
Finding closest lattice vectors
using approximate Voronoi cells

Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger

Eindhoven University of Technology
Eindhoven, The Netherlands

{e.doulgerakis,b.m.m.d.weger}@tue.nl, mail@thijs.com

Abstract. The two traditional hard problems underlying the security
of lattice-based cryptography are the shortest vector problem (SVP) and
the closest vector problem (CVP). For a long time, lattice enumeration
was considered the fastest method for solving these problems in high
dimensions, but recent work on memory-intensive methods has resulted
in lattice sieving overtaking enumeration both in theory and in practice.
Some of the recent improvements [Ducas, Eurocrypt 2018; Laarhoven–
Mariano, PQCrypto 2018; Albrecht–Ducas–Herold–Kirshanova–Postle-
thwaite–Stevens, Eurocrypt 2019] are based on the fact that these meth-
ods find more than just one short lattice vector, and this additional data
can be reused effectively later on to solve other, closely related problems
faster. Similarly, results for the preprocessing version of CVP (CVPP)
have demonstrated that once this initial data has been generated, in-
stances of CVP can be solved faster than when solving them directly,
albeit with worse memory complexities [Laarhoven, SAC 2016].
In this work we study CVPP in terms of approximate Voronoi cells,
and obtain better time and space complexities using randomized slicing,
which is similar in spirit to using randomized bases in lattice enumer-
ation [Gama–Nguyen–Regev, Eurocrypt 2010]. With this approach, we
improve upon the state-of-the-art complexities for CVPP, both theo-
retically and experimentally, with a practical speedup of several orders
of magnitude compared to non-preprocessed SVP or CVP. Such a fast
CVPP solver may give rise to faster enumeration methods, where the
CVPP solver is used to replace the bottom part of the enumeration tree,
consisting of a batch of CVP instances in the same lattice.
Asymptotically, we further show that we can solve an exponential number
of instances of CVP in a lattice in essentially the same amount of time
and space as the fastest method for solving just one CVP instance. This
is in line with various recent results, showing that perhaps the biggest
strength of memory-intensive methods lies in being able to reuse the
generated data several times. Similar to [Ducas, Eurocrypt 2018], this
further means that we can achieve a “few dimensions for free” for sieving
for SVP or CVP, by doing Θ(d/ log d) levels of enumeration on top of a
CVPP solver based on approximate Voronoi cells.

Keywords: lattices, preprocessing, Voronoi cells, sieving algorithms,
shortest vector problem (SVP), closest vector problem (CVP)

mailto:mail@thijs.com

1 Introduction

Lattice problems. Lattices are discrete subgroups of Rd: given a basis B =
{b1, . . . , bd} ⊂ Rd, the lattice generated by B is defined as L = L(B) :=

{
∑d
i=1 λibi : λi ∈ Z}. Given a basis of L, the shortest vector problem (SVP)

is to find a (non-zero) lattice vector s of Euclidean norm ‖s‖ = λ1(L) :=
minv∈L\{0} ‖v‖. Given a basis of a lattice and a target vector t ∈ Rd, the closest
vector problem (CVP) is to find a lattice vector s ∈ L closest to t. The prepro-
cessing variant of CVP (CVPP) asks to preprocess the lattice L such that, when
later given a target vector t, one can quickly find a closest lattice vector to t.

SVP and CVP are fundamental in the study of lattice-based cryptography, as
the security of many schemes is directly related to their hardness. Various other
hard lattice problems, such as Learning With Errors (LWE), are closely related to
SVP and CVP; see, e.g., [63,74,75] for reductions among lattice problems. These
reductions show that understanding the hardness of SVP and CVP is crucial for
accurately estimating the security of lattice-based cryptographic schemes.

1.1 Related work

Worst-case SVP/CVP analyses. Although SVP and CVP are both central
in the study of lattice-based cryptography, algorithms for SVP have received
somewhat more attention, including a benchmarking website to compare dif-
ferent methods [1]. Various SVP algorithms have been studied which can solve
CVP as well, such as the polynomial-space, superexponential-time lattice enu-
meration studied in [14, 32, 38, 40, 47, 66]. More recently, methods have been
proposed which solve SVP/CVP in only single exponential time, but which also
require exponential-sized memory [2, 6, 64]. By constructing the Voronoi cell of
the lattice [4,25,64,73], Micciancio–Voulgaris showed that SVP and CVP(P) can
provably be solved in time 22d+o(d), and Bonifas–Dadush reduced the complexity
for CVPP to only 2d+o(d). In high dimensions the best provable complexities for
SVP and CVP are currently due to discrete Gaussian sampling [2, 3], solving
both problems in 2d+o(d) time and space in the worst case on arbitrary lattices.

Average-case SVP/CVP algorithms. When considering and comparing
these methods in practice on random lattices, we get a completely different
picture. Currently the fastest heuristic methods for SVP and CVP in high di-
mensions are based on lattice sieving. After a long series of theoretical works
on constructing efficient heuristic sieving algorithms [18–21, 50, 53, 65, 68, 78, 80]
as well as applied papers studying how to further speed up these algorithms in
practice [28, 35, 39, 46, 54, 57–61, 67, 71, 72], the best heuristic time complexity
for solving SVP (and CVP [52]) currently stands at 20.292d+o(d) [18, 59], using
20.208d+o(d) memory. The highest records in the SVP challenge [1] were recently
obtained using a BKZ-sieving hybrid [7]. These recent improvements have re-
sulted in a major shift in security estimates for lattice-based cryptography, from
estimating the hardness of SVP/CVP using the best enumeration methods, to
estimating this hardness based on state-of-the-art sieving results [9,24,26,27,36].

Hybrid algorithms and batch-CVP. In moderate dimensions, enumeration-
based methods dominated for a long time, and the cross-over point with single-
exponential time algorithms like sieving seemed to be far out of reach [66].
Moreover, the exponential memory of, e.g., lattice sieving will ultimately also
significantly slow down these algorithms due to the large number of random
memory accesses [23], and parallelizing sieving efficiently is less trivial than par-
allelizing enumeration [7, 23, 28, 46, 59, 67, 79]. Some previous work focused on
obtaining a trade-off between enumeration and sieving, using less memory for
sieving [17,43,44] or using more memory for enumeration [48].

Another well-known direction for a hybrid between memory-intensive meth-
ods and enumeration is to use a fast CVP(P) algorithm as a subroutine within
enumeration. As described in, e.g., [40,66], at any given level in the enumeration
tree, one is attempting to solve a CVP instance in a lower-rank sublattice, where
the target vector is determined by the path from the root to the current node
in the tree. Each node at this level in the tree corresponds to a CVP instance
in the same sublattice, but with a different target. If we can preprocess this
low-dimensional sublattice such that the amortized time complexity of solving
a batch of CVP-instances in this sublattice is small, then this may speed up
processing the bottom part of the enumeration tree.

A first step in this direction was taken in [52], where it was shown that with
a sufficient amount of preprocessing and space, one can achieve better amortized
time complexities for batch-CVP than when solving just one instance. The large
memory requirement (at least 2d/2+o(d) memory is required to improve upon
direct CVP approaches) as well as the large number of CVP instances required
to get a lower amortized complexity made this approach impractical to date.

1.2 Contributions: Approximate Voronoi cells

In this paper we revisit the preprocessing approach to CVP of [52], as well as the
recent trend of speeding up these algorithms using nearest neighbor searching,
and we show how to obtain significantly improved time and space complexities.
These results can be viewed as a first step towards a practical, heuristic alter-
native to the Voronoi cell approach of Micciancio–Voulgaris [66], where instead
of constructing the exact Voronoi cell, the preprocessing computes an approxi-
mation of it, requiring less time and space to compute and store.

First, our preprocessing step consists of computing a list L of most lattice vec-
tors below a given norm.1 This preprocessing can be done using either enumera-
tion or sieving. The preprocessed data can best be understood as representing an
approximate Voronoi cell VL of the lattice, where the size of L determines how
well VL approximates the true Voronoi cell V of the lattice; see Figure 1 for an
example. Using this approximate Voronoi cell, we then attempt to solve CVP in-
stances by applying the iterative slicing procedure of Sommer–Feder–Shalvi [73],
with nearest neighbor optimizations to reduce the search costs [12,18].
1 Heuristically, finding a large fraction of all lattice vectors below a given norm will

suffice – one does not necessarily need to run a deterministic preprocessing algorithm
to ensure all short lattice vectors are found.

O

r1

r2

r3

r4

r5

r6

V

(a) A tiling of R2 with exact Voronoi cells
V of a lattice L (red/black points), gener-
ated by the setR = {r1, . . . , r6} of all rel-
evant vectors of L. Here vol(V) = det(L).

O

r1

r2

r4

r5

VL

(b) An overlapping tiling of R2 with ap-
proximate Voronoi cells VL of the same
lattice L, generated by a subset of the
relevant vectors, L = {r1, r2, r4, r5} ⊂ R.

Fig. 1. Exact and approximate Voronoi cells of the same two-dimensional lattice L.
For the exact Voronoi cell V (Figure 1a), the cells around the lattice points form a
tiling of R2, covering each point in space exactly once. Given that a point t lies in the
Voronoi cell around s ∈ L, we know that s is the closest lattice point to t.
For the approximate Voronoi cell VL (Figure 1b), the cells around the lattice points
overlap, and cover a non-empty fraction of the space by multiple cells. Given that a
vector t lies in an approximate Voronoi cell around a lattice point s, we further do not
have the definite guarantee that s is the closest lattice point to t.

The main difference in our work over [52] lies in generalizing how similar VL
(generated by the list L) needs to be to V. We distinguish two cases below.
As sketched in Figure 1, a worse approximation leads to a larger approximate
Voronoi cell, so vol(VL) ≥ vol(V) with equality iff V = VL.

Good approximations: If VL is a good approximation of V (i.e., vol(VL) ≈
vol(V)), then with high probability over the randomness of the target vec-
tors, the iterative slicer returns the closest lattice vector to random targets.
To guarantee vol(VL) ≈ vol(V) we need |L| ≥ 2d/2+o(d), where additional
memory can be used to speed up the nearest neighbor part of the iterative
slicer. The resulting query complexities are sketched in red in Figure 2.

Arbitrary approximations: If the preprocessed list contains fewer than 2d/2

vectors, then vol(VL)� vol(V) and with overwhelming probability the itera-
tive slicer will not return the closest lattice point to a random target vector.
However, similar to [40], the running time of this method is decreased by a
much more significant factor than the success probability. So if we are able
to rerandomize the problem instance and try several times, we may still be
faster (and more memory-efficient) than when using a larger list L.

1.3 Contributions: Randomized slicing

To actually find solutions to CVP instances with a “bad” approximation VL to
the real Voronoi cell V, we need to be able to suitably rerandomize the iterative
slicing procedure, so that if the success probability in a single run of the slicer
is small, we can repeat the method several times for a high success probabil-
ity. To do this, we will run the iterative slicer on randomly perturbed vectors
t′ ∼ Dt+L,s, sampled from a discrete Gaussian over the coset t + L. Here the
standard deviation s needs to be sufficiently large to make sampling from Dt+L,s
efficient and the results of the slicer to be almost independent, and s needs to be
sufficiently small to guarantee that the slicer will terminate in a limited number
of steps. Algorithm 1 explicitly describes this procedure, given as input an ap-
proximate Voronoi cell VL (i.e., a list L ⊂ L of short lattice vectors defining the
facets of this approximate Voronoi cell).

Algorithm 1 The randomized heuristic slicer for finding closest vectors

Require: A list L ⊂ L and a target t ∈ Rd
Ensure: The algorithm outputs a closest lattice vector s ∈ L to t
1: s← 0 . Initial guess s for closest vector to t
2: repeat
3: Sample t′ ∼ Dt+L,s . Randomly shift t by a vector v ∈ L
4: for each r ∈ L do
5: if ‖t′ − r‖ < ‖t′‖ then . New shorter vector t′ ∈ t + L
6: Replace t′ ← t′ − r and restart the for-loop

7: if ‖t′‖ < ‖t− s‖ then
8: s← t− t′ . New lattice vector s closer to t

9: until s is a closest lattice vector to t
10: return s

Even though this algorithm requires sampling many vectors from the coset
t+L and running the iterative slicer on all of these, the overall time complexity
of this procedure will still be lower, since the iterative slicer needs less time to
complete when the input list L is shorter. To estimate the number of iterations
necessary to guarantee that the algorithm returns the actual closest vector, we
make the following assumption, stating that the probability that the iterative
slicer terminates with a vector t′ ∈ (t + L) ∩ V, given that it must terminate to
some vector t′ ∈ (t+L)∩VL, is proportional to the ratio of the volumes of these
(approximate) Voronoi cells V and VL.

Heuristic assumption 1 (Randomized slicing) For L ⊂ L and large s,

Pr
t′∼Dt+L,s

[
SliceL(t′) ∈ V

]
≈ vol(V)

vol(VL)
. (1)

This is a new and critical assumption to guarantee that the claimed asymptotic
complexities are correct, and we will therefore come back to this assumption
later on, to show that experiments indeed suggest this assumption is justified.

1.4 Contributions: Improved CVPP complexities

For the exact closest vector problem with preprocessing, our improved complexi-
ties over [52] mainly come from the aforementioned randomizations. To illustrate
this with a simple example, suppose we run an optimized (GaussSieve-based [65])
LDSieve [18], ultimately resulting in a list of (4/3)d/2+o(d) of the shortest vectors
in the lattice, indexed in a nearest neighbor data structure of size (3/2)d/2+o(d).
Asymptotically, using this list as our approximate Voronoi cell, the iterative slicer
succeeds with probability p = (13/16)d/2+o(d) (as shown in the analysis later on),
while processing a query with this data structure takes time (9/8)d/2+o(d). By
repeating a query 1/p times with rerandomizations of the same CVP instance,
we obtain the following heuristic complexities for CVPP.

Proposition 1 (Standard sieve preprocessing). Using the output of the
LDSieve [18] as the preprocessed list and encompassing data structure, we can
heuristically solve CVPP with the following query space and time complexities:

S = (3/2)d/2+o(d) ≈ 20.292d+o(d), T = (18/13)d/2+o(d) ≈ 20.235d+o(d).

This point (S,T) is highlighted in light blue in Figure 2.

If we use a more general analysis of the approximate Voronoi cell approach,
varying over both the nearest neighbor parameters and the size of the prepro-
cessed list, we can obtain even better query complexities. For a memory com-
plexity of (3/2)d/2+o(d) ≈ 20.292d+o(d), we can achieve a query time complexity of
approximately 20.220d+o(d) by using a shorter list of lattice vectors, and a more
memory-intensive parameter setting for the nearest neighbor data structure. The
following main result summarizes all the asymptotic time–space trade-offs we can
obtain for heuristically solving CVPP in the average case.

Theorem 1 (Optimized CVPP complexities). Let α ∈ (1.03396,
√

2) and

u ∈ (
√

α2−1
α2 ,

√
α2

α2−1). With approximate Voronoi cells we can heuristically solve

CVPP with preprocessing space and time S1 and T1, and query space and time
S2 and T2, where:

S1 = max

{
S2,

(
4

3

)d/2+o(d)}
, T1 = max

{
S2,

(
3

2

)d/2+o(d)}
, (2)

S2 =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)
, (3)

T2 =

(
16α4

(
α2 − 1

)
−9α8+64α6−104α4+64α2−16

· α+ u
√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)d/2+o(d)
. (4)

The best query complexities (S2,T2) together form the blue curve in Figure 2.

