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Abstract. The Number Theoretic Transform (NTT) is a powerful mathematical
tool with a wide range of applications in various fields, including signal processing,
cryptography, and error correction codes. In recent years, there has been a growing
interest in efficiently implementing the NTT on hardware platforms for lattice-
based cryptography within the context of NIST’s Post-Quantum Cryptography
(PQC) competition. The implementation of NTT in cryptography stands as a
pivotal advancement, revolutionizing various security protocols. By enabling efficient
arithmetic operations in polynomial rings, NTT significantly enhances the speed and
security of lattice-based cryptographic schemes, contributing to the development of
robust homomorphic encryption, key exchange, and digital signature systems.
This article presents a new implementation of the Number Theoretic Transform for
FPGA platforms. The focus of the implementation lies in achieving a flexible trade-
off between resource usage and computation speed. By strategically adjusting the
allocation of BRAM and DSP resources, the NTT computation can be optimized for
either high-speed processing or resource conservation. The proposed implementation
is specifically designed for polynomial multiplication with a degree of 256, accom-
modating coefficients of various bit sizes. Furthermore, the uniform factor graph
method was utilized as an alternative to the Cooley-Tukey graph method, resulting in
a notable simplification of BRAM addressing procedures. This adaptability renders it
suitable for cryptographic algorithms like CRYSTALS-Dilithium and CRYSTALS-Kyber,
which use 256-degree polynomials.
Keywords: Number Theoretic Transform · Post-Quantum Cryptography · Hardware
Cryptography · FPGA Implementation · Polynomial Multiplication

1 Introduction
Quantum computers provide a severe threat to the information security industry’s fast-
evolving landscape. The security of sensitive data and communication is put at risk by
the possibility of these computer systems breaking established encryption techniques. The
necessity to develop new cryptographic techniques that can prevent both classical and
quantum attacks has given rise to the area of post-quantum cryptography with the arrival
of practical quantum computers.

The National Institute of Standards and Technology (NIST) has organized a comprehen-
sive standardization process for post-quantum cryptography in response to the escalating
significance of quantum-based security threats and their potential to conventional crypto-
graphic systems. Several algorithms are submitted from all over the world. These candidates
include various mathematical techniques, such as lattice-based cryptography, code-based
cryptography, multivariate polynomial cryptography, and more. Through an inclusive and
detailed assessment, NIST seeks to identify cryptographic methods that exhibit robust
resistance against potential quantum attacks. After an extensive standardization process,
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PQC competition’s winners were announced in July 2022. Lattice-based cryptographic algo-
rithms have become strong candidates in post-quantum cryptography competitions because
they offer a good balance of security and speed [ADPS16,DLL+17,BDK+18,DKRV18].
CRYSTALS-Dilithium was selected as a post-quantum secure digital signature algorithm,
while CRYSTALS-Kyber was chosen as the public key encryption and key establishment
algorithm [DLL+17,BDK+18].

Lattice-based cryptography employs complex mathematical structures known as lattices
to build robust security measures for data protection [BBK16]. Within this framework,
polynomial multiplication is a fundamental operation that contributes to the effectiveness
and efficiency of cryptographic algorithms. These cryptographic methods balance pro-
tecting sensitive information and maintaining computational performance by integrating
polynomial multiplication with lattice-based techniques [BDK+18,ABB+20]. Homomor-
phic encryption represents another crucial application for polynomial multiplication. This
advanced encryption technique allows for computations to be performed on encrypted data
without needing to decrypt it first [GH10,FV12].

The Number Theoretic Transform is a powerful and efficient polynomial multiplication
technique. It leverages number theory principles to efficiently compute polynomial products
by transforming the polynomial multiplication problem into a problem in the complex
number domain. By converting the convolution operation into a point-wise multiplica-
tion operation in the transformed domain, NTT significantly reduces the computational
complexity, making it an essential tool for applications requiring efficient polynomial
multiplication. Its effectiveness in lattice-based cryptography and related fields highlights
the critical role NTT plays in enhancing the performance of cryptographic algorithms and
mathematical computations.

