
Pulsar: Secure Steganography for Diffusion Models

Tushar M. Jois
City College of New York
tjois@ccny.cuny.edu

Gabrielle Beck
Johns Hopkins University
becgabri@cs.jhu.edu

Gabriel Kaptchuk
University of Maryland, College Park

kaptchuk@umd.edu

Abstract

Widespread efforts to subvert access to strong cryptography has renewed interest in steganography,
the practice of embedding sensitive messages in mundane cover messages. Recent efforts at provably
secure steganography have focused on text-based generative models and cannot support other types of
models, such as diffusion models, which are used for high-quality image synthesis. In this work, we study
securely embedding steganographic messages into the output of image diffusion models. We identify that
the use of variance noise during image generation provides a suitable steganographic channel. We develop
our construction, Pulsar, by building optimizations to make this channel practical for communication.
Our implementation of Pulsar is capable of embedding ≈ 320–613 bytes (on average) into a single image
without altering the distribution of the generated image, all in < 3 seconds of online time on a laptop.
In addition, we discuss how the results of Pulsar can inform future research into diffusion models. Pulsar
shows that diffusion models are a promising medium for steganography and censorship resistance.

1 Introduction

Years of sustained effort by the security and cryptography communities has led to widespread deployment
of strong, secure communication technologies, including end-to-end encrypted messaging [PM; Wha17] and
TLS [Res18]. While these technologies prevent high-resource attackers from viewing or manipulating the
contents of communications, they do nothing to hide that the communication itself is occurring. In areas
where encrypted communication technologies are blocked or cause for suspicion, leaking this metadata can
have deadly consequences. As governments’ suspicion of encrypted communication continues to grow around
the world (e.g., KOSA in the USA [Unib], Online Safety Act in the UK [Unia], CSA regulation in the
EU [Eur], TOLA in Australia [Aus], etc.), it is important to proactively develop new, generalizable, flexible
techniques that can complement existing secure communication technologies and provide security and privacy
to individuals at increased risk; if this development is not done proactively, the technology will be too
immature for deployment when it is needed.

Steganography [Sim83] allows a sender to embed a sensitive message into a mundane context such that
only the intended receiver is able to detect and extract the message, making it the ideal tool for communicat-
ing in areas where encryption cannot be safely used. Steganography can transform a conversation that might
be seen as “subversive” into one that would not arouse suspicion—even when the content of the conversa-
tion itself is directly monitored by authorities. Importantly, this prevents censors from selectively blocking
content (or selectively blocking encrypted communications). Steganography can also enable digital “dead
drop” deployments, in which encoded messages are left on the public internet and the intended recipient can
recover the message without leaving evidence of direct communication.

Although the value of efficient, secure steganography tools has been evident for decades, concrete con-
structions have long been lacking. Formal techniques, stemming from the cryptographic literature, provide

1

provable hiding guarantees but cannot be concretely deployed, either because they are inefficient or make
unrealistic assumptions. Heuristic steganographic techniques, on the other hand, have been deployed in
practice, but are often vulnerable to simple statistical attacks. For example, LSB steganography [Aur96]
(in which bits of the sensitive message are embedded into the least significant bits of pixels’ values) is often
considered a viable choice, but the manipulation of low order bits is detectable [FPK07; FGD01; SCC07].

Steganography for generative models. A new line of research attempts to marry the formal techniques
with the heuristic approaches by steganographically encoding messages into the output of generative, machine
learning models. This provides a systematic divide between the provable guarantees and the heuristic
assumptions such that they can be analyzed separately. These steganographic schemes can ensure that an
adversary cannot distinguish between typical model output and model output carrying a sensitive message,
but make no formal claims about an adversary attempting to detect if a message is generated with the help
of a model (as opposed to created manually by the sender). While this approach falls short of providing end-
to-end security, this is the best one can hope for when embedding into contexts where explicit descriptions
of the statistical nature of the communication channel cannot be described (e.g., natural human language,
art, or photographs). In these cases, encoded messages can only hope to achieve indistinguishability with
the best known approximation we have of the communication channel; machine learning models are the best
approximation of natural human language, art, or photographs currently available.

Existing steganographic proposals [KJG+21; DCW+23] are designed to work with popular model struc-
tures, like the transformer networks that form large language models [VSP+17]. These models iteratively
generate output by producing an explicit probability distribution of different tokens (e.g., words, pixels) that
could follow the given prompt. During typical operation, a single token is sampled from this distribution as
output and appended to the prompt. The updated prompt is then fed back into the model, continuing until
the output is the desired length. The randomness used to sample from the distribution is pulled from an
arbitrary high entropy source.

When steganographically embedding a sensitive message into the output, the sampling is done as a
function of the sensitive message such that the receiver can infer the bits of the sensitive message. For
example, the sender might encode the leading bits of the message into a token using an arithmetic encoding
scheme [KJG+21] or distribution copies [DCW+23]. To ensure that this steganographic encoding process
does not change the statistical profile of the model output, the sensitive message is generally encrypted using
a pseudorandom cipher,1 making it, in effect, a high entropy source.

Steganography for diffusion models. Although text is a natural medium to consider for steganographic
communication, embedding into text produces stegotext (the steganography equivalent of ciphertext) that
is significantly longer than the initial message. This is because natural language text is actually quite low
entropy and steganographic encoding rates are bound by the entropy in the communication channel. As
such, sending even relatively short sensitive messages steganographically might require sending paragraphs
or pages of model-generated text. While transmitting this much text might occasionally be appropriate, in
many cases this will break steganography’s illusion. This limitation makes existing, text-based approaches
insufficient, motivating the need for encoding techniques that work with other media.

After text, images are the next media into which we might want to embed steganographic messages.
Importantly, images do not share the same limitations as text: images have significantly higher entropy and
it is commonplace to exchange or post large image files. These properties mean that it should (in principle) be
possible to steganographically send large amounts of information using images2 without arousing suspicion.
Building on this intuition, Ding, Chen, Wang, Zhao, Zhang, and Yu [DCW+23] generate steganographic
images using Image GPT, a neural network designed to produce images.

While transformer networks remain the most effective generative models in the natural language process-
ing domain, a new model architecture, diffusion models [SWM+15; SME20; HJA20; DN21; RBL+22] have

1Some proposals [GGA+05; SS07; YHC+09; CC10; CC14; FJA17; VNB+17; YJH+18; Xia18; YGC+19; HH19; DC19;
ZDR19] fail to properly encrypt the message before encoding, leading to an insecure construction.

2Note that we make a distinction between existing images that are used to hide content (e.g., by using least significant
bits [Aur96; FGD01; FPK07; SCC07]) and machine learning-generated images that hide content during generation. We focus
on the latter in this work, as the former cannot provide provable guarantees.

2

proven to produce higher quality output for images. Diffusion models have quickly captured the public’s
imagination and have become the de facto option for machine learning image generation. Unlike neural
networks, diffusion models generate all the pixels in the output image at the same time. This significant
departure from the typical transformer architecture means that existing steganographic approaches cannot
be adapted for diffusion models. Some efforts have attempted to build diffusion-specific techniques [YZX+24;
KSC+23; LCG23; PHW+23], but these approaches are non-black box in the underlying models. While these
approaches yield impressive results, they risk making assumptions about low-level model details that may
not hold as the rapidly improving field of diffusion models continues to evolve. As such, there is a need for
more robust, generalizable techniques.

In this work, we study steganographic embedding mechanisms that can work for generic conceptions of
diffusion models. Our techniques allow for the production of steganographic communication tools that can
send large amounts of data without arousing suspicion. We find that encoding with diffusion models can be
faster than encoding with other networks, because (1) encoding using existing text-like techniques requires
querying a transformer model many times while diffusion models are one shot and (2) the flexibility of our
solution facilitates interoperability with multiple concrete diffusion models, allowing us to take advantage of
rapid improvements in diffusion model technologies. We are drawn to diffusion models both because posting
the output of diffusion models has become common practice on the Internet [Red; Civ] and because they offer
the best synthetic approximation of “natural” images shared in more traditional communication channels.

Our contributions. We study steganographic encoding schemes for images generated by diffusion models.
Our goals are that our approach should be both principled and easily generalizable, such that it can be
applied to new diffusion models as they are developed. In doing so, we have several concrete contributions:

– A principled study of steganography for diffusion models. As we are studying steganography
for diffusion models, we begin our work by providing a thorough review of the various opportunities for
hiding data that diffusion models afford, framed around the motivating deployment of steganographic
dead drops. We begin by noting that cryptographically secure steganography is fundamentally about
randomness recovery. As such, we can systematically iterate through the entropy sources consumed
by a machine learning model and identify those that are most promising for hiding data.

– Pulsar, a novel steganographic encoding scheme for diffusion models. We design a novel,
symmetric key steganographic encoding scheme that encodes data into the output of diffusion models
that operate in the pixel space.3 Pulsar embeds data into images by mapping pixels in the image
to bits in the message; when sampling Gaussian noise for each pixel, the encoder uses one of two
pseudorandom functions, one for pixels mapped to a zero bit and one for pixels mapped to a one bit.
This results in a generic, but noisy, randomness recovery scheme, which can be improved using error
correcting codes. We implement Pulsar and integrate it with existing diffusion models, showing that
it can encode hundreds of bytes of plaintext information in a 256 × 256 pixel generated image. Our
implementation encodes faster than state-of-the-art neural network steganographic systems.

– Recommendations for steganography-friendly machine learning models. We note that the
empirical nature of machine learning research can lead to some model architectures incorporating
semi-arbitrary design choices, while also significantly impairing the ability to steganographically embed
messages into model output. Reflecting on our study of steganography for diffusion models, we highlight
several ways in which model architecture can be improved to better support steganographic encoding.
We hope that this can inspire designers of future model architectures to test if models can be made
steganography friendly without reducing output quality.

Deployment scenario and threat model. In this work we assume a similar deployment scenario and
threat model as recent work on symmetric key, model-based steganography [KJG+21; DCW+23]. Namely, a

3Pulsar is designed for models that operate in the pixel space, as opposed to a compressed latent space. We discuss this
difference in Section 3.1.

3

sender and receiver generate shared key material out-of-band and select a (diffusion) model to use as a covert
channel. We assume that their communications are monitored by a computationally powerful adversary (e.g.,
a state actor) who also has access to the selected diffusion model. The sender and receiver wish to disguise
the contents of their communication such that the adversary cannot determine if their exchanged messages
contain typical model output or steganographically encoded messages. As this work focuses on laying out a
feasibility result, we make the simplifying assumption that the adversary does not launch active attacks and
must distinguish based on observing encoded messages.

We do not attempt to formalize the ability of the adversary to distinguish between model output and
“normal” human communication. For full-scale deployments of steganography, deployment designers must
carefully consider how well steganographically generated messages fit in with existing communication chan-
nels (in addition to incorporating other best practices from cryptographic messaging like forward security).
While this is certainly a limitation of our work, we note that humans exchanging the outputs of generative
models has become increasingly common. For example, professional communications may be generated with
the help of text models like ChatGPT [Kor23] and social media was flooded with “AI art” [Red; Vin22;
Civ] after the release of Stable Diffusion [RBL+22] and similar models. These developments mitigate the
risks associated with encoding information in model output. We discuss our motivating deployment more
in Section 3.2.

2 Related Work

Steganography maps a message into a stegotext, a set of elements from a chosen target distribution. Typically,
this distribution is mundane such that a censor would not find it suspicious. This strengthens encryption, in
which a ciphertext can have an arbitrary distribution and does not aim to hide the fact that it is a ciphertext.

Provable steganography. Steganography was first formalized by Simmons [Sim83] and has since been the
subject of a tremendous amount of theoretical research. The theoretical literature has focused on establishing
the universal feasibility of steganography for arbitrary stegotext distributions, provided the distribution has
some amount of entropy. For example, prior work has shown that universal steganography can be realized
with information-theoretic security [AP98; ZFK+98; Mit99; Cac00], computational security, [HLv02; vH04;
BC05] and statistical security [SSM+06a; SSM07; SSM+06b]. There are also symmetric-key [Cac00; HLv02;
RR03] and public-key constructions [vH04; BC05; Le03; LK03] discussed in the literature. More recently,
techniques deeply related to steganography have been studied as a tool to achieve security when an adversary
is able to compel a receiver to decrypt ciphertexts [HPR+19; PPY22].

Practical steganography. A complementary line of research has studied the feasibility of concretely
efficient, deployable steganography. Generally, these steganographic constructions either rely on heuristic se-
curity analyses, e.g., obs4/ScrambleSuit-style protocol obfuscators [WPF13] and domain fronting [FLH+15],
or can only embed messages into very specific covertext distributions, e.g., pseudorandom bit streams. For
example, SkypeMorph [MLD+12], CensorProofer [WGN+12], and FreeWave [HRB+13] tunnel Tor [RSG98;
DMS04; Tor] traffic through Voice over IP traffic, which is usually encrypted with a pseudorandom cipher.
Other examples include Format Transforming Encryption [LDJ+14; DCR+13; DCS15; OYZ+20], which
requires implementers to explicitly describe the statistical properties of the target distribution.