20d 20.2d 20.4d 20.6d 20.8d 21d
20d

20.2d

20.4d

20.6d

CVP

BGJ′14

BDGL′16

HKL′18

CVPP

Laa′16
CVPP

(this work)

Prop. 1

−→ (query) space complexity

−→
(q
ue
ry
)
ti
m
e
co
m
pl
ex
it
y

Fig. 2. Query complexities for finding closest vectors, directly (CVP) and with prepro-
cessing (CVPP). The leftmost red points/curve show the best asymptotic SVP/CVP
complexities of Becker–Gama–Joux [19], Becker–Ducas–Gama–Laarhoven [18], and
Herold–Kirshanova–Laarhoven [44]. The rightmost red point and curve are the previous
best CVPP complexities of [52]. The blue curve shows our new CVPP complexities.

Compared to [52], we obtain trade-offs for much lower memory complexities,
and we improve upon both the best CVPP complexities of [52] and the best
SVP/CVP complexities of [18, 44].2 Observe that our trade-off passes below all
the best CVP results, i.e., we can always solve an exponentially large batch of
2εd CVP instances for small ε > 0 in the same amount of time as the current
best complexities for solving just one instance, for any memory bound.

Due to the condition that α > 1.0339 . . . (which follows from the fact
that the denominator in T2 needs to remain positive), the blue curve in Fig-
ure 2 terminates on the left side at a minimum query space complexity of
1.03396d+o(d) ≈ 20.0482d+o(d). One might wonder whether we can obtain a con-
tinuous trade-off between the query time and space complexities reaching all the
way to 2o(d) memory and 2ω(d) query time. The lower bound on α might be a
consequence of our analysis, and perhaps a different approach would show this
algorithm solves CVPP in 2O(d) time even with less memory.

As for the other end of the blue curve, as the available space increases, one can
achieve an amortized time complexity for CVP of 2εd+o(d) at the cost of (1/ε)O(d)

preprocessed space for arbitrary ε > 0. For large query space complexities, i.e.,
when a lot of memory and preprocessing power is available for speeding up the
queries, the blue and red curve converge, and the best parameter choice is to set
α ≈
√

2 such that VL ≈ V, as explained in Section 1.2.

2 As detailed in [52], by modifying sieve algorithms for SVP, one can also solve CVP
with essentially equivalent heuristic time and space complexities as for SVP.

Concrete complexities. Although Theorem 1 and Figure 2 illustrate how well
we expect these methods to scale in high dimensions d, we would like to stress
that Theorem 1 is a purely asymptotic result, with potentially large order terms
hidden by the o(d) in the exponents for the time and space complexities. To ob-
tain security estimates for real-world applications, and to assess how fast this al-
gorithm actually solves problems appearing in the cryptanalysis of lattice-based
cryptosystems, it therefore remains necessary to perform extensive experiments,
and to cautiously try to extrapolate from these results what the real attack costs
might be for high dimensions d, necessary to attack actual instantiations of cryp-
tosystems. Later on we will describe some preliminary experiments we performed
to test the practicality of this approach, but further work is still necessary to
assess the impact of these results on the concrete hardness of CVPP.

1.5 High-level proof description

To prove the main results regarding the improved asymptotic CVPP complexities
compared to [52], we first prove that under certain natural heuristic assumptions,
we obtain the following upper bound on the volume of approximate Voronoi cells
generated by the αd+o(d) shortest vectors of a lattice. The preprocessing will
consist of exactly this: generate the αd+o(d) shortest vectors in the lattice, and
store them in a nearest neighbor data structure that allows for fast look-ups of
nearby points in space.

Lemma 1 (Relative volume of approximate Voronoi cells). Let L ⊂ L
consist of the αd+o(d) shortest vectors of a lattice L, with α ∈ (1.03396,

√
2).

Then heuristically,

vol(VL)

vol(V)
≤

(
16α4

(
α2 − 1

)
−9α8 + 64α6 − 104α4 + 64α2 − 16

)d/2+o(d)
. (5)

Using this lemma and the heuristic assumption stated previously, relating the
success probability of the slicer to the volume of the approximate Voronoi cell,
this immediately gives us a (heuristic) lower bound on the success probability
pα of the randomized slicing procedure, given as input a preprocessed list of
the αd+o(d) shortest vectors in the lattice. Then, similar to [52], the complexity
analysis is a matter of combining the costs for the preprocessing phase, the costs
of the nearest neighbor data structure, and the cost of the query phase, where
now we need to repeat the randomized slicing of the order 1/pα times – the
difference in the formulas for the complexities compared to [52] comes exactly
from this additional factor 1/pα ≈ vol(VL)/ vol(V).

To prove the above lemma regarding the volume of approximate Voronoi cells,
we will prove the following statements. First, we show that if the list L contains
the αd+o(d) shortest vectors of a random lattice L, then on input a target vector
t, we heuristically expect the slicer to terminate on a reduced vector t′ ∈ t+L of
norm at most ‖t′‖ ≤ β · λ1(L), where β is determined by the parameter α. The

relation between α and β can be succinctly described by the following relation

β = α2/
√

4α2 − 4. (6)

More precisely, we show that as long as ‖t′‖ � β · λ1(L), then with high prob-
ability we expect to be able to combine t′ with vectors in L to form a shorter
vector t′′ ∈ t + L with ‖t′′‖ < ‖t′‖. On the other hand, if we have a vector
t′ ∈ t+L of norm less than β ·λ1(L), then we only expect to be able to combine
t′ with a vector in L to form a shorter vector with exponentially small probabil-
ity 2−Θ(d). In other words, reducing to a vector of norm β · λ1(L) can be done
almost “effortlessly”, while after that even making small progress in reducing
the length of t′ comes at an exponential loss in the success probability.

Good approximations. Next, from the above relation between the size of
the input list, |L| (or α), and the reduced norm of the shifted target vector,
‖t′‖ (or β), the previous result of [52] immediately follows – to achieve t′ ∈ V
we heuristically need β = 1 + o(1). This implies that α =

√
2 is the minimal

parameter that guarantees we will be able to effortlessly reduce to the exact
Voronoi cell, and so L must contain the αd+o(d) = 2d/2+o(d) shortest vectors in
the lattice. In that case the success probability is constant, and the costs of the
query phase are determined by a single reduction of t with the iterative slicer.

Arbitrary approximations. However, even if α <
√

2 is smaller, and the
corresponding β is therefore larger than 1, the slicer might still succeed with
(exponentially) small probability. To analyze the success probability, note that
from the Gaussian heuristic we may assume that the closest vector to our target
t lies uniformly at random in a ball (or sphere) of radius λ1(L) around t. Then,
also for the reduced vector t′ of norm at most β ·λ1(L), the closest lattice vector
lies in a ball of radius λ1(L) around it. Since our list L contains all vectors of
norm less than α ·λ1(L), we will clearly find the closest lattice vector in the list L
if the closest lattice vector lies in the intersection of two balls of radii λ1(L) (resp.
α ·λ1(L)) around t′ (resp. 0). Estimating the volume of this intersection of balls,
relative to the volume of the ball of radius λ1(L) around t′, then gives us a lower
bound on the success probability of the slicer, and a heuristic upper bound on the
volume of the corresponding approximate Voronoi cell. This analysis ultimately
leads to the aforementioned lemma.

Tightness of the proof. Note that the above proof technique only gives us a
lower bound on the success probability, and an upper bound on the volume of the
approximate Voronoi cell: when the target vector has been reduced to a vector
of norm at most β · λ1(L), we bound the success probability of the slicer by
the probability that the slicer now terminates successfully in a single iteration.
Since the algorithm might also succeed in more than one additional iteration, the
actual success probability may be higher. A tighter analysis, perhaps showing
that the given heuristic bound can be improved upon, is left for future work.

1.6 Intermezzo: Another few dimensions for free

Recently, Ducas [35] showed that in practice, one can effectively use the addi-
tional vectors found by lattice sieving to solve a few extra dimensions of SVP
“for free”. More precisely, by running a lattice sieve in a base dimension d, one
can solve SVP in dimension d′ = d+Θ(d/ log d) at little additional cost. This is
done by taking all vectors returned by a d-dimensional lattice sieve, and running
Babai’s nearest plane algorithm [16] on all these vectors in the d′-dimensional
lattice to find short vectors in the full lattice. If d′ is close enough to d, one of
these vectors will then be “rounded” to a shortest vector of the full lattice.

On a high level, Ducas’ approach can be viewed as a sieving/enumeration hy-
brid, where the top part of enumeration is replaced with sieving, and the bottom
part is done regularly as in enumeration, which is essentially equivalent to doing
Babai rounding [16]. The approach of using a CVPP-solver inside enumeration
is in a sense dual to Ducas’ idea, as here the bottom part of the enumeration tree
is replaced with a (sieving-like) CVPP routine. Since our CVPP complexities
are strictly better than the best SVP/CVP complexities, we can also gain up to
Θ(d/ log d) dimensions for free as follows:

1. First, we initialize an enumeration tree in the full lattice L of dimension d′ =
d+ k, and we process the top k = ε · d/ log d levels as usual in enumeration.
This will result in 2Θ(k log k) = 2Θ(d) target vectors at level k, and this requires
a similar time complexity of 2Θ(d) to generate all these target vectors.

2. Then, we run the CVPP preprocessing on the d-dimensional sublattice of
L corresponding to the bottom part of the enumeration tree. This may for
instance take time 20.292d+o(d) and space 20.208d+o(d) using the sieve of [18].

3. Finally, we take the batch of 2Θ(d) target vectors at level k in the enumeration
tree, and we solve CVP for each of them with our approximate Voronoi cell
and randomized slicing algorithm, with query time 20.220d+o(d) each.

By setting k = ε · d/ log d as above with small, constant ε > 0, the costs for
solving SVP or CVP in dimension d′ are asymptotically dominated by the costs
of the preprocessing step, which is as costly as solving SVP or CVP in dimension
d. So similar to [35], asymptotically we also get Θ(d/ log d) dimensions “for free”.
However, unlike for Ducas’ idea, in practice the dimensions are likely not quite
as free here, as there is more overhead for doing the CVPP-version of sieving
than for Ducas’ additional batch of Babai nearest plane calls.

Even more dimensions for free. A natural question one might ask now is:
can both ideas be combined to get even more dimensions “for free”? At first
sight, this seems hard to accomplish, as Ducas’ idea speeds up SVP rather than
CVPP. Furthermore, note that when solving SVP without Ducas’ trick, one gets
20.208d+o(d) short lattice vectors when only one shortest vector is needed, and so
in a sense one might “naturally” hope to gain something by going for only one
short output vector. Here the analysis of the iterative slicer is already based on
the fact that ultimately, we hope to reduce a single target vector to its closest
neighbor in the lattice. There might be a way of combining both ideas to get
even more dimensions for free, but for now this is left as an open problem.

1.7 Contributions: Experimental results

Besides the theoretical contributions mentioned above, with improved heuristic
time and space complexities compared to [52], for the first time we also imple-
mented a (sieving-based) CVPP solver using approximate Voronoi cells. For the
preprocessing we used a slight modification of a lattice sieve, returning more vec-
tors than a standard sieve, allowing us to vary the list size in our experiments.
Our implementations serve two purposes: validating the additional heuristic as-
sumption we make, and to see how well the algorithm performs in practice.

Validation of the randomization assumption. To obtain the aforemen-
tioned improved asymptotic complexities for solving CVPP, we required a new
heuristic assumption, stating that if the iterative slicer succeeds with some prob-
ability p on a CVP instance t, then we can repeat it 1/p times with perturbations
t′ ∼ Dt+L,s to achieve a high success probability for the same target t. To ver-
ify this assumption, we implemented our method and tested it on lattices of
dimension 50 with a range of randomly chosen targets to see whether, if the
probability of success is small, repeating the method m times will increase the
success rate by a factor m. Figure 3 shows performance metrics for various num-
bers of repetitions and for varying list sizes. In particular, Figure 3a illustrates
the increased success probability as the number of repetitions increases, and
Figure 3c shows that the normalized success probability per trial3 seems inde-
pendent of the number of repetitions. Therefore, the “expected time” metric as
illustrated in Figure 3b appears to be independent of the number of trials.

Experimental performance. Unlike the success probabilities, the time com-
plexity might vary a lot depending on the underlying nearest neighbor data
structure. For our experiments we used hyperplane LSH [29] as also used in the
HashSieve [50, 58], as it is easy to implement, has few parameters to set, and
performs better in low dimensions (d = 50) than the LDSieve [18,59].

To put the complexities of Figure 3b into perspective, let us compare the
normalized time complexities for CVPP with the complexities of sieving for
SVP, which by [52] are comparable to the costs for CVP. First, we note that
the HashSieve algorithm solves SVP in approximately 4 seconds on the same
machine. This means that in dimension 50, the expected time complexity for
CVPP with the HashSieve (roughly 2 milliseconds) is approximately 2000 times
smaller than the time for solving SVP. To explain this gap, observe that the
list size for solving SVP is approximately 4000, and so the HashSieve algorithm
needs to perform in the order of 4000 reductions of newly sampled vectors with
a list of size 4000. For solving CVPP, we only need to reduce 1 target vector,
with a slightly larger list of 10 000 to 15 000 vectors. So we save a factor 4000
on the number of reductions, but the searches are more expensive, leading to a
speed-up of less than a factor 4000.

3 As the success prob. q for m trials scales as q = 1−(1−p)m if each trial independently
has success prob. p, we computed the success prob. per trial as p = 1− (1− q)1/m.

0 10000 20000 30000 40000
0.0

0.2

0.4

0.6

0.8

1.0

→ List size (vectors)

→
S
uc
ce
ss
pr
ob
ab
ili
ty

20 trials

10 trials

5 trials

2 trials

1 trial

(a) Success prob. with rerandomizations

0 10000 20000 30000 40000
0.000

0.002

0.004

0.006

0.008

0.010

→ List size (vectors)

→
T
im
e
(s
ec
on
ds

)
/
S
uc
ce
ss
pr
ob
ab
ili
ty 20 trials

10 trials

5 trials

2 trials

1 trial

(b) Expected time per CVP instance

0 10000 20000 30000 40000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

→ List size (vectors)

→
S
uc
ce
ss
pr
ob
.p
er
tr
ia
l

20 trials

10 trials

5 trials

2 trials

1 trial

(c) Average success prob. per trial

0 10000 20000 30000 40000
0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

→ List size (vectors)

→
S
uc
ce
ss
pr
ob
.p
er
tr
ia
l/
Li
st
si
ze

20 trials

10 trials

5 trials

2 trials

1 trial

(d) Success prob. per trial, per vector

Fig. 3. Experimental results for solving CVPP with randomized slicing in dimension
50. Each data point corresponds to 10 000 random target vectors for those parameters.

Predictions and extrapolations. For solving SVP or CVP, the HashSieve [50]
reports time complexities in dimension d of 20.45d−19 seconds, corresponding to
11 seconds in dimension 50, i.e., a factor 3 slower than here. This is based on
doing n ≈ 20.21d reductions of vectors with the list. If doing only one of these
searches takes a factor 20.21d less time, and we take into account that for SVP the
time complexity is now a factor 3 less than in [50], then we obtain an estimated
complexity for CVPP in dimension d of 20.24d−19/3, which for d = 50 corresponds
to approximately 2.6 milliseconds. A rough extrapolation would then lead to a
time complexity in dimension 100 of only 11 seconds. This however seems to
be rather optimistic – preliminary experiments in dimensions 60 and 70 suggest
that the overhead of using a lot of memory may be rather high here, as the list
size is usually even larger than for standard sieving.

