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Abstract. In this work, we introduce two post-quantum Verifiable Random Function
(VRF) constructions based on abelian group actions and isogeny group actions with
a twist. The former relies on the standard group action Decisional Diffie-Hellman
(GA-DDH) assumption. VRFs serve as cryptographic tools allowing users to generate
pseudorandom outputs along with publicly verifiable proofs. Moreover, the residual
pseudorandomness of VRFs ensures the pseudorandomness of unrevealed inputs, even
when multiple outputs and proofs are disclosed. Our work aims at addressing the
growing demand for post-quantum VRFs, as existing constructions based on elliptic
curve cryptography (ECC) or classical DDH-type assumptions are vulnerable to
quantum threats.
In our contributions, our two VRF constructions, rooted in number-theoretic pseu-
dorandom functions, are both simple and secure over the random oracle model. We
introduce a new proof system for the factorization of group actions and set elements,
serving as the proofs for our VRFs. The first proposal is based on the standard
GA-DDH problem, and for its security proof, we introduce the (group action) master
Decisional Diffie-Hellman problem over group actions, proving its equivalence to the
standard GA-DDH problem. In the second construction, we leverage quadratic twists
to enhance efficiency, reducing the key size and the proof sizes, expanding input size.
The scheme is based on the square GA-DDH problem.
Moreover, we employ advanced techniques from the isogeny literature to optimize the
proof size to 39KB and 34KB using CSIDH-512 without compromising VRF notions.
The schemes feature fast evaluations but exhibit slower proof generation. To the best
of our knowledge, these constructions represent the first two provably secure VRFs
based on isogenies.
Keywords: isogenies · verifiable random functions · group actions

1 Introduction
Verifiable random functions (VRFs) are a cryptographic primitive that were first introduced
by Micali, Rabin, and Vadhan [MRV99]. They are a more advanced form of pseudorandom
functions (PRFs) that not only generate pseudorandom outputs, but also provide a non-
interactive and publicly verifiable proof to validate the output. The security of VRFs
is maintained even when numerous copies of the input, output, and proof are made
public. In particular, the notion of residual pseudorandomness for VRFs ensures that
the pseudorandomness remains for inputs that have not been evaluated and the unique
provability guarantees that it is computationally infeasible for an attacker to generate
distinct outputs for the same input with valid proofs.

The versatility of VRFs has been demonstrated through their applications in DNSSEC
protocols [GNP+15] and, especially, blockchain technology and e-lottery [GHM+17,
HMW18, EKS+21]. The growth of cryptocurrencies such as Bitcoin and Algorand has
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spurred significant interest in blockchain technology, which is being fueled by its potential.
Early blockchain systems, such as Bitcoin, utilized the Proof-of-Work (PoW) consensus
mechanism, where miners compete to solve a cryptographic puzzle and the winner is
rewarded. In contrast, the Proof-of-Stake (PoS) consensus protocol provides a more envir-
onmentally sustainable solution by allowing validators to stake their tokens and conducting
an online lottery. Due to the cryptographic properties, VRFs play a critical role in PoS
blockchain applications for their applications in cryptographic sortition and Byzantine
consensus [GHM+17,DGKR18,HMW18].

In practice, most existing VRFs are based on elliptic curve cryptography (ECC),
pairing-based BLS-type signatures or other Diffie-Hellman-type assumptions [BGLS03,
BMR10, ACF14, Jag15, PWH+17]. However, these VRFs are vulnerable to quantum
computing attacks, as they rely on underlying assumptions that can be broken by a
quantum adversary in polynomial time [Sho99]. Despite their versatility and significance,
post-quantum VRFs are underdeveloped, with only five constructions out of four works to
date [EKS+21,BDE+22,ESLR23,EEK+23]. The preliminary result of the lattice-based
LB-VRF [EKS+21] provides limited residual pseudorandomness and requires updating the
public key after, at most, five evaluations. Though it is sufficient in some scenarios, it
cannot serve for long-term applications or on a large scale. The construction in [EEK+23]
has the same limitation. Currently, SL-VRF [BDE+22] from LowMC and the lattice-based
LaV [ESLR23] are the consturctions offering full VRF capabilities.

Isogeny-based cryptography, introduced relatively recently in comparison to other
post-quantum branches, traces its origins to the CGL hash function [CLG09]. At its core,
this cryptographic paradigm relies on the hardness of recovering an isogeny between two
isogenous elliptic curves.

One of the most prominent isogeny-based cryptosystems is SIDH [JF11], a key exchange
cryptosystem that relaxes the original isogeny assumption. The recent breakthroughs in the
polynomial-time SIDH attacks [CD23,MMP+23,Rob23] have marked significant advance-
ments leading to the compromise of some relevant cryptosystems [YAJ+17,DDF+21]. Not-
withstanding these developments, the original isogeny problem still remains unaffected and
several cryptosystems continue to be based on the original assumption [DKL+20,BCC+23].

A variant of isogeny-based cryptography takes the form of CSIDH, which is proposed
by [CLM+18]. While it offers limited operations as the evaluation of the action is re-
stricted to generating sets with small cardinality, it still results in the first secure and
practical post-quantum non-interactive key exchange. In spite of a recognized subex-
ponential vulnerability [Reg04,Kup05,Kup13,Pei20,BS20], recent research continues to
demonstrate the versatility and competitivity of isogeny cryptography as a post-quantum
branch, including signature schemes [BKV19,EKP20,DG19], UC-secure oblivious trans-
fers [LGD21,BMM+23], theshold signatures [DM20], (linkable/accountable) ring and group
signatures [BKP20,BDK+22], and PAKE [AEK+22]. Furthermore, recent optimization
advancements [BKV19,DFK+23,CLP24,PR23] are progressively enhancing the flexibility
of the isogeny group action.

To have a VRF construction from isogenies is little to be known. Due to the less rich
algebraic structure offered by the isogenies, translating classical constructions has shown
to be a non-trivial task in general [BKP20,MOT20,LGD21,BDK+22]. For instance, the
most practical classical counterpart ECVRF [PWH+17], based on a signature scheme with
the unique signature property, requires hashing a string to a supersingular elliptic curve
with unknown endomorphism ring, which is known to be a notorious bottleneck in isogeny-
based cryptography [BBD+24,MMP22]. Also, the use of pairings, in [BGLS03,BLS01] for
instance, could lead to a “partially post-quantum” only result as [DMPS19].

Hence, this leads to the central question of this work:

Can we have a post-quantum verifiable random functions from isogenies with an acceptable
performance and the standard notions?
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1.1 Related Works
To the best of our knowledge, there are four works to date [EKS+21,BDE+22,EEK+23,
ESLR23] related to post-quantum VRFs. The lattice-based LB-VRF, iVRF in [EKS+21,
BDE+22,EEK+23] provide compact proof sizes (0.6-7.3KB). Despite their limited number
of evaluations, these constructions have proven to be effective in certain applications.
iVRF, tailored to their applications, relaxes the unique provability (see CFU of [EEK+23]
on P7) and leads to a compact proof size 0.6KB. On the other hand, SL-VRF and
LaV in [BDE+22, ESLR23] provide full VRF capabilities from LowMC and the hybrid
MSIS/MLWR respectively. They have proof sizes of 40, 12KB, and the secret key sizes of
24B and 6.4KB respectively.

In the field of isogeny cryptography, various protocols have been proposed that relate
to random functions. For instance, Naor-Reingold type pseudorandom functions (PRF)
have been proposed in [ADMP20,MOT20]. Additionally, there have been proposals for
oblivious random functions using oblivious transfers with a Naor–Reingold-type PRF or
one-more type assumptions [BKW20], however, the latter of which has been shown to
be insecure [BKM+21]. Currently, a provably secure isogeny-based VRF has yet to be
introduced in the literature.
Remark 1. A recent work by Leroux introduces a novel VRF proposal from isogenies [Ler23],
with a new application of Kani’s criteria [Rob23]. The output of the evaluation is the hash
value of a supersingular curve, computed through a large prime order isogeny. Remarkably,
the proof involves a high-dimensional isogeny, resulting in the most compact VRF in the
post-quantum literature. This scheme is based on a new one-more-type assumption of the
high-dimensional isogeny computations. We also include its performance in Table 1 for
comparison.

1.2 Contributions
In this study, we present two VRFs, CAPYBARA and TSUBAKI1, which provide an
affirmative solution to the above question through the following three contributions.

1. Inspired and based on the Naor–Reingold pseudorandom function as in [ADMP20,
BKW20,MOT20], we construct a proof system where the prover can demonstrate
the knowledge of the action factorization of a set element based on a distinguished
base point (see Rfac defined below). We use the technique from [BDK+22] to make
the proof system online-extractable, providing tightly-secure unique provability.
Additionally, we utilize the approach in [BKP20] to reduce the proof size. As a result,
our VRFs have an exponentially large input space ({0, 1}λ) and expected proof
sizes of 39KB and 34KB using CSIDH-512, which is comparable to the symmetric-
primitive-based VRF [BDE+22]. The secret key can also be compressed as a 32B
seed and generated efficiently usign PRNG on input of the seed.

2. We introduce a new decisional assumption, known as the master decisional Diffie-
Hellman problem, which implies a variety of decisional problems. We show that it is
as hard as the group action DDH problem.

3. We show a new use of the quadratic twists (see Footnote 2) to expand the input space
to be ternary ({−1, 0, 1}κ). By using a similar method, we prove that this variant
is as secure as the decisional square Diffie-Hellman problem, whose computational
version is as hard as the group action inverse problem.

1Compact Action factorization Proofs Yielded By A RAndom function and Twist-SqaUre-BAsed tweaK
from Isogenies.
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As a result, we introduce the first group action and isogeny-based VRFs in literature.
CAPYBARA is based on the standard group action DDH assumption. Our method of
construction and the techniques utilized are versatile and can be applied to other number-
theoretic pseudorandom functions, demonstrating the promising potential of incorporating
group actions and isogeny cryptography in the field of VRF research.

1.3 Technical Overview
The ideas beneath this work are fairly simple. First, given a transitive and free (effect-
ive) group action (G, E , ⋆, h0) for some distinguished element h0 ∈ E , we start from a
Naor–Reingold-type pseudorandom function on input x = (x1 · · ·xκ) ∈ {0, 1}κ:

f(sk, x) = (c0c1gx1
1 · · · gxκ

κ ) ⋆ h0

as the evaluation of our verifiable random function where the secret key sk = (c0, c1, g1, · · · , gκ)
with the public key vk = (c0 ⋆ h0, c1 ⋆ h0, g1 ⋆ h0, · · · , gκ ⋆ h0). Remark that without c1, it
is a secure pseudorandom random function but not a secure verifiable random function
since the adversary is given vk so that the evaluation at 0 is known.

Second, the “factorization” over the group g = Πgi (not necessarily unique) gives
the factorization of g ⋆ h0 over the set with respect to h0. We construct an action
factorization proof system to prove the correctness of the evaluation of f(sk, x). Formally,
let h← f(sk, x) on input x ∈ {0, 1}κ. We consider the action factorization relation

Rfac =

((h0, X0, X1, {hi}i∈I , h), (c0, c1, {gi}i∈I))

∣∣∣∣∣∣∣
Xj = cj ⋆ h0 ∀j ∈ {0, 1}

gi ⋆ h0 = hi ∀i ∈ I

(c0c1Πi∈Igi) ⋆ h0 = h

 ,

where I = {i ∈ [κ]|xi = 1}. Notice that without h in the statement and the constraint,
the proof system is trivial using a standard graph-isomorphism-type proof of knowledge in
parallel. We show that one with the witness (c0, c1, {gi}i∈I) can prove a set element h ∈ E
can be “factorized” through {hi}i∈I and h0 when the action is over an abelian group.

The three-move public-coin proof system starts from the prover who generates ran-
dom r, r0, ri ← G for i ∈ I, computes (r ⋆ X0, r0 ⋆ X1, {ri ⋆ hi}i∈I , (rr0Πi∈Iri) ⋆ h) =
(X ′

0, X ′
1, {h′

i}i∈I , h′), and sends it to the verifier. The verifier returns a random chal-
lenge b ∈ {0, 1} to the prover. Depending on b, the prover reveals (rcb

0, r0cb
1, {gb

i ri}i∈I)
to the verifier. Upon receiving (r′, r′

0, {r′
i}i∈I), if b = 0, the verifier checks whether

(r′ ⋆ X0, r′
0 ⋆ X1, {r′

i ⋆ hi}i∈I , (r′r′
0Πi∈Ir′

i) ⋆ h) = (X ′
0, X ′

1, {h′
i}i∈I , h′). If b = 1, the verifier

checks whether (r′ ⋆ h0, r′
0 ⋆ h0, {r′

i ⋆ h0}i∈I , (r′r′
0Πi∈Ir′

i) ⋆ h0) = (X ′
0, X ′

1, {h′
i}i∈I , h′). The

verifier accepts if it is the case or rejects otherwise. By λ times repetitions and applying
the Fiat-Shamir transform, one can obtain NIZK for the relation Rfac. For the sake of
clarity, we present the construction by assuming the group structure is known. We show
in Appendix B that the construction is also feasible in the unknown group structure setting.