Given that polynomial multiplication is pivotal in both homomorphic encryption and
lattice-based cryptographic schemes, there’s a significant interest among researchers in
this field. This increase in interest has led to the development of various implementation
techniques aimed at achieving optimized solutions on both software and hardware plat-
forms [NDG19, MÖS20, AHY22, CYY+22]. While these advances not only increase the
efficiency of polynomial multiplications, they also contribute enormously to the efficiency
of cryptographic algorithms [BHK+22].

Our contributions: We have developed a novel and flexible architecture designed
specifically for implementing both forward and inverse NTT operation on FPGA platforms.
Our focus of the implementation was achieving a flexible trade-off between resource usage
and computation speed.

• We introduce a new FPGA implementation architecture for NTT operation. We have
developed a run-time configurable butterfly unit capable of supporting Cooley-Tukey,
Gentleman-Sande, and pointwise multiplication operations simultaneously. This
design feature provides us the flexibility to use the same butterfly unit for both
forward and inverse NTT computations, as well as point-wise multiplications during
run-time.

• The number of butterfly units used in the design is configurable and can be set at
compile-time. This parameter directly impacts the utilization of Block RAM (BRAM)
and Digital Signal Processors (DSPs) within the design. Consequently, depending
on specific requirements, it can be configured for either high-speed computation
or resource conservative design. Using more butterfly units results in enhanced
processing speed but costs a higher consumption of BRAM and DSP resources.

• We have used a run-time configurable Montgomery modular multiplier, capable of
effectively multiplying coefficients of polynomials in R up to 31-bit in the butterfly
units. Instead of using Cooley-Tukey or Gentleman-Sande methods, we preferred
to use constant-geometry [Pea68] method for easy to address BRAMs. Our design
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offers an adaptable and generic form for performing NTT operations on polynomials
with a degree of 256, supporting coefficients up-to 31 bits.

Structure of the paper: This paper is structured as follows: Section 2 provides a
brief overview of the PQC (Post-Quantum Cryptography) competition, lattice problems,
and selected algorithms. In Section 3 our work is described in depth by providing a
comprehensive description of the processes and techniques. Section 4 presents our FPGA
results and compares them with those of other researchers. Finally in section 5, we conclude
our study and discuss future work.

2 Background
In this section, we provide introductory information about the PQC competition, focusing
on well-known lattice-based problems, and the winners of these competitions, namely
CRYSTALS-Kyber and CRYSTALS-Dilithium. Then, we will emphasize the significance of
the NTT structure in these contexts.

2.1 PQC Competition
The rapid enhancement of quantum computing technologies has raised significant security
concerns for widely-used public key cryptosystems, such as RSA and ECDSA, which are
vulnerable to quantum attacks. To prevent these emerging threats, NIST initiated a
competition in 2016. This global challenge aimed to standardize quantum-secure algorithms
for digital signature algorithm and key encapsulation mechanisms (KEM). A wide variety
of applications were submitted to the competition with 69 different algorithms from all over
the world. These entries exhibited a variety of quantum-secure structures, including lattice-
based, code-based, multivariate-based, hash-based, and isogeny-based cryptosystems.

Following three rounds of evaluation and elimination, the competition led to sig-
nificant developments in the field of quantum-secure cryptography. On July 5, 2022,
NIST announced the standardization of CRYSTALS-Kyber, a lattice-based algorithm, as
the chosen Key Encapsulation Mechanism (KEM) algorithm [BDK+18]. Additionally,
CRYSTALS-Dilithium, Falcon, and SPHINCS+ were declared as the winners for standard
digital signature algorithm [DLL+17].

Except for SPHINCS+, which is a hash-based algorithm, all other algorithms selected
by NIST were of the lattice-based. The result of this competition clearly showed that
lattice-based systems were the more preferred systems.

2.2 Lattice Problems
Lattice-based cryptography is an area of study in cryptographic research that builds security
primitives upon the hardness of computational problems in lattices. These problems, often
related to the difficulty of finding the shortest vector in a lattice or its closest variant,
have been shown to be resistant against quantum attacks, made lattice-based schemes
potential candidates for post-quantum cryptography. Both CRYSTALS-Dilithium and
CRYSTALS-Kyber, the winners of PQC competition, are based on computational problems
in lattices [BDK+18], [DLL+17].