1.8 Contributions: Asymptotics for variants of CVPP

For easier variants of CVP, such as when the target lies closer to the lattice
than expected or an approximate solution to CVP suffices as a solution, we
obtain considerable gains in both the time and space complexities when using
preprocessing. We explicitly consider two variants of CVPP below.

BDDPδ. For bounded distance decoding with preprocessing (BDDP), we are
given a target vector t and a guarantee that t lies within distance δ · λ1(L) to
the nearest lattice vector, for some parameter δ > 0. By the Gaussian heuristic,
setting δ = 1 makes this problem as hard as general CVPP without a distance
guarantee, while for small δ → 0 polynomial-time algorithms exist [16].

By adjusting the analysis leading up to Theorem 1 for BDDP, we obtain the

same result as Theorem 1 with two modifications: T2 is replaced by T
(δ)
2 below,

and the range of admissable values α changes to (α0, α1), with α0 the smallest

root larger than 1 of the denominator of the left-most term in T
(δ)
2 , and α1 the

smallest value larger than 1 such that the left-most term in T
(δ)
2 equals 1. The

resulting optimized trade-offs for various δ ∈ (0, 1) are plotted in Figure 4a.

T
(δ)
2 =

(
16α4

(
α2 − 1

)
δ2

−9α8+8α6(3+5δ2)−8α4(2+9δ2+2δ4)+32α2(δ2+δ4)−16δ4
· [. . .]

)d/2+o(d)
. (7)

Note that in the limit of δ → 0, our algorithm tries to reduce a target close
to the lattice to the origin. This is similar to reducing a vector to the 0-vector in
the GaussSieve [65], and even with a long list of all short lattice vectors this does
not occur with probability 1. Here also the limiting curve in Figure 4a shows
that for δ → 0 with suitable parameterization we can do better than just with
sieving, but we do not get polynomial time and space complexities.

CVPPκ. For the approximate version of CVPP, a lattice vector v qualifies as
a solution for t if it lies at most a factor κ further from the real distance of t
from the lattice, for some κ ≥ 1. Heuristically, this is essentially equivalent to
looking for any lattice vector within radius κ · λ1(L) of the target, and similar
to BDDP the resulting trade-offs can be summarized by Theorem 1 where T2 is

replaced by T
(κ)
2 below, and the range of admissable values α again changes to

(α0, α1) as before.

T
(κ)
2 =

(
16α4

(
α2 − 1

)
−9α8+8α6(3+5κ2)−8α4(2+9κ2+2κ4)+32α2(κ2+κ4)−16κ4

· [. . .]

)d/2+o(d)
. (8)

For increasing approximation factors κ→∞, our algorithm tries to reduce a
target vector to vector of norm less than κ ·λ1(L). For large κ this is increasingly
easy to achieve, and as κ → ∞, both the query time and space complexities in
our analysis converge to zero as expected. Figure 4b highlights this asymptote,
and illustrates the other trade-offs through some examples for small κ > 1.

20d 20.2d 20.4d 20.6d 20.8d 21d
20d

20.2d

20.4d

20.6d

BDDPδ

CVPP = BDDP1

BDDP0

−→ query space complexity

−→
qu

er
y
ti
m
e
co
m
pl
ex
it
y

(a) Heuristic complexities for BDDPδ for different values δ ∈ {0, 0.2, . . . , 0.8, 1}.
Smaller δ correspond to easier problems but also to a larger lower bound α0 on α.
The trade-off for δ → 0 is indicated by the thick orange line.

20d 20.2d 20.4d 20.6d 20.8d 21d
20d

20.2d

20.4d

20.6d

CVPPκ

CVPP = CVPP1

CVPP∞

−→ query space complexity

−→
qu

er
y
ti
m
e
co
m
pl
ex
it
y

(b) Heuristic query complexities for CVPPκ for different approximation factors κ ∈
{
√

4/3, 1.2, 1.3, 1.5,∞}. The thick green line shows the limit as κ→∞.

Fig. 4. Asymptotics for solving variants of CVP(P) with approximate Voronoi cells:
(a) BDDPδ and (b) CVPPκ. Note that the (tail of the) curve for CVPP√

4/3
overlaps

with the curve for BDDP0.

1.9 Open problems

Combination with other techniques. The focus of this work was on the
asymptotic complexities we can achieve for high dimensions d, and therefore we
focused only on including techniques from the literature that lead to the best
asymptotics. In practice however, there may be various other techniques that
can help speed up these methods in moderate dimensions. This for instance
includes Ducas’ dimensions for free [35], progressive sieving [35, 54], the recent
sieving-BKZ hybrid [7], and faster NNS techniques [7, 11]. Incorporating such
techniques will likely affect the experimental performance as well, and future
work may show how well the proposed techniques truly perform in practice
when all the state-of-the-art techniques are combined into one.

Faster enumeration with approximate Voronoi cells. As explained above,
one potential application of our CVPP algorithm is as a subroutine within enu-
meration, to speed up the searches in the bottom part of the tree. Such an
algorithm can be viewed as a trade-off between enumeration and sieving, where
the level at which we insert the CVPP oracle determines whether we are closer
to enumeration or to sieving. An open question remains whether this would lead
to faster algorithms in practice, or if the preprocessing/query costs are too high.
Note that depending on at which level of the tree the CVPP oracle is inserted,
and on the amount of pruning in enumeration, the hardness of the CVP in-
stances at these levels also changes. Optimizing all parameters involved in such
a combination appears to be a complex task, and is left for future work.

Sieving in the dual lattice. For the application of CVPP within enumeration,
observe that a decisional CVPP oracle, deciding whether a vector lies close to
the lattice or not, may actually be sufficient; most branches of the enumeration
tree will not lead to a solution, and therefore in most cases running an accu-
rate decision-CVPP oracle is enough to determine that this subtree is not the
right subtree. For those few subtrees that potentially do contain a solution, one
could then run a full CVP(P) algorithm at a slightly higher cost. Improving the
complexities for the decision-version of CVPP may therefore be an interesting
future direction, and perhaps one approach could be to combine this with ideas
from [5], by running a lattice sieve on the dual lattice to find many short vectors
in the dual lattice, which can then be used to check if a target vector lies close
to the primal lattice or not.

Quantum complexities. As one of the strengths of lattice-based cryptography
is its conjectured resistance to quantum attacks [22], it is important to study
the potential impact of quantum improvements to SVP and CVP algorithms, so
that the parameters can be chosen to be secure in a post-quantum world [15,55].
For lattice sieving for solving SVP, the time complexity exponent potentially de-
creases by approximately 25% [55], and for CVPP we expect the exponents may
decrease by approximately 25% as well. Studying the exact quantum asymptotics
of solving CVPP with approximate Voronoi cells is left for future work.

1.10 Outline

Due to space restrictions for the original publication at PQCrypto 2019, and to
maintain the same paper structure as in the published version, the remainder of
the paper, including full details on all claims, is given in the appendix. Below
we briefly outline the contents of these appendices for the interested reader.

Appendix A – Preliminaries
This section describes preliminary results and notation for the technical con-
tents, formally states the main hard problems discussed in the paper, for-
malizes the heuristic assumptions made throughout the paper, and describes
existing results on nearest neighbor searching, lattice sieving algorithms,
Voronoi cells, and Voronoi cell algorithms.

Appendix B – Approximate Voronoi cells
In Appendix B we formalize the CVPP approach considered in this paper in
terms of our approximate Voronoi cell framework with randomized slicing,
and we derive our main results regarding improved asymptotic complexi-
ties for exact CVPP. Approximate Voronoi cells are formally introduced,
the main results are stated and proved in terms of this framework, and all
corresponding algorithms are given in pseudocode.

Appendix C – Experimental results
Appendix C describes the experiments we performed with these methods in
more detail, both to verify the (additional) heuristic assumptions we made
for this paper, and to assess the practicality of our CVPP algorithm. Here we
also briefly compare our results to various published complexities for SVP
or CVP(P), to put these numbers into context.

Appendix D – Asymptotics for variants of CVPP
The last appendix finally discusses asymptotic results for variants of CVPP,
namely approximate CVPP and BDDP. This section contains a more formal
statement of the results given in Section 1.8, and explains how the analysis
changes compared to the analysis for exact CVPP, and how this leads to
improved complexities for these slightly easier variants of (exact) CVPP.

Acknowledgments

The authors are indebted to Léo Ducas, whose ideas and suggestions on this
topic motivated work on this paper. The authors are further grateful to the
reviewers, whose thorough study of the contents (with one review even exceeding
the page limit for the conference) significantly helped improve the contents of the
paper, as well as improve the presentation of the results. Emmanouil Doulgerakis
is supported by the NWO under grant 628.001.028 (FASOR). At the time of
writing a preliminary version of this paper, Thijs Laarhoven was supported by
the SNSF ERC Transfer Grant CRETP2-166734 FELICITY. At the time of
publishing, Thijs Laarhoven is supported by a Veni Innovational Research Grant
from NWO under project number 016.Veni.192.005.

References

1. SVP challenge, 2018. http://latticechallenge.org/svp-challenge/.
2. Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.

Solving the shortest vector problem in 2n time via discrete Gaussian sampling. In
STOC, pages 733–742, 2015.

3. Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the
closest vector problem in 2n time – the discrete Gaussian strikes again! In FOCS,
pages 563–582, 2015.

4. Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger. Closest point
search in lattices. IEEE Transactions on Information Theory, 48(8):2201–2214,
2002.

5. Dorit Aharonov and Oded Regev. Lattice problems in NP∩coNP. In FOCS, pages
362–371, 2004.

6. Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm for the
shortest lattice vector problem. In STOC, pages 601–610, 2001.

7. Martin Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn
Postlethwaite, and Marc Stevens. The general sieve kernel and new records in
lattice reduction. In EUROCRYPT, 2019.

8. Misha Alekhnovich, Subhash Khot, Guy Kindler, and Nisheeth Vishnoi. Hardness
of approximating the closest vector problem with pre-processing. In FOCS, pages
216–225, 2005.

9. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange – a new hope. In USENIX Security Symposium, pages
327–343, 2016.

10. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions. In FOCS, pages 459–468, 2006.

11. Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. Practical and optimal LSH for angular distance. In NIPS, pages 1225–
1233, 2015.

12. Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Opti-
mal hashing-based time-space trade-offs for approximate near neighbors. In SODA,
pages 47–66, 2017.

13. Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for ap-
proximate near neighbors. In STOC, pages 793–801, 2015.

14. Yoshinori Aono and Phong Q. Nguyên. Random sampling revisited: lattice enu-
meration with discrete pruning. In EUROCRYPT, pages 65–102, 2017.

15. Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumeration
and tweaking discrete pruning. In ASIACRYPT, 2018.

16. László Babai. On lovasz lattice reduction and the nearest lattice point problem.
Combinatorica, 6(1):1–13, 1986.

17. Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. In ANTS,
pages 146–162, 2016.

18. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in
nearest neighbor searching with applications to lattice sieving. In SODA, pages
10–24, 2016.

19. Anja Becker, Nicolas Gama, and Antoine Joux. A sieve algorithm based on over-
lattices. In ANTS, pages 49–70, 2014.

20. Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search. Cryptology
ePrint Archive, Report 2015/522, pages 1–14, 2015.

http://latticechallenge.org/svp-challenge/

21. Anja Becker and Thijs Laarhoven. Efficient (ideal) lattice sieving using cross-
polytope LSH. In AFRICACRYPT, pages 3–23, 2016.

22. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-
quantum cryptography. Springer, 2009.

23. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine
van Vredendaal. NTRU prime: reducing attack surface at low cost. In SAC, pages
235–260, 2017.

24. Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald Rietman,
Markku-Juhani O. Saarinen, Ludo Tolhuizen, and Zhenfei Zhang. Round5: Com-
pact and fast post-quantum public-key encryption. Cryptology ePrint Archive,
Report 2018/725, 2018.

25. Nicolas Bonifas and Daniel Dadush. Short paths on the Voronoi graph and the
closest vector problem with preprocessing. In SODA, pages 295–314, 2015.

26. Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring!
practical, quantum-secure key exchange from LWE. In CCS, pages 1006–1018,
2016.

27. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a
CCA-secure module-lattice-based KEM. In Euro S&P, pages 353–367, 2018.

28. Joppe W. Bos, Michael Naehrig, and Joop van de Pol. Sieving for shortest vectors
in ideal lattices: a practical perspective. International Journal of Applied Cryptog-
raphy, 3(4):313–329, 2016.

29. Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, pages 380–388, 2002.

30. Tobias Christiani. A framework for similarity search with space-time tradeoffs
using locality-sensitive filtering. In SODA, pages 31–46, 2017.

31. John H. Conway and Neil J.A. Sloane. Sphere packings, lattices and groups.
Springer, 1999.

32. Fábio Correia, Artur Mariano, Alberto Proenca, Christian Bischof, and Erik Agrell.
Parallel improved Schnorr-Euchner enumeration SE++ for the CVP and SVP. In
PDP, pages 596–603, 2016.

33. Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. On the closest vector
problem with a distance guarantee. In CCC, pages 98–109, 2014.

34. The FPLLL development team. fplll, a lattice reduction library. Available at
https://github.com/fplll/fplll, 2016.

35. Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free. In
EUROCRYPT, pages 125–145, 2018.

36. Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS – Dilithium: Digital signatures from module
lattices. In CHES, volume 2018, pages 238–268, 2018.

37. Ulrich Feige and Daniele Micciancio. The inapproximability of lattice and coding
problems with preprocessing. In CCC, pages 32–40, 2002.

38. Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors of
short length in a lattice. Mathematics of Computation, 44(170):463–471, 1985.

39. Robert Fitzpatrick, Christian Bischof, Johannes Buchmann, Özgür Dagdelen, Flo-
rian Göpfert, Artur Mariano, and Bo-Yin Yang. Tuning GaussSieve for speed. In
LATINCRYPT, pages 288–305, 2014.

40. Nicolas Gama, Phong Q. Nguyên, and Oded Regev. Lattice enumeration using
extreme pruning. In EUROCRYPT, pages 257–278, 2010.

https://github.com/fplll/fplll

41. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-
tices and new cryptographic constructions. In STOC, pages 197–206, 2008.

42. Jens Hermans, Michael Schneider, Johannes Buchmann, Frederik Vercauteren, and
Bart Preneel. Parallel shortest lattice vector enumeration on graphics cards. In
AFRICACRYPT, pages 52–68, 2010.

43. Gottfried Herold and Elena Kirshanova. Improved algorithms for the approximate
k-list problem in Euclidean norm. In PKC, pages 16–40, 2017.

44. Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups and time-
memory trade-offs for tuple lattice sieving. In PKC, pages 407–436, 2018.

45. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards re-
moving the curse of dimensionality. In STOC, pages 604–613, 1998.

46. Tsukasa Ishiguro, Shinsaku Kiyomoto, Yutaka Miyake, and Tsuyoshi Takagi. Par-
allel Gauss Sieve algorithm: Solving the SVP challenge over a 128-dimensional ideal
lattice. In PKC, pages 411–428, 2014.

47. Ravi Kannan. Improved algorithms for integer programming and related lattice
problems. In STOC, pages 193–206, 1983.

48. Paul Kirchner and Pierre-Alain Fouque. Time-memory trade-off for lattice enu-
meration in a ball. Cryptology ePrint Archive, Report 2016/222, 2016.

