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Abstract. Functional encryption (FE) is a cutting-edge research topic
in cryptography. The Agr17 FE scheme is a major scheme of FE area.
This scheme had the novelty of “being applied for the group of general
functions (that is, P/poly functions) without IO”. It took the BGG+14
ABE scheme as a bottom structure, which was upgraded into a “par-
tially hiding attribute” scheme, and combined with a fully homomorphic
encryp-tion (FHE) scheme. However, the Agr17 FE scheme had a strange
operation. For noise cancellation of FHE decryption stage, it used bulky
“searching noise” rather than elegant “filtering”. It searched total mod-
ulus interval, so that the FHE modulus should be polynomially large. In
this paper we discuss the P/poly validity of the Agr17 FE scheme. First,
we obtain the result that the Agr17 FE scheme is P/poly invalid. More de-
tailedly, when the Agr17 FE scheme is applied for the group of randomly
chosen P/poly Boolean functions, FHE modulus at the “searching” stage
cannot be polynomially large. Our analysis is based on three restrictions
of the BGG+14 ABE scheme: (1) The modulus of the BGG+14 ABE
should be adapted to being super-polynomially large, if it is applied for
the group of randomly chosen P/poly functions. (2) The modulus of the
BGG+14 ABE cannot be switched. (3) If the BGG+14 ABE is upgraded
into a “partially hiding attribute” scheme, permitted operations about
hidden part of the attribute can only be affine operations. Then, to check
whether the P/poly validity can be obtained by modifying the scheme,
we consider two modified versions. The first modified version is control-
ling the FHE noise by repeatedly applying bootstrapping, and replacing
a modular inner product with an arithmetic inner product. The second
modified version is replacing the search for the modulus interval with the
search for a public noise interval, hoping such noise interval polynomially
large and tolerating the modulus which may be super-polynomially large.
The first modified version may be P/poly valid, but it is weaker. There
is no evidence to support the P/poly validity of the second modified ver-
sion. We also present an additional conclusion that there is no evidence
to support the P/poly validity of the GVW15 PE scheme. Finally, we
present our response to an argument that our work is unnecessary, and
show that our work is quite valuable for any interpretation.

Keywords: learning with errors · attribute-based encryption · func-
tional encryption.
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1 Introduction

There is a famous route in cryptography research: identity-based encryption
(IBE) [1–5] → attribute-based encryption (ABE) [6–11] → predicate encryp-
tion (PE) [12–14] → functional encryption (FE) [15–26]. On this route, FE is
a cutting-edge research topic. An FE scene is described as such: an encryptor
transforms a plaintext into a ciphertext; the ciphertext is received by a group of
decryptors who have respective functions; each of them can only transform the
ciphertext into the corresponding function value of the plaintext (rather than
the plaintext). FE is a level higher than IBE/ABE/PE, because it is much more
clearly focused on the security against collusion attack, which can be simply
stated as such: suppose the ith decryptor obtains yi, the value of his function
f (i) of the plaintext m, i ∈ {1, 2, · · · , I}, then the collusion of these I decryptors
should obtain the knowledge of m never more than solving the equation group
{f (i)(m) = yi, i = 1, · · · , I}. The most challenging and valuable task of FE
area is to construct a scheme applied for the group of general functions (that is,
P/poly functions) without indistinguishability obfuscation (IO). It is known [23]
that such scheme is easy to be constructed by IO, and that huge size and unclear
security of IO make people tend to choose other constructions.

The Agr17 FE scheme [15] is a major scheme of FE area. It took the BGG+14
ABE scheme [6] as a bottom structure, and combined with a fully homomorphic
encryption (FHE) scheme. In Agr17 FE structure, the BGG+14 ABE was not
original version but rather upgraded in following three aspects. (1) It was up-
graded into a “partially hiding attribute” scheme. (2) It was upgraded from being
applied for Boolean functions to being applied for large modular functions. (3)
It was improved to resist an attack (see subsections 3.1 and 3.2 of this paper).
As a limitation of the security, the Agr17 FE scheme only permitted the collu-
sion of one decryptor with the function value 1 and unbounded decryptors with
function values 0, called (1, poly) collusion.

However, the Agr17 FE scheme had a strange operation. For noise cancella-
tion of FHE decryption stage, it used bulky “searching noise” rather than elegant
“filtering”. By applying “lazy OR trick” [12], it searched total modulus interval,
so that the modulus (we will call it “inner modulus”) should be polynomially
large.

Why such? In fact, it comes from a restriction of the BGG+14 ABE scheme,
when it is upgraded into a “partially hiding attribute” scheme. We believe that
the Agr17 FE scheme didn’t carefully check more restrictions of the BGG+14
ABE scheme, and we will.

In this paper, we discuss the P/poly validity of the Agr17 FE scheme. First,
we obtain the following result: the Agr17 FE scheme is P/poly invalid. More
detailedly, when the Agr17 FE scheme is applied for the group of randomly cho-
sen P/poly Boolean functions, FHE modulus (inner modulus) at the “searching”
stage cannot be polynomially large.

Our analysis is based on three restrictions of the BGG+14 ABE scheme, as
follows.
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The first restriction: The modulus of the BGG+14 ABE (we will call it “outer
modulus”) should be adapted to being super-polynomially large, if it is applied
for the group of randomly chosen P/poly functions.

The second restriction: The modulus of the BGG+14 ABE (outer modulus)
cannot be switched.

The third restriction: If the BGG+14 ABE is upgraded into a “partially hid-
ing attribute” scheme, permitted operations about hidden part of the attribute
can only be affine operations (about outer modulus). By the way, “filtering”
doesn’t belong to such affine operations, so that noise cancellation can only use
“searching noise” rather than “filtering”.