Third, instead of resorting to an ad-hoc assumption, we prove the residual pseu-
dorandomness of our VRF is as hard as the decisional group action Diffie-Hellman
problem. We first introduce a generalized decisional problem – the master decisional
Diffie-Hellman problem. The problem starts with the challenger giving the adversary an
instance (g1⋆h0, · · · , gN ⋆h0). The adversary can make queries for an arbitrary combination
of (gs1 · · · gsk

) ⋆ h0 for any {s1, · · · , sk} ⊆ [N ], and also sends a challenge query, which has
not been queried before. The challenger returns as instructed or a random set element
from E , and the adversary’s task is to determine which is the case. The problem covers a
variety of variants of group-action-based decisional problems. Then, we prove the problem
is as hard as the group action DDH problem.
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Fourth, we make the proof compact and achieve online extractability. The latter notion
gives a tight reduction for the full uniqueness where the adversary cannot forge two valid
proofs on the same input for two distinct evaluations for any malicious generated keys
without using a rewinding argument. To achieve online extractability, one can consider
using Unruh’s transform [Unr15] (or Pass’ transform [Pas03] by hashing both responses
and appending them to the commitment). This, however, will result in costly overhead.
Instead, while running the proof above, the prover uses a seed and a pseudorandom number
generator (PRNG) to generate the group elements r, r0, {ri}i∈I . By employing the proof
technique developed in [BDK+22], the modification leads to an online-extractable proof
system with much more compact proofs.

Fifth, as an independent interest in the CSIDH setting, we develop a new use of the
quadratic twists and reduce the sizes of the public and secret keys and the computational
cost for the user by relaxing the assumptions. In this way, the public key can be naturally
expanded twice (c0 ⋆ h0, c1 ⋆ h0, g1 ⋆ h0, · · · , gκ ⋆ h0, (g1 ⋆ h0)t, · · · , (gκ ⋆ h0)t).2 The
modification reduces 37% of the key size, the computational cost, and the maximal proof
size.

Finally, we optimize the proof size again using the unbalanced challenge space and the
seed trees introduced in [BKP20], which reduces the proof sizes of both constructions by a
factor of 3. The proof sizes of our final VRFs are expected to be 39KB and 34KB when
using CSIDH-512.

Roadmap. We begin in Section 2 with some preliminary backgrounds on sigma protocols
and proof systems (Sections 2.1 and 2.2), VRFs (Section 2.3), and group actions and
hardness assumptions (Sections 2.4 to 2.6). We then introduce our action factorization proof
system in Section 3. We present our VRF constructions, CAPYBARA, in Section 4 and
its variant, TSUBAKI, in Section 5. We show the underlying assumption of CAPYBARA
(resp. TSUBAKI) is as hard as the group action DDH problem in Section 2.7 (resp. the
decisional square group action DDH problem in Appendix A). Finally, we give the final
optimization for both constructions and the performance comparison in Section 6.

2 Preliminaries

Notations. We denote {1, · · · , N} ⊂ N by [N ]. Say G acts on E by ⋆. For v =
(a1, · · · , aN ) ∈ GN and e = (E1, · · · , EN ) ∈ EN , we extend the action to an arbitrary
dimension by writing v ⋆ e = (a1 ⋆ E1, · · · , aN ⋆ EN ) ∈ EN . We also abuse the notation
v ⋆ E = (a1 ⋆ E, · · · , aN ⋆ E) ∈ EN when the context is clear. Also, ei represents the
i-th elementary vector where the i-th entry is 1 and the others are zeros. For an array
v = (v1, · · · , vN ), we may denote the the i-th entry vi as vi. For a subset I ⊆ [N ], we let
vI denote the sub-array (vi)i∈I .

Two probability ensembles Xλ, Yλ are said to be computationally indistinguishable,
denoted by Xλ ≈c Yλ, if for any PPT adversary A there exist a negligible function negl(λ)
such |Pr[A(Xλ) = 1] − Pr[A(Yλ) = 1]| ≤ negl(λ). Also, Xλ, Yλ, defined over the same
set, are said to be statistically indistinguishable, denoted by Xλ ≈s Yλ, if there exists a
negligible function negl(λ) such that

∑
a |Pr[Xλ = a]− Pr[Yλ = a]| ≤ negl(λ).

2 Remark the reduction of the key size comes in different flavors in contrast to [BKV19, EKP20] where
the twist reduces the public key size by decreasing the soundness error of the sigma protocol. Here, the
twist decreases the key size by expanding a binary input to a ternary input instead of benefiting the proof
system. The proof system is still BINARY challenge in this construction.
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2.1 Sigma Protocol
Definition 1 (Sigma Protocol). A sigma protocol ΠΣ is a three-move proof system for
a relation R that consists of oracle-calling PPT algorithms (P = (P1, P2), V = (V1, V2)),
where V2 is deterministic. We assume P1 and P2 share states and so does V1 and V2. Let
ChSet denote the challenge space. Then, ΠΣ proceeds as follows.

• The prover, on input (st, wt) ∈ R, runs com← P O
1 (st, wt) and sends a commitment

com to the verifier.

• The verifier runs ch← V O
1 (1λ), drawing a random challenge from ChSet, and sends

it to the prover.

• The prover, given ch, runs resp← P O
2 (st, wt, ch) and returns a response resp to the

verifier.

• The verifier runs V O
2 (st, com, ch, resp) and outputs ⊤ (accept) or ⊥ (reject).

Here, O is modeled as a random oracle. For simplicity, we often drop O from the superscript
when it is clear from the context. We assume the statement st is always given as input to
both the prover and the verifier. The protocol transcript (com, ch, resp) is said to be valid
in case V2(com, ch, resp) outputs ⊤.

We require the sigma protocol to be correct conditioned on the prover not aborting the
protocol. Below, if δ = 0, then it corresponds to the case when the prover never aborts.

Definition 2 (Correctness). A sigma protocol ΠΣ is said to be correct if for all λ ∈ N,
(st, wt) ∈ R and the prover and the verifier both follow the protocol specification, the
verifier always outputs ⊤.

Definition 3 (High Min-Entropy). We say a sigma protocol ΠΣ has α(λ) min-entropy if
for any λ ∈ N, (st, wt) ∈ R, and a possibly computationally-unbounded adversary A, we
have

Pr
[
com = com′∣∣com← P O

1 (st, wt), com′ ← AO(st, wt)
]
≤ 2−α,

where the probability is taken over the randomness used by P1 and by the random oracle.
We say ΠΣ has high min-entropy if 2−α is negligible in λ.

Definition 4 (Honest Verifier Zero-Knowledge). We say ΠΣ is honest-verifier-zero-
knowledge for relation R if there exists a PPT simulator SimO with access to a random
oracle O such that for any statement-witness pair (st, wt) ∈ R, ch ∈ ChSet, λ ∈ N and
any computationally-unbounded adversary A that makes at most a polynomial number of
queries to O, we have

AdvHVZK
ΠΣ

(A) :=
∣∣∣Pr[AO(P O(st, wt, ch)) = 1]− Pr[AO(SimO(st, ch)) = 1]

∣∣∣ = negl(λ),

where P = (P1, P2) is a prover running on (st, wt) with a challenge fixed to ch and the
probability is taken over the randomness used by (P, V ) and by the random oracle.

Definition 5 (Special Soundness). We say a sigma protocol ΠΣ has special soundness if
there exists a polynomial-time extraction algorithm Extract such that, given a statement
st and any two valid transcripts (com, ch, resp) and (com, ch′, resp′) relative to st and such
that ch ̸= ch′, outputs a witness wt satisfying (st, wt) ∈ R.
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2.2 Proof System Under the Random Oracle Model
Definition 6 (Completeness). Let O be a random oracle and ΠNIZK = (Prove, Verify) a
NIZK proof system for a relation R. We say ΠNIZK for a relation R is complete if for all
λ ∈ N, (st, wt) ∈ R and the prover and the verifier both follow the protocol specification,
the verifier always accepts.

Definition 7 (Zero-Knowledge). Let O be a random oracle, ΠNIZK = (Prove, Verify) a
NIZK proof system for a relation R, and Sim a zero-knowledge simulator with access to O
for ΠNIZK. For (st, wt) ∈ R, the advantage of an zero-knowledge adversary A against Sim is

AdvZK
ΠNIZK

(A) =
∣∣∣Pr
[
AO(P O(st, wt)) = 1

]
− Pr

[
AO(SimO(st)) = 1

]∣∣∣ ,

We say ΠNIZK is zero-knowledge if there exists a PPT simulator Sim such that for any
(st, wt) ∈ R, (possibly computationally-unbounded) adversary A making at most polyno-
mially many queries to the random oracle, we have a negligible function negl(λ) such that
AdvZK

ΠNIZK
(A) ≤ negl(λ).

The following notion online-extractability allows us to extract the witness from given
proof using the access to the random oracle. This avoids the use of the rewinding technique,
which leads to a costly loss in the reduction tightness.

Definition 8 (Online Extractability). Let ΠNIZK be a NIZK proof system for a relation R.
We said ΠNIZK has online-extractability if for any (possibly computationally-unbounded)
adversary A, there exists a PPT extractor Ext with extractability access to O (the ability
to see the query) such that A wins the following game with a negligible advantage:

(i) A can make polynomial number queries of the random oracle.

(ii) A outputs st and π.

We say A wins if VerifyO(st, π) = ⊤ and (st, wt) /∈ R where wt ← Ext(st, π). The
advantage of A is defined as AdvOE

ΠNIZK
(A) = Pr[A wins] where the probability is taken over

the randomness used by the random oracle.

2.3 Verifiable Random Functions
In this subsection, we give a brief introduction to the verifiable random functions, and
their notions [MRV99].

Definition 9. (Verifiable Random Function) A verifiable random function (VRF) consists
of four probabilistic polynomial-time algorithms ΠVRF = {ParGen, KeyGen, VRFEval, Ver}
where:

• ParGen(1λ): On input a security parameter 1λ, this probabilistic algorithm outputs
some global, public parameter pp.

• KeyGen(pp): On input public parameter pp, this probabilistic algorithm outputs two
binary strings, a secret key sk and a public key vk.

• VRFEval(sk, x): On input a secret key sk and an input x ∈ {0, 1}ℓ(λ), this algorithm
outputs (v, π) for the VRF value v ∈ {0, 1}m(λ) and the corresponding proof π
proving the correctness of v.

• Ver(vk, v, x, π): On input (vk, v, x, π), this probabilistic algorithm outputs either 1
or 0.
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The residual pseudorandomness guarantees the pseudorandomness of the function even
if the user has revealed many evaluations together with the proofs. In some applications,
it is sufficient to have a few-times relaxed notion where the pseudorandomness is ensured
for only limited copies of evaluations are revealed [EKS+21]. In this work, we consider the
original version of the notion.

Definition 10. ((Residual) Pseudorandomness) Let A = (A1,A2) be a PPT adversary.
The pseudorandomness experiment ExpVRFPR

A,ΠVRF
(λ) of a VRF scheme ΠVRF proceeds as

follows.

1. Q← ∅

2. pp← ParGen(1λ)

3. (vk, sk)← KeyGen(pp)

4. (x̃, st)← AOVRFEval(·)
1 (vk)

5. (v0, π0)← VRFEval(sk, x̃)

6. v1 ← {0, 1}m(λ)

7. b← {0, 1}

8. b′ ← AOVRFEval(·)
2 (vb, st)

9. The output of the experiment is defined
to be 1 if b′ = b and x̃ /∈ Q, and 0
otherwise.

OVRFEval(x) :

1. Q← Q ∪ {x}

2. Return VRFEval(sk, x)

We say A wins if ExpVRFPR
A,ΠVRF

(λ) = 1. The advantage of A is defined to be

AdvPR
ΠVRF

(A) := |Pr [A wins]− 1/2| ,

where the probability is taken over the randomness used by A and the randomness used
in the experiment. A VRF protocol ΠVRF is said to be pseudorandom if for any PPT
adversary A there exists a negligible function negl such that

AdvPR
ΠVRF

(A) ≤ negl(λ).

Definition 11. (Complete Provability) Let ΠVRF = {ParGen, KeyGen, VRFEval, Ver} be a
VRF scheme. ΠVRF is said to have provability if for any pp← ParGen(1λ) and (vk, sk)←
KeyGen(pp), the output (v, π)← VRFEval(sk, x) satisfies

Ver(vk, v, x, π) = 1.

The following notion, unique provability, implies that for any adversary (possibly
computationally unbounded with at most polynomial public coin queries) it is difficult to
generate a malicious secrey / public key such that the adversary can produce two valid
proofs for two distinct evaluations of the same input.

Definition 12. (Unique Provability) Let ΠVRF = {ParGen, KeyGen, VRFEval, Ver} be a
VRF scheme and A = (A1,A2) be an adversary. A uniqueness provability experiment
proceeds as follows.

1. pp← ParGen(1λ)
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2. (vk, sk)← A1(pp)

3. (vk, x, v1, v2, π1, π2)← A2(vk, sk)

We say an adversary A wins if v1 ̸= v2 and Ver(vk, v1, x, π1) = Ver(vk, v2, x, π2) = 1. The
advantage of A is defined to be AdvUP

ΠVRF
(A) := Pr[A wins] where the probability is taken

over the randomness used by A and in the experiment. A VRF protocol ΠVRF is said to
be uniqueness provability if for any computationally unbounded adversary A there exists a
negligible function negl such that

AdvUP
ΠVRF

(A) ≤ negl(λ).

2.4 Group Actions
Throughout this work we consider only free, transitive and effective group action. In this
section, we give a brief introduction to the main component in our protocols – the group
actions.

Definition 13 (Group Action). A group G is said to act on a set E if there is a map
⋆ : G× E → E that satisfies the

1. Identity: if 1 is the identity element of G, then for any E ∈ E , we have 1 ⋆ E = E.

2. Compatibility: for any g, h ∈ G and any E ∈ E , we have (gh) ⋆ E = g ⋆ (h ⋆ E).

For the cryptographic purpose, we need the following propositions.

Definition 14. A group action (G, E , ⋆) is said to be

1. transitive if for any x1, x2 ∈ E there exists g ∈ G such that x2 = g ⋆ x1, or

2. free if for any g ∈ G, g is the identity element if and only if there exists some x ∈ E
such that x = g ⋆ x.