Definition 1 (Learning with errors (LWE) [Reg05]). The problem is stated in 2005 by
Regev. Given a polynomial number of samples in the form (a, ⟨a, s⟩ + e), it becomes
computationally infeasible to find the secret vector s ∈ Zn

q . In this formulation, the vector
a ∈ Zn

q is selected uniformly at random, and the error term e is taken from a chosen error
distribution ϕ.
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Cryptosystems based on the LWE [LPR13] problem often require extensive matrix
operations, leading to high computational costs and larger key sizes. To decrease larger
key sizes, Ring-LWE [LS15] and Module-LWE are introduced.

Definition 2 (Ring-LWE). The Ring-LWE problem is proposed in 2013 by Lyubashevsky.
Let us define Rq = Zq[x]/(xn + 1) as the ring of polynomials, with n being a power of 2.
The Ring-LWE problem is formulated as follows: given pairs of the form (a, a · s + e), it is
computationally infeasible to recover the secret polynomial s ∈ Rq. Here, the polynomial
a ∈ Rq is chosen uniformly at random, and the error polynomial e’s coefficients are small,
comes from the error distribution ϕ.

Definition 3 (Module-LWE). The Module-LWE problem is introduced in 2015. The
Module-LWE problem is characterized by the difficulty in deducing a secret vector s ∈ Rk

q

given samples in the form (a, aT s + e). In this scenario, the vector a ∈ Rk
q is selected

uniformly at random from the ring Rk
q , and the error polynomial e is composed of coefficients

that are small, derived from the error distribution ϕ. This formulation of the Module-LWE
problem highlights the challenge in recovering the secret vector s under these conditions.

Both CRYSTALS-Dilithium and CRYSTALS-Kyber are algorithms that are based on the
Module-LWE problem.

2.3 CRYSTALS-Dilithium

The CRYSTALS-Dilithium algorithm has been selected by NIST as a standard quantum-
secure digital signature algorithm, with the announcement made in July 2022. The
pseudocode template of the algorithm is presented in Algorithm 1. As previously mentioned,
this algorithm is based on the Module-Learning with Errors problem. Dilithium operates
within the ring Zq[X]/(X256 + 1), where q is set to 223 − 213 + 1, which is 8380417.

The polynomials utilized in the algorithm consist of 256 coefficients, each belonging to
Zq. Each coefficient can be accommodated within a 23-bit register. Consequently, each
polynomial can be represented as a product of 256× 23 = 5888 bits, which is equivalent to
736 bytes.

CRYSTALS-Dilithium algorithm consists of extensive matrix multiplications. For
instance, the multiplication As1, where A is a matrix in Rk×l

q , and s1 is a vector in Sl
η.

The values of k and l vary according to the desired security level.

(k, l) =

 (4, 4), if security level = 1
(6, 5), if security level = 3
(8, 7), if security level = 5


Assuming we are operating at security level 5, A contains 8x7 = 56 polynomials, each

with 256 coefficients. These coefficients are elements of Zq. The multiplication of A and s1
comes with a huge computational cost.

Let A be a k × l = (8, 7) matrix and s1 be a vector of length l = 7 in Sη. The matrix
multiplication As1 is given by:

A =


a11 a12 · · · a1l

a21 a22 · · · a2l

...
...

. . .
...

ak1 ak2 · · · akl

 , s1 =


s1
s2
...
sl


The result of the multiplication A · s1 is:
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t = A · s1 =


a11 · s1 + a12 · s2 + · · ·+ a17 · s7
a21 · s1 + a22 · s2 + · · ·+ a27 · s7

...
a81 · s1 + a82 · s2 + · · ·+ a87 · s7


There are 56 distinct polynomial multiplication calculations required to determine

the value of t. As can be observed, the algorithm involves numerous other multiplication
operations as well, many of which are highlighted in the pseudo-code 1.

Both the speed of the algorithm and the resource utilization are completely influenced
by polynomial multiplications. Consequently, accelerating the multiplication operation
plays a critical role in enhancing the overall efficiency of the algorithm.