Generative model steganography. Recently, there has also been work attempting to leverage genera-
tive neural networks to instantiate concretely efficient universal steganography by embedding messages into
the output of the model. By using machine learning models, these works cleanly separate their heuristic
guarantees from their formal ones. Specifically, these protocols offer no formal guarantees about how easy it
is to detect that content has been produced by a machine learning model, but can make formal arguments
about the statistical shifts induced by the steganographic embedding. This line of work started in the ma-
chine learning community with constructions that modified the output distribution of the model, thus falling
short of any notion of provable security [Bal17; HWJ+18; Har18; SAZ+18; Cha19; WYL18]. Building on
these works, Kaptchuk et al. [KJG+21] and Ding et al. [DCW+23] showed how to encode steganography
messages into neural network output without modifying the output distribution. Kaptchuk et al. [KJG+21]

4

accomplish this by repeatedly re-encrypting the message using a stream cipher, using the resulting pseudo-
random ciphertext bits to sample tokens from the neural network’s probability distribution, and leveraging
an arithmetic encoding scheme to enable a receiver to recover the message bits. Ding et al. [DCW+23] are
able to achieve a better encoding rate by using the message bits to “rotate” the neural network’s probability
distribution before sampling. As we discuss in the next section, the techniques presented in these works can-
not be adapted to work with diffusion models, as they make implicit assumptions about model architecture
that do not hold for diffusion models.

Image steganography. Most often, image steganography is associated with techniques that hide informa-
tion in the least significant bits (LSB) of an image [Aur96]. This approach is easy to deploy [L] and has
a high encoding rate. Unfortunately, image steganography schemes can be broken with relatively simple
statistical analyses (e.g., [FGD01; FPK07; SCC07]), rendering it insecure in practice.

Machine learning has also been studied for image steganography. Earlier works [Bal19; LWZ+21; JDX+21;
XMH+22] create steganography-specific models take an existing cover image, and use it to hide a secret image.
This approach intrinsically leaves detectable artifacts in the output (i.e., as compared to the cover image),
meaning that they are only a marginal improvement over an LSB-based approach. Ding, Chen, Wang, Zhao,
Zhang, and Yu adapt their work to run on Image GPT, an image generation model similar in structure to
large language models for text [DCW+23]. Image GPT does not have the same image quality as diffusion
models, however, and their implementation is too slow to be practical.

More recent works [YZX+24; KSC+23; LCG23; PHW+23] have attempted to build image steganography
from diffusion models, an approach taken by this work. These efforts use a non-black box view of the under-
lying diffusion model, using specific properties of the model under consideration to provide steganography.
Yu, Zhang, Xu, and Zhang [YZX+24], Kim, Shin, Choi, Jung, and Yoon [KSC+23], and Liu, Chen, and
Gu [LCG23] do not provide cryptographic guarantees, opting to instead provide heuristic analyses based on
purpose-built steganalysis models; Peng, Hu, Wang, Chen, Pei, and Zhang [PHW+23] provide an information
theoretic proof of security. We discuss the details and shortcomings of these approaches below.

3 Diffusion Models & Steganography

We start by systematically exploring the opportunities that diffusion models provide for steganographic
encoding, contextualizing our study around a motivating deployment.

3.1 Diffusion Models

Diffusion models [SWM+15; SME20; HJA20; DN21; RBL+22] are a novel generative model architecture
tailored to produce multimedia. Rather than generate output one token at a time, as is common in large
language models, diffusion models take in a random seed (and possibly a prompt) and produce an entire
image (or audio file, etc.) at once. The model predicts the changes that would need to be applied to this
seed to make the image closer to the desired distribution, e.g., photo-realistic images or fantasy art. We
provide a visual representation of the diffusion model generation process in Figure 1.

Diffusion models are trained on a large corpus of training examples. Each example is a pair of images
(img, img + N (0, I)), where img is an image from the desired output distribution and img + N (0, I) is
a modified version of img with Gaussian noise added. Many examples are created from each img, with
multiple values of I; the most extreme examples appear to be pure noise while others are close to the output
image. Given these examples (and the value of I), the model is trained to predict a value from N (0, I) that
can be subtracted from the example to recover img.

During image generation (Algorithm 1), the pipeline is reversed: a seed s0 is sampled from a Gaussian
distribution, and the model predicts a noise residual pred such that s0 − pred is in the target distribution.
Rather than remove pred all at once, the model takes pred as an indication of the direction in which it must
modify the s0 to get it to the desired distribution. As such, the model subtracts a function of pred rather
than pred itself. For example, the models that we work with compute s1 = s0 − ϵ · pred, for some 0 < ϵ < 1.
This process is repeated a fixed number of times to produce the values s2, . . . , sfinal; recall that the model

5

Repeat
model-scheduler

process for t
steps

Trained
Diffusion

Model

Noise residual
Model output

Initial seed
N nxn noise

Variance noise
N nxn noise

Model iteration
Current image state Output image

After t
steps,

generate
the final
output

Scheduler
Denoising
algorithm

Figure 1: An overview of inference in a diffusion model. The model-scheduler feedback loop continues for
all t steps of the scheduler, after which the final image is output.

was trained on many levels of noised images and can predict the noise that should be removed from s1, s2, . . .
even though they are “less noisy” than s0.

This iterative process is called denoising [SME20; HJA20] and is organized according to a schedule, which
we denote with a set of functions {Scheduleri}i∈[t]. Each function determines how the model prediction should
be applied to the state si−1 to produce an updated state si (e.g., applying the ϵ scaling factor). Different
concrete instantiations of diffusion models may incorporate different modifications into each step of the
schedule. One common modification is to apply additional Gaussian noise, called variance noise, to si in
each step i < t, ensuring that image generation is non-deterministic. The final image is then generated
deterministically by Schedulert.

In the above, we have described the diffusion process as though the seed s0 and intermediary states
s1, s2, . . . are all elements in the image space (i.e., if the model is trained to generate 256× 256 color images,
then si is also a 256× 256 color image). In practice, the space of si can be different than the image space;
some diffusion models (e.g. Stable Diffusion [RBL+22]) operate in a latent space, a compressed space that
is more succinctly able to represent and capture the complexity of images. When operating in the latent
space, the model adds a final mapping step that maps sfinal into a final image using a variational autoencoder
(VAE) [KW13].

6

Algorithm 1: Typical Diffusion Model Operation
Output: Generated Image img

Set s0
$← Nn×n

for 1 ≤ i < t do

ri
$← Nn×n

predi ← Model(si−1)
si ← Scheduleri(si−1, predi; ri)

// Deterministic Final Schedule

predt ← Model(st−1)
img← Schedulerfinal(st−1, predt)
Output img

3.2 A Motivating Deployment: Dead Drops

A motivating application of steganographic images is the digital dead drop, a digital re-imagining of a physical
practice. Physical dead drops are secret locations where a sender and a receiver can pass documents without
having to interact face-to-face. This process is asynchronous by design: a whistle-blower passing information
to a journalist, for example, by hiding a document cache in a public park. Analogously, a digital dead
drop allows these parties to pass information over the Internet instead. Implementations of digital dead
drops exist [Swa+13], but are typically based on a heuristically secure system like Tor [Tor]. If we build a
steganographic dead drop instead, a sender and receiver can provably guarantee that a censor will not detect
their communication based on content (although subtle choice impacting the metadata associated with the
dead drop deployment still remain). Much like in the physical case, a steganographic dead drop can re-use
a public platform for hidden communication to essentially “hide in plain sight”.

In addition to two-way communication, the steganographic dead drop can also be used by a single
individual for the import and export of sensitive data. Consider an authoritarian regime that decrypts
devices at border crossings to identify threats to its power [ZJG22]. A journalist can encode sensitive source
data to themselves and upload it to a public, innocuous part of the Internet, and decode it after crossing
the border. After completing their assignment, they can encode and upload their article while still in the
authoritarian country, and recover it once they return home. The journalist would have no trace of the
content on their devices at the border; all they would to remember the drop location and the secret key,
which can be memorized by using a seed phrase.

Design. A steganographic dead drop scheme is relatively simple. Prior to the protocol, the sender and
receiver share any necessary key material. The sender and receiver also agree upon a drop location (e.g., a
website or forum), and a machine learning model that generates outputs suitable to the location. When the
sender wishes to send some data to the receiver, the sender steganographically encodes it, and uploads the
result to the drop location. The receiver periodically checks the drop location, and when they detect new
content, they download it from the location. The receiver then decodes the content to recover the original
data. The censor sees only some machine learning content on a public forum, and cannot distinguish a
stegotext image from any other posts on the forum. The process remains asynchronous – the receiver waits
for a “drop”.

Implications. While the design is simple, a steganographic dead drop dictates interesting requirements of
the underlying scheme:

1. The drop location impacts the choice of model. We must encode information into the same distribution
expected by our drop location. Schemes like Discop [DCW+23] or Meteor [KJG+21] generate text, so
a dead drop would be possible anywhere text is expected on the Internet. But, these schemes may
need to generate hundreds of words to encode even a 100 B message, and large blocks of text are not
very common on popular social media platforms – drawing censor scrutiny. On the other hand, public
image communities like /r/aiArt/ [Red] or Civitai [Civ] have hundreds of thousands of users, allowing
steganographic drops to hide among regular images. But we must generate images for these communities.

7

2. We cannot assume any control over the drop location. Ideal drop locations are social media sites and
public forums, which means that we cannot expect changes to the overall platform to better support
steganography—the censor may deem any platform changes suspicious. So, the images generated by the
scheme should be robust to the format conversion or compression to meet the platform’s requirements:
typically, JPEG or PNG.

3. We must minimize any requirements on the user. The target audience for such a deployment are non-
experts, and we cannot assume they have specialized hardware. So, any solution must be efficient on
consumer hardware, and not require re-training of a machine learning model. We should also prefer the
latest model innovations to speed up image generation.

3.3 Integrating Steganography

Given the structure of diffusion models, we can now turn to the task of studying the steganographic oppor-
tunities that it affords.

Why existing techniques fall short. A natural approach to steganography for diffusion models would
be to extract the intuition behind steganographic approaches designed for other machine learning model
architectures and adapt it for this new architecture. For example, Meteor [KJG+21] and Discop [DCW+23]
are steganographic approaches for transformer-like architectures, which are the leading models for text gen-
eration. Both follow the same template: given some initial prompt (representing the context in which the
encoded message will be sent) the sender uses the machine learning model to produce an explicit probability
distribution over the token (e.g., a word) to be appended to the prompt. During typical generation, a model
would select a token from this probability distribution at random. When encoding a message steganograph-
ically, both constructions instead sample the token as a function of the message.4 Importantly, the receiver
can use knowledge of the probability distribution and the selected token to efficiently recover a few bits of
the message (in both cases, the receiver can recover a variable number of bits). The sender repeats this
process, appending samples to the prompt until the entire message is encoded.

Critical to the approaches of Meteor and Discop is the assumption that the receiver gets access to the
results of many (conditionally linked) sampling events. Although it is theoretically possible for a token to
encode a large number of bits, the chances of this happening become vanishingly small as the number of
bits increases. The throughput of the steganographic encoding scheme is tightly linked to the entropy in
the channel: the expected number of bits to encode cannot exceed the instantaneous entropy in the model
output distribution. For example, if a message is 128 bits long, it could only be encoded into a single token if
the chances of choosing that token were 2−128 (assuming the sender and receiver share no prior information
about the message distribution).

The structure required by Meteor and Discop is not present in diffusion models. Specifically, diffusion
models do not produce explicit probability distributions from which the image is sampled. Moreover, the
entire output that is accessible to the receiver is produced in a single shot, making subdivision (e.g., encoding
into each pixel independently) impossible. Even adapting more classical steganographic schemes to diffusion
models seems challenging. For example, foundational steganographic constructions (e.g. [Cac00; HLv02;
vH04]) rely on the use of universal hash functions to subdivide the output space into segments that correspond
to different bit sequences and then use rejection sampling to find a sample output that hashes to the desired
message. While it is possible to use such a technique with diffusion models, the entire message would need
to be encoded into the singular output image. Even though an image might be high entropy enough to
encode a large number of bits, using rejection sampling to find an image that hashes to the desired bits is
computationally infeasible.

Recently proposed techniques [YZX+24; KSC+23; PHW+23; LCG23] for diffusion model steganography
also do not meet the requirements for a general steganographic deployment. The most promising of these
techniques is StegaDDPM [PHW+23], a work developed concurrently to our own. The authors use specific

4Meteor encrypts the message first, to ensure the message is uniformly distributed. Discop instead uses an information
theoretically secure approach to selecting the token, and thus does not require encryption.

8

properties of DDPM [HJA20] diffusion models— namely, their Gaussian noise residuals—to encode and
decode information, achieving a very high encoding rate. While this acheives impressive results, exploiting
low-level details of the model in this way prevents steganographic techniques from being lifted to new
models as they are released; the proof of security is based on the model’s attributes, and therefore does not
immediately translate to other techniques. New techniques improve image quality and generation speed:
for example, the DDIM scheduler [SME20] is faster than DDPM, which would improve encoding speed.
Moreover, the fine details of generated images (i.e., in 32-bit model outputs) may be lost due to image file
type or compression (i.e., 16-bit PNG pixels) on an image platform. This loss would impact decoding success
rates, but adequate recovery mechanisms are not considered. So, while non-black box use of the model can
yield strong encoding performance, we desire a flexible solution that meets deployment considerations and can
easily adapt as models develop. As such, we must take a higher-level, general view to develop steganography
for this rapdily developing field.

Opportunities for steganography. There are numerous techniques that can be used to construct
steganography, but all of them rely on embedding the message into channel entropy. Because the space
of messages that can be sent over a particular communication channel is fixed by the distribution within
which the encoded message is supposed to hide, the choice of which message to send is the only subliminal
channel available. Therefore, when evaluating the opportunities for steganographically embedding into the
output of diffusion models, we begin by examining the sources of entropy.

When generating images, diffusion models use two sources of entropy: (1) the initialization seed, and (2)
the noise added during each step of the schedule. To understand the viability of using these sources, we
must understand how different randomness changes the image seen by the receiver. We study this question
empirically, as randomness is largely a means to an end within these models.