For constructing a feasible construction from a group action, we require some efficient
(PTT) algorithms. We adopt the effective group action framework introduced in [ADMP20].

Definition 15 (Effective Group Action). A group action (G, E , E0, ⋆) is effective if the
following properties are satisfied:

1. The group G is finite and there exist PPT algorithms for (i.) the membership
testing, (ii.) equality testing, (iii.) group operations, (iv.) element inversions, and
(v.)a sampling method over G. The sampling method is required to be statistically
indistinguishable from the uniform distribution over G.

2. The set E is finite, and there exist PPT algorithms for the membership testing and
generating a unique bit-string representation for every element in E .

3. There exists a distinguished element E0 ∈ E and the bit-string representation is
publicly known.

4. There exists a PPT algorithm that given any (g, x) ∈ G× E outputs g ⋆ x.

Post-quantum instantiations of EGA currently rely exclusively on isogenies. However,
recent works [Pei20, BS20, CSCJR22] reveal that the existing EGA instances [BKV19,
DFK+23] fall short of meeting the post-quantum NIST 1 security level. Moreover, Section
2.5 of [Lai23] and [Pan23] show that in order to obtain EGA for a more robust parameter,
evaluating isogenies in the way described in [DF19] is not polynomial-time in theory (even
with the preprocessing using quantum computers) but may also be slow in practice, which
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is evaluated using the lattice heuristics. The ongoing pursuit of a more robust parameter
set for isogeny-based EGA remains an active focus in research [DFK+23,CLP24,PR23],
which is out of the scope of this paper.

Within this model, diverse constructions have been proposed, including logarithmic
(linkable) ring signatures [BKP20], threshold signatures [DM20], logarithmic (and tightly
secure) group signatures [BDK+22], and compact blind signatures [KLLQ23].
Remark 2 (Additional Requirements.). We have two additional requirements for our
group actions. Firstly, for security parameter λ, we require the group size |G| to be larger
than 2λ. The requirement naturally holds due to the known quantum subexponential
attacks 2O(

√
|G|) [Reg04,Kup05,Kup13,Pei20,BS20]. This is necessary to ensure that we

have adequate min-entropy for our proof system in Section 3. The second requirement is
that every G has a unique representation, which can be efficiently computed. The require-
ment is directly implied by the known-order effective group (KEGA) model [ADMP20].
We do not adopt the model since we use neither the group’s structure nor the group’s
order (KEGA). With this assumption, we can ensure that revealing g + g′ will not leak the
information of g where g′ is sampled uniformly from G for our proof system in Section 3.
It is worth noting that this requirement is for simplicity of presentation and is not strictly
necessary (see next remark).

Remark 3. For the sake of clarity, we present the work using the EGA model. A weaker
version (restricted effective group action) restricted the feasible evaluation of the action to a
generating set of small cardinality (e.g. the original CSIDH setting [CLM+18,DG19]). Our
construction can also be realized with a few modifications for the proof system, requiring
Fiat-Shamir with aborts [Lyu09,DG19]. We give the description in Appendix B.

Throughout this work, we assume the action is always free, transitive and effective and
denote it by a tuple (G, E , E0, ⋆) where E0 is the distinguished element. Also, we assume
the sampling method over G is uniform.

In our second construction, we require a special operation–the quadratic twist. In
the CSIDH group action (G, E) [CLM+18], when the underlying prime field size equals 3
modulo 4, there exists a special operation, the quadratic twist t, such that for any E ∈ E ,
we have Et ∈ E , and has the proposition (g ⋆ E)t = g−1 ⋆ Et. Also, there exists a special
element E0, usually used as the distinguished element in the literature, of j-invariant 1728
that satisfies (E0)t = E0. The quadratic twist has been shown to be a useful tool in some
cryptosystems [BKV19,EKP20,LGD21,AEK+22,KLLQ23].

We will only need the twist operation in Sections 2.6 and 5, and we will declare this at
the beginning of the sections.

2.5 Hardness Assumptions of Group Actions for CAPYBARA
In this subsection, we introduce a few standard assumptions in group actions. We start
from two computational assumptions, which we will not use in our construction, but it is
helpful to understand the hierarchy of the decisional versions.

Definition 16 (Group Action Inverse Problem (GAIP)). Let (G, E , ⋆, E0) be a group
action. Given E sampled from the uniform distribution over E , the GAIP problem consists
in finding an element g ∈ G such that g ⋆ E0 = E.

Definition 17 (Computational Group Action Diffie-Hellman (CDH) Problem). Let
(G, E , ⋆, E0) be a group action. Given a tuple (g1 ⋆ E0, g2 ⋆ E0) where g1, g2 are sampled
uniformly from G, the computational Diffie-Hellman problem is to compute (g1g2) ⋆ E0.

The following is the core hardness assumption for our first VRF in Section 4.
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Definition 18 (Group Action Decisional Diffie-Hellman (GA-DDH) Problem). Let (G, E , ⋆,
E0) be a group action. The decisional Diffie-Hellman problem is that, for some b ∈ {0, 1},
the adversary A is given one instance of Tb = (g1 ⋆ E0, g2 ⋆ E0, hb ⋆ E0) where h0 =
g1g2, h1 = g3 and g1, g2, g3 ← G3 and outputs b′ ∈ {0, 1}.

We denote the advantage of the decisional problem adversary A by

AdvGA-DDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where the probability is taken over the randomness used by A and the randomness used in
the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in the experi-
ment. We say the GA-DDH problem is hard, if for any PPT adversary A, there exists a
negligible function negl such that AdvGA-DDH(A) ≤ negl(λ).

Note that when using CSIDH as an instance, one has to use the parameter of underlying
prime field of size p to be p = 3 (mod 4) (e.g. CSIDH-512) to avoid the attacks presented
in [CSV20] exploiting distinct pairings. Both attacks rely on the nontrivial characters
derived from the nontrivial 2-torsion subgroup in the ideal class group, which is not the
case when p = 3 (mod 4). Therefore, when CSIDH is instantiated in this setting, DDH is
believed to be hard.

Definition 19 (Multi-Challenge Group Action Decisional Diffie-Hellman (mcDDH)
Problem). Let (G, E , ⋆, E0) be a group action and b ∈ {0, 1}. The multi-challenge decisional
Diffie-Hellman experiment ExpmcDDH(b) on input b proceeds as follows. The adversary A is
given (g1 ⋆ E0) where g1 ← G together with access to the oracle OmcDDH

b defined as follows:

1. OmcDDH
0 : (g2 ⋆ E0, (g1g2) ⋆ E0) where g2 are sampled uniformly from G,

2. OmcDDH
1 : (g2 ⋆ E0, g3 ⋆ E0) where g2, g3 are sampled uniformly from G,

and outputs b′ ∈ {0, 1}.

We denote the advantage of a multi-challenge decisional Diffie-Hellman problem ad-
versary A problem by

AdvmcDDH(A) =
∣∣∣Pr[A(ExpmcDDH(b = 0))→ 1]− Pr[A(ExpmcDDH(b = 1))→ 1]

∣∣∣ ,
where the probability is taken over the randomness used by A and the randomness used
in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in the
experiment. We say the mcDDH problem is hard, if for any PPT adversary A, there exists
a negligible function negl such that AdvmcDDH(A) ≤ negl(λ). One can use a standard
hybrid argument and give a reduction from the GA-DDH problem to the mcDDH problem.

A standard hybrid argument can lead to a reduction looseness that is proportional to
the number of queries made. The equivalence is tight in the classical setting (i.e. the group
setting) due to the existence of a randomizer which can keep regenerating a DH instance
or a random instance depending on the input instance. Achieving a tight equivalence in
the group action setting remains an open problem.

We introduce a generalized version of the decisional problem – the master decisional
problem, analogue to the generalized DDH assumption [BLMW07] and similar to the
Uber-family assumptions [Boy08]. In the master decisional problem, the starting instance
consists of several random set elements, and the adversary can query any combination of
them with respect to the group elements. We will show that the generalized version is as
hard as the DDH problem using a hybrid argument.
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Definition 20 (Master Group Action Decisional Diffie-Hellman (MDDH) Problem). Let
(G, E , ⋆, E0) be a group action, n ∈ N, and b ∈ {0, 1}. The decisional master Diffie-Hellman
problem experiment ExpMDDH(n, b) on input (n, b) proceeds as follows.

1. The challenger C generates a tuple (g1 ⋆ E0, · · · , gn ⋆ E0) where g1, · · · , gn ← G, and
sends the tuple to the adversary A.

2. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0, 1}n

returning
∏n

i gxi
i ⋆ E0.

3. A sends a string v = (v1, · · · , vn) ∈ {0, 1}n to the challenge oracle C.

4. C ignores if v has been queried before or is of Hamming weight less than 2. Otherwise,
C, depending on the input b, computes X0 =

∏n
i gvi

i ⋆ E0 or X1 = r ⋆ E0 for some
r ← G, and sends Xb to A. This process will only output for one time.

5. A outputs b′ ∈ {0, 1}.

We denote the advantage of a decisional master Diffie-Hellman problem adversary A by

AdvMDDH(A) =
∣∣∣Pr[A(ExpMDDH(n, b = 0))→ 1]− Pr[A(ExpMDDH(n, b = 1))→ 1]

∣∣∣ ,
where the probability is taken over the randomness used by A and the randomness used
in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in the ex-
periment. We say the MDDH problem is hard, if for any PPT adversary A, there exists a
negligible function negl such that AdvMDDH(A) ≤ negl(λ).

The assumption implies a variety of forms of decisional problems. For instance, given
(a ⋆ x, b ⋆ x, c ⋆ x, ab ⋆ x, bc ⋆ x, cd ⋆ x) to distinguish between abc ⋆ x or a random element in
E is an instance of the problem. The interactivity of the assumption appears to be strange
at a glance. It is, however, very reasonable. Otherwise, when n is linear in λ, giving all
combinations implies revealing almost the entire set E . Looking ahead, we will use this
problem to show our verifiable random function has residual pseudorandomness. Unlike
pseudorandomness, where the adversary has access to either the pseudorandom function
or a random function, the MDDH experiment allows the adversary to learn the evaluations
of any combination of the instances adaptively. We show in Section 2.7 the equivalence of
the master DDH and the original DDH.

2.6 Relaxed Decisional Assumptions for CSIDH-based Actions for
TSUBAKI

This section introduces a few relaxed decisional assumptions that allow us to construct
a more efficient verifiable random function variant. We use the quadratic twists in this
section, and for a group action (G, E , ⋆, E0) we let E0 ∈ E denote the element that has the
property that Et

0 = E0. Also, for any (g, E) ∈ G× E , we have (g ⋆ E)t = g−1 ⋆ Et.
Firstly, we relax the GA-DDH problem by introducing the standard square variant

problem. The problem has been used to construct some cryptographic protocols [DM20,
AEK+22]. A very recent work [DHK+23] justifies the hardness of the assumption in a
generic model for group actions.

Definition 21 (Decisional Square CSIDH (GA-sDDH) Problem). Let (G, E , ⋆, E0) be a
group action. The decisional square CSIDH problem is that the adversary A is given
Tb = (g1 ⋆ E0, hb ⋆ E0) where h0 = g2

1 , h1 = g2 and (g1, g2, b) ← G2 × {0, 1} and return
b′ ∈ {0, 1}.
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We denote the advantage of an GA-sDDH adversary A by

AdvGA-sDDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where the probability is taken over the randomness used by A and the randomness used in
the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in the experi-
ment. We say the GA-sDDH problem is hard, if for any PPT adversary A, there exists a
negligible function negl such that AdvGA-sDDH(A) ≤ negl(λ).

The computational version of the problem is quantum equivalent to GAIP problem as
shown [GPSV21,LGD21]. A full quantum equivalence is given in [MZ22].
One can reduce the GA-sDDH problem to the GA-DDH problem by mapping the instance
(g1 ⋆ E0, hb ⋆ E0) to (g1 ⋆ E0, (gg1) ⋆ E0, (ghb) ⋆ E0) where g ← G. Though the reverse
reduction is not known, GA-sDDH is still believed to be a hard problem.

We introduce the decisional assumptions for our VRF variant where the input is ternary
from {−1, 0, 1}, naturally corresponding to the following queries.

Definition 22 (Twisted Master Decisional CSIDH (tMDDH) Problem). Let (G, E , ⋆, E0)
be a group action, n ∈ N, and b ∈ {0, 1}. The twisted master DDH problem experiment
ExptMDDH(n, b) on input (n, b) proceeds as follows.

1. The challenger C computes E = g ⋆ E0 where g ← G.

2. C generates a tuple (g1 ⋆ E, · · · , gn ⋆ E) where g1, · · · , gn ← G, and sends the tuple
to the adversary A.

3. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0,±1}n

returning
∏n

i gxi
i ⋆ E.

4. A sends a string v = (v1, · · · , vn) ∈ {0,±1}n to the challenge oracle C.

5. C ignores if v has been queried before or is of Hamming weight less than 2. Otherwise,
C, depending on b, computes X0 =

∏n
i gvi

i ⋆ E or X1 = r ⋆ E for some r ← G, and
send Xb to A. This process will only output for one time.

6. A outputs b′ ∈ {0, 1}.

We denote the advantage of the decisional problem adversary A by

AdvtMDDH(A) =
∣∣∣Pr[A(ExptMDDH(n, b = 0))→ 1]− Pr[A(ExptMDDH(n, b = 1))→ 1]

∣∣∣ ,
where the probability is taken over the randomness used by A and the randomness used in
the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in the exper-
iment. We say the tMDDH problem is hard, if for any PPT adversary A, there exists a
negligible function negl such that AdvtMDDH(A) ≤ negl(λ).