2.4 CRYSTALS-Kyber

The CRYSTALS-Kyber algorithm has been selected by NIST as a standard quantum-secure
public-key encryption and key-establishment algorithm, with the announcement made
in July 2022. The pseudocode template of key generation, encryption and decryption of
the algorithm is presented in Algorithm 2. As previously mentioned, this algorithm is

Algorithm 1 Template for CRYSTALS-Dilithium Digital Signature Algorithm [DLL+17]
1: function Gen
2: A← Rk×l

q

3: (s1, s2)← Sl
η × Sk

η

4: t := As1 + s2 ▷ NTT Multiplication
5: return (pk = (A, t), sk = (A, t, s1, s2))
6: end function

7: function Sign(sk, M)
8: z := ⊥
9: while z = ⊥ do

10: y ← Sl
γ1−1

11: w1 := HighBits( Ay , 2γ2) ▷ NTT Multiplication
12: c ∈ B60 := H(M∥w1)
13: z := y + cs1 ▷ NTT Multiplication
14: if ∥z∥∞ ≥ γ1 − β or
15: ∥LowBits( Ay − cs2 , 2γ2)∥∞ ≥ γ2 − β then ▷ NTT Multiplication
16: z := ⊥
17: end if
18: end while
19: return σ = (z, c)
20: end function

21: function Verify(pk, M, σ = (z, c))
22: w′

1 := HighBits( Az − ct , 2γ2) ▷ NTT Multiplication
23: if ∥z∥∞ < γ1 − β and c = H(M∥w′

1) then
24: return True
25: else
26: return False
27: end if
28: end function
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also based on the Module-Learning with Errors problem, just like CRYSTALS-Dilithium.
CRYSTALS-Kyber operates within the ring Zq[X]/(X256 + 1), where q is set to 3329.

The polynomials utilized in the algorithm consist of 256 coefficients, each belonging to
Zq. Each coefficient can be accommodated within a 12-bit register. Consequently, each
polynomial can be represented as a product of 256× 12 = 3072 bits, which is equivalent to
384 bytes.

Algorithm 2 Template for CRYSTALS-Kyber Key Encapsulation Mechanism [BDK+18]
1: function Kyber.CPA.KeyGen
2: ρ, σ ← {0, 1}256

3: A ∼ Rk×k
q := Sam(ρ)

4: (s, e) ∼ βk
η × βk

η := Sam(σ)
5: t := Compressq( A s + e, dt) ▷ NTT Multiplication
6: pk := (t, ρ), sk := s
7: end function

8: function Kyber.CPA.Enc(pk := (t, ρ), m ∈M)
9: r ← {0, 1}256

10: t := Decompressq(t, dt)
11: A ∼ Rk×k

q := Sam(ρ)
12: (r, e1, e2) ∼ βk

η × βk
η × βη := Sam(r)

13: u := Compressq( AT r + e1, du) ▷ NTT Multiplication
14: v := Compressq2( tT r + e2 + q

2 ·m, dv) ▷ NTT Multiplication
15: return c := (u, v)
16: end function

17: function Kyber.CPA.Dec(sk := s, c = (u, v))
18: u := Decompressq(u, du)
19: v := Decompressq(v, dv)
20: return Compressq(v − sT u , 1) ▷ NTT Multiplication
21: end function

As highlighted, CRYSTALS-Kyber algorithm also consists of huge matrix multiplications,
which both time and resource consuming.

2.5 NTT and NTT-parameters of Winners
Similar to the Fast Fourier Transform (FFT), NTT operates on sequences of numbers
but focuses on modular arithmetic within a given number system. Let p be a prime
number, and ω be a primitive n-th root of unity modulo p, where n is the length of the
input sequence. The NTT converts a sequence {a0, a1, . . . , an−1} into another sequence
{A0, A1, . . . , An−1}, where

Ak =
n−1∑
j=0

aj · ωjk (mod p)

This transformation enables efficient operations in the frequency domain, allowing for
the analysis and manipulation of data in a different representation. Lets assume that two
polynomials a = {a0, a1, . . . , an−1} and b = {b0, b1, . . . , bn−1} will be multiplied. The time
complexity of polynomial multiplication is O(n2) if schoolbook technique is used. Utilizing
NTT technique necessitates the execution of the forward NTT operation on polynomial a,
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followed by its application on polynomial b. Subsequently, a point-wise multiplication is
performed on the coefficients of polynomials a and b. Upon completion of these operations,
the inverse NTT is employed. Consequently, the polynomial multiplication of a and b
is effectively computed. NTT provides O(n log n) time complexity, which is much more
efficient than schoolbook technique.