1. Initialization seed. It is tempting to try to embed the message into the model’s initialization seed.
Because this seed is both large and high entropy, it is natural to assume that we could steganographi-
cally embed a large amount of information into the seed. Unfortunately the image generation process
is not invertible. In our experiments with real-world diffusion models, we found that each step of the
scheduler was lossy and not reversible. Even if only some information was lost in each step of the
scheduler, most concrete instantiations of diffusion models have at least 50 steps, each one of which is
lossy. As such, it is unclear how to steganographically embed information into the seed while allowing
it to be recoverable.

2. Variance noise added by scheduler. Each step of the schedule adds a small amount of Gaussian noise
to the current state si. In our experiments, we found that modifying the noise added to a single pixel
in state si can result in a small, local change in the equivalent pixel in si+1. When operating in the
latent space, the decompression results in changes not only in the equivalent point in the latent space,
but also to surrounding points; this effect is amplified when the resulting latent space is mapped into
the image space.

The localized nature of (2) provides an opportunity for an efficient steganographic channel, which we inves-
tigate below.

4 The Pulsar Steganography Scheme

We now describe Pulsar, a symmetric-key steganographic encoding scheme for pixel-space diffusion models.

4.1 Intuition

Pulsar leverages the steganographic channel enabled by the addition of Gaussian noise in the schedule. As
discussed above, resampling the noise for a pixel in the final round of the schedule can result in a localized
change to the output image. When this resampling is a function of the message, the receiver can observe
these changes and recover the message.

9

(a) A Pulsar reference im-
age img0.

(b) A Pulsar reference im-
age img1.

0 50 100 150 200 250

0

50

100

150

200

250

0.005

0.010

0.015

0.020

(c) The difference heatmap
representing the magnitude
of the differences between
Figures 2a and 2b.

(d) A Pulsar image which
encodes 571 bytes.

Figure 2: Sample output from the celebahq model. Note that the differences shown in (c) are not changes
introduced to encode a message, but a reflection of the entropy in the generative model that we exploit to
embed steganographically.

The sender and receiver share key material that allows them to derandomize their model operation such
that they can keep their models synchronized. Notably, this requires that the sender and receiver start
their image generation with the same randomness. This allows the sender and receiver to have their models
generate the same exact image. We divide this key material into three concrete PRG keys: a seed key ks,
and then a pair of reference image keys k0 and k1. The seed key is used by both the sender and receiver to
synchronize their models until the final step of the scheduler, i.e. they use ks to sample the model’s initial
seed and sample the variance noise in the first t− 1 scheduler iterations. The sender and receiver can then
generate two reference images img0, img1 by sampling the variance noise for the tth iteration of the sampler
with k0 and k1 respectively. Figures 2a and 2b are concrete reference images img0 and img1 generated by
this process.

To build intuition, we make the following simplifying assumptions: (1) the model’s state is simply the
pixels of the image itself, and (2) the final iteration of the scheduler operates on each element of the state
independently, i.e., each element of the final state is a function of exactly the corresponding element in the
previous state – neighboring elements have no effect on one another. If these assumptions were true, a clear
steganographic channel would emerge. The sender would divide the message m they want to send into bits
m0,m1, . . . and then sample variance noise for each element of the state from k0 or k1 depending on the bit
value of the message. For example, if message bit mi were b, then the sender samples the variance noise for
the ith element using kb. The receiver can then guess about the value of mi by comparing the final output
of the model to img0 and img1; whichever reference image the final output more closely resembles in the ith

pixel determine the receiver’s guess about mi. This would encode a single bit per pixel.
These simplifying assumptions serve a unified purpose: minimizing the error rate in the channel. Indeed,

even without these assumptions, there may still be errors, as the reference images may be identical in
particular pixels. For example, see Figure 2c, in which we give a heatmap of the difference between the
two example reference images. Black pixels in this heatmap show that resampling the Gaussian noise has
negligible effect on the final pixel value. Without assumption (2), sampling variance noise from different
sources might have unpredictable effects, as the changes to one particular pixel might “contaminate” the
signal in neighboring pixels. Finally, if the state does not have a clean correspondence to the image, it may
not be clear where the receiver should look to recover information about how variance noise is sampled.

To recover from these errors, we introduce the use of a binary error correcting code, which introduces
redundancy into a message. When the message is transmitted over a noisy channel (i.e., one that introduces
bit flips), the receiver can run some recovery algorithm and output the initial message. Careful use of this
error correcting code allows us to continue using the same intuition above, but ensures that the message can
be recovered from the receiver, even without our simplifying assumptions.

We begin by removing assumption (2) and accept that changes in the way variance of noise is sampled for

10

a particular pixel may impact neighboring pixels—or, indeed, any pixel; we simply treat this as additional
error to be corrected. The sender and receiver synchronize their models as before, reaching the final iteration
of the scheduler. Before attempting to encode the message, the sender first encodes the message with a binary
error correcting code, and then proceeds as before. Only one question remains: what rate should the sender
use for their error correcting code, i.e., how much redundancy should the sender add into the message. If
the error rate is high, the sender needs to increase the redundancy, as more information will be erased by
the channel. On the other hand, adding unnecessary redundancy is wasteful, as fewer message bits will fit
in the fixed capacity of the image.

To fix the rate of the error correcting code, the sender estimates the error rate. While it might be possible
to use a fixed error rate, our experiments found that different images have very different error rates that are
dependent on the structure of the image (discussed more in Section 5). As such, we instead have the sender
estimate the error rate for each generated image by encoding random messages into the last iteration of the
scheduler and measuring the number of errors by attempting to recover the encoded message. This process
allows the sender to get a good estimate on the error rate, and then use conservative parameters on the error
correcting code to ensure recovering the message is possible with high probability.

Relaxing assumption (1) appears to be more challenging. As discussed above, many concrete instan-
tiations of diffusion models (e.g., Stable Diffusion) operate on a latent space, a compressed representation
of the pixel space, in order to be more efficient. This design choice necessitates the use of an expanding
mapping between the latent space and the pixel space. While we find that the approach outlined above can
function for such models, the result is highly inefficient. As such, we restrict attention to diffusion models
that operate directly in the pixel space. We included a more detailed discussion of diffusion models in the
latent space in Section 7.

4.2 Formal Definitions

We lift our notation, formalization, and descriptions of a symmetric stenographic scheme largely from
[KJG+21]. A scheme ΣD is a triple of possibly probabilistic algorithms, ΣD = (KeyGenD,EncodeD,DecodeD)
parameterized by a covertext channel distribution D.

– KeyGenD(1
λ) takes arbitrary input with length λ and generates k, the key material used for the other two

functionalities.

– EncodeD(k,m,H) is a (possibly probabilistic) algorithm that takes a key k and a plaintext message m.
Additionally, the algorithm can optionally take in a message history H, which is an ordered set of covertext
messages H = {h0, h1, . . . , h|H|−1}, presumably that have been sent over the channel. Encode returns a
stegotext message composed of ci ∈ D.

– DecodeD(k, c,H) is a (possibly probabilistic) algorithm that takes as input a key k and a stegotext message
c and an optional ordered set of covertext messages H. Decode returns a plaintext message m on success
or the empty string ε on failure.

Correctness. To be correct, we require that a scheme ΣD = (KeyGenD,EncodeD,DecodeD) encoding and
then decoding on a message m should recover the message m with overwhelming probability. Formally, for
all messages m, histories H, and k← KeyGenD(1

λ),

Pr[DecodeD(k,EncodeD(k,m,H), H) = m] ≥ 1− negl(λ).

Security. As in [KJG+21], we adopt a symmetric-key analog of the security definitions for a steganographic
system secure against a chosen hiddentext attacks in [vH04]. This is reminiscent of the real-or-random games
used to formalize pseudorandom generators and functions. More formally, we say that a steganographic
scheme ΣD is secure against chosen hiddentext attacks if for all ppt. adversaries AD, k ← KeyGenD(1

λ),∣∣∣Pr[AEncodeD(k,·,·))
D = 1]− Pr[AOD(·,·)

D = 1]
∣∣∣ < negl(λ)

11

where OD(·, ·) is an oracle that randomly samples from the D.
Within the context of diffusion models, the history could be the prompt, when the model take a prompt

as input, or can be left empty when no prompt is used. The models with which we experiment in Section 6
do not use prompts. We include history within our formal notation for generality, but omit it throughout
the rest of the write-up of our algorithms below for readability.

4.3 Pulsar Description

Notation. We assume that the sender and receiver (and adversary) both have access to the same diffusion
model that operates in the pixel space and generates n× n pixel images5 with 3 color channels, resulting in
a image space of [0, 255]n×n×3.

Let N (0, I) be a Gaussian, and Nn×n(0, I) be n × n copies of the underlying Gaussian. We denote a
keyed Gaussian as Nk(0, I), in that samples drawn from the Gaussian are drawn using entropy generated by a
pseudorandom generator [BM82; Ruh17] with key k. As the norm and standard deviation of the distribution
are fixed model parameters, we omit them. We abuse notation and write s+N to denote sampling a value
from N before adding it to s.

We index into images and messages using square bracket notation, i.e., x[i] is the ith element x. For
images, we assume some arbitrary pixel ordering to facilitate single dimension indexing.

We assume that diffusion models have a set of schedulers for each time step {Scheduleri}i∈[t] : [0, 255]
n×n×3×

[0, 255]n×n×3 × [0, 255]n×n×3 → [0, 255]n×n×3. The scheduler at step i accepts the sample at step i− 1, the
diffusion model’s prediction at step i, and some randomness, all in the size of the model.

Let ECC be an error correcting code made up of two algorithms: and encoding algorithm ECC.Encode and
a recovery algorithm ECC.Recover. Both take in a message and an error rate. We expand on error correcting
codes and our use of them in Section 5.

Pulsar encoding and decoding. The encode and decode algorithms for Pulsar are described in Algorithm 2
and Algorithm 3 respectively. When encoding, the sender runs the typical image generation algorithm for
the first t − 2 iterations. The sender then estimates the error rate for encoding and adds redundancy to
the message using an error correcting code ECC. Then, based on the bits of the expanded message mECC,
the sender samples variance noise either using k0 or k1. Then, the final image is generated using Schedulert.
When decoding, the receiver estimates the error rate in the image and generates reference images img0 and
img1. In order to recover mECC, the receiver compares each pixel to the reference images, and guesses the
corresponding bit of mECC accordingly. m can then be recovered by applying ECC.Recover.

Offline-online paradigm. We note that much of the logic of Pulsar can be run before the sender knows the
message. Specifically, the first t−2 iterations of the schedule are completely independent of the message. As
such, this computation can be run offline, and the results can be stored until the sender has a message they
want to encode. At that time, the sender can run the online parts of Pulsar, which include ECC, sampling
the variance noise rt−1, and final image generation. We highlight the offline and online phases of encoding
and decoding in Algorithm 2 and Algorithm 3.

Proof. We provide a proof that Pulsar is secure against chosen hiddentext attacks (see Section 4.2) in
Appendix E.

Randomness synchronization. Pulsar assumes that the sender and receiver can start their image gen-
eration process with the same randomness. While the sender and receiver are able to do this because they
share key information, it requires synchronization. For example, the sender and the receiver may run the
offline phase of hundreds of images before transmission, each with different randomness (i.e, imagine the
key k in Algorithm 2 and Algorithm 3 are each sampled from a single pseudorandom function queried on
sequential inputs). The receiver may detect images out of order (as is likely to happen in the dead-drop
deployment scenario discussed in Section 3.2), and thus will need to figure out which per-image randomness
key material to use in the decoding process. Thankfully, synchronizing in this way is relatively simple, as

5We assume square images for simplicity, but other dimensions are trivially supported.

12

Algorithm 2: Pulsar Encode
Input: Plaintext Message m, Key k
Output: Stegotext Image img
Parse (ks, k0, k1)← k // Offline Phase

Set s0
$← Nn×n

ks

for 1 ≤ i < t− 1 do

ri
$← Nn×n

ks

predi ← Model(si−1)
si ← Scheduleri(si−1, predi; ri)

Compute rate← EstimateRate(st−2)
mECC ← ECC.Encode(m, rate) // Online Phase

for 0 ≤ j < |mECC| do
if mECC[j] = 0 then

rt−1[j]
$← Nk0

else

rt−1[j]
$← Nk1

predt−1 ← Model(st−2)
st−1 ← Schedulert−1(st−2, predt−1; rt−1)
// Deterministic Final Schedule

predt ← Model(st−1)
img← Schedulert(st−1, predt)
Output img

the images bearing encoded messages are perceptually very similar to the ones generated by the receiver in
the offline phase. Thus, the receiver can maintain a local map of the images created in the offline phase to
the key material used to generate those images. To do a lookup on this map, the receiver simply finds the
image in the domain of the map that is most similar (e.g. using a perceptual hash function) to the newly
encountered image.

Latent diffusion. Pulsar is designed for pixel diffusion models, where the internal states of the model
si are the same size as the output image. As mentioned in Section 3.1, another type of models uses a
smaller latent space to represent si. These latent diffusion models have seen increased popularity, with
Stable Diffusion [RBL+22] being the most famous. But, while Stable Diffusion has made latent diffusion
approaches popular [Vin22], we note that pixel diffusion models are still useful, including Imagen [SCS+22],
one of the state-of-the-art works in image synthesis. While there is nothing stopping Pulsar from being used
in a latent setting, the model has some differences that impact throughput. We discuss the relationship
between Pulsar and latent diffusion models further in Section 7.

5 Error Correction for Pulsar

Error correction allows Pulsar to function when image details are lost during transmission, so selecting the
right code is critical for deployment. We now investigate how to build EstimateRate and select an ECC for
Pulsar to maximize throughput.