Then, to check whether the P/poly validity can be obtained by modifying
the scheme, we consider two modified versions. The first modified version is con-
trolling the FHE noise by repeatedly applying bootstrapping, hoping such noise
polynomially large, and replacing a modular inner product with an arithmetic
inner product. The second modified version is replacing the search for the modu-
lus interval with the search for a public noise interval, hoping such noise interval
polynomially large and tolerating the modulus (inner modulus) which may be
super-polynomially large. We can only say that the first modified version may be
P/poly valid, but it is weaker. There is no evidence to support the P/poly valid-
ity of the second modified version. Because the searching method of the second
modified version is just the same as that of the GVW15 PE scheme [12], we
obtain an additional conclusion that there is no evidence to support the P/poly
validity of the GVW15 PE scheme [12].

Finally, we present our response to an argument that our work is unnecessary,
and show that our work is quite valuable for any interpretation. The detail is
such. Some people say that Agr17 (GVW15) didn’t hope to be applied for P/poly
functions. We show that (1) Agr17 (GVW15) never clearly refused it vaguely
described the application of the scheme, and (2) if we take the interpretation
“Agr17 (GVW15) refused to be applied for P/poly”, our work makes it to face
a strong restriction which it never explained.

2 The BGG+14 ABE Scheme: Detailed Description and
Our Analysis

An ABE (more detailedly, KP-ABE) scene is described as such: an encryptor
transforms a plaintext into a ciphertext, and the ciphertext is related to an
attribute; the ciphertext and the attribute are received by a group of decryptors
who have respective functions; if his function value of the attribute equals y0,
the decryptor can transform the ciphertext back into the plaintext, otherwise
the decryptor can only transform the ciphertext into gibberish.

The BGG+14 ABE scheme is a bottom structure of the Agr17 FE scheme.
In this section, we present a detailed description of the BGG+14 ABE scheme,
and discuss its three restrictions.
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2.1 Notations and Operations

Let (m,n, q) denote three positive integers such that q = nΘ(dmax) where q is
prime, m = n⌈log2q⌉, and dmax has been well explained. There are two notes:
(1) When n is fixed, q belongs to a very large region. (2) When q increases,
m increases with much slower speed, such difference of speeds makes that the
BGG+14 ABE scheme can be applied for complicated functions.

Let Z denote the set of integers. For two positive integers (m′,m′′), (Zm′
,Zm′×m′′

,Zm′

q ,

Zm′×m′′

q ) have been well defined. Note that the output of the operation ‘modq’
is within {⌈− q

2⌉, ⌈−
q
2⌉ + 1, . . . , ⌈ q

2⌉}, rather than {0, 1, . . . , q − 1}. For a ∈ Zq,

the meanings of A ∈ Zm′×m′′

q and aA ∈ Zm′×m′′

q are clear. Let G denote the
following special matrix

G =


1 2 · · · 2⌈log2q⌉−1

1 2 · · · 2⌈log2q⌉−1

. . .

1 2 · · · 2⌈log2q⌉−1

 ∈ Zn×m
q .

For any α ∈ Zq, there is a unique Boolean matrix G(α) ∈ Zm×m such that

αG = GG(α)(modq).

For any B ∈ Zn×m
q , there is a unique Boolean matrix G(B) ∈ Zm×m such that

B = GG(B)(modq).

Then, the following three algorithms are well known.

– TrapGen(n,m, q): Input (n,m, q) and output (A,T), where A ∈ Zn×m
q is a

uniform matrix, T ∈ Zm×m is a small Gaussian matrix, AT = 0 ∈ Zn×m
q ,

and T is of full rank (We know that T is not of full rank regarding the
modulus q). T is called a trapdoor of A.

– Encode(A, s): Input (A, s) ∈ Zn×m
q × Zn

q and output ψ = AT s + e ∈ Zm
q ,

where e ∈ Zm is a small Gaussian vector. s is the encoded vector, ψ is the
encoding of s, and e is the noise vector. We say ψ = Encode(A, s).

– ReKeyGen(A,B,T,D): Input (A,B,T,D) and output R, where A ∈ Zn×m
q ,

B ∈ Zn×m
q , both A and B are uniform matrices. T ∈ Zm×m is a trapdoor

of A, R ∈ Z2m×m is a small Gaussian matrix, and D = [A,B]R ∈ Zn×m
q .

In fact,

R =

[
R0

R1

]
,R0 ∈ Zm×m,R1 ∈ Zm×m,

then R1 is the presampled matrix, and R0 is the co-sampled matrix. In
other words, for any small matrix R1, the trapdoor matrix T guarantees to
generate a small matrix R0 such that AR0 = D−BR1.
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2.2 Arithmetic Representation and Big Modulus Representation of
Boolean Functions

In order to make the BGG+14 ABE scheme available, Boolean functions need to
be expressed as modq functions, i.e., big modulus functions. This can be easily
achieved by firstly transforming each Boolean operation into several arithmetic
operations and then transforming each arithmetic operation into a big modulus
operation. For example, for two bit variables x1 and x2,

x1 · x2(mod2) = x1 · x2 = x1 · x2(modq),

x1 + x2(mod2) = x1 + x2 − 2x1 · x2 = x1 + x2 − 2x1 · x2(modq).

Then, by generalizing these transformations, each operation of a Boolean func-
tion can be converted into several operations under a big modulus. Therefore,
Boolean functions are described as modq functions, except that the indepen-
dent variables are in F2 rather than Zq. Another interesting feature is that, if a
Boolean function is expressed as an arithmetic function step by step, the abso-
lute value of each intermediate variable does not exceed 2. More detailedly, an
intermediate variable with the absolute value 2 will not be the input of any later
multiplication operation, and only be the input of some later addition operation
to decrease the absolute value.