We show in Appendix A that the twisted decisional master CSIDH problem is not easier
than the decisional square CSIDH problem. To see this, we are introducing a non-standard
intermediate assumption, which will make the proof easier to follow. The assumption
coincides with a decisional version of a problem proposed in [LGD21].

Definition 23 (Decisional Reciprocal CSIDH (rDDH) Problem). Let (G, E , ⋆, E0) be a
group action. The decisional reciprocal CSIDH problem is that the adversary A is given
Tb = (g1 ⋆ E0, g2 ⋆ E0, hb ⋆ E0, h′

b ⋆ E0) where h0 = g1g2, h1 = g3, h′
0 = g1g−1

2 , h′
1 = g4 and

(g1, g2, g3, g4, b)← G4 × {0, 1}, and return b′ ∈ {0, 1}.
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We denote the advantage of an rDDH adversary A by

AdvrDDH(A) = |Pr[A(T0)→ 1]− Pr[A(T1)→ 1]| ,

where the probability is taken over the randomness used by A and the randomness used
in the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in the ex-
periment. We say the rDDH problem is hard, if for any PPT adversary A, there exists a
negligible function negl such that AdvrDDH(A) ≤ negl(λ).

The computational version proposed in [LGD21] has been proven to be equivalent to
the computation square CDH problem, which is equivalent to the GAIP problem. The
following proposition shows that the decisional reciprocal problem is not easier than the
decisional square problem. In the appendix Appendix A, we will use the multi-challenge
version of the decisional reciprocal problem to show the hardness of the twisted decisional
master problem.

Proposition 1. Let (G, E , ⋆, E0) be a group action. Given an adversary A against the
rDDH problem, there exists an GA-sDDH adversary B1 and a GA-DDH adversary B2 such
that

AdvrDDH(A) ≤ AdvGA-sDDH(B1) + AdvGA-DDH(B2).

Proof. We prove this by introducing a series of hybrid games Game1, Game2, Game3 by
gradually changing the experiment, where Game1 corresponds to the case of b = 0 in the
experiment (Definition 23) and Game3 corresponds to the case b = 1.

Game2 : the same as Game1 except that the pair (g1 ⋆ E0, g2 ⋆ E0, g1g2 ⋆ E0, g1g−1
2 ⋆ E0)

given to A is modified as (g1 ⋆ E0, g2 ⋆ E0, g1g2 ⋆ E0, g4 ⋆ E0) where g4 ← G. Claim
Game1 ≈c Game2 thanks to the GA-sDDH problem. Concretely, we build an GA-sDDH
adversary B1 using A. Upon receiving a square CSIDH challenge (s ⋆ E0, X), the reduction
B1 proceeds as follows

1. Generate a← G.

2. Forward (a ⋆ (s ⋆ E0), (s ⋆ E0)t, a ⋆ E0, a ⋆ X) to A.

3. Output whatever A returns.

Note that (s ⋆ E0)t = s−1 ⋆ E0 and a = (as)s−1. Therefore, when the challenge is the
second case in the GA-sDDH experiment (i.e. a random curve), B1 generates Game2. On
the other hand, if the challenge is the first case in the experiment (i.e. X = s2 ⋆ E0),
then B1 generates Game1 since a ⋆ X = as2 ⋆ E0 and as2 = as(s−1)−1. Therefore,
AdvGA-sDDH(B1) = |Pr[A(Game1)→ 1]− Pr[A(Game2)→ 1]|.

Game3 : the same as Game2 except that the pair (g1 ⋆ E0, g2 ⋆ E0, g1g2 ⋆ E0, g4 ⋆ E0)
given to A is modified as (g1 ⋆ E0, g2 ⋆ E0, g3 ⋆ E0, g4 ⋆ E0) where g3 ← G. This is exactly
the second case in the rDDH problem. Claim Game2 ≈c Game3 thanks to the GA-DDH
problem. Concretely, we build an GA-DDH adversary B2 using A. Upon receiving a square
CSIDH challenge (g1 ⋆ E0, g2 ⋆ E0, X), the reduction B2 proceeds as follows

1. Generate g4 ← G.

2. Forward (g1 ⋆ E0, g2 ⋆ E0, X, g4 ⋆ E0) to A.

3. Output whatever A returns.
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Note that when the challenge is the second case in the GA-DDH experiment (i.e. a random
curve), B2 generates Game3. On the other hand, if the challenge is the first case in the
experiment (i.e. X = g1g2 ⋆ E0), then B1 generates Game2. Hence, AdvGA-DDH(B2) =
|Pr[A(Game2)→ 1]− Pr[A(Game3)→ 1]|.

Therefore, we have

AdvrDDH(A) ≤ AdvGA-sDDH(B1) + AdvGA-DDH(B2).

2.7 Hardness of Master Decisional Diffie-Hellman Problem
The following theorem shows that the MDDH problem is as hard as the GA-DDH problem.
It is worth highlighting the reduction is inspired by the pseudorandomness treatment in
the literature [BMR10,ADMP20,BKW20,MOT20].

Theorem 1. The MDDH problem is not easier than the mcDDH problem. Concretely, let
(G, E , ⋆, E0) be a group action, A be a MDDH problem adversary with parameter n ∈ N. If
at most qDH = poly(λ) queries are made in the experiment by A, then there exists mcDDH
problem adversaries B2, · · · Bn such that

AdvMDDH(A) ≤ 2 ·
n∑

i=2
AdvmcDDH(Bi).

Proof. We prove the theorem via a hybrid argument by introducing a series of games
Game1, · · · , Gamen by modifying the responses of the DH oracle and the challenge oracle
in the MDDH experiment gradually. Among the games, Game1 is the original MDDH
experiment, We will modify the response of the challenge oracle and the DH oracle together,
which will be explained later. For i ∈ [n] where b ∈ {0, 1}, let A(Gamei(b)) represent A
running the Gamei, the modified MDDH experiment with the random coin b used in the
experiment, and A will return 0 or 1. Therefore, by definition,

AdvMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|. (1)

Looking ahead, Gamen is the modified MDDH experiment where both the DH oracle
and the challenger reply with random elements in E . Therefore, since b is information
theoretically hidden from A,

|Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamen(b = 0))→ 1]| = 0. (2)

Game1 : the original MDDH experiment starting with a tuple (g1 ⋆ E0, · · · , gn ⋆ E0)
where g1, · · · , gn ← G and the oracle responds as specified.

Game2 to Gamen: for j ∈ {2, · · · , n}, Gamej is the same as Gamej−1 except that the
response of the DH oracle and the challenge oracle is modified as follows. The modification
starts with a list L which is initially

{(0, E0), (e1, g1 ⋆ E0), · · · , (ej , gj ⋆ E0)} ⊆ {0, 1}j × E

where e1, · · · , ej are the elementary vectors. On the query x = (x1, · · · , xn) ∈ {0, 1}n, if
((x1, · · · , xj), X) ∈ L for some X ∈ E , the oracle returns (

∏n
i=j+1 gxi

i ) ⋆ X; otherwise, it
draws g′ ← G, computes X = g′ ⋆ E0, adds ((x1, · · · , xj), X) to the list L, and returns
(
∏n

i=j+1 gxi
i ) ⋆ X to A. The reply for the challenge query is modified in the same way if

the random coin b = 0.

Claim that Gamej−1 ≈c Gamej for A for any 2 ≤ j ≤ n. Concretely, a reduction Bj to
the mcDDH problem proceeds as follows



16 Capybara and Tsubaki: VRFs from Isogenies

1. Obtain (g′ ⋆ E0, {(Xi, X ′
i)}i∈[qDH+j−1]) from the mcDDH oracle.

2. Then, Bj initializes with a list

L =
{

(e1, X1), · · · , (ej−1, Xj−1), (0, E0),
(e1 + ej , X ′

1), · · · , (ej−1 + ej , X ′
j−1), (ej , g′ ⋆ E0)

}
⊂ {0, 1}j × E ,

where ei is the i-th elementary vector in {0, 1}j , and set a counter ct = j to record
the number of the pairs (Xi, X ′

i) taken into the list L.

3. InvokeA on input (E0, X1, · · · , Xj−1, g′⋆E0, gj+1⋆E0, · · · , gn⋆E0) where gj+1, · · · , gn ←
G.

4. Upon receiving the oracle query (x1, · · · , xn) ∈ {0, 1}n, check whether ((x1, · · · , xj), X) ∈
L for some X ∈ E . If so, return

∏n
i=j+1 gxi

i ⋆ X. Otherwise, update

L← {((x1, · · · , xj−1, 0), Xct), ((x1, · · · , xj−1, 1), X ′
ct)} ∪ L,

and set ct← ct + 1, and rerun this step again.

5. Output whatever A returns.

Note that in Step 1. if Bj is in the experiment ExpmcDDH(0) in the mcDDH problem
(Definition 19 Item 1) then Bj generates Gamej−1. In contrast, if it is in the experiment
ExpmcDDH(1) in the mcDDH problem (Definition 19 Item 2), then Bj generates Gamej . It
follows that for b ∈ {0, 1},

AdvmcDDH(Bj) =|Pr[Bj(ExpmcDDH(0))→ 1]− Pr[Bj(ExpmcDDH(1))→ 1]|
=|Pr[A(Gamej−1(b))→ 1]− Pr[A(Gamej(b))→ 1]|. (3)

Therefore, we have

AdvMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]| (By Eq. (1))

≤
n∑

j=2

(
|Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Gamej(b = 1))→ 1]|

+ |Pr[A(Gamej−1(b = 0))→ 1]− Pr[A(Gamej(b = 0))→ 1]|
)

+ |Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamen(b = 0))→ 1]|
(Union bounds.)

= 2 ·
n∑

j=2
AdvmcDDH(Bj). (By Eqs. (2) and (3))

The result follows.

3 Proof Systems
3.1 The Action Factorization Relation and Its Sigma-Protocol
Let (G, E , E0, ⋆) be an effective group action. We consider the following action factorization
relation Rfac for our verifiable random functions.

Rfac =
{

st = (E0, {Ei}i∈[N ], E), wt = {si}i∈[N ]

∣∣∣∣∣Ei = si ⋆ E0 ∀ i ∈ [N ]
E = (ΠN

i=1si) ⋆ E0

}
⊂ EN+2 ×GN .
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round 1: P ′O
1 (st = (E0, {Ei}i∈[N ], E), wt = {si}i∈[N ])

1: seed0
$← {0, 1}λ

2: (r1, · · · , rN )← O(PRNG ∥ seed0) ▷ Generate ri ∈ G
3: E′ ← E
4: for i from 1 to N do
5: E′

i ← ri ⋆ Ei

6: E′ ← ri ⋆ E′

7: com← O(CRH ∥ E′
1, · · · , E′

N , E′) ▷ Produce com ∈ {0, 1}2λ

8: Prover sends com to Verifier.

round 2: V ′
1(com)

1: ch $← {0, 1}
2: Verifier sends ch to Prover.

round 3: P ′
2(st, com, ch)

1: if ch = 1 then
2: for i from 1 to N do
3: r′

i ← siri

4: resp← {r′
i}i∈[N ]

5: else
6: resp← seed0

7: Prover sends resp to Verifier

Verification: V ′O
2 (com, ch, resp)

1: if ch = 1 then
2: ({r′

i}i∈[N ])← resp
3: Ẽ′ ← E0
4: for i from 1 to N do
5: Ẽ′

i ← r′
i ⋆ E0

6: Ẽ′ ← r′
i ⋆ Ẽ′

7: c̃om← O(CRH ∥ Ẽ′
1, · · · , Ẽ′

N , Ẽ′)
8: return ⊤ if c̃om = com; otherwise, return
⊥.

9: else
10: Repeat round 1 with seed0 ← resp.
11: return ⊤ if results in com; otherwise, re-

turn ⊥.

Figure 1: Construction of the base sigma protocol Πbase
Σ = (P ′ = (P ′

1, P ′
2), V ′ = (V ′

1 , V ′
2)) for

the relation Rfac where O(PRNG∥·), and O(CRH∥·) are a PRNG, and a collision-resistant
hash function, instantiated by the random oracle, respectively.

Sigma Protocol for Rfac. We give a basic sigma protocol for Rfac as described in Fig. 1.
Let N ∈ N and a statement (st = E0, {Ei}i∈[N ], E). Say the prover has the witness
(wt = {si}i∈[N ]) such that Ei = si ⋆ E0 for any i ∈ [N ] and E = (ΠN

i=1si) ⋆ E0.

To prove the knowledge, the prover firstly generates r1, · · · , rN , computes E′
i = ri ⋆ Ei

for all i ∈ [N ] and E′ = (ΠN
i=1ri) ⋆ E, and sends those N + 1 set elements to the verifier.

The verifier returns a random challenge c from {0, 1} and sends it to the prover. If the
challenge is 0, the prover reveals ri for all i ∈ [N ] to the verifier. Otherwise, the prover
reveals siri for every i ∈ [N ]. When c = 0, with received {r′

i}i∈[N ] the verifier checks
whether r′

i ⋆ Ei = E′
i for all i ∈ [N ] and whether E′ = (ΠN

i=1ri) ⋆ E. When c = 1,
with received {r′

i}i∈[N ] the verifier checks whether r′
i ⋆ E0 = E′

i for all i ∈ [N ] and also
(ΠN

i=1r′
i) ⋆ E0 = E′.

In each case, if all equalities hold, the verifier returns 1 to represent the acceptance.
Otherwise, the verifier returns 0 to represent the rejection.

To reduce the size of the overall response, the prover uses a pseudorandom number
generator to generate r1, · · · , rN ∈ G with a seed, seed0, picked uniformly at random from
{0, 1}λ. Also, the prover uses a hash function to reduce the communication cost of the
first message by producing a hash value of {{E′

i}i∈[N ], E′} over {0, 1}2λ.