Polynomial multiplication is generally based on two different parameters:

• n: the degree of the polynomial ring

• k: the bit length of the coefficient modulus

While homomorphic encryption schemes use large n and k parameters for polynomial
multiplication, ranging from n = 1024 to n = 32768 and k = 14 to 60. Dilithium uses
(n,k) = (256,23); Kyber uses (n,k) = (256,12).

Post-quantum cryptographic algorithms and homomorphic encryption schemes use
NTT operation for the algorithm’s efficiency. Therefore, several NTT implementations
are designed and proposed with different implementation concerns for several platforms.
Run-time reconfigurable NTT multiplication is proposed with supporting six different
parameter sets [MÖS20] for FPGA platforms. Instead of applying the Cooley-Tukey
algorithm, the constant-geometry-based NTT operation is implemented for ASIC platforms
[BUC19]. There also several optimized NTT implementations for software [AHY22] and
GPU [OEM+21] platforms.

3 The Proposed Architecture for NTT
In this section, we provide a detailed exploration of our design, focusing on its key
components and overall architecture. We begin with Montgomery multiplication. Following
this, we delve into the internal structure of the butterfly unit and our proposed NTT
architecture.

3.1 Montgomery Multiplication
Montgomery multiplication is a technique commonly used in modular arithmetic and crypto-
graphic operations, particularly in modular exponentiation and elliptic curve cryptography.
It aims to accelerate modular multiplications by reducing the number of expensive modular
divisions. While several modular multiplication algorithms exist, including the Barrett and
Karatsuba reduction methods, we selected the Montgomery algorithm due to its fulfillment
with our design criteria. In Montgomery multiplication, the input operands are first
transformed into a new representation known as the Montgomery domain, which simplifies
the modular reduction step. The core of the algorithm involves a series of additions and
bit-wise operations.

Since we work with signals in the FPGA, we can work on numbers of any bit length we
want. While each coefficient is stored in a 32-bit register for Dilithium parameters in the
software, we used 23-bit registers for FPGA. This choice allowed us to set the Montgomery
constant as 223 instead of 232. As a result, when we transform a polynomial into the NTT
domain, we obtain results that differ from the reference C-Code provided by the Dilithium
designers [DLL+17]. However, when we perform the complete multiplication, we achieve
the same result.

3.2 Proposed Butterfly Unit
The butterfly unit is a fundamental building block in the NTT operation. It performs the
essential complex multiplication and addition operations that contribute to the transforma-
tion of input data into NTT-domain coefficients. We have designed a pipelined-butterfly
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unit such that it can be used both in forward and inverse NTT operation. Additionally,
our proposed butterfly unit provides pointwise multiplication. Figure 1 shows the internal
structure of the proposed butterfly unit. It receives four input parameters, denoted as
a, b, w, mode, and produces two outputs, a′ and b′. a and b are the coefficients of the
polynomial, where w is the corresponding twiddle factor. mode is used for encoding
behaviour of the module. It is 2-bit, where ”00” denotes forward NTT, ”01” denotes
inverse NTT, and ”10” denotes point-wise multiplication. We used 7-stage pipeline delay
in butterfly units to increase the clock frequency.

a

b

w

a'

b'

mode

00

01

others

00

others

00

others

7-Cycle 

(twiddle factor)

2

Pipeline Delay

Montgomery
Mult

7-Cycle
Pipeline Delay

Figure 1: The Proposed Butterfly Unit

3.3 Cooley-Tukey Algorithm

The Cooley-Tukey algorithm is a widely used method for efficiently computing the NTT
and its inverse NTT. It employs a divide-and-conquer approach by recursively breaking
down a NTT of any composite size N = N1 ×N2 into smaller NTTs of sizes N1 and N2.
This iterative process continues until the base case of N = 2 is reached, at which point
the NTT computation can be efficiently carried out using butterfly operations. These
butterfly operations involve combining the results of the smaller NTTs to produce the final
NTT result. The Cooley-Tukey algorithm significantly reduces the number of complex
multiplications required compared to the straightforward computation of the NTT. Figure
2 shows the flow of the algorithm for a polynomial of degree 8.