2.3 Quasi-homomorphic Operations of the BGG+14 ABE Scheme

Let x = (x1, x2, · · · , xl) denote an l-dimensional attribute, where each xi is a
bit variable. Take l matrices B1,B2, · · · ,Bl ∈ Zn×m

q . Take another l matrices
x1G+B1, x2G+B2, · · · , xlG+Bl ∈ Zn×m

q . In the follow we will show that, for
any P/poly Boolean function f(x), there are some ‘small-size linear combination
operations’ for the matrices {x1G+B1, x2G+B2, · · · , xlG+Bl}, resulting in
a new matrix

f(x) ·G+Bf ∈ Zn×m
q ,

where Bf is independent of x. Recalling subsection 2.2, any Boolean operation
can be viewed as operations in Zq, and any Boolean function can be viewed as
a function in Zq. Furthermore, for this special function in Zq, the result of each
operation belongs to [−2, 2]. First, we consider the following four simple cases
of arithmetic functions.

Case I. If f(x) = αxi where α is a constant, then the ‘small-size linear
combination operation’ is

(xiG+Bi)G
(α) = αxiG+BiG

(α)(modq),

where Bf = BiG
(α).

Case II. If f(x) = xi+xj , then the ‘small-size linear combination operation’
is

(xiG+Bi) + (xjG+Bj)(modq) = (xi + xj)G+ (Bi +Bj)(modq),
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where Bf = Bi +Bj .
Case III. If f(x) = xi ·xj where i ≤ j, then the ‘small-size linear combination

operation’ is

xj(xiG+Bi)− (xjG+Bj)G
(Bi) = xixjG+ (−BjG

(Bi))(modq),

where Bf = −BjG
(Bi).

Case IV. If f(x) = α · xj1 · xj2 · · · · xjk , j1 ≤ j2 ≤ · · · jk and α is a constant,
then the ‘small-size linear combination operation’ is

k∑
i=1

(
k∏

h=i+1

xjh

)
· (xjiG+Bji) ·Gi = α · xj1 · xj2 · · · · xjk ·G+ (−BjkGk),

whereG1,G2, · · · ,Gk are Boolean matrices in Zm×m and are defined recursively
as below:

G1 = Gα,

Gi = G(−Bji−1
Gi−1), i = 2, 3, · · · , k,

where Bf = −Bjk ·Gk is also independent of x.
Then, we affirm that iterations of ‘small-size linear combination operations’

are still ‘small-size linear combination operations’, provided the time of iter-
ations is at the polynomial level. Thus, we draw the conlusion by repeating
the aforementioned four operations: any P/poly Boolean function f can execute
‘small-size linear combination operations’ on the above matrices, resulting in
f(x)G+Bf .

Next, we do the following encoding:

c1 = Encode(x1G+B1, s),

c2 = Encode(x2G+B2, s),

· · · ,
cl = Encode(xlG+Bl, s).

By executing the same ‘small-size linear combination operation’ (only plus a
transpose) on the codeword (c1, c2, · · · , cl), we will obtain

cf = Encode(f(x)G+Bf , s).

We call such ‘small-size linear combination operations’ on (c1, c2, · · · , cl)
quasi-homomorphic operation of the Boolean function f .

2.4 The BGG+14 ABE Scheme [6]

- Generating master key (mpk,msk): The key generator runs TrapGen(n,m, q)
to obtain (A,T), then he randomly picks Bi ∈ Zn×m

q , i = 1, 2, · · · , l,D ∈
Zn×m
q . The output is

mpk = (A,B1, · · · ,Bl,D),msk = T.
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- Generating secret key skf for the Boolean function f from a group of Boolean
functions: The key generator firstly generates Bf . Note that Bf is generated
by the method in subsection 2.3. The attribute is randomly chosen, and
the resulting Bf is independent of this attribute. Then, he runs ReKey-
Gen(A, y0G+Bf ,T,D) to obtain R ∈ Z2m×m. The output is

skf = R.

Each skf is sent to corresponding decryptor who owns f .
- Encryption: The plaintext m is an m-dimensional Boolean vector. The at-
tribute x = (x1, x2, · · · , xl) is sent to the encryptor. The encryptor ran-
domly picks s ∈ Zn

q , and computes (Encode(A, s), Encode(x1G + B1, s),
Encode(x2G + B2, s), · · · , Encode(xlG + Bl, s), Encode(D, s)). The cipher-
text is

C = (cin, c1, c2, · · · , cl, cout)

= (Encode(A, s),Encode(x1G+B1, s), · · · ,Encode(xlG+Bl, s),Encode(D, s) + ⌈q
2
⌉m)

= (AT s+ ein, (x1G+B1)
T s+ e1, · · · , (xlG+Bl)

T s+ el,D
T s+ eout + ⌈q

2
⌉m),

{C,x} are sent to the group of decryptors who have respective funcitons.
- Decryption: By using his own function f and the attribute x = (x1, x2, · · · , xl),
one of the decryptors executes the quasi-homomorphic operation on {c1, c2, · · · , cl}
to obtain

cf = Encode(f(x)G+Bf , s)

= (f(x)G+Bf )
T s+ ef (x).

Then, by using skf = R, the decryptor computes

cout −RT

(
cin
cf

)
= DT s−DT s+ ⌈q

2
⌉m+ ((y0 − f(x))G)

T
s+ e′

= ⌈q
2
⌉m+ ((y0 − f(x))G)T s+ e′.

When f(x) = y0, the plaintext m can be obtained by using “Rounding”;
When f(x) ̸= y0, gibberish is returned. Generally, y0 = 1.

We emphasize that the modulus q should be a prime, and the scheme with
composite modulus is much weaker. More specifically, the scheme with the mod-
ulus which has a polynomially large factor is insecure.

2.5 Hiding a Part of Attribute in the BGG+14 ABE Scheme

The so-called ‘hiding a part of attribute’ means that the encryptor knows the
entity of the attribute and the decryptors only receive a part of it, with another
part hidden from them. The key issue is whether a decryptor can execute the
quasi-homomorphic operation of his own function f when he does not know some
part of the attribute.
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2.6 Applied for Fq Functions: An Assumption

The BGG+14 ABE scheme can be applied for any group of Boolean functions,
or for any group of arithmetic functions (also called “false” modular functions).
More detailedly, for any group of Boolean functions or arithmetic functions, there
are sufficiently large {m, q} such that the noise expansion of quasi-homomorphic
operations does not exceed the modulus interval (−q/2, q/2).