Theorem 2. The sigma protocol Πbase
Σ described in Fig. 1 has correctness.



18 Capybara and Tsubaki: VRFs from Isogenies

Proof. When the challenge is ch = 0, the prover sends the seed, seed0, to the verifier. The
computation of the verifier will result in the same commitment in this case.

When ch = 1, the prover sends r′
i = siri for every i ∈ [N ] to the verifier. Recall that for

any i ∈ [N ], we have Ei = si ⋆ E0, E′
i = ri ⋆ Ei, E = (ΠN

i=1si) ⋆ E0, and E′ = (ΠN
i=1ri) ⋆ E.

Also, E′
i = ri ⋆ Ei. Hence, due to commutative G, we have

(E′
1, · · · , E′

N , E′) = (r1s1 ⋆ E0, · · · , rN sN ⋆ E0, (ΠN
i=1risi) ⋆ E0)

= (r′
1 ⋆ E0, r′

N ⋆ EN , (ΠN
i=1r′

i) ⋆ E0).

O(CRH ∥ ·) will result in the same commitment and correctness follows.

Theorem 3. Let |G| ≥ 2λ (see Remark 2). The sigma protocol Πbase
Σ described in Fig. 1 has

2-special soundness for the relation Rfac if the collision-resistant hash function O(CRH ∥ ·)
is collision-resistant. Concretely, for a fixed statement st, there exists an extractor Ext on
input two valid transcripts returning either a valid witness wt or a pair (wt1, wt2) such
that (st, wt) ∈ Rfac or O(CRH ∥ wt1) = O(CRH ∥ wt2), respectively.

Proof. Let {com, 0, resp0} and {com, 1, resp1} be the two valid transcripts for the same
first-message com. Write r1, · · · , rN ← O(PRNG ∥ resp0) and {r′

1, · · · , r′
N} = resp1, the

extractor Ext proceeds as follows.

1. Compute wt1 = (r1 ⋆ E1, · · · , rN ⋆ EN , (ΠN
i=1ri) ⋆ E).

2. Compute wt2 = (r′
1 ⋆ E0, · · · , r′

N ⋆ E0, (ΠN
i=1r′

i) ⋆ E0).

3. If wt1 ̸= wt2, then return (wt1, wt2).

4. Else, return (r−1
1 r′

1, · · · , r−1
N r′

N ).

Since V ′O
2 ({com, b, respb})→ 1 for i ∈ {0, 1}, we know have

com = O(CRH ∥ r1 ⋆ E1, · · · , rN ⋆ EN , (ΠN
i=1ri) ⋆ E),

com = O(CRH ∥ r′
1 ⋆ E0, · · · , r′

N ⋆ E0, (ΠN
i=1r′

i) ⋆ E0)

where r1, · · · , rN ← O(PRNG ∥ resp0) and {r′
1, · · · , r′

N} = resp1. If wt1 ̸= wt2, then they
form a collision for the hash function.

If wt1 = wt2, we have ri ⋆ E1 = r′
i ⋆ E0 for all i ∈ [N ] and (ΠN

i=1ri) ⋆ E = (ΠN
i=1r′

i) ⋆ E0.
If follows that Ei = (r−1

i r′
i) ⋆ E0 for all i ∈ [N ]. Moreover, since the group is commutative

and (ΠN
i=1ri)−1(ΠN

i=1r′
i) ⋆ E0 = E, we have (ΠN

i=1(r−1
i r′

i)) ⋆ E0 = E.

Theorem 4. The sigma protocol Πbase
Σ described in Fig. 1 is statistically HVZK where the

pseudorandom number generator and the collision-resistant hash function are modeled as
random oracles O(PRNG ∥ ·) and O(CRH ∥ ·), resp. Concretely, there exists a simulator
Sim such that for any (st, wt) ∈ Rfac and a computationally-unbounded adversary A with
at most qH queries of O(PRNG ∥ ·), we have∣∣∣Pr[AO(P ′O(st, wt, c)) = 1]− Pr[AO(SimO(st, c)) = 1]

∣∣∣ ≤ qH/2λ.

Proof. Let (st = (E0, {Ei}i∈[N ], E), wt = {si}i∈[N ]) ∈ Rfac. Given st and c ∈ {0, 1}, the
simulator SimO(st, c) proceeds as follows.

1. If ch = 0, then execute P ′
1 and generate (com, 0, seed0) where the witness is not

required in this process.

2. If ch = 1, then
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(1.) Generate r′
1, · · · , r′

N ← G and let resp← {r′
1, · · · , r′

N}.
(2.) Compute E′

i = r′
i ⋆ E0 for every i ∈ [N ].

(3.) Compute E′ = (ΠN
i=1r′

i) ⋆ E0.
(4.) Compute com← O(CRH ∥ E′

1, · · · , E′
N , E′).

(5.) Return (com, ch, resp).

The simulated transcripts are identical to ones produced by the prover with the witness
executing the protocol Πbase

Σ . For the case ch = 0, the procedure is the same since the
witness is not involved.

For the case ch = 1, one can observe that the simulator returns a valid transcript and
each element in the response follows the uniform distribution over G. The distribution
is the same as the uniform distribution over the coset (si)−1G for any i ∈ [N ] used by
the prover, since O(PRNG ∥ ·) is modeled as a random oracle, except for those queries has
been made before. Concretely, the difference of two distribution is

1/2
∑∣∣∣Pr[(com, ch, resp)← P̃ O(st, wt, c))]− Pr[(com, ch, resp)← SimO(st, c)]

∣∣∣
=1/2

∑∣∣∣Pr[(com, 1, resp)← P̃ O(st, wt, c))]− Pr[(com, 1, resp)← SimO(st, c)]
∣∣∣

=qH

2 (1/2λ − 1/|G|N )

≤qH

2λ
,

so is the advantage of the adversary A.

Theorem 5. Let |G| ≥ 2λ (see Remark 2). The sigma protocol Πbase
Σ in Fig. 1 has λ

min-entropy where O(PRNG ∥ ·) and O(CRH ∥ ·) are modeled by a random oracle.

Proof. When the challenge ch = 0, the seed is drawn uniformly at random from {0, 1}λ,
and then ri are drawn uniformly at random from G for any i ∈ [N ]. Note that |G| ≥ 2λ.
Since the action is free and transitive, ri ⋆ Ei follows the uniform distribution over E
for every i. Then, com ∈ {0, 1}2λ is produced by O(CRH ∥ ·). Throughout the pro-
cedure, every random element is drawn from a set larger than 2λ. Therefore, we have
Pr
[
com = com′

∣∣com← P O
1 (st, wt), com′ ← AO(st, wt)

]
≤ 2−λ.

3.2 Online-extractable NIZK
By λ times repetitions and using the Fiat-Shamir transform, we turn the sigma protocol
Fig. 1 into a proof system for the relation Rfac. The description is displayed in Fig. 2.

Theorem 6 (Completeness). The proof system ΠNIZK for the relation Rfac in Fig. 2 is
complete.

Proof. In each iteration of i ∈ [λ] in Fig. 2, the prover and the verifier execute P ′ and V ′

in Πbase
Σ = (P ′, V ′) respectively. By Definition 2, each execution of Πbase

Σ = (P ′, V ′) has
correctness, and the completeness of ΠNIZK follows.

Theorem 7 (Zero-knowledge). Let |G| ≥ 2λ (see Remark 2). The proof system ΠNIZK
for the relation Rfac in Fig. 2 is zero-knowledge in the random oracle model. Concretely,
for any (st, wt) ∈ Rfac and a computationally-unbounded adversary A with at most qPRNG
queries of O(PRNG ∥ ·) and qFS queries of O(FS ∥ ·), there exists a simulator Sim such that∣∣∣Pr

[
AO(P O(st, wt)) = 1

]
− Pr

[
AO(SimO(st)) = 1

]∣∣∣ ≤ qPRNG
2λ

+ qFS
2λN

,



20 Capybara and Tsubaki: VRFs from Isogenies

ProveO(st = (E0, {Ei}i∈[N ], E), wt =
{si}i∈[N ])

1: for i ∈ [λ] do
2: comi ← P ′O

1 (st, wt)
3: com← (com1, · · · , comλ)
4: ch = (c1, · · · , cλ)← O(FS ∥ st ∥ com)
5: for i ∈ [λ] do
6: respi ← P ′O

2 (st, comi, ci)
7: resp← (resp1, · · · , respλ)
8: return π ← (com, ch, resp)

VerifyO(st = (E0, {Ei}i∈[N ], E), π)
1: (com = (com1, · · · , comλ),

ch = (c1, · · · , cλ), resp =
(resp1, · · · , respλ))← π

2: output = 1
3: for i ∈ [λ] do
4: r ← V ′

2(comi, ci, respi)
5: output← output · r
6: output ← output · (ch == O(FS ∥ st ∥

com))
7: return output

Figure 2: NIZK for the relation Rfac by applying the Fiat-Shamir transform to Πbase
Σ =

(P ′ = (P ′
1, P ′

2), V ′ = (V ′
1 , V ′

2)) with λ repetitions.

Proof. Let Sim′ be the simulator in Theorem 4. The simulator Sim firstly simulates the
oracle of O(FS ∥ ·), O(CRH ∥ ·) and O(PRNG ∥ ·) by keeping lists LFS, LCRH, and LPRNG
respectively using the straight-line and on-the-fly method. Sim also keeps a list L to
simulate the oracle queries. Concretely, take O(FS ∥ ·) for instance, upon receiving an
oracle query as O(FS ∥ x), the Sim simulates the oracle as follows.

1. Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.

2. Otherwise draw y ← {0, 1}λ uniformly at random. Add y to the list (x, y) and return
y.

Given a statement st in the language of Rfac, the simulator Sim simulates the transcripts
as follows.

1. Generate ch = (c1, · · · , cλ)← {0, 1}λ uniformly at random.

2. For each i ∈ [λ], run (comi, ci, respi)← Sim′(st, ci).

3. Concatenate com← (com1, · · · , comλ), resp← (resp1, · · · , respλ).

4. Add (com, ch) to the list LFS. If com has been queried before, abort and return ⊥.

5. Output the transcript (com, ch, resp).

By Theorem 5, we know each generation comi has λ min-entropy. Therefore, the abort
in Item 4 occurs with a negligible probability qFS/2λN .

Given such a distinguisher A, one can construct an HVZK adversary B against the
sigma-protocol Πbase

Σ using A. Recall that when the challenge is 0, the simulation of
Sim′(·, 0) is perfect. The reduction B using A proceeds as follows. Upon receiving the state-
ment st and the transcript ensemble X = {comi, 1, respi}i for the challenge 1, B simulates
as what Sim does except that the transcripts from Sim′(st, 1) is replace by those taken from
the ensemble X. B invokes A with st and the simulated transcripts. When the ensemble
is generated by a real prover, then B generates the transcripts as a real prover in ΠNIZK
except for the occurrence of aborts. When the ensemble is generated by a simulator, then
B generates the transcripts as Sim in ΠNIZK. Hence, AdvZK

ΠNIZK
(A) ≤ AdvHVZK

Πbase
Σ

(B) + qFS/2λN .
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Therefore, we have∣∣∣Pr
[
AO(P O(st, wt)) = 1

]
− Pr

[
AO(SimO(st)) = 1

]∣∣∣ ≤ qPRNG
2λ

+ qFS
2λN

.

Theorem 8 (Online-extractable). Assume O(·) is collision resistant, |G| ≥ 2λ (see
Remark 2), and N ∈ N. The proof system ΠNIZK in Fig. 2 is online-extractable. Concretely,
for any adversary A with qFS queries to O(FS ∥ ·) and qPRNG queries to O(PRNG ∥ ·),

AdvOE
ΠNIZK

(A) ≤ qFS + 1
2λ

+ qFSqPRNG
2Nλ

.

Proof. With the extractability access to the oracle, the extractor Ext observes the queries
to O of the form (PRNG ∥ ·), and record (x, y) to the list LPRNG where x is the input and y
is the oracle output. Also, Ext does the same for the queries of the form (FS ∥ ·), and keeps
a list LFS. We say x is in the list LPRNG if there exists some y such that (x, y) ∈ LPRNG.

Upon receiving a statement st = (E0, (E1, · · · , EN ), E′), possibly not in the language
of Rfac, and a valid proof (com, ch, resp), the extractor Ext proceeds as follows.

1. Parse ch = (c1, · · · , cλ) where ck ∈ {0, 1} for i ∈ [λ]. Also, parse com = (com1, · · · , comλ)
and resp = (resp1, · · · , respλ).

2. Collect K ⊆ [λ] where ck = 1 for any k ∈ K.

3. Collect the queries S = {seedj}j∈[qPRNG] recorded in list LPRNG.

4. Find one (k, j) ∈ K × [qPRNG] such that comk, seedj satisfy comk = O(CRH ∥
(r1, · · · , rN ) ⋆ (E1, · · · , EN )) where (r1, · · · , rN ) ← O(PRNG ∥ seedj) . If no such
pairs found, return ⊥.

5. Execute the extractor Ext′ described in Theorem 3 on input two valid transcripts
(comk, 0, seedj), (comk, 1, respk) to extract wt ∈ GN and return wt.

We have to argue the pair (k, j) in Item 4 exists with an overwhelming probability.
For simplicity, we say a seed seed can serve as a 0-response for com if (r1, · · · , rN ) ←
O(PRNG ∥ seed) and com = O(CRH ∥ (r1, · · · , rN ) ⋆ st, (Πri) ⋆ E0). For example, one can
interpret Item 4 as finding a 0-response for comk for some k ∈ K.