5.1 Channel Error Structure

A naive approach to computing EstimateRate would simply have the sender generate a random message,
encode it into an image, locally attempt to recover it and measure the decoding error rate. They would then
select an ECC that can successfully encode at that error rate. For instance, an estimate for the error rate of
Figure 2d is high (29.1%), but we can build a code for this high error rate.

13

Algorithm 3: Pulsar Decode
Input: Stegotext Image img, Key k
Output: Plaintext Message m
Parse (ks, k0, k1)← k // Offline Phase

Set s0
$← Nn×n

ks

for 1 ≤ i < t− 1 do

ri
$← Nn×n

ks

predi ← Model(si−1)
si ← Scheduleri(si−1, predi; ri)

Compute rate← EstimateRate(st−2)
predt−1 ← Model(st−2)
// Generate reference image 0

Set r0t−1
$← Nn×n

k0

Set s0t−1 ← Schedulert−1(st−2, predt−1; r
0
t−1)

pred0t ← Model(s0t−1)

img0 ← Schedulert(s0t−1, pred
0
t)

// Generate reference image 1

r1t−1
$← Nn×n

k1

Set s1t−1 ← Schedulert−1(st−2, predt−1; r
1
t−1)

pred1t ← Model(s1t−1)

img1 ← Schedulert(s1t−1, pred
1
t)

for 0 ≤ j < |mECC| do // Online Phase

if |img[j]− img0[j]| < |img[j]− img1[j]| then
mECC[j]← 0

else
mECC[j]← 1

Output m← ECC.Recover(mECC, rate)

To improve on this baseline, we investigate the sources of error a little more closely. An error occurs in
Pulsar when, for a bit b, the difference in the corresponding pixel between the encoded img and imgb′ is closer
than that of img and imgb, where b ̸= b′. There is, therefore, a inverse relationship between the absolute
magnitude of differences between the references images img0 and img1 and the error rate: roughly speaking,
the greater the difference for a pixel, the less likely decoding that pixel will result in an error. This naive
approach assumes that the distribution of errors is uniform.

A closer look at the heatmap in Figure 2c reveals that the differences between img0 and img1 are not
uniformly distributed in the image—there is structure. The heatmap is dark for the regions of the image
that make up the background in Figure 2d, creating a semi-visible silhouette of the face. In this significant
background region, the differences between img0 and img1 are consistently low. Because Pulsar leverages
differences in order to steganographically embed, the background will contribute more to the error rate than
the rest of the image. Put another way, any single bit encoded in this part of the image will have a much
higher error rate.

This notion of “difference regions” with varying magnitudes is more obvious in Figure 3a and the associ-
ated heatmap Figure 3b. In addition to the background, parts of the generated face are also less discernible,
and the estimated overall error rate is 34.1%: over one in three bits is incorrectly decoded. Not only are
there distinct difference regions, but they also differ from image to image.

5.2 Variable Error Correction

The naive approach above fails to fully utilize the high entropy present in some regions of the image. The
model is more detailed in some areas, leading to high entropy (and low error). In other areas, the model
is less detailed, and so the available entropy is lower. These regions are essentially guaranteed to introduce

14

(a) A Pulsar image which encodes 257 bytes.

0 50 100 150 200 250

0

50

100

150

200

250

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

(b) The difference heatmap for the img0 and img1
used to create Figure 3a.

Figure 3: Another sample output for the celebahq model.

high amounts of error, diluting the overall error rate. Unlike many applications of error correcting codes, in
Pulsar we actually can estimate where the errors will happen; we can divide the communication channel into
smaller channels, each of which has a predictable error rate.

An obvious solution would be to leverage the sender’s and receiver’s shared knowledge of the image
structure to only encode into those regions that contain low error rates. This would entail selecting a code
for low error regimes and using that on these regions. This approach would work, but is also inefficient.
The number of low error regions is image-dependent; an image like Figure 2d has many more than an image
like Figure 3a. Additionally, this approach excludes “medium” error rate regions, i.e., where the error rate
is between low and high. These regions will have relatively higher error rates, but could still encode some
amount of data.

So, what we need is a library of error correcting codes, selecting the best code for a region based on its
error rate. Intuitively, if we can define these difference regions, we can estimate the error rates within each
region separately, and then select error correcting codes per-region instead of over the image overall. This
approach helps us more efficiently use the low error rate regions for encoding.

Our region-based error rate estimation for EstimateRate proceeds as follows. First, we use the naive error
estimate strategy on each difference region of the image individually. To do so, we compute l trial encodings
at the current model state on random messages. These trail encodings are then subsequently decoded to
generate difference heatmaps (like those seen in Figures 2c and 3b). To systematically define the difference
regions from these heatmaps, we divide the pixels in the image into u buckets based on the magnitude of
the difference shown in the heatmap. Each bucket represents one unique difference region of the image—all
of the pixels in a bucket have a similar magnitude of their differences and therefore (roughly) similar error
rates during Pulsar encoding. We chose to bucketize the differences rather than apply image analysis (e.g.,
convolution to find region boundaries) because the latter would involve more computation and may miss
non-contiguous regions.

We calculate the error rate for each difference regions, as defined by its bucket, based on the messages
from the trial encoding. rate is now a list of regions with associated error rates, we select the appropriate
ECC for each region. To do so, we start with the lowest error regions, and use codes suitable for those
regions. We then work our way up the difference regions, selecting a code from our library that works at
each region’s calculated error rate. Eventually, we reach a region that cannot be encoded using our codes
due to its significant noise, and we consider encoding finished.

Using this approach, Figure 2d can encode 571 bytes of information, and Figure 3a can encode 257 bytes
of information. We also note that EstimateRate is still a fully offline operation (Section 4.3), as the difference
regions for an image can be estimated without any information about the message to encode. Both the

15

sender and receiver can perform multiple runs of EstimateRate in preparation for a communication. Also
note that, while EstimateRate is randomized, we can use the key shared between the sender and receiver
to generate any randomness used by EstimateRate. This ensures that the sender and receiver agree on the
encoding and decoding algorithms without explicitly sharing this information.

A more formal description of EstimateRate can be found in Appendix A. Our EstimateRate function has
two parameters: the number of buckets for each estimate u, and the number of estimates l. We experimentally
determine these parameters in Appendix D.

5.3 Identifying Candidate Codes

Our variable error correction approach requires building a library of error correcting codes that support
different error rates, so more efficient codes can be used in difference regions with low error. We approach
the development of this library heuristically, as developing optimal codes for our setting is beyond the scope of
this work. There may be significant room for Pulsar performance improvement by identifying other superior
codes.

Error correcting codes. In this work we will consider linear [N, k, d]q codes, which are codes defined over
a field Fq of size q. The size of the codeword N is called the block length, k is the dimension and d is the
distance of the code. The rate of a code is given by k

N and the unique decoding radius (the number of

errors a code can tolerate while still uniquely recovering the original codeword) is ⌊d2⌋. The channel we have
identified earlier can be characterized as a binary symmetric channel (BSCp), which is parameterized by the
probability p that an error is introduced in each bit. More formally, if Y is the output of the channel and X
is the input, Pr[Y = 1− b|X = b] = p for b ∈ {0, 1}. The capacity for BSCp—which is the highest possible
rate we could hope to achieve—is 1−H2(p) where H2(x) = −(x · log2(x) + (1− x) · log2(1− x)).

Error correcting for binary channels. When we quantize the image into u different difference regions,
the result is that our communication channel is actually the concatenation of u channels Ch1, . . . Chu.
We assume that each channel Chi functions as a binary symmetric channel BSCpi

for some probability
pi ∈ [0, 1]. Our goal is to come up with an algorithm so that, given block lengths N1, . . . Nu, we identify
u codes ECC1, . . .ECCu such that ∀j ∈ [u] (1) ECCj can recover from errors induced by a BSCpi

channel
with all but low probability, (2) ECCj has as high a rate as possible, and (3) ECCj has a practically efficient
encoder and decoder.

One approach to constructing binary codes is to make use of concatenated codes [For65]. A concatenated
code ECCout ◦ ECCin encodes messages by first using the code ECCout and then encoding each resulting
symbol with ECCin. To be more precise, let the outer code ECCout be an [N, k, d]Q where Q = qk

′
for

some k′ ∈ Z+ and the inner code ECCin an [N ′, k′, d′]q code. To encode a message m⃗ ∈ Fk
q , first produce

c̄ = (c̄1, . . . c̄N) = ECCout.Encode(m⃗); the final codeword is ECCin.Encode(c̄1), . . .ECCin.Encode(c̄N). The
resulting concatenated code is an [NN ′, kk′, z] linear code where z ≥ dd′. For binary concatenated codes,
q = 2.

It is well known that finding binary concatenated codes with rate approaching capacity over a BSCp

channel can be done by using a “small” inner code that has rate close to capacity and then applying
an outer code to handle most of the error patterns that could arise from incorrect decoding of the inner
code [GRS12]. Constructing the inner code is done by brute force and takes O(2N

′2
) time. The outer

code may be either Reed-Solomon or another binary code leading to either super-polynomial or polynomial
construction time, respectively. The resulting decoder for the concatenated code uses a maximum likelihood
decoder for ECCin.Recover and then applies an efficient unique decoding algorithm for ECCout.Recover. While
this would produce high quality codes, it is not computationally feasible to find such an inner code, and
finding “optimal” codes is beyond the scope of this work. After identifying simple codes via an ad-hoc
approach, we designed a strategy for finding a reasonably good code for a given BSCpi . First, we manually
search for a binary inner code with low decoding error probability and high capacity. Rather than fully
testing the code, we empirically test its performance on the BSCpi

for at least 40,000 inputs to get a loose
decoding error probability. Once we manually identify the best such codes, we then choose the outer codes.
Let the random variable Xℓ be the number of decoding errors that occur when ℓ randomly chosen messages

16

Table 1: Average execution time in seconds for offline, encoding, and decoding steps on Desktop and Laptop
for 100 runs.

Model
Desktop Laptop

Offline Encoding Decoding Offline Encoding Decoding
church x̄ = 2.96, s = 0.06 x̄ = 1.61, s = 0.10 x̄ = 4.11, s = 0.84 x̄ = 9.99, s = 0.23 x̄ = 2.97, s = 0.16 x̄ = 3.78, s = 0.49
celebahq x̄ = 2.96, s = 0.01 x̄ = 1.57, s = 0.08 x̄ = 3.68, s = 0.58 x̄ = 9.98, s = 0.11 x̄ = 2.93, s = 0.13 x̄ = 3.53, s = 0.40
bedroom x̄ = 2.96, s = 0.01 x̄ = 1.48, s = 0.11 x̄ = 2.93, s = 0.73 x̄ = 10.02, s = 0.11 x̄ = 2.88, s = 0.14 x̄ = 3.10, s = 0.44

cat x̄ = 2.96, s = 0.01 x̄ = 1.52, s = 0.15 x̄ = 3.34, s = 1.21 x̄ = 10.00, s = 0.11 x̄ = 2.89, s = 0.17 x̄ = 3.33, s = 0.78

Table 2: Bytes encoded per image for 100 runs.

Model x̄ s Success Throughput
church 613.74 200.02 93.0% E[X] = 570.78
celebahq 437.73 98.37 89.0% E[X] = 389.58
bedroom 320.07 133.33 93.0% E[X] = 297.66
cat 439.94 301.88 97.0% E[X] = 426.74

are encoded via ECCin.Encode, sent over the channel BSCpi
, and decoded. For a given outer code block

length N , we find the minimum z ∈ {0, . . . , N} so that Pr(XN ≤ z) ≥ 0.95. We then set the outer code’s
distance and dimension to allow recovery of up to z errors. 6 See Appendix A for the codes we identified for
Pulsar.

6 Implementation & Evaluation

We implemented Pulsar with PyTorch and diffusers [Hug] using the DDIM scheduler [SME20]. We use
SageMath [The23] for error correcting codes. We implement HMAC-DRBG [BK15] to generate synchronized
randomness., which we bootstrap into a keyed Gaussian Nk(0, I), for encoding using inverse transform
sampling [BFS11]. We have released our code and benchmarks as artifacts7 for the community.

Our implementation uses the following diffusion models (which generate the following images): church

(churches and other places of worship), celebahq (celebrity faces), bedroom (bedrooms), cat (cats), all of
which were published by Google on Hugging Face [Goo22d; Goo22c; Goo22a; Goo22b]. Example images
from each model can be found in Appendix B.

We run our implementation on (1) a Jetstream2 g3.medium instance, with 8 vCPUs, 30 GiB of RAM,
and access to 25% of a NVIDIA A100 GPU (i.e., 10 GiB of VRAM) running Ubuntu 22.04, and (2) a
MacBook Pro with an M1 Pro system-on-chip with 16 GiB of RAM running macOS Ventura. We consider
(1) representative of an entry-level AI workstation, so we call it “Desktop”; we believe (2) is representative
of consumer hardware, and call it “Laptop”.

We choose the DDIM scheduler [SME20] for our implementation over the DDPM scheduler [HJA20] used
in prior work [PHW+23]. In our preliminary testing, standard (non-steganographic) image generation on
Desktop using the DDPM scheduler took ≈ 50 seconds, while the newer DDIM scheduler took ≈ 3 seconds.
We take advantage of DDIM’s better efficiency for our solution, which we are able to do because of the
flexibility of Pulsar. When better schedulers are created, it would be a matter of swapping out DDIM for
the new option—the underlying scheme would remain the same.

There are two parameters in EstimateRate that we have yet to determine: the number of buckets to
generate for our difference regions u, and the total number of estimates to generate l. We experimentally
determine that u = 100 and l = 1 are appropriate parameters for our purposes. For details, see Appendix D.