49. Philip Klein. Finding the closest lattice vector when it’s unusually close. In SODA,
pages 937–941, 2000.

50. Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In CRYPTO, pages 3–22, 2015.

51. Thijs Laarhoven. Tradeoffs for nearest neighbors on the sphere. arXiv:1511.07527
[cs.DS], pages 1–16, 2015.

52. Thijs Laarhoven. Sieving for closest lattice vectors (with preprocessing). In SAC,
pages 523–542, 2016.

53. Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice vectors
using spherical locality-sensitive hashing. In LATINCRYPT, pages 101–118, 2015.

54. Thijs Laarhoven and Artur Mariano. Progressive lattice sieving. In PQCrypto,
pages 292–311, 2018.

55. Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice
vectors faster using quantum search. Designs, Codes and Cryptography, 77(2):375–
400, 2015.

56. Jeffrey C. Lagarias, Hendrik W. Lenstra, and Claus-Peter Schnorr. Korkin-
Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Com-
binatorica, 10(4):333–348, 1990.

57. Artur Mariano and Christian Bischof. Enhancing the scalability and memory usage
of HashSieve on multi-core CPUs. In PDP, pages 545–552, 2016.

58. Artur Mariano, Thijs Laarhoven, and Christian Bischof. Parallel (probable) lock-
free HashSieve: a practical sieving algorithm for the SVP. In ICPP, pages 590–599,
2015.

59. Artur Mariano, Thijs Laarhoven, and Christian Bischof. A parallel variant of
LDSieve for the SVP on lattices. In PDP, pages 23–30, 2017.

60. Artur Mariano, Özgür Dagdelen, and Christian Bischof. A comprehensive empirical
comparison of parallel ListSieve and GaussSieve. In EURO-PAR, pages 48–59,
2014.

61. Artur Mariano, Shahar Timnat, and Christian Bischof. Lock-free GaussSieve for
linear speedups in parallel high performance SVP calculation. In SBAC-PAD,
pages 278–285, 2014.

62. Daniele Micciancio. The hardness of the closest vector problem with preprocessing.
IEEE Transactions on Information Theory, 47(3):1212–1215, 2001.

63. Daniele Micciancio. Efficient reductions among lattice problems. In SODA, pages
84–93, 2008.

64. Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential
time algorithm for most lattice problems based on Voronoi cell computations. In
STOC, pages 351–358, 2010.

65. Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms
for the shortest vector problem. In SODA, pages 1468–1480, 2010.

66. Daniele Micciancio and Michael Walter. Fast lattice point enumeration with min-
imal overhead. In SODA, pages 276–294, 2015.

67. Benjamin Milde and Michael Schneider. A parallel implementation of GaussSieve
for the shortest vector problem in lattices. In PACT, pages 452–458, 2011.

68. Phong Q. Nguyên and Thomas Vidick. Sieve algorithms for the shortest vector
problem are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.

69. Özgür Dagdelen and Michael Schneider. Parallel enumeration of shortest lattice
vectors. In EURO-PAR, pages 211–222, 2010.

70. Oded Regev. Improved inapproximability of lattice and coding problems with
preprocessing. IEEE Transactions on Information Theory, 50(9):2031–2037, 2004.

71. Michael Schneider. Analysis of Gauss-Sieve for solving the shortest vector problem
in lattices. In WALCOM, pages 89–97, 2011.

72. Michael Schneider. Sieving for short vectors in ideal lattices. In AFRICACRYPT,
pages 375–391, 2013.

73. Naftali Sommer, Meir Feder, and Ofir Shalvi. Finding the closest lattice point by
iterative slicing. SIAM Journal of Discrete Mathematics, 23(2):715–731, 2009.

74. Noah Stephens-Davidowitz. Dimension-preserving reductions between lattice prob-
lems. Available at http://noahsd.com/latticeproblems.pdf, pages 1–6, 2016.

75. Joop van de Pol. Lattice-based cryptography. Master’s thesis, Eindhoven Univer-
sity of Technology, 2011.

76. Emanuele Viterbo and Ezio Biglieri. Computing the Voronoi cell of a lattice: the
diamond-cutting algorithm. IEEE Transactions on Information Theory, 42(1):161–
171, 1996.

77. Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for
similarity search: A survey. arXiv:1408.2927 [cs.DS], pages 1–29, 2014.

78. Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved Nguyen-
Vidick heuristic sieve algorithm for shortest vector problem. In ASIACCS, pages
1–9, 2011.

79. Shang-Yi Yang, Po-Chun Kuo, Bo-Yin Yang, and Chen-Mou Cheng. Gauss sieve
algorithm on GPUs. In CT-RSA, pages 39–57, 2017.

80. Feng Zhang, Yanbin Pan, and Gengran Hu. A three-level sieve algorithm for the
shortest vector problem. In SAC, pages 29–47, 2013.

A Preliminaries

A.1 Notation

We write vectors in boldface (e.g., x), and we denote its indices with non-boldface
subscripts (e.g., xi). Throughout the paper we primarily consider problems in
the Euclidean norm, hence unless stated otherwise, ‖x‖ = ‖x‖2 := (

∑
i x

2
i)

1/2

denotes the Euclidean norm of the vector x. We write Sd−1 for the Euclidean
unit sphere in Rd, i.e., the set of vectors x ∈ Rd with ‖x‖ = 1. We denote balls
in high-dimensional space by B(x, r) := {y ∈ Rd : ‖y − x‖ ≤ r}, and we write
H(x) := {v ∈ Rd : ‖v‖ ≤ ‖v − x‖} for half-spaces whose boundaries are the
hyperplanes orthogonal to x and passing through 1

2x. For measurable regions
R ⊂ Rd, we denote their volume by vol(R).

Given a basis B = {b1, . . . , bd} ⊂ Rd of linearly independent vectors, the

lattice generated by B is formally defined as L = L(B) := {
∑d
i=1 λibi : λi ∈ Z}.

We denote the length of a shortest non-zero vector in a lattice by λ1(L) :=
minv∈L\{0} ‖v‖. We write det(L) := det(BTB)1/2 for the determinant of the

lattice, which notably is independent of the basis of the lattice: det(BTB) =
det(RTR) for any two bases B,R generating the same lattice L. As lattices
are groups, we define sublattices as subgroups contained in the full lattice and
maintaining the additive group structure.

Given a parameter s > 0, we define ρs(v) := exp(−π‖v‖2/s2), and given
a lattice L we define ρs(L) :=

∑
v∈L ρs(v). We define a discrete probability

distribution on this lattice L by setting Pr(X = x) := ρs(x)/ρs(L) for x ∈ L.
We refer to this distribution as the discrete Gaussian distribution on L with
parameter s, and we write X ∼ DL,s to denote that the random variable X
follows this distribution. Sampling from DL,s for large s can efficiently be done
in poly(d) time and space [41,49], still returning lattice vectors of expected norm
less than 2O(d)·λ1(L). For cosets t+L of a lattice L, we analogously define Dt+L,s
with relative density ρs,t(v) := exp(−π‖v − t‖2/s2).

A.2 Problem statements

Problems without preprocessing. Let us first recall formal definitions of
some common hard lattice problems, and problems often described in the (ap-
proximate) nearest neighbor literature. The problems below are lattice problems
where the stated problem needs to be solved directly – there is no preprocessing
stage based on partial information for solving the problem.

Definition 1 (Shortest Vector Problem – SVP). Given a description of a
lattice L ⊂ Rd, find a non-zero vector s ∈ L such that ‖s‖ = λ1(L).

Definition 2 (Approximate Shortest Vector Problem – SVPκ). Given
a description of a lattice L ⊂ Rd and an approximation factor κ ≥ 1, find a
non-zero vector s ∈ L such that ‖s‖ ≤ κ · λ1(L).

Definition 3 (Closest Vector Problem – CVP). Given a description of a
lattice L ⊂ Rd and a target vector t ∈ Rd, find a vector s ∈ L with ‖s − t‖ =
minv∈L ‖v − t‖.

Definition 4 (Approximate Closest Vector Problem – CVPκ). Given a
description of a lattice L ⊂ Rd, a target vector t ∈ Rd, and an approximation
factor κ ≥ 1, find a vector s ∈ L with ‖s− t‖ ≤ κ ·minv∈L ‖v − t‖.

Definition 5 (Bounded Distance Decoding – BDDδ). Given a description
of a lattice L ⊂ Rd, a target vector t ∈ Rd, and a distance guarantee δ > 0
with the promise that minv∈L ‖v − t‖ ≤ δ · λ1(L), find a vector s ∈ L with
‖s− t‖ = minv∈L ‖v − t‖.

Problems with preprocessing. We denote the preprocessing versions of CVP,
CVPκ, and BDDδ, by CVPP, CVPPκ, and BDDPδ respectively. In the prepro-
cessing variants of these problems, the lattice is given in advance and may be
preprocessed so that, when given the target vector t, a solution to the problem
can potentially be provided faster than without preprocessing the lattice. For
SVP or SVPκ such a preprocessing variant clearly does not make sense, as the
shortest vector could be precomputed, making “SVPP” trivially solvable with
polynomial (query) time and (precomputed) space. Similar results are not true
for CVPP, i.e., even with unlimited preprocessing time, it still seems hard to
solve random problem instances [62].

Related to nearest neighbor searching, we recall the following problem def-
initions. These are all problems where preprocessing is essential, and the most
general statements of these problems are given below.

Definition 6 (Nearest Neighbor Searching – NNS). Given a finite set
L ⊂ Rd, preprocess L such that, when given a target vector t ∈ Rd later, one can
quickly find a vector s ∈ L such that ‖s− t‖ = minv∈L ‖v − t‖.

Definition 7 (Approximate Nearest Neighbor Searching – NNSc). For
a finite set L ⊂ Rd and an approximation factor c ≥ 1, preprocess L such that
when given a target vector t ∈ Rd later, one can quickly find a vector s ∈ L such
that ‖s− t‖ ≤ c ·minv∈L ‖v − t‖.

NNS is essentially equivalent to CVPP, except that (1) the data set in near-
est neighbor searching is not assumed to be structured, and (2) the data set
is assumed to be of finite cardinality n < ∞. Naive brute force algorithms for
nearest neighbor searching take O(n) time and O(n) space without any prepro-
cessing costs, and the literature commonly focuses on sublinear time algorithms,
running in time O(nρ) for ρ < 1, commonly with superlinear space and prepro-
cessing costs. Note that for the application of NNS techniques in the context
of lattice sieving, one commonly has n = 2Θ(d), whereas the literature on NNS
often focuses on the case n = 2o(d). It is not clear whether lower bounds on the
query complexity for (approximate) nearest neighbor searching (e.g., [12, 30])
also apply in the context of lattice sieving.

A.3 Heuristic assumptions

As discussed in the introduction, worst-case analyses of algorithms for SVP and
CVP(P) are far off from the best average-case performance we can achieve in
practice by just testing these algorithms on random lattices. For purposes in
cryptography, where it is in a sense better to be safe than sorry, it therefore
makes sense to try to analyze algorithms under “mild” assumptions that allow
us to obtain tighter estimates on their performance on average-case lattices.
Even if we can no longer formally prove these complexity bounds hold in the
worst-case—indeed, these complexities may not be accurate for exotic, dense
lattices like the Leech lattice [31]—such estimates may give us a better idea of
the actual performance of the best algorithms on random lattices appearing in
cryptanalysis.

A commonly made heuristic assumption for analyzing lattice algorithms is
the Gaussian heuristic, stating that for a (random) region Ω ⊂ Rd, for random
lattices the number of lattice points contained in this region is roughly equal to
vol(Ω)/ det(L). A consequence of this assumption is that for random lattices of
high dimension d, the length of the shortest vector can be approximated as:

λ1(L) ≈ GH(L) :=

√
d

2πe
· det(L)1/d · (1 + o(1)). (9)

For average-case, random CVP(P) target instances t ∈ Rd, this further means
that we expect the distance to the closest lattice point to be roughly λ1(L): any
smaller ball around t of radius (1−ε)GH(L) is expected to be empty, and a bigger
ball of radius (1 + ε)GH(L) will likely contain up to (1 + ε)d+o(d) (exponentially
many) lattice points for a random lattice L.

When working with lattice vectors v ∈ L, even if for some algorithm we
know the distribution of the “input vectors” over the lattice, after modifying
these vectors we quickly lose track of the actual distribution these vectors now
follow. A common assumption here is then to simply assume that if at some
point in the execution of the algorithm, we are left with a vector v′ ∈ L of
norm ‖v′‖, then this vector follows a uniform distribution over the sphere of
radius ‖v′‖ around the origin. Clearly this assumption is incorrect and ignores
the discrete nature of the lattice (which may play a bigger role as the radius
gets smaller), but unless this inaccuracy is exploited and abused in the analysis,
this often gives us a better grip on, e.g., the probability that two vectors v,w
appearing in a lattice algorithm can be combined to form a shorter vector v±w.

Finally, observe that although these heuristic assumptions may not be prov-
ably accurate for all lattices, extensive experimentation with these algorithms on
random lattices has supported these claims for average-case lattices. For new as-
sumptions we might introduce later, we will also provide experimental evidence
to back up the theoretical, asymptotic claims.

A.4 The CVPP cost model

For analyzing the performance of CVPP algorithms, we split these methods into
two phases: the preprocessing phase (whose input is only the lattice L), and the
query phase (where also the target vector t is known). We keep track of four
costs of CVPP algorithms.

– Preprocessing phase: Preprocess the lattice L (without the target t);
S1: The memory used during the preprocessing phase;
T1: The time used during the preprocessing phase;

– Query phase: Process the query t and output a vector s ∈ L near t;
S2: The memory used during the query phase;
T2: The time used during the query phase.

Intuitively the main goal of CVPP algorithms is to reduce the complexities
of the query phase (S2,T2) compared to a non-preprocessed CVP algorithm.
That way, a sufficiently large batch of CVP instances on the same lattice can
be solved faster than with direct CVP approaches. However, in any practical
application we need to perform the preprocessing at least once, and therefore
CVPP algorithms with enormous preprocessing costs may be useless even if the
query complexities are great. Also note that as we are interested in reducing the
query complexity compared to solving CVP, and this usually comes at the cost
of a higher preprocessing cost, we generally have T2 ≤ T ≤ T1, where T is the
corresponding asymptotic time complexity for CVP.

Polynomial vs. exponential advice. Note that in the literature on CVPP,
a common assumption is that the output of the preprocessing stage has size
polynomial in the lattice dimension d [62]. This is partly because with unlimited
preprocessing power (time and space), heuristically the “post-processing” stage
of CVPP can easily be made polynomial time. As an example, one could cover a
sufficiently large ball around the origin with tiny cubes, and precompute/store
the centers of these cubes, together with solutions to CVP with these centers as
target vectors. Given a target vector for CVPP, one could then size-reduce with
an LLL-reduced basis B, identify the cube the vector is in, and assuming the
net of cubes is sufficiently fine-grained, a solution to CVP for the center of this
cube is then likely a solution to CVP for the target vector as well.

Since the costs of the preprocessing stage are usually disregarded when assess-
ing the performance of a CVPP method, this would make CVPP (and CVPPκ,
BDDPδ) altogether trivial. Throughout we are interested in the practicality of
the “total package” of the CVPP algorithm, including the preprocessing. Tak-
ing these costs into account, the problem is no longer trivial even when allowing
exponential-sized advice from the preprocessing stage. We explicitly do not make
the assumption that the output of the preprocessing stage is of polynomial size.