Case I: O(FS ∥ st ∥ com) has not been queried before the verification. This implies
that A produces com and resp without knowing the challenge. However, it requires ch
equals O(FS ∥ st ∥ com) in the verification process. This occurs with a probability not
greater than 1/2λ.

Analysis. We analyze the advantage of A against Ext by aiming at each FS challenge
query made by the adversary to O(FS ∥ st′ ∥ ·) for some st′. We analyze when A submits
a new com′ = (com′

1, · · · , com′
λ) to the FS oracle, whether there exist 0-responses in the

query list LPRNG.
For K ′ ⊆ [λ], we define the EK′ that when A submitting com to the FS oracle of

the form (FS ∥ st′ ∥ com1, · · · , comλ) to the random oracle, there exist no 0-responses in
the query list LPRNG for comk for any k ∈ [K ′]. We also define event FK′ that the FS
oracle returns the challenge (c′

1, · · · , c′
λ) where c′

k = 1 for all k ∈ K ′ and ck = 0 otherwise.
Obviously, Pr[FK′ ] = 1/2λ for every new FS query. Denote the event that A outputs a
transcript containing com′ by Ocom′ (e.g. (com′, ch′, resp′)) and the output is extractable
for Ext by Lcom′ . The latter case implies A fails.
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Note that EK′ forms a partition. Therefore, if A returns (com′, ch′, resp′) we have

Pr[Ocom′ ] =
∑

K′⊆[λ]

Pr[Ocom′ ∩ EK′ ]

= Pr[Ocom′ ∩ EK′ ], for some K ′

= Pr[Ocom′ ∩ EK′ ∩ FK′ ] + Pr[Ocom′ ∩ EK′ ∩ ¬FK′ ]
≤ 1/2λ + Pr[A wins using com′ ∩ EK′ ∩ ¬FK′ ] + Pr[Lcom′ ∩ EK′ ∩ ¬FK′ ],

where Pr[Ocom′ ∩ EK′ ∩ FK′ ] ≤ 1/2λ since Pr[FK′ ] = 1/2λ. We partition the event that
Ocom′ ∩ EK′ ∩ ¬FK′ into two cases: A wins or not (i.e. whether the tuple (com′, ch′, resp′)
is extractable).

Case II: A wins with a tuple using com′ ∩ EK′ ∩ ¬FK′ . Recall that if there exists
k ∈ [λ] − K ′ such that c′

k = 1, then one can invoke Ext to extract the witness using
resp′

k and the list of O(PRNG ∥ ·). Therefore, the case that A wins implies that c′
k = 0

for all k ∈ [λ] − K ′ and A produces a seed seedk for some c′
k = 0, k ∈ K ′ such that

com′
k = (r1, · · · , rN ) ⋆ E0 where (r1, · · · , rN ) ← O(PRNG ∥ seedk). Note that such seedk

is generated after the FS query. Since the protocol has the unique response property 3

and the group elements are generated uniformly from G by O(PRNG ∥ ·), the adversary
can generate such a seed with chance not greater than qPRNG/|G|N .

Therefore,
|Pr[Ocom′ ]− Pr[Lcom′ ]| ≤ 1/2λ + qPRNG/|G|N .

Wrapping up, given an adversary with qFS FS queries and qPRNG PRNG queries, by
taking a union bound over all FS queries we know the advantage of the adversary:

AdvOE
ΠNIZK

(A) ≤ Pr[Case I] +
∑

com in LFS

Pr[Case II wrt com]

≤ 1
2λ

+
∑

com in LFS

|Pr[Ocom′ ]− Pr[Lcom′ ]|

≤ qFS + 1
2λ

+ qFSqPRNG
|G|N

.

4 CAPYBARA - Verifiable Random Functions from
Effective Group Actions

In this section, we present our first VRF construction from an effective group action –
CAPYBARA (Compact Action factorization Proofs Yielded By A RAndom function):

Construction. ΠVRF = {ParGen, KeyGen, VRFEval, Ver} using Πfac
NIZK = (P, V ), H

where:

• ParGen(1λ): on input a security parameter 1λ, it returns pp = (G, E , ⋆, E0), which is
a free, transitive and effective group action.

• KeyGen(pp): On input public parameter pp = (G, ⋆, E0, E), it returns a secret key
sk = (c0, c1, s1, · · · , sλ) and a public key vk = (c0 ⋆ E0, c1 ⋆ E0, s1 ⋆ E0, · · · , sλ ⋆ E0).

3Given E ∈ EN there exist two unique group elements g ∈ GN and g ∈ G′N such that E =
g ⋆ (E1, · · · , EN ) and E = g′ ⋆ E0.
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• VRFEval(sk, x) 4: On input a secret key sk and an input x = (xi) ∈ {0, 1}λ, this
algorithm outputs (v, π) for the VRF value where v = (c0c1Πλ

i=1sxi
i ) ⋆ E0 together

with the corresponding proof π where I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]} and
π ← P (st = (E0, vkI , v), wt = skI) of ΠNIZK.

• Ver(vk, v, x, π): On input (vk, v, x, π), this algorithm computes b← V (st = (E0, vkI , v), π)
using ΠNIZK where I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}, and returns b.

ParGen(1λ)
1: Generate pp = (G, ⋆, E0, E)
2: return pp

KeyGen(pp)
1: (G, ⋆, E0, E)← pp
2: sk← Gλ+2

3: vk = sk ⋆ E0
4: return (vk, sk)

VRFEval(sk, x)
1: (G, ⋆, E0, E)← pp
2: v = E0
3: I ← {1, 2}
4: for i ∈ [λ] do
5: if xi = 1 then
6: I ← I ∪ {i + 2}
7: for s ∈ skI do
8: v ← s ⋆ v
9: π ← P (st = (E0, vkI , v), wt = skI)

10: return (v, π)

VRFVer(vk, v, x, π)
1: (G, ⋆, E0, E)← pp
2: for i ∈ [λ] do
3: if xi = 1 then
4: I ← I ∪ {i + 2}
5: return V (st = (E0, vkI , v), π)

Figure 3: The verifiable random function scheme ΠVRF based an effective group action and
on the GA-DDH problem where Πfac

NIZK = (P, V ) is an NIZK for the relation Rfac described
in Section 3.2.

Theorem 9. The VRF construction ΠVRF in Fig. 3 has provability.

Proof. Let (E, π)← VRFEval(sk, x) and v = (c0c1Πλ
i=1sxi

i ) ⋆ E0. The proof π is generated
by P (st = (E0, vkI , v), wt = skI) and I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}. Since (st =
(E0, vkI , v), wt = skI) ∈ Rfac and ΠNIZK has correctness, we have VRFVer(vk, v, x, π) = 1.

Theorem 10. If ΠNIZK is online-extractable, the VRF construction ΠVRF in Fig. 3 has
unique provability in the random oracle model. Concretely, for any unique provability
adversary A against ΠVRF, there exists an online-extractable adversary B against ΠNIZK
such that

AdvUP
ΠVRF

(A) ≤ 2AdvOE
ΠNIZK

(B).

Proof. Given (vk, x, v1, v2, π1, π2)← A where both

VRFVer((E0, vkI , v1), π1) = VRFVer((E0, vkI , v2), π2) = 1,

v1 ̸= v2 and I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}.
We note that VRFVer runs the verification algorithm of ΠNIZK. Hence, by invoking

the extractor Ext of ΠNIZK in Theorem 8 twice, we have s1 ← Ext((E0, vkI , v1), π1),
s2 ← Ext((E0, vkI , v2), π2) such that v1 = (Πi(s1)i) ⋆ E0 and v2 = (Πi(s2)i) ⋆ E0. Also,

4In the formal syntax of VRF, vk is not included in the VRFEval. One can also include vk as part of
the secret key. In our case, the user can recover vk from sk. Both justify the notation here.
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vkI = s1 ⋆ E0 and vkI = s2 ⋆ E0. Since the action is free and transitive, we have s1 = s2,
which contradicts v1 ̸= v2.

In other words, if A wins, then the extractor E shall fail among two extractions. We
can therefore tranform A into an extractabililty adversary B against ΠNIZK. Concretely,
if A returns (vk, x, v1, v2, π1, π2), then B randomly outputs one of ((E0, vkI , v1), π1) or
((E0, vkI , v2), π2) where I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [λ]}. Therefore, we have

AdvUP
ΠVRF

(A) ≤ 2AdvOE
ΠNIZK

(B).

Theorem 11. If the decisional master DDH problem is hard, then the VRF construction
ΠVRF in Fig. 3, with a subroutine ΠNIZK = (P, V ) in Fig. 2, has (residual) pseudorandom-
ness. Concretely, for any residual pseudorandomness adversary A against ΠVRF with at
most qPRNG queries of O(PRNG ∥ ·) and qFS queries of O(FS ∥ ·), there exists a MDDH
adversary B such that

AdvPR
ΠVRF

(A) ≤ qPRNG
2λ

+ qFS
22λ

+ AdvMDDH(B).

Proof. We show by using a game hop that such an adversary A can be transformed into a
MDDH adversary B2. Let Game0 be the original residual pseudorandomness experiment
and Game1 be the modified experiment. For i ∈ {0, 1}, we denote the advantage of A
in Gamei by Advi(A) = |Pr[A(Gamei(b = 1)) → 1] − Pr[A(Gamei(b = 0)) → 1]|, where
b ∈ {0, 1} represents the random coin chosen by the challenger (Definition 10 Item 7).
Since Game0 is the original experiment, we know Adv0(A) = AdvPR

ΠVRF
(A) by definition.

We introduce Game1 which is the same as Game0 except for the way of evaluating x for
a query. Rather than generated via Prove from the subroutine ΠNIZK, the proof is generated
using the simulator Sim for ΠNIZK in Theorem 7. Here, we have the parameter N ≥ 2 in
Theorem 7 since the prover uses at least two elements (sk{1,2} ⊆ skI) to generate a proof. By
Theorem 7, since the simulator Sim is statistically indistinguishable from a real prover, the
change in Game1 results in a negligible loss. Concretely, |Adv0(A)−Adv1(A)| ≤ qPRNG

2λ + qFS
22λ .

We now transform an adversary in Game1 into a MDDH problem adversary B. The
reduction B starts the MDDH problem with parameter n = λ ∈ N, receives (E1, · · · , Eλ),
and proceeds as follows.

1. First, B simulates the oracle of O(FS ∥ ·), O(CRH ∥ ·) and O(PRNG ∥ ·) by keeping
lists LFS, LCRH, and LPRNG respectively using the straight-line and on-the-fly method.
B also keeps a list L to simulate the oracle queries. Take O(FS ∥ ·) for instance; upon
receiving an oracle query as O(FS ∥ x), the B simulates the oracle as follows.

(a) Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.
(b) Otherwise draw y ← {0, 1}λ uniformly at random. Add y to the list (x, y) and

return y.

2. Generates c0, c1 ← G.

3. Invoke A with vk = (c0 ⋆ E0, c1 ⋆ E0, E1, · · · , Eλ).

4. Upon receiving the evaluation query x ∈ {0, 1}λ, forward the query x to the MDDH
problem oracle and receive E. Run the simulator in Theorem 7 to produce a proof
π ← Sim(E0, vkI , (c0c1) ⋆ E) where I = {1, 2}∪{i + 2|xi = 1∧ i ∈ [λ]}. Return (x, π)
to A.
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5. Upon receiving the challenge x̃, forward the challenge x̃ to the MDDH problem
challenger and obtain vb. Forward vb to A and output whatever A returns.

When the MDDH problem challenger uses the random coin b ∈ {0, 1} in the experiment
(Definition 20 Item 4). B creates Game1 using the same random coin b. Therefore,

Adv1(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|

=
∣∣∣Pr[B2(ExpMDDH(λ, 1))→ 1]− Pr[B2(ExpMDDH(λ, 0))→ 1]

∣∣∣
= AdvMDDH(B).

Hence,
AdvPR

ΠVRF
(A) ≤ qPRNG

2λ
+ qFS

22λ
+ AdvMDDH(B).

5 TSUBAKI - Twist-Square-Based Tweak for Isogenies
This section presents the variant using the CSIDH-based action with quadratic twists.
Let (G, E , ⋆, E0) denote the group action where E0 ∈ E denotes the element that has the
property that Et

0 = E0. Also, for any (g, E) ∈ G× E , we have (g ⋆ E)t = g−1 ⋆ Et.
The high-level idea of the optimization is to consider “somewhat” generalized version

of Naor-Reingold PRF of form: c0c1sx1
1 · · · sxκ

κ ⋆ h0 where xi ∈ {±1, 0} for every i. Hence,
by taking a twist on the public keys (c0 ⋆ E0, c1 ⋆ E0, s1 ⋆ E0, · · · , sκ ⋆ E0), an additional
public key is obtained, with the corresponding secret key being the inverse of the original
one.

This results in a reduction in the sizes of the secret key, public key, and proof size
without incurring additional overhead. As illustrated in Appendix A, we can show that the
underlying assumption is as hard as the square DDH problem. We believe this problem
is trustworthy as the hardness is justified in the generic model introduced in a recent
work [DHK+23]. Moreover, the computational version has been shown to be equivalent to
the standard CDH problem [LGD21].

It is important to note that the Naor-Reingold PRF in the group action setting for a
larger space of xi than {±1, 0} may not be secure due to the underlying group structure,
which contains small subgroups.

A variant of CAPYBARA is described as follows.
Construction.

The complete probability and the unique provability hold naturall by embedding ΠVRF⋆

in Fig. 4 back to ΠVRF in Fig. 3. We therefore skip the proofs here. We only show the
residual pseudorandomness of ΠVRF⋆ .
Theorem 12. The VRF construction ΠVRF⋆ in Fig. 4 has complete provability.
Theorem 13. If ΠNIZK is online-extractable, the VRF construction ΠVRF⋆ in Fig. 4 has
unique provability in the random oracle model. Concretely, for any unique provability
adversary A against ΠVRF⋆ , there exists an online-extractable adversary B against ΠNIZK
such that

AdvUP
ΠVRF⋆ (A) ≤ 2AdvOE

ΠNIZK
(B).