3.4 Constant-Geometry based NTT

Instead of using the Cooley-Tukey method, we used constant-geometry based graph to
perform NTT operation. The Cooley-Tukey method is a good practice for software
platforms since it has a recursive design. However, implementing recursive methods
commonly brings more cost to hardware platforms. In every stage, the butterfly unit input
comes from different addresses of BRAM. We would need to construct an address arranger
to rearrange the addresses, which also comes with resource costs. However, every stage
rearrangements are the same in a constant-geometry based graph [Pea68]. It also provides
flexibility on number of butterfly units. Based on our choice of the number of butterfly
units, the number of BRAMs increases correspondingly; however, this accelerates NTT
operation. Figure 3 shows the flow of the algorithm for a polynomial of degree 8.
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Figure 2: Cooley-Tukey Graph based NTT operation for a polynomial degree 8.
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Figure 3: Constant-Geometry based NTT operation for a polynomial degree 8.

3.5 NTT Memory Architecture

To make the best use of our butterfly units, we had to increase the number of Block RAMs
(BRAMs) by two times. We used true-dual port BRAMs for this expansion. These BRAMs
allow us to access two different addresses at the same time in just one cycle. We planned
this setup so that the coefficients of each polynomial are evenly spread out over the first
half of the BRAMs. In every computational cycle, we take one coefficient from the top
part of a BRAM and another from the middle. These two coefficients are then sent to
their own butterfly units for processing. After that, the outputs from the butterfly units
are directly saved into the second half of the BRAMs.

We have developed pipelined butterfly units to enhance performance. The latency of
each butterfly unit is a 7-cycle. Additionally, reading and writing to the corresponding
BRAM incurs an extra 4-cycle delay. Thus, in each stage, the total cost of utilizing a
butterfly unit is 11-cycle. Overall cycle count for one stage depends on the number of
butterfly units used in the design. For polynomials with 256 coefficients, there are 8 stages.
Additionally, there is a 3-cycle overhead for initializing and finalizing the NTT operation.
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[1]

[127]

[2]

[126]

[3]

[125]

[...] [0]

[128]

[127]

[0]

[1]

[2]

[3][3]

[1]

[127]

 7-Cycle Pipelined BFU 

Figure 4: The internal process of butterfly units, where number of butterfly unit (η) is 2.

The derived formula for forward NTT is as follows:

8 ·
(

256
2 ·#BFU

+ 11
)

+ 3 = 1024
#BFU

+ 91 cycles.

In the inverse NTT process, we need to do pointwise multiplication at the end of the
8th stage. The number of cycles this multiplication takes depends on how many butterfly
units (BFUs) we use. Our butterfly units are designed to handle pointwise multiplication
along with forward and inverse modular operations efficiently. This means that the cycles
needed for multiplying each coefficient is calculated as 256

#BFU . 11-cycle come from butterfly
unit latency. There’s also an extra 3-cycle needed at the beginning and end of the inverse
NTT operation for start and exit states.

The formula we use for inverse NTT is as follows:

8 ·
(

256
2 ·#BFU

+ 11
)

+
(

256
#BFU

)
+ 11 + 3 = 1024

#BFU
+ 256

#BFU
+ 102

= 1280
#BFU

+ 102 cycles.

Algorithm 3 presents the pseudo-code we developed. To explain in more detailed, we
have shown scenarios when two and four butterfly units are used. Our design supports
any number of butterfly units power of two.

3.5.1 2-Butterfly Unit Scenario

In Figure 5, we illustrate the internal structure of the NTT operation, stage by stage.
Consider the case where we perform the forward NTT operation on a polynomial with
256 coefficients, using 2 butterfly units (#BFU). The first 128 coefficients are stored in
the first BRAM, and the next 128 in the second BRAM. The first BFU takes its inputs
from the first elements of the first and second BRAMs. The second BFU’s inputs are
the 64th elements of these BRAMs. This pattern is shown in detail in Figure 5. The
results from the BFUs are then sent to the corresponding BRAMs. Specifically, the first
BFU sends its results to the third BRAM, and the second BFU’s outputs go to the fourth
BRAM. In subsequent stages, the BFU inputs are taken from the third and fourth BRAMs,
alternating in each stage. After eight stages, the forward NTT operation on the polynomial
is complete. As depicted, only four BRAMs are utilized for storing coefficients, with an
additional BRAM reserved for the twiddle factors.
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Algorithm 3 Constant Geometry Based NTT Operation Algorithm
Require: Polynomial a(x) ∈ Rq, η number of used butterfly unit and n-th primitive root