A.5 Nearest neighbor algorithms

A celebrated technique for finding near neighbors in high dimensions is locality-
sensitive hashing (LSH) [10,11,13,29,45,77]. Here the idea is to construct many
random partitions of the space, and index the data set L in hash tables with
buckets corresponding to the regions induced by these partitions. Preprocessing
then consists of constructing these hash tables, and a query t is answered by
doing a lookup in each of the hash tables, and searching for a(n approximate)
nearest neighbor in the hash buckets corresponding to t. For a data set of size
|L| = n, this commonly leads to a sublinear time complexity O(nρ) (ρ < 1) as
long as an approximate solution suffices, or if the majority of data points lie
significantly further from the target than the nearest point in the data set. LSH
has also been used to speed up lattice sieving, and more details on this can be
found in [20,21,50,53], as well as implicitly in [78,80].

Similar to locality-sensitive hash functions, locality-sensitive filters (LSF) [12,
18,30] divide the space into regions, with the added relaxation that these regions
do not have to form a proper partition; regions may overlap, and part of the space
may not even be covered by any region. This leads to improved results when n
is exponential in d [18, 51], and allows for more natural time–space trade-offs
compared to LSH for arbitrary n [12,30,51]. For the case of n = 2o(d), this leads
to optimal trade-offs within certain frameworks [12,30].

Below we restate the main result of [51] for our applications, where n is
assumed to be exponential in d. The specific problem considered here is: given a
data set L of points sampled uniformly at random from the unit sphere Sd−1, and
a random query t ∈ Sd−1, return a vector w ∈ L such that the angle between w
and t is at most θ ∈ (0, π2). The following result further assumes that the list L

contains exactly n = (1/ sin θ)d+o(d) vectors, denoted the critical density in [51].
The following is a restatement of [51, Corollary 1].

Lemma 2 (Nearest neighbor costs for spherical data sets). Let θ ∈
(0, 12π), and let u ∈ [cos θ, 1/ cos θ]. Let L ⊂ Sd−1 be a list of n = (1/ sin θ)d+o(d)

vectors sampled uniformly at random from Sd−1. Then, using spherical LSF
with parameters αq = u cos θ and αu = cos θ, one can preprocess L in time
n1+ρu+o(1), using n1+ρu+o(1) space, and with high probability answer a random
query t ∈ Sd−1 correctly in time nρq+o(1), where:

nρq =

(
sin2 θ (u cos θ + 1)

u cos θ − cos 2θ

)d/2
, nρu =

(
sin2 θ

1− cot2 θ (u2 − 2u cos θ + 1)

)d/2
.

(10)

In the above lemma, the parameter u ∈ [cos θ, 1/ cos θ] controls the trade-off
between the preprocessing time and space complexity on the one hand, and the
query time complexity on the other. The two extreme cases correspond to near-
linear space and preprocessing with a slightly sublinear query time complexity
(for u = cos θ), and very high space and preprocessing complexities with almost
instant query responses (for u = 1/ cos θ). The case u = 1 corresponds to ρq = ρu.

A.6 Lattice sieving algorithms

Heuristic lattice sieving algorithms for solving SVP are based on the following
two principles: (1) if v,w ∈ L, then their sum/difference v ±w is also a lattice
vector; and (2) if we have a sufficiently long list L of lattice vectors, then we
expect there to be pairs v,w ∈ L with ‖v ± w‖ < ‖v‖, ‖w‖. This intuitively
describes the approach: we first generate a sufficiently long list of lattice vectors,
and then keep combining pairs of vectors in our list to form shorter and shorter
lattice vectors until we (hopefully) find a shortest lattice vector in our list.

To make sure the algorithm makes progress in finding shorter lattice vectors,
L needs to contain exponentially many lattice vectors; for vectors v,w ∈ L of
similar norm, the vector v − w is shorter than v,w if the angle between v,w
is smaller than π/3, which for random vectors v,w of similar norm would oc-
cur with probability (3/4)d/2+o(d). Under the aforementioned heuristic assump-
tion, that when normalized, vectors in L follow the same distribution as vectors
sampled uniformly at random from the unit sphere, this then also models the
probability that two vectors in our list can reduce one another.

The expected space complexity of heuristic sieving algorithms follows from
the previous observation: if we sample (4/3)d/2+o(d) vectors uniformly at random
from the unit sphere, then we expect a significant number of pairs of vectors to
have angle less than π/3, leading to many short difference vectors. Therefore,
if we start by sampling a list L of (4/3)d/2+o(d) rather long lattice vectors,
and iteratively consider combinations of vectors in L to find shorter vectors
(and replace the longer vector with the shorter combination), we expect to keep
making progress. Combining all pairs of vectors in a list of size (4/3)d/2+o(d) ≈
20.208d+o(d) naively takes time (4/3)d+o(d) ≈ 20.415d+o(d).

The Nguyen–Vidick sieve. The heuristic sieve of Nguyen and Vidick [68]
starts by sampling a list L of (4/3)d/2+o(d) reasonably long lattice vectors, sam-
pled from a discrete Gaussian DL,s with the standard deviation s chosen such
that (1) we can efficiently sample from this distribution, and (2) the returned
vectors are at most of norm 2O(d)λ1(L). Then we use a sieve to map L, with
some maximum norm R := maxv∈L ‖v‖, to a new list L′, with maximum norm
at most R′ := γR for a geometric factor 0 � γ < 1 close to 1. By repeatedly
applying this sieve operation, after poly(d) iterations we expect to find a long
list of lattice vectors of norm at most γpoly(d)R = O(λ1(L)), which then (with
high probability) contains a shortest vector in the lattice.

Algorithm 2 describes a variant of Nguyen–Vidick’s original sieve, to map L
to L′ in |L|2 time (ignoring costs polynomial in d). The presented algorithm is a
more intuitive version of the original sieve; see [50, Appendix B] for details on this
equivalence. Without any further modifications to this algorithm, the heuristic
complexities for solving SVP with this method are as follows [68, Section 4].

Lemma 3 (Complexities of the Nguyen–Vidick sieve). Heuristically, the
Nguyen–Vidick sieve solves SVP in space S and time T, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (4/3)d+o(d) ≈ 20.415d+o(d). (11)

Algorithm 2 The Nguyen–Vidick sieve for finding shortest vectors [68]

Require: An LLL-reduced basis B of a lattice L(B)
Ensure: The algorithm finds a shortest lattice vector
1: Initialize empty lists L,L′ and set γ ← 1− 1/d
2: Sample (4/3)d/2+o(d) lattice vectors and add them to L
3: Set R← maxw∈L ‖w‖
4: repeat
5: for each w1,w2 ∈ L do . NNS techniques can be used to speed this up
6: if ‖w1 −w2‖ < γR then
7: Add w1 −w2 to the list L′

8: Replace L← L′, set L′ ← ∅, and recompute R← maxw∈L ‖w‖
9: until L contains a shortest lattice vector

10: return argmin0 6=v∈L ‖v‖

By applying more sophisticated techniques for indexing the list L and search-
ing for pairs of vectors that can be combined to form shorter vectors, the time
complexity can be further reduced to (3/2)d/2+o(d) ≈ 20.292d+o(d) [18]. Using a
trick first described in [20], this can be done without increasing the space com-
plexity, i.e., maintaining an asymptotic space complexity of only 20.208d+o(d), as
the following result (a restatement of results from [18, Section 7]) shows.

Lemma 4 (Complexities of the optimized Nguyen–Vidick sieve). The
Nguyen–Vidick sieve with the spherical locality-sensitive filters of Becker–Ducas–
Gama–Laarhoven heuristically solves SVP in space S and time T, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (3/2)d/2+o(d) ≈ 20.292d+o(d). (12)

Micciancio and Voulgaris’ GaussSieve. Micciancio and Voulgaris used a
slightly different approach in their GaussSieve algorithm [65]. This algorithm
reduces the memory footprint by immediately reducing all pairs of lattice vectors
that can be combined to form shorter lattice vectors. The algorithm uses a
single list L, which is continuously kept in a state where for all w1,w2 ∈ L,
‖w1 ±w2‖ ≥ ‖w1‖, ‖w2‖. Each time a new vector v ∈ L is sampled, its norm
is reduced with vectors in L by adding/subtracting vectors w ∈ L which would
lead to a shorter vector, and vectors in the list are also reduced with the vector
v. After v can no longer be reduced with L, v is finally added to the list,
guaranteeing that the pairwise reduction property is maintained. Modified list
vectors are added to a stack to be reconsidered later. Algorithm 3 describes this
procedure in pseudocode.

By immediately reducing all pairs of vectors, the GaussSieve achieves sig-
nificantly better practical time and space complexities than the Nguyen–Vidick
sieve. At the same time however, Nguyen and Vidick’s (heuristic) proof technique
does not apply to the GaussSieve, and there is no proven theoretical bound on the
time complexity of the GaussSieve, even using heuristic assumptions. However,
it is commonly believed that the Nguyen–Vidick sieve and the GaussSieve have

Algorithm 3 The GaussSieve algorithm for finding shortest vectors [65]

Require: A basis B of a lattice L(B)
Ensure: The algorithm outputs a shortest non-zero lattice vector
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do . NNS techniques can be used to speed this up
5: if ‖v −w‖ < ‖v‖ then
6: Replace v ← v −w

7: if ‖w − v‖ < ‖w‖ then
8: Replace w ← w − v
9: Move w from the list L to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L (unless v = 0)

14: until L contains a shortest lattice vector
15: return argmin0 6=v∈L ‖v‖

the same heuristic asymptotic space and time complexities, i.e., using 20.208d+o(d)

space and 20.415d+o(d) time without any further modifications, and using only
20.292d+o(d) time using nearest neighbor searching [18]. However, to apply near-
est neighbor techniques to the GaussSieve, the space complexity would increase
to 20.292d+o(d) as well, as the same trick from [20,50] cannot be applied here.

A.7 Voronoi cells

We recall some definitions and results regarding the Voronoi cell of a lattice
from [4, 64, 73, 76]. First, we give a formal definition of Voronoi cells below,
which are essentially the enclosing regions of points closer to the origin than to
any other lattice point.

Definition 8 (Voronoi cell of a lattice). The Voronoi cell of a lattice L is
defined as the region V ⊂ Rd such that v ∈ V iff ‖v‖ ≤ ‖v − x‖ for all x ∈ L.
In other words:

V :=
⋂
r∈L
H(r). (13)

An important property of Voronoi cells, which immediately follows from the
definition, is that the closest vector to a target vector t ∈ Rd in a lattice L is
the vector s ∈ L if and only if t ∈ s + V. In particular, the latter condition is
equivalent to t−s ∈ V, which indicates that if we can find a point t′ ∈ (t+L)∩V
(i.e., t′ = t− s), then we have found a solution to CVP for t as s = t− t′.

In (13) above, we see that the Voronoi cell can be described in terms of an
infinite number of half-spaces generated by the vectors in the lattice L. In reality,

the Voronoi cell of a lattice is a convex polytope with only a bounded number
of facets, and its facets are closely related to what are commonly known as the
relevant vectors, defined below.

Definition 9 (Relevant vectors). Given a lattice L, a vector r ∈ L is a
relevant vector of the lattice L if and only if V and r + V share a non-empty
boundary. We denote the set of all relevant vectors by R ⊆ L.

The relevant vectors of the lattice shape the boundary of V, and the set R can
be seen as a more compact way of representing/storing the Voronoi cell of a
lattice, as V can be equivalently described by the following equation:

V =
⋂
r∈R
H(r). (14)

In other words, the Voronoi cell is also equal to the intersection of half-spaces
generated only by the relevant vectors r ∈ R. The set R is by definition the
minimal set S ⊆ L with the property that V =

⋂
r∈S H(r) – other vectors do

not contribute to the shape of the Voronoi cell, and removing any vector from
R would result in a different, larger enclosed region.

To efficiently describe and store the Voronoi cell of a lattice, it is important
to know that R is finite and cannot be too large. Fortunately the size of R can be
bounded (in the worst-case) as follows; see, e.g., [64, Corollary 2.5] for a proof.

Lemma 5 (Number of relevant vectors). For arbitrary lattices L, the set
R of relevant vectors satisfies |R| ≤ 2d+1.

As a result, a description of the Voronoi cell of a lattice can be stored in 2d+o(d)

memory, by storing all the relevant vectors. An example of a Voronoi cell for a
two-dimensional lattice, as well as the related relevant vectors, is given in the
introduction in Figure 1a. On the negative side, note that a storage requirement
of the order 2d means it is infeasible to store the exact Voronoi cell of lattices
in dimensions higher than 80. This in contrast to heuristic sieving algorithms,
whose space requirements of the order 20.21d means these algorithms can still be
used in higher dimensions as well.

A.8 Voronoi cell algorithms

As stated above, a crucial property of Voronoi cells, highlighting their relevance
for closest point searching, is that s ∈ L is the closest point to a target vector
t ∈ Rd if and only if t−s ∈ V. Since t−s ∈ t+L, a common approach of Voronoi
cell algorithms for finding closest points to target vectors t is to start with t and
gradually move along the coset t+L towards the origin (by adding/subtracting
lattice vectors to our current vector in the coset t+L). When no shorter vector
in t + L exists than our current guess t′ ∈ t + L, we know that t′ ∈ V and
therefore s = t− t′ is the closest lattice point to t.

Building upon work of Sommer, Feder and Shalvi [73], Micciancio and Voul-
garis [64] described algorithms for constructing the Voronoi cell of a lattice (or

equivalently, the set of 2d+o(d) relevant vectors of the lattice), and with proven
time complexities at most 22d+o(d) this allowed them to solve SVP, CVP and
CVPP. Bonifas and Dadush [25] later showed how to improve the time com-
plexity for CVPP to only 2d+o(d), by bounding the number of iterations in the
post-processing stage to poly(d) rather than 2d+o(d).

An important technique for finding closest vectors, using the list of relevant
vectors to peform the aforementioned procedure of finding a point t′ ∈ t + L,
is the iterative slicer of Sommer–Feder–Shalvi [73] given in Algorithm 4. Given
a target vector t and the Voronoi cell of the lattice as input, within a finite
number of steps [73, Theorem 1] this algorithm terminates and finds the closest
vector to any target t ∈ R. Micciancio–Voulgaris later showed that by selecting
relevant vectors for reduction in a specific order, the number of iterations can
be bounded by 2d+o(d) [64, Lemma 3.2].

Algorithm 4 The iterative slicer for finding closest vectors [73]

Require: The relevant vectors R ⊂ L and a target t ∈ Rd
Ensure: The algorithm outputs a closest lattice vector s ∈ L to t
1: Initialize t′ ← t
2: for each r ∈ R do
3: if ‖t′ − r‖ < ‖t′‖ then
4: Replace t′ ← t′ − r and restart the for-loop

5: return s = t− t′

By similar techniques as in heuristic lattice sieving (or as in [25]), one can
bound the number of iterations of this slicer until termination. Given a target
t, one can use Babai rounding on an LLL-reduced basis of the lattice to get
an initial guess t′ ∈ t + L satisfying ‖t′‖ ≤ 2O(d) mins∈t+L ‖s‖. Then, by only
performing reductions whenever ‖t′ ± r‖ < γ‖t′‖ for some geometric factor
γ = 1 − 1/dk for certain k > 1, one can ensure that the number of iterations
is polynomially bounded by log1/γ ‖t′‖ = O(d1+k). At the same time, due to
this geometric factor γ, after the algorithm terminates we might only have t′ ∈
(1/γ)V instead of t′ ∈ V. Since vol(V/γ) = vol(V)/γd, we therefore expect this
algorithm to succeed with probability proportional to γd = 1−O(d1−k) = 1−o(1)
over the randomness of t. As k increases, the (polynomial) number of iterations
increases, while heuristically the success probability becomes overwhelming.