Theorem 14. If the twist decisional master DDH problem is hard, then the VRF con-
struction ΠVRF⋆ in Fig. 4, with a subroutine ΠNIZK = (P, V ) in Fig. 2, has (residual)
pseudorandomness. Concretely, for any residual pseudorandomness adversary A against
ΠVRF⋆ with at most qPRNG queries of O(PRNG ∥ ·) and qFS queries of O(FS ∥ ·), there exists
a tMDDH adversary B such that

AdvPR
ΠVRF⋆ (A) ≤ qPRNG

2λ
+ qFS

22κ
+ AdvtMDDH(B).
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ParGen(1λ)
1: Generate pp = (G, ⋆, E0, E)
2: return pp

KeyGen(pp)
1: (G, ⋆, E0, E)← pp
2: sk← Gκ+2

3: vk = sk ⋆ E0
4: return (vk, sk)

Expands(sk)
1: (c0, c1, s1, · · · , sκ)← sk
2: return (c0, c1, s1, · · · , sκ,−s1, · · · ,−sκ)

Expandv(vk)
1: (X0, X1, E1, · · · , Eκ)← vk
2: return (X0, X1, E1, · · · , Eκ, Et

1, · · · , Et
κ)

VRFEval(sk, x)
1: (G, ⋆, E0, E)← pp
2: v = E0
3: I ← {1, 2}
4: for i ∈ [κ] do
5: if xi = 1 then
6: I ← I ∪ {i + 2}
7: if xi = −1 then
8: I ← I ∪ {i + κ + 2}
9: sk′, vk′ ← Expands(sk), Expandv(vk)

10: for s ∈ sk′
I do

11: v ← s ⋆ v
12: π ← (P (st = (E0, vk′

I , v), wt = sk′
I))

13: return (v, π)

VRFVer(vk, v, x, π)
1: (G, ⋆, E0, E)← pp
2: for i ∈ [κ] do
3: if xi = 1 then
4: I ← I ∪ {i + 2}
5: if xi = −1 then
6: I ← I ∪ {i + κ + 2}
7: vk′ ← Expandv(vk)
8: return V (st = (E0, vk′

I , v), π)

Figure 4: Our verifiable random function scheme ΠVRF⋆ based on the GA-sDDH problem
where Πfac

NIZK = (P, V ) is an NIZK for the relation Rfac described in Section 3.2. The input
x is ternary of length κ = ⌈λ/ log2(3)⌉.

Proof. We show by using a hybrid argument that such an adversary A can be transformed
into a tMDDH adversary B2. Let Game0 be the original residual pseudorandomness exper-
iment and Game1 be the modified experiment. For i ∈ {0, 1}, we denote the advantage of
A in Gamei by Advi(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|, where
b ∈ {0, 1} represents the random coin chosen by the challenger (Definition 10 Item 7).
Since Game0 be the original experiment, we know Adv0(A) = AdvPR

ΠVRF
(A) by definition.

We introduce Game1, which is the same as Game0 except for the way to respond to
an evaluation query. Rather than generated via Prove from the subroutine ΠNIZK, the
proof is generated using the simulator Sim for ΠNIZK in Theorem 7. Here, we have the
parameter N ≥ 2 in Theorem 7 since the prover uses at least two elements (sk{1,2} ⊆ skI)
to generate a proof. By Theorem 7, since the simulator Sim is statistically indistinguish-
able from a real prover, the change in Game1 results in a negligible loss. Concretely,
|Adv0(A)− Adv1(A)| ≤ qPRNG

2λ + qFS
22κ .

We now transform an adversary in Game1 into a tMDDH problem adversary B. The re-
duction B starts the tMDDH problem with parameter n = κ ∈ N, receives (E, (E1, · · · , Eκ)),
and proceeds as follows.

1. Firstly, B simulates the oracle of O(FS ∥ ·), O(CRH ∥ ·) and O(PRNG ∥ ·) by keeping
lists LFS, LCRH, and LPRNG respectively using the straight-line and on-the-fly method.
B also keeps a list L to simulate the oracle queries. Take O(FS ∥ ·) for instance; upon
receiving an oracle query as O(FS ∥ x), the B simulates the oracle as follows.
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(a) Check whether there exists a pair (x, y) ∈ LFS for some y. If so, return y.
(b) Otherwise draw y ← {0, 1}κ uniformly at random. Add y to the list (x, y) and

return y.

2. Generates c0, c1 ← G.

3. Invoke A with vk = (c0 ⋆ E0, E, E1, · · · , Eκ).

4. Upon receiving the evaluation query x ∈ {0,±1}κ, forward the query x to the tMDDH
problem oracle and receive E. Write vk′ = (c0 ⋆ E0, c0 ⋆ E, E1, · · · , Eκ, Et

1, · · · , Et
κ)

and I = {1, 2} ∪ {i + 2|xi = 1 ∧ i ∈ [κ]} ∪ {i + 2 + N |xi = −1 ∧ i ∈ [κ]}. Run the
simulator in Theorem 7 to produce a proof π ← Sim(E0, vk′

I , c0 ⋆ E). Return (x, π)
to A.

5. Upon receiving the challenge x̃, forward the challenge x̃ to the tMDDH problem
challenger and obtain vb. Forward vb to A and output whatever A returns.

When the tMDDH problem challenger uses the random coin b ∈ {0, 1} in the experiment
(Definition 20 Item 4). B creates Game1 using the same random coin b. Therefore,

Adv1(A) = |Pr[A(Gamei(b = 1))→ 1]− Pr[A(Gamei(b = 0))→ 1]|

=
∣∣∣Pr[B2(ExptMDDH(κ, 1))→ 1]− Pr[B2(ExptMDDH(κ, 0))→ 1]

∣∣∣
= AdvtMDDH(B).

Hence,
AdvPR

ΠVRF∗ (A) ≤ qPRNG
2λ

+ qFS
22κ

+ AdvtMDDH(B).

6 Optimization and Performance
We ameliorate the proof size by utilizing the two techniques presented in [BKP20], briefly
summarised as follows.
Unbalanced Challenge Space. One can observe the response of a prover in the proof
system Fig. 2 for the challenge 0 is a seed, which is much shorter than that for challenge
one. By introducing the unbalanced challenge space CM,K = {ch ∈ {0, 1}M | |ch| = K},
where | · | is the ℓ1-norm and 2λ ≤ M !

K!(M−K)! . We thereby obtain a much smaller proof
size and the online-extractability and zero-knowledge remain the same.

Seed Trees. The seed tree technique allows the prover to produce a large amount of the
seeds using PRNG and iteratively generating binary subtrees. The leaves of the tree are
the seeds to be used. The prover can later reveal the generating nodes while not disclosing
the information of those unrevealed leaves. The method reduces the size of responses for
the challenge 0 in our case. Though the proof size regarding this technique is not fixed, we
will calculate the worst case for the proof size estimation.

Size Comparison. The performances of CAPYBARA and TSUBAKI are given in Table 1
for the input space {0, 1}128. CAPYBARA is based on the standard DDH assumption
while TSUBAKI is based on the stronger square DDH (Definition 21). We use the group
action from CSIDH-512, as specified in [BKV19], with M = 855 and K = 19 as the
unbalanced challenge space in our implementation. Our proof sizes are flexible and depend
on the input length, with lengths of approximately 79|x|/128 for CAPYBARA and 51|x|/81
for TSUBAKI. The group action from CSIDH-512 has been estimated to have 128 bits of
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classical security and over 63 bits of quantum security [CSCJR22]. As stated in [CSCJR22],
the caculation does not take the cost of group action evaluatings into account and is like to
understimate security. As explained in Section 2.4, we are not able to provide the numbers
for a stronger security level.

We also compare our VRFs to other existing post-quantum VRFs, including LB-
VRF [EKS+21], SL-VRF [BDE+22], LaV [ESLR23], and iVRF [EEK+23], all aiming
to meet the NIST II security level. LB-VRF, and iVRF have limited residual pseudor-
andomness, while SL-VRF, LaV, and our VRFs are full VRFs. iVRF, tailored to their
applications, also relaxes the unique provability by imposing one more restriction on the
adversary (see CFU of [EEK+23] on P7). iVRF’s evaluation size is viewed as zero since
one can recover the evaluation from the proof (see Table I of [EEK+23]). The security of
SL-VRF, and iVRF is based on XMSS, LowMC, and SHA-256, respectively, and LB-VRF
and LaV rely on a hybrid lattice assumption MSIS/MLWE and MSIS/MLWR respectively.
We add the new isogeny-based VRF by Leroux [Ler23] to the table, as introduced in
Remark 1.

Running Time Estimation. We note that the running time of the schemes is quite
slow. The running time is primarily dominated by the number of group actions. We
take the same estimation as [BKV19] in order to evaluate the overall cost. Specifically,
CAPYBARA requires 1 group action for an evaluation and approximately 109500 group
actions for proof generation. As a result, the evaluation takes approximately 40 ms, while
proof generation takes around 72 minutes. TSUBAKI takes the same evaluation time with
45 minutes for a proof geneneration. Despite the lengthy proof generation time, this may
still be practical for certain applications, such as e-lotteries, where the proof is only needed
when redeeming a reward. However, a significant drawback is that the verification time is
equally lengthy as the proof generation time. This is because the verifier recomputes every
curve, leading to a costly verification process.

Table 1: CAPYBARA and TSUBAKI (Figs. 3 and 4, resp) using the group action
setting CSIDH-512 instantiated in [BKV19]. The unbalanced challenge space CM,K where
M = 855, K = 19 is used in the proof system Fig. 2. Note that our original secret key
sizes are 2KB, 1.3KB, respectively, and one can use a 32B seed to generate the entire
secret key sk using a PRNG. Our proof sizes are ≈ 79|x|/128 and ≤ 51|x|/81 respectively
and vary with the density |x|/κ of the input x where | · | is the ℓ1-norm. The notations
|sk|, |vk|, |v|, |π| represent the length of the secret key, verification key, output, and proof,
respectively. The security of SL-VRF, and iVRF is based on LowMC and SHA-256,
respectively, and LB-VRF and LaV rely on a hybrid lattice assumption MSIS/MLWE and
MSIS/MLWR respectively.

|sk| |vk| |v| |π| Assumption Relaxation Security Level
CAPYBARA [Fig. 3] 32B 8.3KB 64B 39 KB GA-DDH ≥63

TSUBAKI [Fig. 4] 32B 5.3KB 64B 34 KB GA-sDDH ≥63
LB-VRF I [EKS+21] 3.3KB 84B 4.9KB MSIS/MLWE 1-Time NIST II

LB-VRF III [EKS+21] 3.4KB 84B 7.3KB MSIS/MLWE 5-Time NIST II
SL-VRF [BDE+22] 24B 48B 32B 40 KB LowMC NIST II

LaV [ESLR23] 6.4KB 3.4KB 124B 12 KB MSIS/MLWR NIST II
iVRF [EEK+23] 32B 0B 608 B SHA-256 218/ CFU NIST II

DeuringVRF2,1 [Ler23] 944B 32B 224 B OMIP2dim NIST I
DeuringVRF4,2 [Ler23] 192B 32B 112 B OMIP2dim NIST I
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A Hardness of Twisted Master Decisional Problem
We start from a quick recap of the assumptions in Section 2.6.

Definition 24 (Decisional Square CSIDH (GA-sDDH) Problem). Let (G, E , ⋆, E0) be a
group action. The decisional square CSIDH problem is that the adversary A is given
Tb = (g1 ⋆ E0, hb ⋆ E0) where h0 = g2

1 , h1 = g2 and (g1, g2, b) ← G2 × {0, 1} and return
b ∈ {0, 1}.

Definition 25 (Decisional Reciprocal CSIDH (rDDH) Problem). Let (G, E , ⋆, E0) be a
group action. The decisional reciprocal CSIDH problem is that the adversary A is given
Tb = (g1 ⋆ E0, g2 ⋆ E0, hb ⋆ E0, h′

b ⋆ E0) where h0 = g1g2, h1 = g3, h′
0 = g1g−1

2 , h′
1 = g4 and

(g1, g2, g3, g4, b)← G4 × {0, 1}, and return b′ ∈ {0, 1}.

Definition 26 (Multi-challenge Decisional Reciprocal CSIDH (mcrDDH) Problem). Let
(G, E , ⋆, E0) be a group action and b ∈ {0, 1}. The multi-challenge decisional reciprocal
Diffie-Hellman experiment ExpmcrDDH(b) on input b proceeds as follows. The adversary A
is given (g1 ⋆ E0) where g1 ← G together with access to OmcrDDH

b defined as follows:

1. OmcrDDH
0 : (g2 ⋆ E0, (g1g2) ⋆ E0, (g1g−1

2 ) ⋆ E0) where g2 ← G,

2. OmcrDDH
1 : (g2 ⋆ E0, g3 ⋆ E0, g4 ⋆ E0) where g2, g3, g4 ← G,

and outputs b′ ∈ {0, 1}.

We denote the advantage of a mcrDDH problem adversary A problem by

AdvmcrDDH(A) =
∣∣∣Pr[A(ExpmcrDDH(b = 0))→ 1]− Pr[A(ExpmcrDDH(b = 1))→ 1]

∣∣∣ ,
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where the probability is taken over the randomness used by A and the randomness used in
the experiment.
The group action (G, E , ⋆, E0) is implicitly parameterized in the experiment. We say the
mcrDDH problem is hard, if for any PPT adversary A, there exists a negligible function
negl such that AdvmcrDDH(A) ≤ negl(λ). One can use a standard hybrid argument to give
a reduction from the rDDH problem to the mcrDDH problem. We skip the proof here.