of unity ωn ∈ Zq

Ensure: Polynomial a′(x) ∈ Rq such that a′(x) = NTT (a(x))
1: x← 0
2: for i in 0 to η − 1 do
3: for j in 0 to 256/η − 1 do
4: RAM [i][j]← ai∗(256/η)+j ▷ Fills the RAMs with coefficients
5: RAM [i + η][j]← 0 ▷ Generate other RAMs, Overall we need 2η RAMs
6: end for
7: end for
8: for i in 0 to 511 do
9: W [i]← ωi

n2⌈log2q⌉ mod q ▷ Calculates twiddle factors
10: end for ▷ NTT operation starts
11: for s in 0 to 7 do ▷ Keeps the stage counter
12: for j in 0 to (256/2η)− 1 do
13: for i in 0 to (η/2)− 1 do
14: ω0 ←W [27−s(1 + 2(bitRev((i ∗ 256/η) mod 2s, s)))]
15: ω1 ←W [27−s(1 + 2(bitRev((i ∗ 256/η + 256/(2η)) mod 2s, s)))]
16: a0 ← RAM [i][j], b0 ← RAM [i + η/2][j]
17: a1 ← RAM [i][j + 256/η], b1 ← RAM [i + η/2][j]
18: c0, d0 ← BFU(a0, b0, w0), c1, d1 ← BFU(a1, b1, w1) ▷ Butterfly Operation
19: RAM [2i + η][2x]← c0
20: RAM [2i + η][2x + 1]← d0
21: RAM [2i + 1 + η][2x]← c1
22: RAM [2i + 1 + η][2x + 1]← d1
23: x← x + 1
24: end for
25: end for
26: for i in 0 to η/2− 1 do
27: RAM [i]← RAM [i + η]
28: end for
29: end for
30: for i in 0 to η − 1 do
31: for j in 0 to 256/η − 1 do
32: a′

i∗(256/η)+j ← RAM [i][j] ▷ Constructs the output polynomial
33: end for
34: end for

3.5.2 4-Butterfly Unit Scenario

In Figure 6, we showed the internal structure of the NTT operation stage by stage. Let
us consider the scenario where the forward NTT operation of a polynomial comprising
256 coefficients is undertaken, employing a designated butterfly unit count (#BFU) of 4.
The initial 64 coefficients will be allocated to the first BRAM, followed by the subsequent
64 coefficients to the second BRAM, and so forth, maintaining this pattern. The input
of the first BFU is the first element of the first BRAM and the first element of the third
BRAM. The inputs of the second BFU will be the 32nd elements of the first BRAM and
32nd elements of the third BRAM. The pattern is detailed in Figure 6. The results of
BFUs will be directed to the corresponding BRAMs. For the first BFU, the results will be
directed to the fifth BRAM. The output of the second BFU will be moved to the sixth
BRAM. In the next stage, the inputs of the BFUs will come from the fifth, sixth, seventh,
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Figure 5: Internal Structure of NTT Operation, where number of butterfly unit (η) is 2.

and eighth BRAMs. The BRAMs will be used vice-versa in each stage. After eight stages,
the forward NTT operation of the given polynomial will be computed.
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Figure 6: Internal Structure of NTT Operation, where number of butterfly unit (η) is 4.

4 Results
This section presents the results of our proposed memory-speed trade-off implementation
of NTT operation within the CRYSTALS-Dilithium algorithm. Our approach is distinct
in its ability to be used according to specific requirements, balancing between memory
efficiency and fast performance. While our implementation may not claim the title of
being the most compact or the fastest in absolute terms, its true strength lies in its
versatile configurability. This adaptability allows us to optimize the design based on the
specific needs of the application, whether prioritizing a smaller memory footprint or seeking
enhanced processing speed.

Our results showcase that, in certain configurations, our design achieves greater com-
pactness compared to some existing implementations, while in other setups, it outperforms
competitors in speed. Our implementation holds its ground when compared with other
research in the field, demonstrating comparable, if not superior, performance in various as-
pects. The comparative analysis presented here not only underscores the relative strengths
of our design but also its potential as a flexible solution adaptable to a wide range of
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cryptographic applications.By striking a balance between compactness and speed, our
design becomes a crucial design in the FPGA-based NTT operation.