A question is whether the BGG+14 ABE scheme can be applied for any group
of Fq functions (also called “real” modular functions). This question is essential
for the Agr17 FE scheme, and the answer “no” will make it much easier to
show P/poly invalidity of the Agr17 FE scheme. At first look, the answer to this
question should be “no”, because the quasi-homomorphic operation of a modular
q function is not ‘small-size linear combination operation’. For example, suppose
u and v satisfy that u · v mod q ̸= u · v, with cu = Encode(uG + Bu, s) and
cv = Encode(vG + Bv, s). Then cu·v = vcu − (G(Bu))T · cv, where G(Bu) is a
Boolean matrix which does not make great noise expansion, while v · cu has a
great noise expansion, quite possible to exceed the modulus interval (−q/2, q/2).

Then there is a method to reduce such obstacle. The method can be called
“head/tail biterization”, which is to express the independent variable and the
function value as bits, so that an Fq function of l-dimensional independent vari-
able can be expressed as q′ Boolean functions of q′l-dimensional independent
variable, where q′ = ⌈log2q⌉. The effect of such method is suspicious, because
both the number of Boolean functions and the complexity of each Boolean func-
tion are not predetermined, but rather increase with the increase of q. On the
other hand, we have not found an evidence to negate such method. For the sake
of our clear analysis of the Agr17 FE scheme from other aspects, we take the
answer “yes”, that is, we take such assumption: the BGG+14 ABE scheme can
be applied for any group of Fq functions.

2.7 The First Restriction

Subsection 2.1 sets q = nΘ(dmax), which belongs to a very large region. In this
subsection we discuss how large q should be, if the BGG+14 ABE scheme is
applied for a group of randomly chosen P/poly Boolean functions.

Suppose two intermediate variables u and v, with cu = Encode(uG+Bu, s)
and cv = Encode(vG+Bv, s), where noise vectors of cu and cv are respectively
eu and ev. Then cu·v = vcu − (G(Bu))T · cv, where the noise vector of cu·v is
eu·v = veu − (G(Bu))T · ev. We know |v| ≤ 2 and G(Bu) is a Boolean matrix,
so that averagely |eu·v| ≈

√
n
2 |ev|. This is the key fact for our analysis, which

implies that we can find a large number of P/poly Boolean functions whose noise
expansions are super-polynomially large.

An excuse is Case IV in subsection 2.3, which greatly saves the noise expan-
sion of the quasi-homomorphic operations of continuous multiplications. More
detailedly, |eu1·u2···uk

| is only about
√

n
2 ·|eu1

+eu2
+· · ·+euk

|, and much smaller

than (
√

n
2 )

k−1 · |euk
|. Our answer is that, for a randomly chosen Boolean func-

tion, continuous multiplication is an event with very small probability. Notice
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that, even two adjacent operations are both multiplications, they form a con-
tinuous multiplication with very small probability. By considering the loss of
noise expansion of Case IV, we can still find a large number of P/poly Boolean
functions whose noise expansions are super-polynomially large.

Another excuse may be considering an “optimized quasi-homomorphic op-
eration” for the multiplication operation, if |eu| < |ev|, take cu·v = u · cv −
(G(Bv))T · cu, otherwise, take cu·v = v · cu − (G(Bu))T · cv. By such “optimized
operation”, |eu·v| ≈

√
n
2 min{|eu|, |ev|}. Our answer is that comparing |eu| and

|ev| is not only complicated, but also usually impossible for decryptors.
We take such a random experiment: Applying the BGG+14 ABE scheme for

a randomly chosen P/poly Boolean function, and observing the noise expansion,
whether polynomially large or super-polynomially large. Suppose the probability
of the former is p, and that of the latter 1− p. There is no evidence to say that
1−p is clearly smaller than p, so that such an opinion is reasonable: 1−p at least
belongs to the same size grade of p. Then we take a group of k P/poly Boolean
functions, the event “the noise expansions are always polynomially large” has
the probability pk, which quickly tends to 0 when k tends larger.

Finally, we obtain the first restriction: when the BGG+14 ABE scheme is
applied for a group of randomly chosen P/poly Boolean functions, the modulus
q should be adapted to being super-polynomially large.

2.8 The Second Restriction

We know that an LWE-based encryption scheme can apply modular switching
to change the modulus, so as to simplify the computation. The BGG+14 ABE
scheme is an LWE-based encryption scheme, but it is a very special one. The
key information is inserted into related matrices which provides conditions of
whether correct decryption or decryption failure. Modular switching will destroy
the key information, so that destroys the conditions.

From the above discussion, we obtain the second restriction: the modulus of
the BGG+14 ABE scheme cannot be switched.

2.9 The Third Restriction

It is clear that if a part of the attribute is hidden from the decryptors, the
multiplication operation of two unknown numbers (modular q) cannot be quasi-
homomorphically operated (see subsection 2.3, Case III and Case IV ). So we
immediately obtain the third restriction: if the BGG+14 ABE scheme is up-
graded into a “partially hiding attribute” scheme, permitted operations about
the hidden part of the attribute can only be affine operations (modular q).

3 The Agr17 FE Scheme [15]

3.1 An Attack on the BGG+14 ABE Scheme

The Agr17 FE scheme [15] presented an attack on the GVW15 predicate encryp-
tion (PE) scheme [12]. In fact, such attack is on the BGG+14 ABE scheme: a
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decryptor repeatedly asks for the decryption keys of the BGG+14 ABE scheme
for the same function f . This is the common worry of all lattice-based cryptosys-
tems which the decryptor may obtain a modified trapdoor by such repeat.