Definition 27 (Twisted Master Decisional CSIDH (tMDDH) Problem). Let (G, E , ⋆, E0)
be a group action, n ∈ N, and b ∈ {0, 1}. The twisted master DDH problem experiment
ExptMDDH(n, b) on input (n, b) proceeds as follows.

1. The challenger C computes E = g ⋆ E0 where g ← G.

2. C generates a tuple (g1 ⋆ E, · · · , gn ⋆ E) where g1, · · · , gn ← G, and sends the tuple
to the adversary A.

3. A is given access to a Diffie-Hellman (DH) oracle on input (x1, · · · , xn) ∈ {0,±1}n

returning
∏n

i gxi
i ⋆ E.

4. A sends a string v = (v1, · · · , vn) ∈ {0,±1}n to
∏n

i gvi
i ⋆ E to the challenge oracle C.

5. C ignores if v has been queried before or is of Hamming weight less than 2. Otherwise,
C, depending on b, computes X0 =

∏n
i gvi

i ⋆ E or X1 = r ⋆ E for some r ← G, and
send Xb to A. This process will only output for one time.

6. A outputs b′ ∈ {0, 1}.

We denote the advantage of the decisional problem adversary A by

AdvtMDDH(A) =
∣∣∣Pr[A(ExptMDDH(n, b = 0))→ 1]− Pr[A(ExptMDDH(n, b = 1))→ 1]

∣∣∣ ,
where the probability is taken over the randomness used by A and the randomness used in
the experiment. The group action (G, E , ⋆, E0) is implicitly parameterized in the exper-
iment. We say the tMDDH problem is hard, if for any PPT adversary A, there exists a
negligible function negl such that AdvtMDDH(A) ≤ negl(λ).

Theorem 15. The tMDDH problem is not easier than the mcrDDH problem. Concretely,
let A be an adversary against the mcrDDH problem with the parameter (G, E , ⋆, E0) and
n ∈ N. If at most qDH = poly(λ) queries are made in the mcrDDH experiment, then there
exists tMDDH problem adversaries B2, · · · Bn such that

AdvtMDDH(A) ≤
n∑

i=2
AdvmcrDDH(Bi).

Proof. We prove the theorem via a hybrid argument by introducing two series of games
Game1, · · · , Gamen by modifying the responses of the DH oracle and the challenge oracle
in the tMDDH experiment gradually. Among the games, Game1 be the original tMDDH
experiment, We will modify the response of the challenge oracle and the DH oracle together,
which will be explained later. For i ∈ [n] where b ∈ {0, 1}, let A(Gamei(b)) represent A
running the Gamei, the modified tMDDH experiment with the random coin b used in the
experiment, and A will return 0 or 1. Therefore, by definition,

AdvtMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|. (4)
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Looking ahead, Gamen is the modified tMDDH experiment where both the DH oracle
and the challenger reply with random elements in E . Therefore, since b is information
theoretically hidden from A,

|Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamen(b = 0))→ 1]| = 0. (5)

Game1 : the original tMDDH experiment starting with a tuple (g1 ⋆ E, · · · , gn ⋆ E)
where g1, · · · , gn ← G and the oracle response as specified.

Game2 to Gamen: for j ∈ {2, · · · , n}, Gamej is the same as Gamej−1 except that the
response of the DH oracle and the challenge oracle is modified as follows. The modification
starts with a list L which is initially

{(0, E), (e1, g1 ⋆ E), · · · , (ej , gj ⋆ E)} ⊆ {0,±1}j × E .

On the query x = (x1, · · · , xn) ∈ {0,±1}n, if ((x1, · · · , xj), X) ∈ L for some X ∈ E , the
oracle returns (

∏n
i=j+1 gxi

i ) ⋆ X; otherwise, it draws g′ ← G, computes X = g′ ⋆ E, adds
((x1, · · · , xj), X) to the list L, and returns (

∏n
i=j+1 gxi

i ) ⋆ X to A. The reply for the
challenge query is modified in the same way if the random coin b = 0.

Claim that Gamej−1 ≈c Gamej for A for any 2 ≤ j ≤ n by assuming the mcrDDH
problem. Concretely, a reduction Bj to the mcrDDH problem proceeds as follows

1. Obtain T = (g′ ⋆ E0, {(Xi, X ′
i, X ′′

i )}i∈[qDH+j−1]) from the mcrDDH oracle.

2. Overwrite the notations of Xi, X ′
i, X ′′

i by
(
g′ ⋆ E, {Xi, X ′

i, X ′′
i }i∈[qDH+j−1]

)
← g ⋆ T

where g ← G.

3. Then, Bj initializes with a list

L =
{

(e1, X1), · · · , (ej−1, Xj−1),(e1 + ej , X ′
1), · · · , (ej−1 + ej , X ′

j−1), (0, E),
(e1 − ej , X ′′

1 ), · · · , (ej−1 − ej , X ′′
j−1), (ej , g′ ⋆ E)

}
where ⊂ {0,±1}j ×E , ei is the i-th elementary vector in {0,±1}j , and set a counter

ct = j to record the number of the pairs (Xi, X ′
i, X ′′

i ) taken into the list L.

4. InvokeA on input (E, X1, · · · , Xj−1, g′⋆E0, gj+1⋆E0, · · · , gn⋆E0) where gj+1, · · · , gn ←
G.

5. Upon receiving the oracle query (x1, · · · , xn) ∈ {0,±1}n, check whether ((x1, · · · , xj), X) ∈
L for some X ∈ E . If so, return

∏n
i=j+1 gxi

i ⋆ X. Otherwise, update

L← {((x1, · · · , xj−1, 0), Xct), ((x1, · · · , xj−1, 1), X ′
ct), ((x1, · · · , xj−1,−1), X ′′

ct)}∪L,

and set ct← ct + 1, and rerun this step again.

6. Output whatever A returns.

Note that in Step 1. if Bj is in ExpmcrDDH(0) (Definition 26 Item 1) then Bj generates
Gamej−1 because g′ ⋆ Xi = X ′

i and g′−1 ⋆ Xi = X ′′
i . In contrast, if it is in ExpmcrDDH(1)

(Definition 26 Item 2), then Bj generates Gamej . It follows that for b ∈ {0, 1},

AdvmcrDDH(Bj) =|Pr[Bj(ExpmcrDDH(0))→ 1]− Pr[Bj(ExpmcrDDH(1))→ 1]|
=|Pr[A(Gamej−1(b))→ 1]− Pr[A(Gamej(b))→ 1]|. (6)
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Therefore, we have

AdvtMDDH(A) = |Pr[A(Game1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]| (By Eq. (4))

≤
n∑

j=2
(|Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Gamej(b = 0))→ 1]|

+ |Pr[A(Gamej−1(b = 1))→ 1]− Pr[A(Game1(b = 0))→ 1]|)
+ |Pr[A(Gamen(b = 1))→ 1]− Pr[A(Gamej−1(b = 1))→ 1]|

(Union bounds.)

=
n−1∑
j=2

AdvmcrDDH(Bj). (By Eqs. (5) and (6))

The result follows.

B Proof System over the REGA Model
In Section 3, we present a proof system for the relation

Rfac =
{

st = (E0, {Ei}i∈[N ], E), wt = {si}i∈[N ]

∣∣∣∣∣Ei = si ⋆ E0 ∀ i ∈ [N ]
E = (ΠN

i=1si) ⋆R E0

}

over the REGA model with (G, E , E0, ⋆R). As shown in Fig. 3, this proof system is the
core of the VRF schemes to generate a proof for an evaluation. This section outlines an
extension of the construction to the REGA model using the Fiat-Shamir abort technique
as presented in [DG19].

We give a brief description of an REGA (G, E , E0, ⋆R) here. We refer to [ADMP20]
for a more detailed definition of an REGA. In short, over the REGA, any group element
will be represented as a vector g = (g1, · · · , gT ) ∈ ZT where each gi ∈ [−B, B] for a small
natural number B such that |G| ≈ (2B + 1)T . The action g ⋆R E is defined to be Πggi

i ⋆ E
for some known and public group elements gi where each action of gi ∈ G by the action ⋆
is computationally feasible.

Our proof system in Fig. 1 for Rfac consists of N vectorization relations and one
factorization relation. Each secret key is written as si = (si1, · · · , siT ) for i ∈ [N ]. We can
extend this approach to the REGA model and obtain the base sigma protocl as in Fig. 5.

This base sigma protocol for the REGA model has 2-special soundness similar to the
one shown in Theorem 3. We therefore skip the proof.

Theorem 16. The sigma protocol Πbase
Σ described in Fig. 5 has correctness and 2-special

soundness for the relation Rfac.

Next, we prove non-abort honest-verifier zero-knowledge for the scheme. In short,
the notion is essentially the same as Definition 4 yet the distinguisher only takes the
non-abort transcripts as input from the real prover. We refer to [BKP20] for a more
concrete definition.

Theorem 17. The sigma protocol Πbase
Σ described in Fig. 5 has honest-verifier zero-

knowledge for the non-abort session.

Proof. If ch = 0, then the simulator follows the same procedure as P ′
1 and generates

(com, 0, resp) where the witness is not required in this process. For the case ch = 1, the
simulator proceeds as follows.

(1.) Generate (r′
1, · · · , r′

N ) $← ([−T ′B, T ′B]T )N and let resp← {r′
1, · · · , r′

N}.
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(2.) Compute E′
i = r′

i ⋆R E0 for every i ∈ [N ].

(3.) Compute E′ = (ΣN
i=1r′

i) ⋆R E0.

(4.) Compute com← O(CRH ∥ E′
1, · · · , E′

N , E′).

(5.) Return (com, ch, resp).

The simulated transcripts are identical to ones produced by the prover using the witness
executing the protocol Πbase

Σ . For the case ch = 0, the procedure is the same clearly since
the witness is not involved.

For the case ch = 1, one can observe that the simulator returns a valid transcript and
each element in the response follows the uniform distribution over ([−(T ′ − 1)B, (T ′ −
1)B]T )N . It suffices to show the non-abort transcript outputted by the prover follows
the same distribution. Equivalently, let s ∈ [−B, B] be fixed and claim for any s + r
follows the uniform distribution over [−(T ′ − 1)B, (T ′ − 1)B] conditioned on s + r ∈
[−(T ′ − 1)B, (T ′ − 1)B] and r follows the uniform distribution over [−T ′B, T ′B]. Clearly,
for each r′ ∈ [−(T ′ − 1)B, (T ′ − 1)B], there exists a unique element r in [−T ′B, T ′B] such
that r′ = s + r. This proves the result. Hence, the simulator simulates the non-abort
transcripts perfectly.

Hence, the abort process ensures that the response in a non-abort session follow a
uniform distribution over [−(T ′ − 1)B, (T ′ − 1)B]. This uniformity demonstrates that
the sigma protocol is (non-abort) honest-verifier zero-knowledge. The probability of an
abort is at most 1

T ′ for each session, regardless of the secret key. By applying λ parallel
repetitions and utilizing the Fiat-Shamir transform, the resulting proof system achieves
an abort rate of approximately (1 − 1

T ′ )λNT . To finalize our construction, we need to
determine the parameter T ′. In our application, we have N ≤ λ, allowing us to choose
T ′ = Tλ2. This choice results in a constant abort rate of approximately 1/2.7.
Remark 4. It is important to note that the range of the coefficients is extended by a factor
of T ′, which in turn slows down the evaluation of the corresponding action by the same
factor. As a result, although the proof system runs in polynomial time in λ, it is still slow.
Significant efficiency improvements can be achieved through the use of the lazy sampling
technique described in [DPV19]. Yet, our primary objective in this work is to demonstrate
the feasibility of a computationally efficient proof system over the EGA model, particularly
in its application to VRFs. We leave further optimizations and detailed analysis for future
work.
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round 1: P ′O
1 (st = (E0, {Ei}i∈[N ], E), wt = {si}i∈[N ])

1: (r1, · · · , rN ) $← ([−T ′B, T ′B]T )N

2: E′ ← E
3: for i from 1 to N do
4: E′

i ← ri ⋆R Ei

5: E′ ← ri ⋆R E′

6: com← O(CRH ∥ E′
1, · · · , E′

N , E′) ▷ Produce com ∈ {0, 1}2λ

7: Prover sends com to Verifier.

round 2: V ′
1(com)

1: ch $← {0, 1}
2: Verifier sends ch to Prover.

round 3: P ′
2(st, com, ch)

1: if ch = 1 then
2: for i from 1 to N do
3: r′

i ← si + ri

4: resp← {r′
i}i∈[N ]

5: else
6: resp← {ri}i∈[N ]

7: Prover sends resp to Verifier

Verification: V ′O
2 (com, ch, resp)

1: if ch = 1 then
2: ({r′

i}i∈[N ])← resp
3: Ẽ′ ← E0
4: for i from 1 to N do
5: Ẽ′

i ← r′
i ⋆R E0

6: Ẽ′ ← r′
i ⋆R Ẽ′

7: c̃om← O(CRH ∥ Ẽ′
1, · · · , Ẽ′

N , Ẽ′)
8: return ⊤ if c̃om = com; otherwise, return
⊥.

9: else
10: Repeat round 1 with seed0 ←

(r1, · · · , rN ).
11: return ⊤ if results in com; otherwise, re-

turn ⊥.

Figure 5: The construction of the base sigma protocol Πbase
Σ = (P ′ = (P ′

1, P ′
2), V ′ = (V ′

1 , V ′
2))

for the relation Rfac over the REGA model where O(CRH∥·) is a collision-resistant hash
function.
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