Bonifas and Dadush [25] described a different method to bound the number
of iterations to poly(d), by carefully choosing which relevant vectors to use for
reduction in each step. Similar to there being no formal proof that other ap-
proaches allow for solving exact CVP, in the remainder of this paper we will
assume (heuristically) that the number of iterations of this slicer (until termina-
tion) is only poly(d), for random lattices and average-case target vectors.

B Approximate Voronoi cells

Our approach for solving CVPP and its variants can best be described in terms
of approximate Voronoi cells. These are in a sense similar to the intermediate
“raw diamonds” described by Viterbo–Biglieri [76], before the diamond-cutting
algorithm completes and returns the exact Voronoi cell. Below we start with a
formal definition of approximate Voronoi cells, where as before we write H(x)
for half-spaces whose boundaries are orthogonal to x and pass through 1

2x.

Definition 10 (Approximate Voronoi cells). For a lattice L and a list L ⊆
L, the approximate Voronoi cell generated by L is defined as:

VL :=
⋂
r∈L
H(r). (15)

Note that V ⊆ VL for any L ⊆ L, and V = VL if and only if R ⊆ L [73, Lemma
5]. Similarly, R is the smallest set L ⊆ L with the property that VL = V. To
quantize the ‘quality’ of an approximate Voronoi cell VL (or a list L), recall that
the volume of the exact Voronoi cell V is equal to the volume of the lattice:
vol(V) = det(L). If R is not contained in L, then VL will have a strictly larger
volume, and the following quantity can therefore serve as a guideline as to how
well an approximate Voronoi cell VL approximates V.

Definition 11 (Approximation factor). Given a lattice L and a list L ⊆ L,
we define the approximation factor AL for the cell VL generated by L as:

AL :=
vol(VL)

vol(V)
. (16)

Clearly AL ≥ 1 with equality iff R ⊆ L. If L is very small, AL may be infinite,
but as long as L contains a basis of the lattice one has AL <∞ [76]. For arbitrary
lists L,L′ with L ⊆ L′ ⊆ L we have AL′ ≤ AL, i.e., if we add vectors to L to
form L′, the approximation factor either stays the same or decreases.

B.1 Good approximations

The main result of [52] for solving CVPP can be summarized in terms of approx-
imate Voronoi cells by the following lemma, stating how big L must heuristically
be to obtain approximation factors close to 1.

Lemma 6 (Good approximations). Let L consist of the αd+o(d) shortest
vectors of a lattice L, with α ≥

√
2 + o(1). Then heuristically,

AL = 1 + o(1). (17)

In other words, if L contains the 2d/2+o(d) shortest lattice vectors of a random
lattice L, we expect VL to approximate the exact Voronoi cell V very well. This
in contrast with the best proven worst-case bounds, which suggest that up to
2d+o(d) vectors are needed to accurately represent the Voronoi cell of a lattice.

Heuristically, Lemma 6 implies that if we use Voronoi cell algorithms for
CVP(P), using only the 2d/2+o(d) shortest lattice vectors as our approximate list
of relevant vectors (instead of all 2d+o(d) relevant vectors), the algorithm will still
succeed with high probability in returning the actual closest vector to random
target vectors. The resulting heuristic slicer, which serves as the algorithm for
the query phase of CVPP in [52], is given in Algorithm 5.

Algorithm 5 The heuristic slicer for finding closest vectors [52]

Require: A list L ⊂ L of the 2d/2+o(d) shortest vectors of L, and a target t ∈ Rd
Ensure: The algorithm outputs a closest lattice vector s ∈ L to t
1: Initialize t′ ← t
2: for each r ∈ L do . NNS speedups can be used here
3: if ‖t′ − r‖ < ‖t′‖ then
4: Replace t′ ← t′ − r and restart the for-loop

5: return s← t− t′

Assuming the list L contains the 2d/2+o(d) shortest vectors of L, it returns
the closest vector with high probability. Naively, this algorithm has query time
and space complexities of 2d/2+o(d), but with nearest neighbor search techniques
the search for relevant vectors that can reduce t′ can be sped up significantly.

B.2 Arbitrary approximations

To obtain improved results compared to [52], we will use the following gener-
alization of Lemma 6, providing a heuristic upper bound on the approximation
factor AL for lists L containing fewer than 2d/2+o(d) lattice vectors. The heuristic
proof/derivation of this result may not be tight, and improving upon the given
upper bound is left as an open problem. Note that a tighter upper bound on the
approximation factor would immediately result in better complexities for CVPP
in Figure 2.

Lemma 7 (Arbitrary approximations). Let L consist of the αd+o(d) shortest
vectors of a lattice L, with α ∈ (1.03396,

√
2). Then heuristically,

AL ≤

(
16α4

(
α2 − 1

)
−9α8 + 64α6 − 104α4 + 64α2 − 16

)d/2+o(d)
. (18)

Above, 1.03396 . . . is a root of the polynomial in the denominator, or equivalently
the smallest root x > 1 of 3x4 + 8x3 − 8x − 4. Note that as α →

√
2, the ratio

approaches 1, and Lemma 7 therefore is a proper generalization of Lemma 6.
For α ↓ 1.03396 . . . , the ratio tends to∞, suggesting that for very small lists our
analysis does not provide a proper, meaningful upper bound on the approxima-
tion factor – there is no reason to believe that AL = ∞ for exponentially large
preprocessed lists.

For random target vectors, we heuristically expect the probability of suc-
cess of finding a closest vector to this target with a preprocessed list L to be
approximately pL = 1/AL – assuming a reduced vector returned by the slicer
lies uniformly in VL, the probability that it also lies in V is proportional to
vol(V)/ vol(VL). With the above result in mind, we can thus generalize the pre-
vious heuristic slicer to construct a CVPP algorithm which works with even
smaller lists L, but has an exponentially small success probability in the di-
mension d. This is somewhat unsatisfactory, as an algorithm succeeding with
exponentially small success probability is unlikely to be useful in any applica-
tion. However, similar to extreme pruning in enumeration [40], as long as the
gain in the time (and space) complexity is more than the loss in the success
probability, such an algorithm may well turn out to be useful if we can somehow
randomize our reduction algorithm.

B.3 Randomized slicing

To instantiate Lemma 7 with an actual CVPP algorithm succeeding with high
probability, ideally we need to be able to rerandomize problem instances such
that, if an algorithm succeeds with small probability p in time T, we can repeat
the algorithm approximately 1/p times to obtain an algorithm succeeding with
constant probability in T/p time. The (heuristic) iterative slicer mostly works
deterministically4, so if an initialized data structure and problem instance fail,
running the same slicing algorithm on the same target would likely result in
failure again.

To rerandomize problem instances, we will use the following procedure: in-
stead of starting with a single vector t′ ← t and attempting to reduce it to a
vector t′′ ∈ V, we use several vectors of the form t′ ∼ Dt+L,s sampled from
a discrete Gaussian over the coset t + L with a well-chosen parameter s. This
parameter s needs to be chosen large enough so that sampling can be done in
polynomial time in the lattice dimension d, and small enough so that the sam-
pled vectors are not too long, and so that the reductions of t′ to short vectors t′′

do not take too long. To analyze our CVPP method using this sampling proce-
dure, we require the heuristic assumption 1 given in the introduction, essentially
stating that this rerandomization procedure works perfectly.

For intuition behind this heuristic assumption, recall that with a preprocessed
list L, a vector t′ will ultimately be reduced by the slicer to a vector t′′ =
Slice(t′) ∈ VL. If t′′ now also lies in V, which we may heuristically model as a
sphere of radius λ1(L), then 0 is the closest lattice vector to t′′ ∈ t + L, and
so s = t − t′′ is indeed the closest lattice vector to t. However, since VL is
potentially much larger than V, this may only occur with small probability, and
heuristically we essentially assume that Prt′′←Slice(t′)[t

′′ ∈ V | t′′ ∈ VL] = 1/AL.

4 Observe that there is some room for randomization within the slicing algorithm itself:
if an intermediate vector t′ can be reduced with two vectors v1,v2 ∈ L to form a
shorter vector, one could randomly choose either option for potentially different
outcomes of the slicer.

Note that the probability on the left hand side of (1) is for arbitrary, fixed
target vectors t, and the randomness is purely over the Gaussian sampling of
t′ ∼ Dt+L,s – we heuristically expect that we can effectively apply this reran-
domization procedure to any target vector, rather than always failing for certain
targets and succeeding for other targets. In Appendix C we will show that in-
deed, experimentally it seems that it is a reasonable assumption to assume that
this rerandomization procedure works for any target vector and not just for a
small fraction of target vectors.

Assuming the above heuristic assumption holds, an algorithm for CVPP
follows, by repeating the slicing algorithm on randomly sampled vectors t′ ∼
Dt+L,s. The randomized heuristic slicer that we obtain is given in Algorithm 1.

For randomized slicing, the costs of the algorithm are mostly the same in
terms of α as for a single run of the slicer, except that the (expected) time
complexity T2 for the query phase is multiplied by a factor 1/p, to account for
the expected number of trials necessary to find a closest vector. On the positive
side, this means that we do not need to fix α =

√
2 in advance, and can obtain

significantly better space complexities, as well as better time–space trade-offs.

B.4 Preprocessing costs

For the preprocessing phase, we need to generate a list of the αd+o(d) lattice vec-
tors of norm at most α · λ1(L), and store it in a nearest neighbor data structure
to allow for fast searching. This preprocessing step can be done using differ-
ent methods. In moderate dimensions, the fastest way may be to use lattice
enumeration [40, 48], but in high dimensions (as well asymptotically) heuristic
lattice sieving methods will lead to the best complexities. As we are mostly in-
terested in obtaining the best asymptotic complexities here, let us consider the
preprocessing costs for a sieving-based preprocessing stage.

Recall that with standard heuristic sieving methods, we reduce pairs of lattice
vectors if their angle is at most θ = π

3 , resulting in a list of size (sin θ)−d+o(d).

To generate a list of the αd+o(d) shortest lattice vectors of a lattice L with the
GaussSieve, rather than the (4/3)d/2+o(d) lattice vectors one would normally get,
we relax the reduction step in sieving: we reduce a list vector v with another list
vector w if and only if their pairwise angle is less than θ = arcsin(1/α), which
for vectors v,w of similar norm corresponds to the following condition:

‖v −w‖2 < 2(1− cos θ) · ‖v‖2 =

(
2− 2

α

√
α2 − 1

)
· ‖v‖2. (19)

This leads to the modified GaussSieve described in Algorithm 6. Note that for

α =
√

2, the reduction criterion becomes ‖v −w‖ <
√

2−
√

2 · ‖v‖.
Intuitively, Algorithm 6 could be interpreted as a relaxed version of standard

heuristic sieving approaches. In standard sieving, pairwise reductions are always
performed, even if they lead to minor progress in reducing the norms of the
vectors. This turns out to lead to the smallest list sizes. By only reducing vectors
when significant progress is made in reducing their norms, reductions occur less

Algorithm 6 The GaussSieve-based preprocessing phase for solving CVPP

Require: A basis B of a lattice L(B), a parameter α ≥
√

4/3

Ensure: The output list L ⊂ L contains αd+o(d) vectors of norm at most α · λ1(L)
1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do . NNS can be used to speed this up
5: if ‖v −w‖2 < (2− 2

α

√
α2 − 1) · ‖v‖2 then

6: Replace v ← v −w

7: if ‖w − v‖2 < (2− 2
α

√
α2 − 1) · ‖w‖2 then

8: Replace w ← w − v
9: Move w from the list L to the stack S (unless w = 0)

10: if v has changed then
11: Add v to the stack S (unless v = 0)
12: else
13: Add v to the list L (unless v = 0)

14: until v is a shortest vector
15: return L

frequently, leading to larger list sizes before real progress is made. By not always
doing reductions in Algorithm 6, it takes longer to complete this preprocessing
step, but a longer list of lattice vectors is returned. Moreover, by only searching
for vectors with very small angles, the speed-ups obtained from applying nearest
neighbor techniques become bigger as well.

Note that in Algorithm 6, as well as other lattice sieving algorithms in Ap-
pendix A, the stopping criterion is stated as continuing until the list contains
a shortest vector. In the literature on lattice sieving, many different stopping
criterions have been considered, often involving a bound on the number of “col-
lisions” to the all-zero vector. An alternative stopping criterion here might also
be to continue until, say, at least 90% of the expected number of lattice vectors
below a certain norm α · λ1(L) have been encountered by the sieve.5 In reality,
the precise termination condition is somewhat irrelevant – at some point during
the run, the list will be a very good quality and contain most short vectors,
and continuing a bit longer only means that slightly more time is spent on the
preprocessing phase, and slightly more of the shortest lattice vectors will be in
the preprocessed list for the query phase.

The following lemma summarizes the preprocessing costs obtained by using
the optimized nearest neighbor techniques from Lemma 2.

Lemma 8 (Preprocessing complexities). Let α ∈ (1,∞) and suppose that

u ∈ (
√

α2−1
α2 ,

√
α2

α2−1). With Algorithm 6, we can heuristically generate a list

of the αd+o(d) shortest vectors in a lattice L with the following space and time

5 As described in Figure 6a later on, indeed the preprocessing step finds a large fraction
of all lattice vectors below the given norm.

complexities S1 and T1.

S1 = max

{
S2,

(
4

3

)d/2+o(d)}
, (20)

T1 = max

{
S2,

(
3

2

)d/2+o(d)}
, (21)

S2 =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)
. (22)

Moreover, at the end of the preprocessing step, we have a data structure of size
S2 which can answer CVP queries in time T2 as follows:

T2 =

(
α+ u

√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)d/2+o(d)
. (23)

Observe that reductions between vectors only make sense if vectors get
shorter; if v and w have similar norms, then one cannot reduce v with w if their
pairwise angle is larger than π

3 . To generate a list with αd+o(d) short vectors

with α <
√

4/3, one can just run the algorithm for α =
√

4/3 (corresponding
to the regular GaussSieve), and afterwards discard lattice vectors which are too
long. Alternatively, if one is interested in minimizing the memory complexity, for
small values α one could consider using tuple lattice sieving approaches discussed
in [17,43,44]. We restrict our attention to sieving using pairwise reductions, and
we leave a complexity analysis based on tuple reductions to future work.

Note also that S1 and T1 in Lemma 8 are lower bounded by the costs for
solving SVP, which based on the current best space and time complexities for
(pairwise) sieving are (4/3)d/2+o(d) and (3/2)d/2+o(d) respectively [18]. Using
tuple sieving [17, 43, 44], it is possible to eliminate this lower bound on S1, at
the cost of worse preprocessing time complexities – we also leave this further
generalization of the complexities to the interested reader.

B.5 Main results

With the previous results and techniques in place, we are now ready to state the
main result. First, we restate the main result of [52] for solving exact CVPP,
which says that if α ≥

√
2 then the slicer succeeds with high probability, and we

thus get the following heuristic complexities for CVPP.