3.2 Improved BGG+14 ABE Scheme Against the Attack [15]

The improved BGG+14 ABE scheme is almost the original the BGG+14 ABE
scheme (see subsection 2.4), with only an additional group of uniform matrices
{D1,D2, · · · ,Dk}. The scheme is described as follows.

- Generating master key (mpk,msk): The key generator runs TrapGen(n,m, q)
to obtain (A,T), then he randomly picks Bi ∈ Zn×m

q , i = 1, 2, · · · , l,Dj ∈
Zn×m
q , j = 1, 2, · · · , k,D ∈ Zn×m

q . The output is

mpk = (A,B1, · · · ,Bl,D1, · · · ,Dk,D),msk = T.

- Generating secret key skf for the Boolean function f from a group of Boolean
functions: The key generator firstly generates Bf . Note that Bf is generated
by the method in subsection 2.3. Then he chooses a random subset ∆f of the
set {1, · · · , k}, and computes

∑
j∈∆f

Dj . Then, he runs ReKeyGen(A, y0G +

Bf ,T,
∑

j∈∆f

Dj +D) to obtain R ∈ Z2m×m. The output is

skf = {∆f ,R}.

Each skf is sent to corresponding decryptor who owns f .
(A note: In the Agr17 FE scheme, it is stated on page 12 of [15], that such
R is obtained by running ReKeyGen(A, y0G +Bf ,T,

∑
j∈∆f

Dj) rather than

ReKeyGen(A, y0G+Bf ,T,
∑

j∈∆f

Dj +D). This is a minor mistake, because

it cannot generate a simple ciphertext for the case of “one ciphertext and
multiple decryptions”. Anyway, it is not important and does not affect our
results.)

- Encryption: The plaintext m is an m-dimensional Boolean vector. The at-
tribute x = (x1, x2, · · · , xl) is sent to the encryptor. The encryptor ran-
domly picks s ∈ Zn

q , and computes (Encode(A, s), Encode(x1G + B1, s),
Encode(x2G+B2, s), · · · , Encode(xlG+Bl, s), Encode(D1, s), Encode(D2, s),
· · · , Encode(Dk, s), Encode(D, s)). The ciphertext is

C = (cin, c1, c2, · · · , cl, c1,out, c2,out, · · · , ck,out, cout)
= (Encode(A, s),Encode(x1G+B1, s), · · · ,Encode(xlG+Bl, s),Encode(D1, s),

Encode(D2, s), · · · ,Encode(Dk, s),Encode(D, s) + ⌈q
2
⌉m)

= (AT s+ ein, (x1G+B1)
T s+ e1, · · · , (xlG+Bl)

T s+ el,D
T
1 s+ e1,out,

DT
2 s+ e2,out, · · · ,DT

k s+ ek,out,D
T s+ eout + ⌈q

2
⌉m),

{C,x} are sent to the group of decryptors who have respective funcitons.
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- Decryption: By using his own function f and the attribute x = (x1, x2, · · · , xl),
one of the decryptors executes the quasi-homomorphic operation on {c1, c2, · · · , cl}
to obtain

cf = Encode(f(x)G+Bf , s)

= (f(x)G+Bf )
T s+ ef (x).

Then, by using skf = {∆f ,R}, the decryptor computes

∑
j∈∆f

cj,out + cout −RT

(
cin
cf

)
=

∑
j∈∆f

Dj +D

T

s−

∑
j∈∆f

Dj +D

T

s+ ⌈q
2
⌉m

+ ((y0 − f(x))G)
T
s+ e′

= ⌈q
2
⌉m+ ((y0 − f(x))G)T s+ e′.

When f(x) = y0, the plaintext m can be obtained by using “Rounding”;
When f(x) ̸= y0, gibberish is returned. Generally, y0 = 1.

It is easy to see that the improved BGG+14 ABE scheme still has the three
restrictions in subsection 2.7, subsection 2.8, and subsection 2.9.

3.3 Preliminaries: Inner Modulus and Outer Modulus

FHE and the BGG+14 ABE are two bottom structures of the Agr17 FE scheme.
We know that {encryption, fully-homomorphic evaluation, decryption} are three
computation stages of FHE. But fully-homomorphic evaluation and decryption
cannot be directly implemented for the Agr17 FE scheme, instead, they can
only be quasi-homomorphically operated in the BGG+14 ABE scheme. So that
the modulus of FHE, Q, is called the inner modulus, and the modulus of the
BGG+14 ABE, q, the outer modulus.

It is well known that the inner modulus Q should accommodate the FHE
noise, and that the outer modulus q should accommodate the corresponding
ABE noise.

3.4 The Encryption Process

Let m denote the plaintext. The encryption process is composed of the follow-
ing three steps: (1) m is encrypted to an FHE ciphertext m∗ by the encryption
algorithm of an FHE scheme. It is worth noting that the modulus of the FHE
ciphertext (the inner modulus) is Q. (2) m∗ is taken as the public part of the
attribute, and t, the decryption key of the FHE scheme, is taken as the hidden
part of the attribute. Then, for such attribute (m∗, t), a public bit-string b is
encrypted to an ABE ciphertext C by the encryption algorithm of an improved
BGG+14 ABE scheme (the improved BGG+14 ABE scheme has now been up-
graded into a “partially hiding attribute” scheme). It is worth noting that the
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modulus of the ABE ciphertext (the outer modulus) is q. (3) Finally, {C,m∗}
is taken as the ciphertext of the Agr17 FE scheme, to be sent to all decryptors
in the group. The encryption process is shown in Fig.1

Fig. 1. The encryption process

3.5 Known and Unknown Items of the Decryptors

Now, a decryptor in the group knows the following four items.