We run 100 trials of our implemented Pulsar system from end to end for each of the models we consider on
both Desktop and Laptop. In each trial, we run the offline step of EstimateRate, encode a random message

6This means setting d ≈ 2z and calculating k based on d and N .
7Our evaluated artifact is available on Zenodo: https://zenodo.org/doi/10.5281/zenodo.12785497. Active development

and updates can be found on our GitHub: https://github.com/spacelab-ccny/pulsar.

17

https://zenodo.org/doi/10.5281/zenodo.12785497
https://github.com/spacelab-ccny/pulsar

0 250 500 750 1000 1250 1500
Message length (bytes)

0

10

20

30

40

50

60

Fr
eq

ue
nc

y
church

celebahq

bedroom

cat

Figure 4: The distribution of message lengths in 100 images generated for each of the models used in Pulsar.

0 5 10
Time (seconds)

Offline (Desktop)

Offline (Laptop)

Encoding (Desktop)

Encoding (Laptop)

Decoding (Desktop)

Decoding (Laptop)

Model
Sage
RNG
Other

Figure 5: The mean time spent to perform Pulsar tasks for the church model on Desktop and Laptop.

18

at the sender into a 16-bit PNG image, and decode this image back into the original message. Note that
we provide results for the offline step of Algorithm 3; since Algorithm 2’s offline step is a subset of that of
Algorithm 3, we can use the same offline state for both encoding and decoding.

Throughput. We first seek to understand throughput: the number of bytes per image that can be commu-
nicated steganographically with Pulsar. Table 2 summarizes the information, with the mean x̄ and standard
deviation s of the bytes encoded in each image, along with the percentage of encoded messages can be
successfully decoded. As mentioned above, decoding can fail if the estimate is not representative of the
actual message encoding. The expected throughput is therefore this decoding success probability times the
mean bytes per image x̄. While the success rate is not 100%, we do note that it is high enough to support
throughputs in the hundreds of bytes. Moreover, because Pulsar is a symmetric key scheme, the sender will
know when decoding will fail and can abort.

We also seek to understand how the number of bytes per image varies between the models. We chart
this distribution for each model in Figure 4. Each model has a different distribution, which is reasonable
considering that each model generates substantially different images. For example, note that celebahq is
mostly tightly centered, likely because human faces have a core structure that does not deviate significantly.
On the other hand, cat has high variance, which we attribute to the model’s lower quality (see Appendix B).

Time. Table 1 contains runtime for each phase of Pulsar for each model on both Desktop and Laptop. The
offline phase is about the same for every model, which is in line with how diffusion models work. Even
though each model generates different images, all models have the same number of steps (and therefore
PyTorch calls to their weights), and should have the same runtimes. We see that decoding is generally
slower than encoding. We can also see that the runtime of Laptop is about three times that of Desktop, and
that encoding and decoding times vary between the models. In particular, the encoding and decoding times
are proportional to the number of bytes the model generates (see Table 2).

To investigate these results more, we separate each runtime by the constituent parts of Pulsar, and chart
it in Figure 5. “Model” is time spent generating an image using diffusion in PyTorch, “Sage” is time spent in
SageMath for error correction, “RNG” is time spent generating random numbers for encoding, and “Other”
is time spent outside of the prior two tasks. The offline phase is dominated by the model and random number
generation, as it is generating the estimate that will be used for the online phases. Laptop’s slower runtime
can be attributed to its weaker model processing ability.

Encoding and decoding are instead dominated by SageMath. So, models that require more calls to
SageMath are slower in encoding and decoding; the models that call SageMath more are those with a higher
capacity for encoding bytes. For example, the church model takes the most time to encode/decode because
it needs to encode/decode more bytes. Thus, our results are consistent.

As an aside, our implementations of random number generation and ECCs are unoptimized and could
be improved for a production deployment. Our HMAC-DRBG implementation is in pure Python, and a
native implementation would reduce Pulsar runtime. Moreover, our ECC implementation performs a call
to SageMath as a subprocess, which means our runtimes include a relatively lengthy interpreter start-up; a
direct implementation of the underlying ECCs (without SageMath) can help further reduce Pulsar runtime.

Comparison to text model methods. We now compare our results to that of prior work on text-based
steganography. We specifically compare Pulsar to [DCW+23], where the authors provide seconds per bit
results for their construction, as well as those of other modern baselines such as Meteor [KJG+21]. Their
hardware configuration is similar to our Desktop one. Based on the evaluation in Table II of [DCW+23],
Pulsar represents a performance improvement over prior work. Using the numbers in Tables 1 and 2, the
church model takes 1.01×10−3 seconds per bit to perform both the offline and encode steps, which is about
twice as fast as the best performance metrics reported for text-based models. Even our Laptop configuration
is relatively performant, with 2.84×10−3 seconds per bit, which is similar to Discop and Meteor on Desktop.

We do not claim that our solution is strictly better. Text-based solutions have high utilization of the
available entropy in the channel, which means that it can efficiently send smaller messages in a few hundred
words. Pulsar has much lower utilization due to the noisiness of the channel. Once the messages are in the
hundreds of bytes, though, Discop and related work require several paragraphs of text to encode. Pulsar

19

instead sends an image, which, while strictly larger in file size, may be more acceptable in a channel than pages
of text. So, we recommend text-based steganography for short messages, and image-based steganography
for long messages.

Comparison to image model methods. We now compare Pulsar to two prior image model works, Liu,
Chen, and Gu [LCG23] and StegaDDPM [PHW+23], based on the results presented in the respective works.

Liu, Chen, and Gu present a heuristic scheme, and are able to embed 50 bits per image into outputs
of the church and celebahq models; Pulsar on the other hand is both secure and able to embed several
hundred bytes of information per message (i.e., several thousand bits). Liu, Chen, and Gu do not provide
runtime information in their work.

StegaDDPM is a secure scheme, and is actually able to encode several bits per pixel, resulting in images
that have thousands of bytes of information. This impressive rate outperforms that of Pulsar by an order
of magnitude. We note that this throughput is likely due to StegaDDPM’s non-black box nature; Pulsar
actively trades off a higher throughput for greater flexibility. The StegaDDPM work also does not provide
execution time benchmarks. But, based on our testing mentioned above, our use of the DDIM scheduler
means that Pulsar likely runs faster than StegaDDPM and its DDPM scheduler.

Steganalysis. Although Pulsar is a provably secure scheme (see Appendix E), we validate our results
against two ML-based steganalysis techniques, YeNet [YNY17] and SRNet [BCF18]. We generate both Pulsar
steganographic images and non-steganaographic images using the same models except without embedding.
We convert both sets of images to grayscale, which these steganalysis tools require as input. Each model
was then trained, using 5000 pairs for training and 1000 for validation. The models were then tested for
accuracy in distinguishing between 5000 pairs of steganographic and non-steganaographic images. On this
task, SRNet was 49% accurate, while YeNet was 50% accurate. Note that the ideal performance is near 50%:
the ability of the tool to distinguish images is no better than a random guess. For details, see Appendix C.

Deployment. Pulsar’s flexibility in model types, concrete efficiency on consumer hardware, and resistance
to channel errors make it suitable for the dead drop deployment discussed in Section 3.2. As a step towards
deployment, we validated that Pulsar could be used on common image platforms. We were successfully able
to upload and decode a Pulsar image on Imgur, Reddit, and Twitter.

We believe these and other online communities are candidate drop locations; to truly establish this,
though, we require user feedback. As future work, we propose a user study to identify locations and social
impacts to these communities. This study would determine where dead drops are feasible, effective, and
welcome, guiding both the deployment and development of future steganography.

7 Better Steganography for Diffusion Models

While Pulsar is able to encode significant amounts of information into the images generated by diffusion
models, we are limited by the structure of the current generation of diffusion models. Thus, there remains
capacity within these images on which we are unable to capitalize. To argue cryptographic security, we
must adhere to the structure of existing models – changing the structure would mean that an adversary
might distinguish between an image generated by our refined model and the one used more generally. We
note, however, that the empirical nature of modern machine learning model development means that the
structural choices within existing models are not inherent; future iterations of the diffusion model paradigm
may both have better generative performance (based on metrics used within the machine learning literature)
while also increasing the resulting image’s steganographic capacity.

In this section, we highlight several ways models could be changed in order to admit higher capacity
steganography. In essence, each of these changes is a way in which randomness recovery could be made
easier. These changes should not be integrated simply because they make models steganography friendly—if
they result in worse model performance, the quality of the steganography will also suffer. Instead, we hope
they can be explored as “win-win” opportunities, in which steganographic performance can be improved and
model performance either improves or stays consistent.

20

Randomized final scheduler step. Pulsar encodes information in the second-to-last step of the scheduler
since the final step is deterministic. Adding the randomness, however, is followed by another iteration of the
model being applied, which perturbs the encoded information and introduces errors into the encoding. In
Pulsar, we solve this through the use of error correcting codes. If the final scheduler step were randomized,
we could use the same techniques developed in Pulsar to encode at the final step instead. Because there
would be no additional model iteration to apply after encoding, the decoding process would be less error
prone. This lack of errors would in turn allow for smaller (or even no) error correcting codes, resulting in
higher utilization of the image.

Another consequence of having a deterministic final scheduler step is that we are only able to use one
color channel in the generated image. Applications of the model propagates changes from one color channel
to the others. In our experiments, we found that any information embedded into the variance noise of a
second channel is effectively wiped out when the model is applied. As such, two thirds of the image is
unusable; if the final step of the scheduler were randomized, we could theoretically triple our throughput.

Reversible model iterations. Instead of introducing randomness to the final scheduler iteration, it would
also be sufficient to design model iterations that are reversible. That is, given access to the final image, it
would be possible to recover intermediary states of the model or even the initial Gaussian noise that form
the seed for the diffusion model. As discussed in Section 3.3, this seed is an excellent source of entropy that
could be leveraged for steganographic embedding, but current model structures prevent the receiver from
recovering the seed efficiently. Each model iteration applied to the seed modifies the image and each step is
not efficiently reversible due to the nature of the neural network model.

Recovering the initialization seed would require non-trivial changes to the diffusion model structure, i.e.,
to become reversible. We note that non-linearity within the model will always make inversion more difficult,
and it may be that highly non-linear models are inherently superior. Alternatively, model designers could
train pairs of models that are able to both generate images (forwards) and recover seeds (backwards). If
models with this property were possible, we could apply Pulsar’s embedding strategy to the seed directly. In
this case we would have (ideally) n×n× 3 bits of information for encoding per image, exceeding our current
results (Table 2).

Detailed and contextually appropriate models. Pulsar is best able to encode information images
that are highly detailed. For example, both Figures 2d and 3a are realistic images of human faces. As the
respective difference heatmaps in Figures 2c and 3b show, however, Figure 2d is more detailed (e.g., at the
top of the head), which means it can encode more information in Pulsar, and is therefore a better encoding
target than Figure 3a. As such, having access to models that produce highly detailed images is desirable.
We note that there is a distinction between “detailed” and “realistic”, and, of course, the quality of the
generated images is critical. For instance, cat is a detailed model, but its relatively low quality images (see
Appendix B) may make censors more suspicious. Moreover, its encoding rate has high variance, as seen in
Figure 4. Thus, future models need to prioritize detail, but not at the expense of quality.

Having models that produce images that are contextually appropriate is also critical. Our running
examples in this work come from celebahq as they have the highest level of realism, but the model’s
outputs are heavily biased towards generating white, conventionally attractive faces, reflecting the biases
of its training set. Thus, the images have limited contexts in which they would be appropriate. Future
diffusion models should be trained on more diverse data sets. The problem of bias in model outputs is not
unique to our use case, but only having a few types of outputs would be detrimental to deploying Pulsar.
A censor monitoring a channel may expect only certain types of images; perhaps images like celebahq or
church would be considered strange at best, or subversive at worst. More diverse models would allow users
to steganographically generate images without arousing a censor’s suspicion.

Invertible latent diffusion architectures. The models for our Pulsar evaluation are all pixel diffusion
models, in which each model iteration performs operations on all pixels of the output image at once. Our
models operate over tensors of shape 256× 256× 3 to generate an image of dimension 256× 256 with 3 color
channels. As mentioned in Section 3.1, an alternative to this approach are latent diffusion models like Stable
Diffusion [RBL+22]. Operations are performed on latents, which are a smaller representation of the image,

21

and upscaled at the end using a VAE. Latent diffusion architectures have good results, even on relatively
limited hardware.

While the core embedding strategy of Pulsar can be applied to latent diffusion models, there are barriers
to making this approach productive. One is encoding space. The latent space used by these models typically
have shape 64×64×3, much smaller than that of pixel diffusion models and potentially reducing throughput.

The more concerning issue is the VAE itself. Our experiments found that the VAE made it extraordinarily
difficult for a receiver to determine anything about how noise was injected during model generation. In
particular, because the VAE “decompresses” the latent space, applying noise to even a single element of the
latent would result in noticeable changes in many pixels. As such, a receiver has a hard time differentiating
between the effects of two neighboring latents (i.e., the effects contaminate each other). We found that
encoding was possible if we spread out the locations in the latents into which we steganographically encoded,
but is has extraordinarily low performance, e.g., 16 or 32 bits per image.

Existing approaches to VAE inversion involve estimation, and the result is not guaranteed to be the
original input. Our preliminary experiments showed that attempts to reverse the VAE step resulted in too
many errors to accurately reconstruct that original latents. If a VAE could be deterministically invertible,
it would be possible to encode with very high rate into the latent space. Future work could identify ways to
recover latents from an image.