Theorem 2 (Complexities for CVPP with good approximations). [52,
Theorem 2] Let u ∈ (1

2

√
2,
√

2). With a preprocessed list of size |L| = 2d/2+o(d),
we can solve CVPP with preprocessing time T1 and space S1, and query time T2

and space complexity S2 as follows:

S1,2 = T1 =

(
1

u(
√

2− u)

)d/2+o(d)
, T2 =

(√
2 + u

2u

)d/2+o(d)
. (24)

The rightmost red curve in Figure 2 illustrates the time and space complex-
ities one can achieve by building upon Lemmas 6 and 8 and Algorithms 5 and
6 with different time–space trade-offs for the NNS data structure (in particular,
by varying the parameter u).

In its most general form, including both the parameter α for the preprocessed
list size, as well as the nearest neighbor parameter u from Lemma 2, we finally
obtain the following result.

Theorem 3 (Complexities for CVPP with arbitrary approximations).

Let α ∈ (1.03996,
√

2) and u ∈ (
√

α2−1
α2 ,

√
α2

α2−1). With randomized slicing, we

can heuristically solve CVPP with preprocessing time and space T1 and S1, and
query time and space T2 and S2, where

S1 = max

{
S2,

(
4

3

)d/2+o(d)}
, T1 = max

{
S2,

(
3

2

)d/2+o(d)}
, (25)

S2 =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)
, (26)

T2 = AL ·

(
α+ u

√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)d/2+o(d)
(27)

≤

(
16α4

(
α2 − 1

) (
α+ u

√
α2 − 1

)
(−9α8+64α6−104α4+64α2−16)(−α3+α2u

√
α2−1+2α)

)d/2+o(d)
. (28)

For α =
√

2, Theorem 3 leads to the exact same complexities as without
rerandomizations as in [52], while for instance for α =

√
4/3 we can vary the

parameter u to obtain the following trade-offs:

– Setting u = 1
2 leads to S2 ≈ 20.2075d+o(d) and T2 = (20/13)d/2+o(d) ≈

20.3107d+o(d). This still offers a speed-up over (a linear number of) naive
linear searches over the list, without increasing the memory.

– Setting u = 1 leads to S2 ≈ 20.2925d+o(d) and T2 = (18/13)d/2+o(d) ≈
20.2347d+o(d). These are the same complexities as those given in Proposition 1
in the introduction.

– Letting u→ 2, the preprocessing time and space complexities become 2ω(d),
while the query time complexity becomes 2o(d).

The time–space curve Cα corresponding to α =
√

4/3, as well as a few
other values α, is shown in Figure 5. By taking the minimum over all these
curves {Cα}α∈(1.03396,√2), where curves are defined by varying the parameter

u ∈ (
√

1− 1/α2,
√

1 + 1/(α2 − 1)), we obtain the thick blue curve in Figure 5,
which is also depicted in Figure 2. There seems to be no simple expression for
this curve; for a particular choice of the space complexity, the best query time
complexity T2 can be found by considering all different α, and for each α com-
puting the value u such that the space complexity is as desired, and taking the

20d 20.2d 20.4d 20.6d 20.8d 21d
20d

20.2d

20.4d

20.6d

Laa′16

(this work)

u =
√

1− α−2

u = 1

α = 1.08

α = 1.12

α =
√

4/3

α =
√

2

−→ query space complexity

−→
qu

er
y
ti
m
e
co
m
pl
ex
it
y

Fig. 5. Complexities for randomized slicing. Different curves correspond to different
values α and different success probabilities pα. The right blue curve corresponds to
α =

√
2 and pα ≈ 1, i.e., not using randomized slicing as in Section B, and purple

curves inbetween correspond to smaller values α with smaller values pα. Dashed purple
curves correspond to fixing the nearest neighbor parameter u and varying α. No single
curve lies below all others, and the minimum over all curves is depicted by the bottom
blue curve.

minimum over all these values. Note that due to the condition α > 1.03396
(which follows from pα > 0), the curve terminates on the left side at a minimum
space complexity of 1.03396d+o(d) ≈ 20.0482d+o(d); with this method we cannot
obtain a space complexity S2 = 2o(d) for exact CVPP.

B.6 Proof of Lemma 7

We conclude this section with proofs of Lemma 7. Here we follow the high-level
outline of the proof described in the introduction, and prove the individual claims
below.

Relation between |L| and ‖t′‖. Suppose we have a target vector t, which
after slicing with the list L turns into t′ ∈ t+L, and suppose that t′ is no longer
reducible with L. In other words, t′ is contained in VL. First, by the Gaussian
heuristic, we expect the distances from t and t′ to the lattice to be approximately
λ1(L). To guarantee that 0 is the closest lattice vector to the reduced vector t′,
so that also t′ ∈ V, we therefore heuristically need t′ to have norm at most
approximately λ1(L) – we roughly expect V to have the shape of a sphere of
radius λ1(L). We start with the following lemma regarding the probability of
reduction between two uniformly random vectors with given norms.

Lemma 9 (Probability of the existence of a reducing vector). Let v, w >
0 and let v = v · ev and w = w · ew. Then:

Pr
ev,ew∼Sd−1

(
‖v −w‖2 ≤ ‖v‖2

)
∼
[
1−

(w
2v

)2]d/2+o(d)
. (29)

Proof. Expanding ‖v − w‖2 = v2 + w2 − 2vw 〈ev, ew〉 and ‖v‖2 = v2, the
condition ‖v − w‖2 ≤ ‖v‖2 equals w

2v ≤ 〈ev, ew〉. The result follows from [18,
Lemma 2.1]. ut

For now, suppose that |L| = αd+o(d). We will next obtain a relation between
the choice of α for the input list size and the expected norm ‖t′‖ = β · λ1(L)
of the reduced vector t′ after the reductions with the slicer. More formally, we
will show that if β = ‖t′‖/λ1(L) is large, we can still make progress, while if
β is smaller than some threshold, we heuristically expect that we will make no
progress anymore with the iterative slicer with overwhelming probability – the
probability that we can still find a vector in the list to reduce the norm of t′ is
then exponentially small in d.

Lemma 10 (Relation between |L| and ‖t′‖). Let L ⊂ α · Sd−1 be a list
of αd+o(d) uniformly random vectors of norm α > 1, and let t ∈ β · Sd−1 be
sampled uniformly at random. Then, for high dimensions d, with non-negligible
probability there exists a v ∈ L such that ‖t− v‖ ≤ ‖t‖ if and only if

α4 − 4β2α2 + 4β2 ≤ 0. (30)

Furthermore, if θt,v denotes the angle between t and v, then α4−4β2α2+4β2 = 0
and ‖t− v‖ ≤ ‖t‖ together imply that θt,v ≤ arcsin(1/α).

Proof. By Lemma 9 we can reduce a vector t with a vector v ∈ L with probability

p = [1 − α2

4β2]d/2+o(d). Since we have n = αd+o(d) such vectors v ∈ L, the

probability that none of them can reduce t is (1− p)n, which is o(1) if n� 1/p
and 1 − o(1) if n � 1/p. Expanding n · p, we obtain the given equation (30),
where α4 − 4β2α2 + 4β2 > 0 implies n� 1/p.

For the second part, consider the triangle formed by 0, t,v. If ‖t− v‖ = ‖t‖,
then this triangle has two sides β and one side α, and two angles θt,v and one
angle π−2θt,v. By the sine law, α sin θt,v = β sin(π−2θt,v) = 2β sin θt,v cos θt,v.
Simplifying, we get cos θt,v = α/(2β), or sin2 θt,v = 1 − α2/(4β2). Multiplying
by α2 yields

α2 sin2 θt,v =
4β2α2 − α4

4β2
=

4β2

4β2
= 1, (31)

where the next-to-last equality follows from the assumption that α4 − 4β2α2 +
4β2 = 0. Therefore ‖t− v‖ = ‖t‖ corresponds to sin θt,v = 1/α, or equivalently
θt,v = arcsin(1/α). If ‖t−v‖ < ‖t‖, then the angle θt,v further decreases, leading
to θt,v ≤ arcsin(1/α). ut

As a result of the second part of the previous lemma, reducing t with L can
be done by searching for vectors v ∈ L at angle at most θt,v = arcsin(1/α) from
t: if t can be reduced with some vector v ∈ L, then with high probability a
vector v at this angle from t exists which can reduce t. This will be necessary
for applying Lemma 2 later, as that lemma assumes that the list size n = |L|
and the target angle θ satisfy the relation n = (1/ sin θ)d+o(d). In our setting
n = αd+o(d) and θ = arcsin(1/α), which means this relation is satisfied.

Note that we do not just assume that L contains αd+o(d) lattice vectors of
norm approximately α · λ1(L): we heuristically expect the preprocessed list to
contain (almost) all shortest vectors in L, including all those vectors even shorter

than α ·λ1(L). In other words, for any α0 ∈ [1, α] we expect L to contain α
d+o(d)
0

lattice vectors of norm at most α0 · λ1(L). To be able to make progress and
obtain a reduced vector t′ of norm β · λ1(L), it therefore suffices that for some
value α0 ∈ [1, α], we have α4

0 − 4β2α2
0 + 4β2

0 ≤ 0. Factoring the left hand side
of (30) in terms of its roots for α yields

p(α) = α4 − 4β2α2 + 4β2 (32)

=
(
α2 − 2β

(
β −

√
β2 − 1

))(
α2 − 2β

(
β +

√
β2 − 1

))
. (33)

The polynomial p(α) has two positive roots 0 < r1 <
√

2 < r2, which both lie
close to

√
2 if β ≈ 1. The condition that p(α0) ≤ 0 for some α0 ≤ α is equivalent

to the condition that α is at least equal to the smallest root:

α ≥ r1 =

√
2β
(
β −

√
β2 − 1

)
. (34)

To obtain β = 1+o(1), i.e., to guarantee that our iterative slicer returns a vector
t′′ ∈ V, we need that α ≥

√
2 + o(1), i.e., we must use at least |L| = 2d/2+o(d)

preprocessed lattice vectors to guarantee that w.h.p. the algorithm succeeds, as
previously shown in [52].

Probability that closest vector is in |L|. To analyze the success proba-
bility of the slicer more generally, note again that the previous analysis gives
us a relation between the parameter α for the preprocessed list, and the norm
‖t′‖ = β ·λ1(L) of the reduced vector returned by the slicer, before we will likely
not make a lot of progress anymore. To guarantee that we succeed with high
probability we need β = 1 + o(1), but even if β > 1 this algorithm succeeds with
a certain, small probability.

Heuristically, as mentioned before, we expect the closest vector to a target
vector t to lie at distance approximately λ1(L) from t. More specifically, one
might assume that the closest vector follows a uniformly random distribution on
a sphere of radius λ1(L) around t. After reduction, we therefore also expect the
closest vector s to t′ to lie uniformly at random in a ball of radius λ1(L) around
t′. If the closest vector has norm at most α · λ1(L), it will actually be in our list
L, and one might estimate the probability that this happens as the probability

that, if a vector is drawn at random from a ball of radius λ1(L) around t′, it has
norm at most α · λ1(L).

To estimate this probability, we will use the following lemma regarding the
volume of intersections of balls in high-dimensional spaces.

Lemma 11 (Intersections of balls). [17, Lemma 2.4] Two balls B(v1, r1)
and B(v2, r2) at distance ‖v1 − v2‖ = D with centers v1,v2 and radii r1, r2,
such that

√
|r21 − r22| < D < r1 + r2, satisfy

|B(v1, r1) ∩ B(v2, r2)|
|B(0, 1)|

=

(
−D4 + 2D2

(
r21 + r22

)
−
(
r21 − r22

)2
4D2

)d/2+o(d)
. (35)

To apply this lemma, and obtain a lower bound on the probability that
the closest vector s to t′ (which is assumed to lie uniformly at random on a
sphere of radius λ1(L) around t′) has norm at most α · λ1(L) (so that with
high probability s ∈ L), we apply this lemma with the parameters instantiated
as (v1,v2, r1, r2, D) = (t′,0, λ1(L), αλ1(L), βλ1(L)), where we make use of the
previous lemma to conclude that with high probability, after reductions the
vector t′ lies at distance at most βλ1(L) from the origin. This heuristically tells
us that the probability of success for the slicer, on input a list of the αd+o(d)

shortest vectors in the lattice, is at least proportional to:

pα ≥
|B(0, α · λ1(L)) ∩ B(t′, λ1(L))|

|B(t′, λ1(L))|
(36)

=

(
−β4 + 2β2

(
α2 + 1

)
−
(
α2 − 1

)2
4β2

)d/2+o(d)
. (37)

Substituting the aforementioned relation between α and β, which translates to
β2 = α4/(4α2 − 4) when optimized for β, and expanding the polynomials in
terms of α, we get the lower bound on pα (or equivalently, the upper bound on
AL = 1/pα) given in Lemma 7.

Observe that the denominator of pα is non-zero for arbitrary α ∈ (1,
√

2),
while the numerator has one root in this interval, at α ≈ 1.03396. For this value
of α, we have β = α+1 and so the two balls around t′ and 0 of radii {1, α}·λ1(L)
are disjoint, resulting in pα = 0. For α =

√
2 the expression between brackets

evaluates to 1 as expected, while for α = β =
√

4/3 (using the same list size as
in sieving for SVP) we obtain p√

4/3
= (13/16)d/2+o(d). So if we used a standard

GaussSieve as preprocessing for CVPP, we would expect the success probability
of a single reduction to be (13/16)d/2+o(d) ≈ 2−0.150d+o(d).

C Experimental results

To verify the heuristic assumptions, as well as to provide a preliminary assess-
ment of the practicality of the proposed CVPP method, we tested the approx-
imate Voronoi cell approach with randomized slicing for finding closest vectors

on the 50-dimensional lattice of the SVP challenge [1] with seed 0. All exper-
iments were performed on a Medion Erazer P6661 laptop with an Intel Core
i7-6500U processor (2.50GHz), with more than enough RAM for these experi-
ments. Experiments typically consumed about 25% of the total CPU power, i.e.,
50% of one of the two cores. The experiments were conducted by (1) generating a
large set of short lattice vectors (by using the preprocessing algorithm described
in Algorithm 6); (2) indexing the shortest of these in a nearest neighbor data
structure for fast lookups; and (3) running the randomized slicer to find closest
vectors for random target vectors.

C.1 Nearest neighbor data structure

For nearest neighbor indexing, in our experiments we chose to use the hyperplane
locality-sensitive hashing data structure [29] used in the HashSieve [50], rather
than the spherical locality-sensitive filters [12, 18] used in the LDSieve [18] and
which forms the basis of Lemma 2. There are two main reasons behind this
choice.

First, for the HashSieve [50], the only parameters that need to be chosen are
k (the number of hyperplanes) and t (the number of hash tables). As described
in [50, 58], the asymptotically optimal parameter choices k = 0.2206d and t =
20.1290d for solving SVP with this method seem quite accurate in practice as
near-optimal parameters for small/moderate dimensions as well. Being able to
choose and fix the parameters easily means that fewer parameters need to be
chosen for our experiments, and there will be a smaller variance in the results due
to the changes of parameters between different experiments. This in contrast to
the asymptotically superior spherical locality-sensitive filters [18, 51], for which
several parameters must be chosen with less clear optimal choices in moderate
dimensions.

Second, for solving SVP in dimension 50, a proof-of-concept HashSieve has
previously been shown to outperform the LDSieve [18, Figure 3] by a factor
more than 2. Using the LDSieve may ultimately lead to better time complexities
in higher dimensions, with optimized code and an accurate analysis of how to
actually choose the parameters in practice, but that lies beyond the scope of this
section. The main targets here are to verify the heuristic assumptions, and to
get an idea of the speedup compared to solving SVP or CVP directly.