(1) The ciphertext {C,m∗} of the Agr17 FE scheme, where C is the im-
proved BGG+14 ABE ciphertext, m∗ is the FHE ciphertext and the pub-
lic part of attribute of the improved BGG+14 ABE scheme. More detailedly,
C = (cin, c1, · · · ,cl, c1,out, c2,out, · · · , ck,out, cout), and (c1, · · · , cl) can be re-
stated as the follow: (c1, · · · , cl) = (Cm∗ ,Ct), where Cm∗ is the ABE ciphertext
corresponding to m∗ (the public part of the attribute), Ct is the ABE ciphertext
corresponding to t (the hidden part of the attribute).

(2) His function f and homomorphic operation f∗ for FHE evaluation.

(3) Decryption key for the Agr17 FE scheme according to f , such that the
FE decryption will obtain f(m) rather than m. In fact, it is a group of about
⌈Q/2⌉ ABE decryption keys for the improved BGG+14 ABE scheme, where the
inner modulus Q was considered polynomially large. Later in subsection 3.8 we
will introduce such group of decryption keys in the detail.

(4) The public bit-string b.

The decryptors know neither the plaintext m nor the FHE decryption key t,
which is also the hidden part of the attribute.
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3.6 The First Step of the Decryption Process

For the decryptor who owns the function f , the first step of the decryption
process is the transformation “Cm∗ → Cf∗(m∗)”. Notice that it is not the trans-
formation “m∗ → f∗(m∗)”. In other words, this step is not homomorphic eval-
uation, but rather quasi-homomorphic operation of homomorphic evaluation.
Another note is that the former is modular Q operation, while the latter is
modular q operation.

We know that this step is valid for predetermined Q. More detailedly, for
any predetermined Q, there are sufficiently large {q,m} such that the ABE
noise expansion of this step is within the interval (−q/2, q/2). The method is
to express f∗ by ⌈log2 Q⌉ Boolean functions. Can we take Q = q in this step?
According to the analysis of subsection 2.6, the answer seems to be “no”, while
we take the answer “yes”. From all of the above, in this step, we take (Q, q) as
one of such two cases:

(1) Q is predetermined and q is correspondingly determined.

(2) Q = q.

3.7 The Second Step of the Decryption Process

The second step of the decryption process is the quasi-homomorphic operation
of the first stage of FHE decryption. In the following, we give the details.

FHE decryption has several versions [27–29], but basically it is composed of
two stages. The major part of the first stage is computing the modular Q inner
product of f∗(m∗) and t. The first stage includes some other affine operations
which can be ignored. The second stage is called “noise cancellation”.

From the statement above, the second step of the decryption process is the
transformation “{Cf∗(m∗),Ct} → C<f∗(m∗),t> mod Q”. If Q ̸= q, < f∗(m∗), t >
mod Q is not modular q affine operation about t, so that it cannot be quasi-
homomorphically operated (see the third restriction in subsection 2.9). On the
other hand, q cannot be switched (see the second restriction in subsection 2.8).
Therefore, Q should either be always equal to q or be switched to q just before
the second step of the decryption process.

If Q is switched to q just before the second step of the decryption process,
the following four points should be noticed.

(1) Such modular switching cannot be directly implemented, but rather
quasi-homomorphically operated.

(2) Such quasi-homomorphic operation is the transformation “Cf∗(m∗) →
Cf∗∗(m∗)”, where f

∗(m∗) is the text for the modulus Q, and f∗∗(m∗) is switched
text for the modulus q.

(3) t cannot be switched, that is, the decryptors cannot obtain such trans-
formation “Ct → Ct∗”, where t is the text for the modulus Q, t∗ is switched
text for the modulus q, and t∗ is still FHE decryption key under the new mod-
ulus q. The reason is that the transformation “t → t∗” is not modular q affine
operation about hidden t (see the third restriction in subsection 2.9). In other
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words, t should be originally the text for the modulus q rather than the text for
the modulus Q.

(4) After such modular switching, the second step of the decryption process
should be the new transformation “{Cf∗∗(m∗),Ct} → C<f∗∗(m∗),t> mod q”.

3.8 The Third Step of the Decryption Process

Now Q = q. The third step of the decryption process is the quasi-homomorphic
operation of the second stage of FHE decryption, that is, the quasi-homomorphic
operation of “noise cancellation”.

Denote v =< f∗(m∗), t > mod q (or v =< f∗∗(m∗), t > mod q, if the
modular switching is applied). The method of noise cancellation is filtering,
which is described in the following. If v = f(m) + 2e, where e is the noise, then
v mod 2 = f(m) (or if v = ⌈ q

2⌉f(m) + e, then Rounding(v) = (2v mod q)
mod 2 = f(m)).

However, filtering cannot be quasi-homomorphically operated because it is
not modular q affine operation about hidden v (see the third restriction in
subsection 2.9). So that the decryptor can only search e under the belief that
e ∈ (−Q/4, Q/4) with Q = q polynomially large. The searching method is “lazy
OR trick” [12], that is, applying multiple ABE decryptions. There are two direc-
tions for “lazy OR trick”, the first direction is searching the differences, while the
second direction is searching the quotients. The two directions are quite similar,
so we only take the first one. For each e ∈ (−Q/4, Q/4):

(1) Take the transformation “Cv → Cv−2e” (this operation is an affine op-
eration of the hidden v).

(2) Ask for the improved BGG+14 ABE decryption key ke for the function
fe, where fe(m

∗, t) = v − 2e =< f∗(m∗), t > mod q − 2e (or < f∗∗(m∗), t >
mod q − 2e, if the modular switching is applied).

(3) Decrypt the improved BGG+14 ABE ciphertext (cin,Cv−2e, c1,out, c2,out, · · · ,
ck,out, cout) by applying the key ke.

It is easy to see that:

(1) The Agr17 FE decryption key for the Boolean function f is just the set
of the improved BGG+14 ABE decryption keys {ke, e ∈ (−Q/4, Q/4)}.