8 Conclusion

We present Pulsar, the first provably secure steganography scheme with support for generic diffusion models.
Pulsar is practical, encoding hundreds of bytes per image at speeds exceeding that of prior solutions. Future
work in both steganography and diffusion models can use Pulsar’s lessons to create even more efficient
systems.

Acknowledgments

The authors would like to thank Katharina Schaar for helping to correct issues in a previous version of this
paper.

This work was funded, in part, by the National Science Foundation’s Convergence Accelerator Program,
Track G under contract number 49100422C0024. The first author would like to acknowledge support from the
National Science Foundation under Grant #1955172. The second author was supported by DARPA under
Contract No. HR001120C0084. The third author is supported by the NSF under Grant #2030859 to the
Computing Research Association for the CIFellows Project and is supported by DARPA under Agreement
No. HR00112020021. A significant amount of this work was completed while the third authors was at Boston
University. Any opinions, findings and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of their employers or the sponsors.

References

[AP98] Ross J Anderson and Fabien AP Petitcolas. On the limits of steganography. IEEE Journal on
selected areas in communications, 16(4):474–481, 1998.

[Aur96] Tuomas Aura. Practical invisibility in digital communication. In Information Hiding: First
International Workshop Cambridge, UK, May 30–June 1, 1996 Proceedings 1, pages 265–278.
Springer, 1996.

[Aus] Australian Government. Telecommunications and other legislation amendment (assistance and
access) act 2018. https://www.legislation.gov.au/Details/C2018A00148.

[Bal17] Shumeet Baluja. Hiding images in plain sight: deep steganography. In Neural Information
Processing Systems, 2017. url: http://www.esprockets.com/papers/nips2017.pdf.

22

https://www.legislation.gov.au/Details/C2018A00148
http://www.esprockets.com/papers/nips2017.pdf

[Bal19] Shumeet Baluja. Hiding images within images. IEEE transactions on pattern analysis and
machine intelligence, 42(7):1685–1697, 2019.

[BC05] Michael Backes and Christian Cachin. Public-key steganography with active attacks. In Joe
Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 210–226. Springer, Heidelberg, February
2005. doi: 10.1007/978-3-540-30576-7_12.

[BCF18] Mehdi Boroumand, Mo Chen, and Jessica Fridrich. Deep residual network for steganalysis of
digital images. IEEE Transactions on Information Forensics and Security, 14(5):1181–1193,
2018.

[BFS11] Paul Bratley, Bennet L Fox, and Linus E Schrage. A guide to simulation. Springer Science &
Business Media, 2011.

[BK15] Elaine Barker and John Kelsey. Nist special publication 800-90a revision 1 recommendation for
random number generation using deterministic random bit generators, 2015.

[BM82] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo
random bits. In 23rd FOCS, pages 112–117. IEEE Computer Society Press, November 1982.
doi: 10.1109/SFCS.1982.72.

[Cac00] Christian Cachin. An information-theoretic model for steganography. Cryptology ePrint Archive,
Report 2000/028, 2000. https://eprint.iacr.org/2000/028.

[CC10] Ching-Yun Chang and Stephen Clark. Linguistic steganography using automatically generated
paraphrases. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, HLT ’10, pages 591–599,
Los Angeles, California. Association for Computational Linguistics, 2010. isbn: 1-932432-65-5.
url: http://dl.acm.org/citation.cfm?id=1857999.1858083.

[CC14] Ching-Yun Chang and Stephen Clark. Practical linguistic steganography using contextual syn-
onym substitution and a novel vertex coding method. Computational Linguistics, 40(2):403–
448, June 2014. issn: 1530-9312. doi: 10.1162/coli_a_00176. url: http://dx.doi.org/10.
1162/COLI_a_00176.

[Cha19] Marc Chaumont. Deep learning in steganography and steganalysis from 2015 to 2018, 2019.
arXiv: 1904.01444 [cs.CR].

[Civ] Civitai. The home of open-source generative ai. https://civitai.com/.

[DC19] Falcon Dai and Zheng Cai. Towards near-imperceptible steganographic text. Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, 2019. doi: 10.18653/
v1/p19-1422. url: http://dx.doi.org/10.18653/v1/p19-1422.

[DCR+13] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Protocol misiden-
tification made easy with format-transforming encryption. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 61–72. ACM Press, November 2013.
doi: 10.1145/2508859.2516657.

[DCS15] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. Marionette: a programmable net-
work traffic obfuscation system. In 24th USENIX Security Symposium (USENIX Security
15), pages 367–382, Washington, D.C. USENIX Association, 2015. isbn: 978-1-931971-232.
url: https://www.usenix.org/conference/usenixsecurity15/technical- sessions/
presentation/dyer.

[DCW+23] J. Ding, K. Chen, Y. Wang, N. Zhao, W. Zhang, and N. Yu. Discop: provably secure steganog-
raphy in practice based on “distribution copies”. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 2238–2255, Los Alamitos, CA, USA. IEEE Computer Society, May 2023.
doi: 10.1109/SP46215.2023.00155. url: https://doi.ieeecomputersociety.org/10.
1109/SP46215.2023.00155.

23

https://doi.org/10.1007/978-3-540-30576-7_12
https://doi.org/10.1109/SFCS.1982.72
https://eprint.iacr.org/2000/028
http://dl.acm.org/citation.cfm?id=1857999.1858083
https://doi.org/10.1162/coli_a_00176
http://dx.doi.org/10.1162/COLI_a_00176
http://dx.doi.org/10.1162/COLI_a_00176
https://arxiv.org/abs/1904.01444
https://civitai.com/
https://doi.org/10.18653/v1/p19-1422
https://doi.org/10.18653/v1/p19-1422
http://dx.doi.org/10.18653/v1/p19-1422
https://doi.org/10.1145/2508859.2516657
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dyer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dyer
https://doi.org/10.1109/SP46215.2023.00155
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00155
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00155

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the second-generation onion
router. In Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13,
SSYM’04, pages 21–21, San Diego, CA. USENIX Association, 2004. url: http://dl.acm.
org/citation.cfm?id=1251375.1251396.

[DN21] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Ad-
vances in neural information processing systems, 34:8780–8794, 2021.

[Eur] European Commission. Proposal for a regulation of the european parliament and of the council
laying down rules to prevent and combat child sexual abuse. https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=COM:2022:209:FIN.

[FGD01] Jessica Fridrich, Miroslav Goljan, and Rui Du. Detecting lsb steganography in color, and gray-
scale images. IEEE multimedia, 8(4):22–28, 2001.

[FJA17] Tina Fang, Martin Jaggi, and Katerina Argyraki. Generating steganographic text with lstms.
Proceedings of ACL 2017, Student Research Workshop, 2017. doi: 10.18653/v1/p17-3017.
url: http://dx.doi.org/10.18653/v1/p17-3017.

[FLH+15] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. Blocking-resistant
communication through domain fronting. Proceedings on Privacy Enhancing Technologies, 2015(2):46–
64, 2015.

[For65] G David Forney. Concatenated codes. 1965.

[FPK07] Jessica Fridrich, Tomáš Pevný, and Jan Kodovský. Statistically undetectable jpeg steganog-
raphy: dead ends challenges, and opportunities. In Proceedings of the 9th Workshop on Mul-
timedia & Security, MM&Sec ’07, pages 3–14, Dallas, Texas, USA. Association for Comput-
ing Machinery, 2007. isbn: 9781595938572. doi: 10.1145/1288869.1288872. url: https:
//doi.org/10.1145/1288869.1288872.

[GGA+05] Christian Grothoff, Krista Grothoff, Ludmila Alkhutova, Ryan Stutsman, and Mikhail Atallah.
Translation-based steganography. In International Workshop on Information Hiding, pages 219–
233. Springer, 2005.

[Goo22a] Google. Ddpm-bedroom-256. https://huggingface.co/google/ddpm-bedroom-256, 2022.

[Goo22b] Google. Ddpm-cat-256. https://huggingface.co/google/ddpm-cat-256, 2022.

[Goo22c] Google. Ddpm-celebahq-256. https://huggingface.co/google/ddpm-celebahq-256, 2022.

[Goo22d] Google. Ddpm-church-256. https://huggingface.co/google/ddpm-church-256, 2022.

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. Draft available
at http://www. cse. buffalo. edu/atri/courses/coding-theory/book, 2(1), 2012.

[Har18] Harveyslash. Harveyslash/deep-steganography. https://github.com/harveyslash/Deep-Steganography,
April 2018.

[HH19] SHIH-YU HUANG and Ping-Sheng Huang. A homophone-based chinese text steganography
scheme for chatting applications. Journal of Information Science & Engineering, 35(4), 2019.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[HLv02] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure steganography. In Moti
Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 77–92. Springer, Heidelberg, August
2002. doi: 10.1007/3-540-45708-9_6.

[HPR+19] Thibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan. How to subvert back-
doored encryption: security against adversaries that decrypt all ciphertexts. In Avrim Blum,
editor, ITCS 2019, volume 124, 42:1–42:20. LIPIcs, January 2019. doi: 10.4230/LIPIcs.ITCS.
2019.42.

24

http://dl.acm.org/citation.cfm?id=1251375.1251396
http://dl.acm.org/citation.cfm?id=1251375.1251396
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:209:FIN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2022:209:FIN
https://doi.org/10.18653/v1/p17-3017
http://dx.doi.org/10.18653/v1/p17-3017
https://doi.org/10.1145/1288869.1288872
https://doi.org/10.1145/1288869.1288872
https://doi.org/10.1145/1288869.1288872
https://huggingface.co/google/ddpm-bedroom-256
https://huggingface.co/google/ddpm-cat-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-church-256
https://doi.org/10.1007/3-540-45708-9_6
https://doi.org/10.4230/LIPIcs.ITCS.2019.42
https://doi.org/10.4230/LIPIcs.ITCS.2019.42

[HRB+13] Amir Houmansadr, Thomas J. Riedl, Nikita Borisov, and Andrew C. Singer. I want my voice
to be heard: IP over voice-over-IP for unobservable censorship circumvention. In NDSS 2013.
The Internet Society, February 2013.

[Hug] Hugging Face. Diffusers. https://github.com/huggingface/diffusers.

[HWJ+18] D. Hu, L. Wang, W. Jiang, S. Zheng, and B. Li. A novel image steganography method via
deep convolutional generative adversarial networks. IEEE Access, 6:38303–38314, 2018. issn:
2169-3536. doi: 10.1109/ACCESS.2018.2852771.

[JDX+21] Junpeng Jing, Xin Deng, Mai Xu, Jianyi Wang, and Zhenyu Guan. Hinet: deep image hiding
by invertible network. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 4733–4742, 2021.

[KJG+21] Gabriel Kaptchuk, Tushar M. Jois, Matthew Green, and Aviel D. Rubin. Meteor: cryptograph-
ically secure steganography for realistic distributions. In Giovanni Vigna and Elaine Shi, edi-
tors, ACM CCS 2021, pages 1529–1548. ACM Press, November 2021. doi: 10.1145/3460120.
3484550.

[Kor23] Jennifer Korn. Microsoft outlook will soon write emails for you. CNN, October 2023.

[KSC+23] Daegyu Kim, Chaehun Shin, Jooyoung Choi, Dahuin Jung, and Sungroh Yoon. Diffusion-
stego: training-free diffusion generative steganography via message projection. arXiv preprint
arXiv:2305.18726, 2023.

[KW13] Diederik P Kingma and MaxWelling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[L] Chris L. Steganography online. https://stylesuxx.github.io/steganography/.

[LCG23] Tengjun Liu, Ying Chen, and Wanxuan Gu. Deniable diffusion generative steganography. In
2023 IEEE International Conference on Multimedia and Expo (ICME), pages 67–71. IEEE,
2023.

[LDJ+14] Daniel Luchaup, Kevin P. Dyer, Somesh Jha, Thomas Ristenpart, and Thomas Shrimpton.
Libfte: a toolkit for constructing practical, format-abiding encryption schemes. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 877–891, San Diego, CA. USENIX As-
sociation, 2014. isbn: 978-1-931971-15-7. url: https : / / www . usenix . org / conference /

usenixsecurity14/technical-sessions/presentation/luchaup.

[Le03] Tri Van Le. Efficient provably secure public key steganography. Cryptology ePrint Archive,
Report 2003/156, 2003. https://eprint.iacr.org/2003/156.

[LK03] Tri Van Le and Kaoru Kurosawa. Efficient public key steganography secure against adaptively
chosen stegotext attacks. Cryptology ePrint Archive, Report 2003/244, 2003. https://eprint.
iacr.org/2003/244.

[LWZ+21] Shao-Ping Lu, Rong Wang, Tao Zhong, and Paul L Rosin. Large-capacity image steganography
based on invertible neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10816–10825, 2021.

[Mit99] Thomas Mittelholzer. An information-theoretic approach to steganography and watermarking.
In International Workshop on Information Hiding, pages 1–16. Springer, 1999.

[MLD+12] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Goldberg. Skype-
Morph: protocol obfuscation for Tor bridges. In Ting Yu, George Danezis, and Virgil D. Gligor,
editors, ACM CCS 2012, pages 97–108. ACM Press, October 2012. doi: 10.1145/2382196.
2382210.

[OYZ+20] Jonathan Oakley, Lu Yu, Xingsi Zhong, Ganesh Kumar Venayagamoorthy, and Richard Brooks.
Protocol proxy: an fte-based covert channel. Computers & Security, 92:101777, May 2020. issn:
0167-4048. doi: 10.1016/j.cose.2020.101777. url: http://dx.doi.org/10.1016/j.cose.
2020.101777.