Table 1: Performance Results of The Proposed Design for Forward NTT Operation, where
(n,k) = (256,23) on Virtex UltraScale+

#BFU LUT FF BRAM DSP Cycles
2 1601 699 5 10 512+91 = 603
4 3080 1279 10 20 256+91 = 347
8 5496 2463 20 40 128+91 = 219
16 11558 4912 40 80 64+91 = 155
: : : : : :

Table 1 and Table 2 provide a comprehensive overview of the outcomes obtained from
our implementations. In Table 1, we present the results of the forward NTT implementa-
tion, focusing on memory consumption, execution time, and achieved throughput. Our
proposed trade-off mechanism allows for a fine adjustment between memory utilization
and processing speed, catering to diverse application requirements. The variation in
memory-speed trade-off is systematically explored, highlighting the flexibility of our ap-
proach. Additionally, Table 2 illustrates the outcomes of the inverse NTT implementation,
mirroring a similar analysis with a specific emphasis on the trade-off between memory
utilization and computational efficiency.

Table 2: Performance Results of The Proposed Design for Inverse NTT Operation, where
(n,k) = (256,23) on Virtex UltraScale+

#BFU LUT FF BRAM DSP Cycles
2 2405 794 4 10 512+128+102=742
4 4734 1462 8 20 256+64+102=422
8 7864 2796 16 40 128+32+102=262
16 15885 5559 32 80 64+16+102=182
: : : : : :

Table 3: Comparative FPGA Resource and Performance Table, for Dilithium NTT
parameters (n,k) = (256,23)

Design LUT FF BRAM DSP Cycles Frequency(MHz) Platform
[ZZW+22] 1919 1301 2 8 296 96.9 Artix-7
[MCL+22] 799 328 4.5 2 1405 172 Artix-7
[ZHL+21] 2044 N/A 16 N/A 1170 216 Artix-7
[LSG21] 524 759 17 1 533 311 Virtex-7
[NDG19] 1899 2041 2 8 294 445 Zynq UltraScale+
[RMJ+21] 1798 2532 3.5 48 502 637 Virtex UltraScale+
[BNG21] 4509 3146 16 0 300 N/A Virtex UltraScale+

This Work,Our Smallest 1601 699 5 10 603 142.8 Virtex UltraScale+
This Work,Our Fastest 11558 4912 40 80 155 142.8 Virtex UltraScale+

To compare the effectiveness of our proposed approach, we provide a comparative
analysis in Table 3. This table compares our results with other prominent researchers
in the field. By doing so, we gain valuable insights into the performance benchmarks of
existing methodologies. The comparison covers aspects such as memory consumption,
execution time, and balancing strategies, highlighting the improvements achieved by our
proposed memory speed balancing implementation.
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5 Conclusion and Future Work
Overall, the results presented in this section underscore the significance of our contribution.
Our memory-speed trade-off implementation of the NTT operation offers a customizable
balance between resource utilization and computational swiftness. By configuring the
number of butterfly units used in the design, we generated various of implementations.
We compared our smallest and fastest results with the results of other researchers. The
results we obtained show that our flexible design is comparable to other results. The
comparative analysis shows our approach’s competitiveness within the landscape of lattice-
based cryptography, aligning with the objectives of the NIST PQC initiative. These
findings collectively emphasize the potential of our methodology to pave the way for
efficient and robust NTT solution.

As part of future work, we aim to expand the scope of our research in several directions.
Our NTT implementation is designed to operate on polynomials with n = 256, supporting
coefficients of up to 31-bit. In the context of this study, performance metrics were obtained
for only Dilithium (n, k) = (256, 23) parameters. First, we plan to obtain performance
results for a wider range of NTT parameters, including those relevant to Kyber and other
cryptographic algorithms. Additionally, we intend to delve deeper into the optimization
of the Montgomery multiplier to enhance its frequency performance. Finally, for the
purpose of comprehensive comparison and evaluation, we will consider performing our
NTT implementation on different FPGA platforms. These future efforts will not only
contribute to a more comprehensive understanding of the algorithm’s flexibility and
efficiency but also pave the way for its broader applicability in various computational
contexts.
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