(2) If f(m) = 1, there is only one key from {ke, e ∈ (−Q/4, Q/4)}, such
that corresponding BGG+14 ABE decryption is correct to obtain the public bit-
string b, while other BGG+14 ABE decryptions are fail, and obtain gibberishes.
If f(m) = 0, all BGG+14 ABE decryptions are fail. Reversely speaking, if one
ABE decryption obtains b, the FE decryptor obtains f(m) = 1; if all ABE
decryptions obtain other values, the FE decryptor obtains f(m) = 0.

As a summarization, Table 1 illustrates the whole decryption process of the
Agr17 FE scheme.

The whole decryption process is also shown in Fig.2.
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Fig. 2. The whole decryption process

Table 1. The whole decryption process of the Agr17 FE scheme

The step The operation The resulting text

The first step Cm∗ → Cf∗(m∗) (cin,Cf∗(m∗),Ct, c1,out, · · · , ck,out, cout), f∗(m∗)

Possible modular
switching (if Q ̸= q)

Cf∗(m∗) → Cf∗∗(m∗) (cin,Cf∗∗(m∗),Ct, c1,out, · · · , ck,out, cout), f∗∗(m∗)

The second step
(
Cf∗(m∗),Ct

)
→ C<f∗(m∗),t> mod Q (cin,C<f∗(m∗),t> mod Q, c1,out, · · · , ck,out, cout), f∗(m∗)(

Cf∗∗(m∗),Ct

)
→ C<f∗∗(m∗),t> mod q (cin,C<f∗∗(m∗),t> mod q, c1,out, · · · , ck,out, cout), f∗∗(m∗)

The third step Searching by ABE decryptions
f(m), f∗(m∗), maybe < f∗(m∗), t > mod Q (if f(m) = 1)

f(m), f∗∗(m∗), maybe < f∗∗(m∗), t > mod q (if f(m) = 1)

4 On the P/poly Validity of the Agr17 FE Scheme

4.1 Starting Point: the Outer Modulus Should Be
Super-polynomially Large

Randomly choose a group F of P/poly Boolean functions. The correspond-
ing group of homomorphic operations of these Boolean functions is F ∗. For
each f ∈ F , the corresponding f∗ ∈ F ∗ is much large than f . Again for
each f∗ ∈ F ∗, there is a corresponding group {fe, e ∈ (−Q/4, Q/4)}, where
fe(m

∗, t) =< f∗(m∗), t > mod Q− 2e, therefore each fe in the group is larger
than such f∗. We take the group F ∗∗ = {fe, e ∈ (−Q/4, Q/4), f ∈ F}, then as a
bottom structure of the Agr17 FE scheme, the improved BGG+14 ABE scheme
(subsection 3.2) is applied for the group F ∗∗. According to the first restriction
(subsection 2.7), the modulus of the improved BGG+14 ABE scheme, q (the
outer modulus), should be adapted to being super-polynomially large.

4.2 P/poly Invalidity of the Agr17 FE Scheme

In the third step of the decryption process of the Agr17 FE scheme, the de-
cryptor searches e ∈ (−Q/4, Q/4) under the belief that Q is polynomially large
(subsection 3.8). But at the beginning of this step, Q should be equal to q (sub-
section 3.7 and subsection 2.9), q is super-polynomially large (subsection 2.7 and
subsection 4.1), and q cannot be switched (subsection 2.8).
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Can the decryptor apply another modular switching to make Q polynomially
large, just before the third step of the decryption process? At that moment, the
BGG+14 ABE ciphertext is (cin,C<f∗(m∗),t> mod q, c1,out, c2,out, · · · , ck,out, cout)
(or (cin,C<f∗∗(m∗),t> mod q, c1,out, c2,out, · · · , ck,out, cout)), and modular switch-
ing is not affine operation of hidden < f∗(m∗), t > mod q (or < f∗∗(m∗), t >
mod q) about the outer modulus q. According to the third restriction (subsection
2.9), he cannot apply such modular switching.

From all of the above, Q cannot be polynomially large at the “searching”
stage, so that the Agr17 FE scheme is P/poly invalid.

5 Cryptanalysis of Two Modified Versions

5.1 Cryptanalysis of the First Modified Version

The first modified version is described in the following five points.
(1) The outer modulus q is fixed to be super-polynomially large.
(2) In the first step of the decryption process (quasi-homomorphic operation

of homomorphic evaluation), bootstrapping is repeatedly applied to control the
FHE noise, hoping such noise polynomially large. Notice that bootstrapping
should be quasi-homomorphically operated, so that the outer modulus q should
be larger to accommodate both the ordinary quasi-homomorphic operation and
such additional quasi-homomorphic operation.

(3) The inner modulus Q is fixed to be just able to accommodate the FHE
noise, which is hoped to be polynomially large.

(4) In the second step of the decryption process (quasi-homomorphic opera-
tion of computing inner product), computeC<f∗(m∗),t> rather thanC<f∗(m∗),t> mod Q,
where < f∗(m∗), t > is arithmetic inner product. The purpose is to guarantee
< f∗(m∗), t >=< f∗(m∗), t > mod q, which is an affine operation about other
modulus q.

(5) In the third step of the decryption process (searching the noise), search
the interval (−Q◦Q,Q◦Q) rather than (−Q/4, Q/4), where Q◦ guarantees that
the arithmetic inner product is just in the interval (−Q◦Q,Q◦Q). Notice that,
if Q is polynomially large, so is Q◦Q.

The effect of bootstrapping is to guarantee that the FHE noise is obtained
by the homomorphic evaluation of an NC1 function, rather than of a P/poly
function. More detailedly, the FHE noise is obtained by the homomorphic evalu-
ation of the FHE decryption function. However, the homomorphic evaluation of
an NC1 function does not guarantee the corresponding FHE noise polynomially
large. So that we can only say that the first modified version may be P/poly
valid.