25

https://github.com/huggingface/diffusers
https://doi.org/10.1109/ACCESS.2018.2852771
https://doi.org/10.1145/3460120.3484550
https://doi.org/10.1145/3460120.3484550
https://stylesuxx.github.io/steganography/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/luchaup
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/luchaup
https://eprint.iacr.org/2003/156
https://eprint.iacr.org/2003/244
https://eprint.iacr.org/2003/244
https://doi.org/10.1145/2382196.2382210
https://doi.org/10.1145/2382196.2382210
https://doi.org/10.1016/j.cose.2020.101777
http://dx.doi.org/10.1016/j.cose.2020.101777
http://dx.doi.org/10.1016/j.cose.2020.101777

[PHW+23] Yinyin Peng, Donghui Hu, Yaofei Wang, Kejiang Chen, Gang Pei, and Weiming Zhang. Ste-
gaddpm: generative image steganography based on denoising diffusion probabilistic model. In
Proceedings of the 31st ACM International Conference on Multimedia, pages 7143–7151, 2023.

[PM] Trevor Perrin and Moxie Marlinspike. He double ratchet algorithm. Available at https://

whispersystems.org/docs/specifications/doubleratchet/.

[PPY22] Giuseppe Persiano, Duong Hieu Phan, and Moti Yung. Anamorphic encryption: private com-
munication against a dictator. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part II, volume 13276 of LNCS, pages 34–63. Springer, Heidelberg, May 2022.
doi: 10.1007/978-3-031-07085-3_2.

[RBL+22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages 10684–10695, 2022.

[Red] Reddit. /r/aiArt. https://old.reddit.com/r/aiArt.

[Res18] Eric Rescorla. Rfc 8446 - the transport layer security (tls) protocol version 1.3. https://
datatracker.ietf.org/doc/html/rfc8446#page-160, 2018.

[RR03] Leonid Reyzin and Scott Russell. Simple stateless steganography. Cryptology ePrint Archive,
Report 2003/093, 2003. https://eprint.iacr.org/2003/093.

[RSG98] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous connections and onion routing.
IEEE Journal on Selected Areas in Communications, 16(4):482–494, May 1998. issn: 0733-8716.
doi: 10.1109/49.668972.

[Ruh17] Sylvain Ruhault. SoK: security models for pseudo-random number generators. IACR Trans.
Symm. Cryptol., 2017(1):506–544, 2017. issn: 2519-173X. doi: 10.13154/tosc.v2017.i1.506-
544.

[SAZ+18] Ayon Sen, Scott Alfeld, Xuezhou Zhang, Ara Vartanian, Yuzhe Ma, and Xiaojin Zhu. Training
set camouflage. Decision and Game Theory for Security :59–79, 2018. issn: 1611-3349. doi:
10.1007/978-3-030-01554-1_4. url: http://dx.doi.org/10.1007/978-3-030-01554-
1_4.

[SCC07] Yun Q Shi, Chunhua Chen, and Wen Chen. A markov process based approach to effective
attacking jpeg steganography. In Information Hiding: 8th International Workshop, IH 2006,
Alexandria, VA, USA, July 10-12, 2006. Revised Selcted Papers 8, pages 249–264. Springer,
2007.

[SCS+22] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes,
Tim Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-
image diffusion models with deep language understanding, 2022. arXiv: 2205.11487 [cs.CV].

[Sim83] Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In David Chaum,
editor, CRYPTO’83, pages 51–67. Plenum Press, New York, USA, 1983.

[SME20] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[SS07] Mohammad Shirali-Shahreza and M. H. Shirali-Shahreza. Text steganography in sms. 2007
International Conference on Convergence Information Technology (ICCIT 2007):2260–2265,
2007.

[SSM+06a] K. Solanki, K. Sullivan, U. Madhow, B. S. Manjunath, and S. Chandrasekaran. Provably secure
steganography: achieving zero k-l divergence using statistical restoration. In 2006 International
Conference on Image Processing, pages 125–128, October 2006. doi: 10.1109/ICIP.2006.
312388.

26

https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/
https://doi.org/10.1007/978-3-031-07085-3_2
https://old.reddit.com/r/aiArt
https://datatracker.ietf.org/doc/html/rfc8446#page-160
https://datatracker.ietf.org/doc/html/rfc8446#page-160
https://eprint.iacr.org/2003/093
https://doi.org/10.1109/49.668972
https://doi.org/10.13154/tosc.v2017.i1.506-544
https://doi.org/10.13154/tosc.v2017.i1.506-544
https://doi.org/10.1007/978-3-030-01554-1_4
http://dx.doi.org/10.1007/978-3-030-01554-1_4
http://dx.doi.org/10.1007/978-3-030-01554-1_4
https://arxiv.org/abs/2205.11487
https://doi.org/10.1109/ICIP.2006.312388
https://doi.org/10.1109/ICIP.2006.312388

[SSM+06b] Kenneth Sullivan, Kaushal Solanki, B. S. Manjunath, Upamanyu Madhow, and Shivkumar
Chandrasekaran. Determining achievable rates for secure, zero divergence, steganography. In
ICIP, pages 121–124. IEEE, 2006.

[SSM07] A. Sarkar, K. Solanki, and B. S. Manjunath. Secure steganography: statistical restoration in
the transform domain with best integer perturbations to pixel values. In IEEE International
Conference on Image Processing (ICIP), San Antonio, Texas, September 2007. url: https://
vision.ece.ucsb.edu/sites/default/files/publications/sarkar_icip07_fractional_

binwidth.pdf.

[Swa+13] Aaron Swartz et al. SecureDrop. https://github.com/freedomofpress/securedrop, 2013.

[SWM+15] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[The23] The Sage Developers. SageMath, the Sage Mathematics Software System (Version x.y.z). https:
//www.sagemath.org. 2023.

[Tor] Tor Project. The tor project: privacy and freedom online. https://www.torproject.org/.

[Unia] United Kingdom Parliament. Online safety act 2023. https://bills.parliament.uk/bills/3137.

[Unib] United States Congress. S.1409 - kids online safety act. https://www.congress.gov/bill/
118th-congress/senate-bill/1409.

[vH04] Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 323–341. Springer,
Heidelberg, May 2004. doi: 10.1007/978-3-540-24676-3_20.

[Vin22] James Vincent. Ai-generated selfies could be the next snapchat filters. The Verge, October
2022.

[VNB+17] Denis Volkhonskiy, Ivan Nazarov, Boris Borisenko, and Evgeny Burnaev. Steganographic gen-
erative adversarial networks, 2017. arXiv: 1703.05502 [cs.MM].

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
undefinedukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the
31st International Conference on Neural Information Processing Systems, NIPS’17, pages 6000–
6010, Long Beach, California, USA. Curran Associates Inc., 2017. isbn: 9781510860964.

[WGN+12] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita Borisov. Censor-
Spoofer: asymmetric communication using IP spoofing for censorship-resistant web browsing.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 121–132.
ACM Press, October 2012. doi: 10.1145/2382196.2382212.

[Wha17] WhatsApp. WhatsApp Encryption Overview. Available at https://scontent.whatsapp.net/
v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-

Whitepaper.pdf, December 2017.

[WPF13] Philipp Winter, Tobias Pulls, and Jürgen Fuß. Scramblesuit: A polymorph network protocol to
circumvent censorship. CoRR, abs/1305.3199, 2013. arXiv: 1305.3199. url: http://arxiv.
org/abs/1305.3199.

[WYL18] Pin Wu, Yang Yang, and Xiaoqiang Li. Stegnet: mega image steganography capacity with deep
convolutional network. Future Internet, 10(6):54, June 2018. issn: 1999-5903. doi: 10.3390/
fi10060054.

[Xia18] Lingyun Xiang. Reversible natural language watermarking using synonym substitution and
arithmetic coding, 2018.

[XMH+22] Youmin Xu, Chong Mou, Yujie Hu, Jingfen Xie, and Jian Zhang. Robust invertible image
steganography. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 7875–7884, 2022.

27

https://vision.ece.ucsb.edu/sites/default/files/publications/sarkar_icip07_fractional_binwidth.pdf
https://vision.ece.ucsb.edu/sites/default/files/publications/sarkar_icip07_fractional_binwidth.pdf
https://vision.ece.ucsb.edu/sites/default/files/publications/sarkar_icip07_fractional_binwidth.pdf
https://github.com/freedomofpress/securedrop
https://www.sagemath.org
https://www.sagemath.org
https://www.congress.gov/bill/118th-congress/senate-bill/1409
https://www.congress.gov/bill/118th-congress/senate-bill/1409
https://doi.org/10.1007/978-3-540-24676-3_20
https://arxiv.org/abs/1703.05502
https://doi.org/10.1145/2382196.2382212
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://scontent.whatsapp.net/v/t61/68135620_760356657751682_6212997528851833559_n.pdf/WhatsApp-Security-Whitepaper.pdf
https://arxiv.org/abs/1305.3199
http://arxiv.org/abs/1305.3199
http://arxiv.org/abs/1305.3199
https://doi.org/10.3390/fi10060054
https://doi.org/10.3390/fi10060054

[YGC+19] Z. Yang, X. Guo, Z. Chen, Y. Huang, and Y. Zhang. Rnn-stega: linguistic steganography
based on recurrent neural networks. IEEE Transactions on Information Forensics and Security,
14(5):1280–1295, May 2019. doi: 10.1109/TIFS.2018.2871746.

[YHC+09] Zhenshan Yu, Liusheng Huang, Zhili Chen, Lingjun Li, Xinxin Zhao, and Youwen Zhu. Ste-
ganalysis of synonym-substitution based natural language watermarking, 2009.

[YJH+18] Zhongliang Yang, Shuyu Jin, Yongfeng Huang, Yujin Zhang, and Hui Li. Automatically generate
steganographic text based on markov model and huffman coding, 2018. arXiv: 1811.04720
[cs.CR].

[YNY17] Jian Ye, Jiangqun Ni, and Yang Yi. Deep learning hierarchical representations for image ste-
ganalysis. IEEE Transactions on Information Forensics and Security, 12(11):2545–2557, 2017.

[YZX+24] Jiwen Yu, Xuanyu Zhang, Youmin Xu, and Jian Zhang. Cross: diffusion model makes con-
trollable, robust and secure image steganography. Advances in Neural Information Processing
Systems, 36, 2024.

[ZDR19] Zachary M. Ziegler, Yuntian Deng, and Alexander M. Rush. Neural linguistic steganography,
2019. arXiv: 1909.01496 [cs.CL].

[ZFK+98] Jan Zöllner, Hannes Federrath, Herbert Klimant, Andreas Pfitzmann, Rudi Piotraschke, An-
dreas Westfeld, Guntram Wicke, and Gritta Wolf. Modeling the security of steganographic
systems. In International Workshop on Information Hiding, pages 344–354. Springer, 1998.

[ZJG22] Maximilian Zinkus, Tushar M. Jois, and Matthew Green. SoK: cryptographic confidentiality
of data on mobile devices. PoPETs, 2022(1):586–607, January 2022. doi: 10.2478/popets-
2022-0029.

28

https://doi.org/10.1109/TIFS.2018.2871746
https://arxiv.org/abs/1811.04720
https://arxiv.org/abs/1811.04720
https://arxiv.org/abs/1909.01496
https://doi.org/10.2478/popets-2022-0029
https://doi.org/10.2478/popets-2022-0029

Table 3: The library of error correcting codes used for Pulsar.

Error Rate Outer Code Inner Code Input Size (bytes) Output Size (bits) Code Rate
0.05 GeneralizedReedSolomonCode(255, 200) HammingCode(GF(2), 3) 200 3570 0.44
0.10 GeneralizedReedSolomonCode(255, 100) HammingCode(GF(2), 3) 100 3570 0.22
0.15 GeneralizedReedSolomonCode(193, 177) BCHCode(GF(2), 51, 17) 243 9843 0.20
0.20 GeneralizedReedSolomonCode(289, 187) BCHCode(GF(2), 51, 17) 257 14739 0.14
0.25 GeneralizedReedSolomonCode(271, 183) BCHCode(GF(2), 73, 18) 228 19783 0.09
0.30 GeneralizedReedSolomonCode(255, 200) BinaryReedMullerCode(1, 7) 200 32640 0.05
0.35 GeneralizedReedSolomonCode(255, 100) BinaryReedMullerCode(1, 7) 100 32640 0.02

Algorithm 4: Optimized EstimateRate
Input: Model state st−2

Output: Difference region-based ECC rates rate
// Get error rates at each pixel

err← CalcErrors(l)
// Bucket regions based on error rates

regions← Bucketize(err, u)
for region ∈ regions do

regionErr← mean(err[region])
// Select appropriate ECC parameters

params← LibraryECC[regionErr])
rate[region]← params

Output rate

A Additional Details on Error Correction in Pulsar

Pulsar uses error correcting codes to improve the performance of the steganographic channel inside of diffusion
models. A more detailed treatment of the EstimateRate used in Pulsar can be found in Algorithm 4. Note that
our optimized EstimateRate requires the estimation of the errors in the current model state by performing
trial encoding and decoding of random messages. We define a subroutine in Algorithm 5, CalcErrors, that
performs this estimation for EstimateRate. Note that EstimateRate is parameterized by the number of buckets
in each estimate u and l, which we discuss in Appendix D.

Table 3 contains information on the concrete codes library that we built for Pulsar. This library forms
the LibraryECC in Algorithm 4.

As we discovered these codes experimentally, we make no claims about optimality. Each concatenated
code was tested on 500 inputs. The worst code achieved a decoding error probability of about 6 percent.
The inner code is written in a way that the code can be instantiated using SageMath. The outer code is
written as GeneralizedReedSolomonCode(n,k) where n is the block length and k is the dimension. The
field the code is defined over is of size 2z where z is the smallest integer such that 2z > n. When n ̸= 2z − 1
the evaluation points are chosen at random. We leave achieving concatenated codes with higher rates and
concrete correctness guarantees to future work.

