com-
putationally indistinguishable, then there exists an efficient environment that
distinguishes the real and ideal worlds with a non-negligible advantage over
guessing.

We can now turn the simulator SA into the mechanism M in the SIM-CDP
definition by letting M run a copy of the ideal world protocol and then out-
put the view of SA. This is possible since in SIM-CDP, the mechanism (also at
times called the simulator) M has access to the inputs of both the corrupted
and honest parties. That is, since M can run a copy of the ideal world (thus
makingM(D) identically distributed to VIEWSAπideal

), the indistinguishability of
the views shown above implies that the view of the adversary in the real world
is computationally indistinguishable from the output ofM(D) for all D, which
is (εκ, δκ)-SDP, and thus π is (εκ, δκ)-SIM-CDP.

D.4 Proof of Lemma 1

Proof. Let Z ∼ Mp,f,λ
RTGeo(D) and Y ∼ M2B,f,λ

SRTGeo(D) for arbitrary λ,D. Let pZ
and pY denote the probability density functions of Z and Y respectively and
let F denote their cumulative distribution functions in the same manner. Since
the parameter restrictions guarantee that the final sum in Y does not overflow
(the result is as if the sum was done over the integers), the statistical distance
between the two distributions is exactly twice the total probability mass that is
affected by the truncation in Y . That is,
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SD(Z, Y ) =
1

2

∑
z∈Zp

|pX(z)− pY (z)|

=
∑

z∈Zp\(f̄−B,f̄+B)

|pX(z)− pY (z)|

= |FX(f̄ −B) + (1− FX(f̄ +B))|

=

∣∣∣∣ e1/λ

e1/λ + 1
e−(f̄−f̄+B)/λ

+
1

e1/λ + 1
e−(f̄+B−f̄)/λ

∣∣∣∣
= e−B/λ,

where f̄ is shorthand for f(D). The equalities follow by inserting the formulas
from Definition 11 and direct simplifications.

D.5 Proof of Lemma 2

Proof. Firstly, Berα̂ exactly samples a Bernoulli trial with a parameter equal
to the recomposition of the first d elements of α. Call this parameter value α′.
This means that the statistical distance between Ber(α̂) and an exact Bernoulli
trial with parameter α̂ is the same as between two exact Bernoulli trials with
parameter α̂ and α′, respectively. This statistical distance is equal to |α̂ − α′|,
which is at most 2−d since the first 2d bits of their decomposition are identical.
Secondly, the statistical distance betweenMλ,B,d,h

FDL (D) and

M2B,h,λ
SRTGeo(D) is at most equal to the probability of any of the Bernoulli trials

being incorrect, which due to independence is at most B2−d.

D.6 Proof of Lemma 3

Proof. The additive usefulness follows from a standard tail bound on the geo-
metric distribution, since the truncated geometric is at least as concentrated as
the untruncated one:

P(|Geoq,λ(f(D))− f(D)| ≥ ν) = P(|Geoq,λ(0)| ≥ ν)

≤ P(|Geoλ(0)| ≥ ν)

= 2FGeoλ(0)(−ν)

=
2e1/λ

e1/λ + 1
e−ν/λ.
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D.7 Proof of Theorem 1

Proof. The definition of SIM∗-CDP demands two things to be shown, namely
that the view of the simulator is SDP and that the protocol UC-realises the
ideal functionality. The first requirement is fulfilled as the only message sent

from F f̂κ
SFE to the corrupted party is Mq,fκ,λκ

RTGeo (D) and this is (εκ, 0)-SDP due
to the fact that the range-truncated geometric mechanism is (εκ, 0)-SDP under
the standard parametrisation specified in the theorem. The other parts of the
view of S (like its input and randomness tape) are independent of the inputs of
the honest party, thus making the view of S as a whole (εκ, 0)-SDP. Further,
this holds for all types of malicious behavour of S since, due to the formulation
of FSFE , the only way S can change its view is to refuse to collaborate in the
protocol or change its inputs and both of those decisions would have to be made
independently of the inputs of the honest party (thus making those decisions
(0, 0)-SDP as well).

The UC-realisation of the ideal functionality follows directly from the use of
the arithmetic black-box and the statistical indistinguishability between MFDL

and MRTGeo, which follows from lemmas 1 and 2 together with the assump-
tions of the theorem. In particular, due to the use of FABB , the view of the
corrupted party in the hybrid world consists of only its input, random coins
and the output returned from FABB , which is exactlyMFDL. Similarly, the view
of the corrupted party in the ideal world is also only its input, random coins

and output returned from F f̂κ
SFE . Therefore the simulator that simply outputs

its view (after having changed its inputs and/or aborted with respect to its
random coins as the hybrid-world adversary does) yields a view that is com-
putationally indistinguishable from that of the hybrid-world adversary. Further,
this simulator is strict PPT due to it performing only the same operations as the
hybrid-world adversary (choosing input and abort behaviour based on its coins
and then receiving one Zq element), hence the theorem follows.

E Techniques for Achieving Secure MPC

In the context of MPC, we typically distinguish binary and arithmetic proto-
cols. This classification describes the possible computations. In other words, we
perform addition and multiplication in Z2 and Zp, respectively. In this work, we
rely on secret sharing-based (SS) MPC protocols. More precisely, we use addi-
tive secret sharing (ASS). In such protocols, secret values x are shared among n
parties by uniformly sampling n−1 random values x1, . . . , xn−1 from Zq, setting
x0 ← x−∑n

i=1 xi, and distributing xi to every party pi. We denote secret shared
values as [[x]]. We further denote [[x]] ← Share(x), and x ← Reconstruct([[x]]) as
sharing and reconstructing secrets. ASS schemes are additively homomorphic,
allowing the addition of shares without interaction and hiding underlying se-
crets as long as there is one honest party. To allow multiplications with an
ASS, one can use multiplication triples, introduced by Beaver [3]. Triples are
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three shared values ([[a]], [[b]], [[c]]), that no party knows and that fulfil a · b = c.
When multiplying two shared values ([[x]], [[y]]), one reconstructs masked ver-
sions α ← Reconstruct([[x]] − [[a]]), β ← Reconstruct([[y]] − [[b]]), and computes22

[[z]]← αβ + β[[x]] + α[[y]] + [[c]] = [[x · y]].

Given these ingredients, we can instantiate an active secure general-purpose
MPC protocol if we have access to a secure sampling method for multiplication
triples, and adversaries cannot tamper with the reconstruction procedure. In
the SPDZ paper [23], the authors introduced solutions to both problems. They
propose an additively homomorphic encryption scheme for sampling triples and
information-theoretic message authentication codes (MACs) to secure the recon-
struction procedure. Subsequent work introduced several performance improve-
ments by instantiating the ASS over the ring Z2k [20] or replacing the expensive
homomorphic encryption with oblivious transfer [53]. Note that both improve-
ments, to some degree, accept a higher communication for a lower computation
complexity.

22 This step requires multiplication and addition with constant terms which follows
from the ASS properties.
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