For the (1, poly) collusion, the decryptor with the function value 1 obtains
his f(m) = 1, his f∗(m∗), and his < f∗(m∗), t >, where < f∗(m∗), t > includes
more knowledge of t than < f∗(m∗), t > mod Q. So we say that the first
modified version is weaker than the original Agr17 FE scheme, although we
have not constructed a new attack on it. In other words, this modified version
needs a new proof of the security.
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5.2 Cryptanalysis of the Second Modified Version

The idea of the second modified version is just same as in the GVW15 PE
scheme [12], which is trying to search a public noise interval (−B,B) rather
than searching the modulus interval (−Q/4, Q/4), hoping B polynomially large
and tolerating Q super-polynomially large. Can it be possible? Such possibility
can only be checked for the following three cases of (Q, q).

Case I. Q is always equal to q, and all FHE evaluations don’t apply boot-
strapping.

Case II. Q is always equal to q, and some FHE evaluations may apply boot-
strapping.

Case III. Q is not equal to q in the first step of the decryption process, then
a modular switching is applied to make Q = q, then the second and third steps
of the decryption process are implemented.

A special note: Case I and Case II depend on the “yes” answer to the
question in subsection 2.6. If the answer to this question is “no”, immediately
both Case I and Case II are P/poly invalid. Now we take the “yes” answer.

For a randomly chosen P/poly Boolean function f , homomorphic evaluation
f∗ will make the noise of FHE ciphertext super-polynomially large if bootstrap-
ping is not applied. This is a well-known fact. So that the noise interval (−B,B)
cannot be polynomially large, and Case I is P/poly invalid.

Bootstrapping is an FHE technique, by which the noise is reduced while the
modulus is kept, so that subsequent homomorphic evaluation operations can be
implemented. As we know, existing bootstrapping methods are not so powerful
to let the noise polynomially large while the modulus is super-polynomially large.
So that there is no evidence to support the P/poly validity of Case II.

A misunderstanding should be corrected that, if an FHE ciphertext under old
modulus is switched to another FHE ciphertext under new modulus, the noise
involved in the ciphertext is switched proportionally. The practical situation is
that new noise may be added. If old modulus and new modulus are coprime, new
noise is certainly added. Then how about the ratio of the modulus and the size of
the noise, after modular switching? As we know, it should be polynomially large,
by considering the security. More specifically, such ratio should be polynomially
large after the modular switching, even it is super-polynomially large before the
modular switching. Yes we can make such ratio super-polynomially large after
the modular switching, by making some key variable much smaller, but it is not
the recommended form.

Now let us go to Case III. q is a prime, so Q and q are coprime. If Q is
switched to q, the ratio of the modulus q and the size of the corresponding noise
should be polynomially large. On the other hand, q is super-polynomially large
(subsection 2.7), so that the noise interval (−B,B) cannot be polynomially large.
This is a natural reasoning. So that there is no evidence to support the P/poly
validity of Case III.

Finally, there is no evidence to support the P/poly validity of the second
modified version.
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5.3 On the P/poly Validity of the GVW15 PE Scheme [12]

PE is described by two different scenes, one is “an ABE with the attribute
hidden from decryptors”, while the other is “an ABE with the attribute hidden
from those decryptors whose function values are 0”. GVW15 PE scheme [12] can
match these two scenes according to two different collusion forms.

The GVW15 PE scheme [12] had the similar structure with the Agr17 FE
scheme, with only the following four changes: the position of the public bit-
string of the Agr17 FE was taken as that of the plaintext of the GVW15 PE; the
position of the plaintext of the Agr17 FE was taken as that of the attribute of
the GVW15 PE; the GVW15 PE took the original BGG+14 ABE (subsection
2.4) rather than the improved BGG+14 ABE (subsection 3.2); the “searching”
method is the same as that of the second modified version (subsection 5.2).

From all of the above, we obtain such additional conclusion: there is no
evidence to support the P/poly validity of the GVW15 PE scheme.

6 Our Response to an Argument

Some people say that our work is unnecessary, because Agr17 (GVW15) didn’t
hope to be applied for P/poly functions. Their sole piece of evidence is that
Agr17 (GVW15) clearly declared that the scheme was applied for functions of
“depth d”. Yes, that is true, and the necessity of our work would be questionable
if there were only one such declaration, although the size of d was not clearly
specified.

However, Agr17 (GVW15) also clearly declared that the scheme can use an
FHE modular switching (both Agr17 and GVW15 called it “modulus reduction”,
in page 10 of [15] and page 7 of [12]) to guarantee FHE modulus polynomially
large. How to explain such declaration? The most natural explanation is that
FHE modulus (inner modulus) may be super polynomially large, so that “search-
ing the noise” may not be implemented, if FHE modular switching is not used.
In other words, Agr17 (GVW15) was not intended to be applicable only to shal-
low functions, which do not require FHE modular switching during the FHE
evaluation stage. This is one motive of our work. Now how do we understand
functions which Agr17 (GVW15) hoped to be applied for?

The first and most natural interpretation is that Agr17 (GVW15) was in-
tended to be applicable to P/poly functions, where ”depth d” can be polynomially
large. Under this interpretation, our work is highly valuable.

The second interpretation is that Agr17 (GVW15) did not hope to be applied
for P/poly functions, where “depth d” can only be a small number, although the
scheme can use FHE modular switching. According to our work, functions for the
second interpretation are restricted in such way: FHE modulus (inner modulus)
may be super polynomially large if FHE modular switching is not used, but
corresponding ABE modulus (outer modulus) is certainly polynomially large
without ABE modular switching. This strong restriction is clear contribution of
our work. What do shapes of functions under our strong restriction look like? Of
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course shallow functions (without FHE modular switching) belong to the range,
but what else? Agr17 (GVW15) never described them, and it seems that Agr17
(GVW15) never found such strong restriction.
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