29

Algorithm 5: CalcErrors
Input: Model state st−2, Number of estimates l
Output: Mean error rates at each pixel location err
for 1 ≤ g < l do

// Similar to the online phase of encoding

m
$← [0, 1]n×n

for 0 ≤ j < |m| do
if m[j] = 0 then

rt−1[j]
$← Nk0

else

rt−1[j]
$← Nk1

predt−1 ← Model(st−2)
st−1 ← Schedulert−1(st−2, predt−1; rt−1)
// Deterministic Final Schedule
predt ← Model(st−1)
img← Schedulert(st−1, predt)
// Similar to the offline phase of decoding
// Generate reference image 0

Set r0t−1
$← Nn×n

k0

Set s0t−1 ← Schedulert−1(st−2, predt−1; r
0
t−1)

pred0t ← Model(s0t−1)

img0 ← Schedulert(s0t−1, pred
0
t)

// Generate reference image 1

r1t−1
$← Nn×n

k1

Set s1t−1 ← Schedulert−1(st−2, predt−1; r
1
t−1)

pred1t ← Model(s1t−1)

img1 ← Schedulert(s1t−1, pred
1
t)

// Similar to the online phase of decoding
for 0 ≤ j < |m| do

if |img[j]− img0[j]| < |img[j]− img1[j]| then
m′[j]← 0

else
m′[j]← 1

// Save the n × n matrix of magnitudes to a list

errs[g]← abs(m−m′)

// Mean of all estimated magnitudes

Output err← mean(errs)

B Sample Pulsar Images

Figures 6 to 9 contain additional sample images from our Pulsar evaluation. In each figure, we show generated
images achieving the (a) best and (b) worst (b) encoding lengths when instantiating Pulsar with each of the
pretrained models we used in our evaluation.

30

(a) A Pulsar image which encodes 1143 bytes.

(b) A Pulsar image which encodes 100 bytes.

Figure 6: Sample Pulsar outputs for the church model.

31

(a) A Pulsar image which encodes 743 bytes.

(b) A Pulsar image which encodes 228 bytes.

Figure 7: Sample Pulsar outputs for the celebahq model.

32

(a) A Pulsar image which encodes 771 bytes.

(b) A Pulsar image which encodes 100 bytes.

Figure 8: Sample Pulsar outputs for the bedroom model.

33

(a) A Pulsar image which encodes 1557 bytes.

(b) A Pulsar image which encodes 100 bytes.

Figure 9: Sample Pulsar outputs for the cat model.

34

C Steganalysis of Pulsar

As discussed in Section 6, we ran Pulsar against two steganalysis systems, YeNet [YNY17] and SRNet [BCF18],
to experimentally validate its provable security (based on the proof in Appendix E). We ran both YeNet
and SRNet on 10000 images, where 5000 were generated by Pulsar, and 5000 were generated using the same
models as Pulsar but without any steganographic embedding. YeNet correctly classified 4895 out of these
10000 images, for an accuracy of approximately 49%. SRNet correctly classified 5003 out of these 10000
images, for an accuracy of approximately 50%.

We note that, based on our definition of security in Section 4.2, this distinguisher should have negligible
advantage, i.e., do no better than a random guess. To show this, we turn to a hypothesis test. We consider the
null hypothesis that the steganalysis methods are choosing from random; in statistical terms, the steganalyzer
is a Bernoulli random variable X with p = 0.5. We say X = 1 when the steganalyzer believes an image is
steganographic, and X = 0 when it believes an image is not. Because of the large sample size n = 10000,
we use a Normal distribution approximation.

First, we consider YeNet. The alternative hypothesis is YeNet is not a Bernoulli(0.5), i.e., is not selecting
from random. We calculate our test statistic:

Z =
X − X̄

√
n
√
V ar(X)

=
X − np√
np(1− p)

=
4895− (10000)(0.5)√

(10000)(0.5)(0.5)
= −2.1

Then, we can calculate the two-tailed p-value:

P (|Z| ≥ 2.1) = 0.036

At the α = 0.01 level of significance, we fail to reject the null hypothesis that YeNet is a Bernoulli(0.5), and
therefore cannot show that it is doing better than choosing randomly.

Next, we consider SRNet. The alternative hypothesis once again is SRNet is not a Bernoulli(0.5), i.e., is
not selecting from random. We calculate our test statistic:

Z =
X − X̄

√
n
√
V ar(X)

=
X − np√
np(1− p)

=
5003− (10000)(0.5)√

(10000)(0.5)(0.5)
= 0.06

Then, we can calculate the p-value:

P (|Z| ≥ 0.06) = 0.9522

At the α = 0.01 level of significance, we fail to reject the null hypothesis that SRNet is a Bernoulli(0.5), and
therefore cannot show that it is doing better than choosing randomly either.

We note that, for a distinguisher to reject the null hypothesis, out of 10000 images, it would have to
correctly classify somewhere outside of the range of

X̄ ± Z a
2

√
n
√
V ar(X) = (10000)(0.50)± (2.576)

√
(10000)(0.5)(0.5) = 4871.2 ≤ x ≤ 5128.8

images at the α = 0.01 level of significance.

35

Table 4: Averages from 100 trials of our u experiment.

Buckets Estimation Time (sec) Message Length (bytes)
25 x̄ = 6.26, s = 0.25 x̄ = 488.44, s = 172.05
50 x̄ = 6.43, s = 0.25 x̄ = 566.70, s = 184.05
100 x̄ = 6.45, s = 0.25 x̄ = 610.12, s = 194.24
125 x̄ = 6.47, s = 0.25 x̄ = 605.43, s = 204.59
150 x̄ = 6.48, s = 0.25 x̄ = 623.10, s = 206.37

Table 5: Averages from 100 trials of our l experiment.

Estimates Estimation Time (sec) Success Rate
1 x̄ = 6.15, s = 0.06 89.0%
3 x̄ = 6.88, s = 0.07 94.0%
5 x̄ = 7.44, s = 0.07 89.0%
10 x̄ = 8.84, s = 0.07 86.0%
30 x̄ = 14.48, s = 0.09 85.0%

D Parameter Selection

In Section 5.2, we discussed our optimized EstimateRate approach that variably encodes using different error
correcting codes based on the available entropy in the image, and in Section 5.3, we discussed how we
determined the library of codes to support this approach. There are two parameters in EstimateRate that we
have yet to determine: the number of buckets to generate for our difference regions u, and the total number
of estimates to generate l. We experimentally determine these parameters for our implementation.

Number of buckets in each estimate u. We first want to find the number of buckets to define difference
regions in EstimateRate. We can increase the number of buckets to get more granular regions, but this
increases execution time and may result in over-fitting. So, we fixed l = 1 and ran 100 iterations of
EstimateRate on Desktop for multiple candidate u values on the church model. Our results can be found in
Table 4. u = 100 appears to be the best balance between mean message length, variability of the message
length, and estimation time, so we choose that as the parameter.

Number of estimates l. The other parameter is the number of estimates generated during EstimateRate.
We want to know if increasing offline estimates improves the online success rate—the percentage of encoded
images that can be successfully decoded. Each estimate involves an iteration of a model, so we want to
ensure that these additional estimates are worth the longer computation. In each trial, we fix u = 100
(based on our evaluation for u above), and run EstimateRate , varying l. We then encode a message using
the estimated regions and see if the generated image decodes back into the same message. This shows if
more estimates lead to a better chance of a successful encoding. We run 100 of these trials on Desktop and
the church model, and show our results in Table 5. Interestingly, our results demonstrate that additional
estimates do not meaningfully improve the success probability of encoding. We use l = 1 for the remainder
of our evaluation because of its faster speed, but note that l = 3 is also a candidate option due to its higher
success rate.

36

E Proof of Security for Pulsar

Correctness. Observe that the correctness of our scheme is not guaranteed with overwhelming probability
if the encode algorithm outputs an image without checking that the decode algorithm will succeed. However,
it is trivial to modify the encoding algorithm to locally run the decode algorithm and restart as necessary.
With a polynomial number of attempts, the probability that the encoder can find no randomness that permits
encoding is vanishingly small in the security parameter. As such, correctness can be guaranteed with this
trivial modification.

Security. To prove security, we show that we can reduce the security of Pulsar to the security of the PRG
that underlies our construction. We do this in two steps for clarity. First, we reduce the security of Pulsar
to the security of a non-standard version of the real-or-random PRG security game in which the adversary
either gets access to two oracles that produce honest randomness or two instances of the PRG under different
keys. Second, we show that this non-standard game reduces to the standard real-or-random PRG security
game.

Step 1. Consider the following version of the real-or-random security experiment, which we call Experiment
1 : a challenger flips a coin b ∈ {0, 1}. If b = 0, then the polynomial time adversary A is given access to two
oracles that, when prompted, produce honest, uniform randomness. Otherwise, if b = 1, then A is given
access to the oracles that produce output from PRFk0 and PRFk1 when prompted, where k0, k1 are sampled
uniformly from the key space. The adversary can interact with these oracles at will, and then must output
a guess b′. If b′ = b, then adversary wins, and loses otherwise. We say the advantage of the adversary in
Experiment 1 is the gap between probability that the adversary wins and 1

2 .
We now show that the security of Pulsar reduces to the security of Experiment 1. Specifically, for an

adversary A0 against Pulsar, we can construct a adversary A1 with the same advantage in Experiment 1
that runs A0 as a subroutine:

– A1 is initialized with access to either oracles that produce true randomness or produce output from PRGs.

– Whenever A0 makes a query to the encoding oracle, A1 produces a response using its two oracles. That
is, A1 follows Pulsar encoding algorithm, but each time it would draw randomness from Nk0

or Nk1
, it

draws that randomness from either its first or second oracles respectively.

– When A0 outputs a guess b′, A1 outputs b′ as its guess.

Notice that in the case where A1 is initialized with access to oracles that produce true randomness, then
all queries made by A0 are answered with samples distributed exactly according OD(·, ·). Similarly, if A1 is
initialed with access to oracles that produces output from PRGs, then all queries made by A0 are answered
with samples distributed exactly according to EncodeD(k, ·, ·)). As such, if A0 is a ppt. algorithm such that∣∣∣Pr[AEncodeD(k,·,·))

0D
= 1]− Pr[AOD(·,·)

0D
= 1]

∣∣∣ > negl(λ),

then A′ has the same, non-negligible advantage in Experiment 1.

Step 2. Next, we show that Experiment 1 outlined in Step 1 reduces to the standard real-or-random security
experiment. To see this, note that when A1 above is initialized with access to two oracles that produce
output from PRGs, we can replace the second oracle with an oracle that produces uniform randomness. We
call this Experiment 2. If A1 could distinguish Experiment 1 from Experiment 2, we can trivially construct
an adversary A2 for the standard real-or-random experiment:

– A2 is initialized with access to an oracle that either produces true randomness or produces output from a
PRG.

– A2 samples a key for the first oracles k

– Whenever A1 makes a query to the first oracle, A2 answers this query with output from the PRG using
key k.

37

– Whenever A1 makes a query to the second oracle, A2 answers this query by querying its own oracle and
returning the result.

– When A1 outputs a guess b′, A2 outputs b′ as its guess.

Notice that if A2 is initialized with access to an oracle that produces pseudorandom output, then all
queries made by A1 are answered according to the initial experiment unless the key k sampled by A2 is
exactly the same as the key sampled by its oracle. This happens with inverse probability to the key space,
which we assume is exponential in the security parameter. Similarly, if A2 is initialized with access to an
oracle that produces true random output, then all queries made by A1 are answered according to this new
experiment. Thus, A1 can not distinguish between these two experiments with non-negligible advantage.

Finally, we show that if A1 has non-negligible advantage in Experiment 2, then we can use it to construct
an adversary in the standard real-or-random security experiment. Specifically, we construct this adversary
A3 as follows:

– A3 is initialized with access to an oracle that either produces true randomness or produces output from a
PRG.

– Recall that in Experiment 2, A1 is given access to a first oracle that is either true randomness or pseudo-
randomness and a second oracle which is always true randomness.

– Whenever A1 makes a query to its first oracle, A3 answers this query by querying its own oracle and
returning the result.

– Whenever A1 makes a query to its second oracle A3 samples uniform randomness and returns that result
to A1

– When A1 outputs a guess b′, A3 outputs b′ as its guess.

Notice that whenever A3 is initialized with access to an oracle that produces true randomness, then A1’s
queries are answered in the same manner as when both its oracles are true randomness. Similarly, whenever
A3 is initialized with access to an oracle that produces pseudorandomness, then A1’s queries are answered
in the same manner as when one of its oracles is true randomness and the other is pseudorandom. Thus,
A1’s advantage in Experiment 2 must be bounded by A3’s advantage in the real-or-random game. Because
we assume that there exists no adversary with non-negligible advantage in the real-or-random PRG game,
this means that A1 cannot have non-negligible advantage in Experiment 2. This concludes our proof.

38

	Introduction
	Related Work
	Diffusion Models & Steganography
	Diffusion Models
	A Motivating Deployment: Dead Drops
	Integrating Steganography

	The Pulsar Steganography Scheme
	Intuition
	Formal Definitions
	Pulsar Description

	Error Correction for Pulsar
	Channel Error Structure
	Variable Error Correction
	Identifying Candidate Codes

	Implementation & Evaluation
	Better Steganography for Diffusion Models
	Conclusion
	Additional Details on Error Correction in Pulsar
	Sample Pulsar Images
	Steganalysis of Pulsar
	Parameter Selection
	Proof of Security for Pulsar