For the experiments in dimension 50, we used the HashSieve with the same
parameter choice of k = 11 hyperplanes and t = 87 hash tables as in [50]. We
varied both the number of lattice vectors indexed in the data structure (out
of all the vectors obtained from the preprocessing stage), and the number of
rerandomizations before calling the search for a closest vector to this target a
failure. We naturally sorted the preprocessed vectors by norm, so that using
fewer vectors means that only the shortest of the lattice vectors found during
the preprocessing phase are used. For randomizations, we sampled a random
lattice vector from a discrete Gaussian over the lattice similar to how lattice
vectors are sampled for the sieve, added it to the target vector, and reduced this
new target instead.

1900 2000 2100 2200 2300 2400

10

100

1000

104

105

106

→ Maximum Euclidean norm

→
La
tti
ce
ve
ct
or
s

Preprocessed data set (d=50)

Gaussian heuristic

(a) Norms of vectors in the data set

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

→ Trials

→
S
uc
ce
ss
pr
ob
ab
ili
ty

40K vectors

20K vectors

10K vectors

5K vectors

2K vectors

1K vectors

(b) Rerandomization heuristics

Fig. 6. Verifying the heuristic assumptions. Figure 6a compares the norms of the vec-
tors in the data set to the expected norms of the shortest vectors in the lattice, based on
the Gaussian heuristic. Figure 6b depicts how rerandomizations affect the success prob-
ability. Different curves in Figure 6b correspond to a different number of preprocessed
vectors being used for reductions.

C.2 The preprocessing step

First, let us describe the preprocessing step and the preprocessed data set in more
detail. As described, we used Algorithm 6 to generate a list of short vectors in
the lattice. Depending on how many list vectors we use after the preprocessing,
the time needed to generate this list varies between a few seconds, for running
the HashSieve and finding 20.208d+o(d) short lattice vectors, and several minutes
or even hours to find tens of thousands of short lattice vectors in this lattice.

For the CVPP experiments, we ultimately generated an extremely large data
set of short vectors in this lattice, consisting of about 250 000 lattice vectors of
norm less than 3000, with the majority of them having norm less than 2500.
Figure 6a shows the number of vectors in the data set below a certain norm, and
compares it to the prediction for our preprocessed list size based on the Gaussian
heuristic. Note that the Gaussian heuristic for this lattice predicts λ1(L) ≈
1836.52 . . . , and so we expect the list to contains approximately 1

2 (N/1836)50

vectors in the lattice of norm at most N for N ≥ 1836, where the factor 1
2 comes

from the observation that we always only store either x or −x. If the Gaussian
heuristic is accurate, then as we see in Figure 6a, the data set indeed contains
almost all of the lattice vectors of norm less than 2300.

C.3 The rerandomization assumption

For analyzing the asymptotic performance of our randomized slicer, we assumed
that rerandomizations (reducing the same target vector with the slicer multiple
times, by considering random shifts t′ ∼ Dt+L,s) lead to independent successes
and roughly a linear increase in the success probability as more trials are per-
formed. Figure 6b plots the total success probability against the number of
rerandomizations (trials), for various sizes of the list indexed in the data struc-
ture. Similar figures in the introduction show that indeed, it seems that if the
success probability for a single trial is p, then the success probability for m trials
is roughly proportional to 1− (1− p)m.

Note that for the experiments we set s such that the output vectors are not
too long. As the Gaussian becomes more narrow, it becomes more and more
likely that similar vectors are sampled, and results may not be “as fresh”. In
practice one can tweak the parameter s to obtain a proper trade-off between
having as independent trials as possible, and not making the sampled vectors
too long.

C.4 Experimental results

As stated before, for the CVPP experiments we fixed the nearest neighbor data
structure parameters as k = 11 and t = 87. Focusing on the query costs, what
remains is optimizing the size of the list L to use for the reductions, and assess-
ing the precise practical impact of rerandomizations on the success probability
and the time complexity. Note that by our heuristic assumption, the number
of rerandomizations should not severely impact the normalized, expected time
complexity, i.e., the time complexity divided by the success probability.

Figures 7 and 3 in the introduction show the results of these experiments,
where we measured the average time complexity per target vector, the average
success probability for each instance, and the normalized time complexity per
instance. Different curves in these figures correspond to different numbers of
rerandomizations/trials, and although this affects the success probability and
the time complexity, in Figure 3 we see a confirmation that the normalized
time complexity is essentially independent of the number of trials. Figure 3
further shows that the normalized time complexity seems to be smallest when
the list contains between 10 000 and 15 000 lattice vectors, in which case the
query time complexity T2 for solving one CVPP instance is approximately 0.002
seconds. The memory complexity S2 when using this number of list vectors is
approximately 10MB.

Note also that Figure 3d shows that if we normalize the time complexity
not only by the number of trials, but also by the number of vectors in the list,
then the maximum success probability per trial, per vector, is also achieved at
roughly the same number of vectors. Using fewer vectors would make the list too
short and the success probability too small, while adding more vectors to the
preprocessed list means adding longer vectors as well – the shortest vectors in
the lattice are the most useful for reducing a target vector to the (approximate)
Voronoi cell.

0 10000 20000 30000 40000
0.000

0.001

0.002

0.003

0.004

→ List size (vectors)

→
T
im
e
(s
ec
on
ds

)
20 trials

10 trials

5 trials

2 trials

1 trial

(a) Time complexity per CVP instance

0 5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

→ Trials

→
S
uc
ce
ss
pr
ob
ab
ili
ty

/
T
ria
ls

40K vectors

20K vectors

10K vectors

5K vectors

2K vectors

1K vectors

(b) Success probability increase per trial

Fig. 7. Experimental results for solving CVPP with approximate Voronoi cells in di-
mension 50. Figure 7a displays the average time complexity for running the slicer, not
taking into account the resulting success probability. Figure 7b displays the normalized
success probability per trial as a function of the number of trials, showing that indeed
the success probability almost scales linearly with the number of trials. Each data point
corresponds to 10 000 random target vectors for this choice of parameters. (See also
Figure 3.)

C.5 Comparison with sieving for SVP and CVP

To put these results into perspective, let us compare the (normalized) time com-
plexities for CVPP with the complexities of sieving for solving SVP or CVP6

directly, i.e., without preprocessing.

First, we observe that with the same amount of optimization, the HashSieve
algorithm solves SVP in approximately 4 seconds on the same machine. This
means that in dimension 50, the expected time complexity for CVPP with our
algorithm (about 2 milliseconds) is approximately 2000 times smaller than the
time for solving SVP. To explain this gap, observe that the list size for solving
SVP is approximately 4000, and so roughly speaking the HashSieve algorithm
would need to perform 4000 reductions of newly sampled vectors with a list of
maximum size 4000. For solving CVPP, we only need to reduce a single target
vector with the list, but the list is now between 10 000 and 15 000 vectors long.
This means that we save a factor 4000 on the number of searches through the
list, but the searches are slightly more expensive as the list size is longer, leading
to a speed-up of a factor slightly less than 4000.

6 By results of [52], heuristically the complexities for SVP and CVP for sieving are
equivalent up to at most a factor two.

To make these estimates more precise, note that the HashSieve for solving
SVP [50] reported time complexities in dimension d of approximately 20.45d−19

seconds, which corresponds to approximately 11.3 seconds in dimension 50, i.e.,
a factor 3 slower than our implementation. As explained above, this is based
on doing n = 20.21d+o(d) reductions. If for simplicity we assume that doing only
one of these searches in a slightly larger list takes a factor 20.21d less time, and
we take into account that for SVP the time complexity is now a factor 3 less
than in [50], then we obtain an estimated time complexity in dimension d of
20.24d−19/3, which for d = 50 corresponds to approximately 0.0026 seconds with
our implementation, closely matching the observed time complexity. A rough
extrapolation would then lead to a time complexity in dimension 100 of less
than a minute.

C.6 Comparison with enumeration for SVP and CVP

In low dimensions, the fastest algorithms for solving SVP and CVP are based on
enumeration. To compare our preprocessing approach with enumeration-based
methods, we list several of the reported complexities for SVP and CVP with
enumeration from the literature below, in chronological order. The listed time
complexities are all for lattices in dimension 50.

– Agrell–Eriksson–Vardy–Zeger [4, Figure 2] give costs for CVP which, when
extrapolated to dimension 50, would correspond to between 10 and 20 sec-
onds.

– Nguyen–Vidick [68, Figure 4] report costs of Schnorr-Euchner enumeration
with BKZ-20 preprocessing between 2 and 3 minutes.

– Hermans–Schneider–Buchmann–Vercauteren–Preneel [42, Table 2] give an
estimate of between 5 and 7 seconds for enumeration with BKZ-20 prepro-
cessing.

– Gama–Nguyen–Regev [40, Table 1] give four data points for the number of
nodes processed during enumeration for three different versions of enumera-
tion, which when fitted to the model 2ad

2+bd, give 20.00416d
2+0.255d (full enu-

meration), 20.00379d
2+0.115d (Schnorr-Hörner pruning), and 20.00387d

2+0.059d

(linear pruning). Taking into account their estimated rate of 107 nodes pro-
cessed per second, in dimension d = 50 this leads to a sequential time
complexity of approximately 0.94 seconds (full enumeration), 0.0038 sec-
onds (Schnorr-Hörner pruning) and 0.00062 seconds (linear pruning). For
extreme pruning, only two data points are provided, which is not enough to
extrapolate to dimension 50.

– Dagdelen–Schneider [69, Table 1] report timings between 6 and 8 minutes for
running their sequential implementation and for running fplll’s enumeration
with LLL preprocessing.

– Micciancio–Walter [66, Figure 7] give an experimental time complexity of
Fincke-Pohst enumeration of approximately 30 seconds.

– Correia–Mariano–Proenca–Bischof–Agrell [32, Figure 6b] state a time com-
plexity of enumeration for solving CVP in dimension 50 of approximately 10
seconds with BKZ-20 preprocessing.

Calling shortest vector() within fplll 4.0 on the machine used for the exper-
iments in this section (on a BKZ-20 reduced basis), the algorithm returns a
shortest vector in approximately 30 seconds. In the most recent release of fplll
(version 5) [34], this now takes approximately 0.7 seconds.

All reported experimental time complexities for enumeration in dimension
50 are significantly worse than our normalized 0.002 seconds per target vector.
On the other hand, enumeration with linear pruning (and likely also extreme
pruning) is still expected to solve more SVP (CVP) instances per second than
our proof-of-concept CVPP implementation with hyperplane locality-sensitive
hashing, and with extreme pruning the gap may be even bigger. On the other
hand, in our implementation we did not make use of very recent improvements
to sieving, which may also speed up the randomized slicing method, such as
the POPCNT-trick described in [35], and faster heuristic nearest neighbor data
structures used in [7]. Further work on high-speed implementations is needed
to see how fast batches of CVP instances can really be solved in practice with
approximate Voronoi cells.

D Asymptotics for variants of CVPP

Let us finally take a look at variants of CVPP, which sometimes make their
appearance in the literature. The two main variants we will consider here are
the approximation version of CVPP, and the preprocessing version of bounded
distance decoding.

D.1 Solving BDDPδ

In bounded distance decoding, the target t lies unusually close to the lattice, i.e.,
closer than one might expect by the Gaussian heuristic. This problem naturally
appears in lattice-based cryptography, when a private key consists of a good
basis of a lattice with short basis vectors, and the public key is a bad basis of
the same lattice. An encryption of a message could then consist of the message
being mapped to a lattice point s ∈ L, and a small error vector e being added to
s (t = s+e) to hide s. If the noise e is small enough, then with a good basis one
can decode t to the closest lattice vector s, while someone with the bad basis
cannot decode correctly. As decoding for arbitrary t (solving CVP) is known to
be hard even with knowledge of a good basis [8, 37, 62, 70], e needs to be very
short for decryptions to work, and t must lie very close to the lattice. So instead
of assuming that target vectors t are sampled at random, here we will assume
that t lies at distance at most δ · λ1(L) from L, for δ ∈ (0, 1).

For the approximate Voronoi cell approach for CVPP, let us again start by
assuming that the preprocessed list L contains almost all αd+o(d) lattice vectors
of norm at most α · λ1(L). The choice of α implies a maximum norm β · λ1(L)
of the reduced vector t′, as described in the analysis for exact CVPP. Here we
now assume the nearest lattice vector s to t′ lies within radius δ · λ1(L) of t′,
rather than within a radius λ1(L), and so we find the (heuristic) probability of

finding the closest lattice vector among the list, after reducing the target vector
t to a vector t′ ∈ t + L of norm ‖t′‖ ≤ β · λ1(L) to be:

p(δ)α =
|B(t′, δ) ∩ B(0, α)|

|B(t′, δ)|
=

(
−β4 + 2β2

(
α2 + δ2

)
−
(
α2 − δ2

)2
4β2δ2

)d/2+o(d)
.

(38)

Without rerandomizations, to achieve p ≈ 1, we need
√
β2
α + δ2 ≤ α to

expect the nearest lattice vector to t′ to be contained in L, so that ultimately
0 is nearest to t′ after reductions. Substituting α4 − 4β2α2 + 4β2 = 0 and
β2 + δ2 ≤ α2, and solving for α > 1, without rerandomizing this leads to the
condition α2 ≥ 2

3 (1 + δ2) + 2
3

√
(1 + δ2)2 − 3δ2. Taking δ = 1, corresponding to

exact CVPP, leads to the condition α ≥
√

2 as expected, while in the limiting
case of δ → 0 we obtain the condition α ≥

√
4/3. This matches experimental

observations using the GaussSieve, where after finding the shortest vector, newly
sampled lattice vectors often cause collisions (i.e., reductions to the 0-vector). In
other words, Algorithm 1 quite often reduces target vectors t which essentially
lie on the lattice (δ → 0) to the 0-vector when the list has size (4/3)d/2+o(d).
This explains why collisions in the GaussSieve are common when the list size
grows to size (4/3)d/2+o(d).

With rerandomizations, a choice of α implies a norm β of the reduced vector

t′, and a probability p
(δ)
α that the closest lattice vector is then found with the

algorithm. For each α we can further use nearest neighbor searching with varying
parameters u as in Lemma 2, and we can vary α ∈ (α0, α1) where α0, α1 follow
from the equations pα0,δ = 0 and pα1,δ = 1 respectively. In other words, α1

satisfies β2
α1

+ δ2 = α2
1, and α0 is a root of the denominator of (38). This

ultimately leads to the following theorem.

Theorem 4 (Optimized BDDPδ complexities). Let p
(δ)
α be as in (38). Let

α
(δ)
0 , α

(δ)
1 be the smallest values α larger than 1 with p

(δ)
α = 0 and p

(δ)
α = 1

respectively. Let α ∈ (α
(δ)
0 , α

(δ)
1) and u ∈ (

√
α2−1
α2 ,

√
α2

α2−1). With approximate

Voronoi cells we can heuristically solve BDDPδ with preprocessing space and
time S1 and T1, and query space and time S2 and T2, where:

S1 = max

{
S2,

(
4

3

)d/2+o(d)}
, T1 = max

{
S2,

(
3

2

)d/2+o(d)}
, (39)

S2 =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)
, (40)

T
(δ)
2 =

(
16α4

(
α2 − 1

)
δ2

−9α8+8α6(3+5δ2)−8α4(2+9δ2+2δ4)+32α2(δ2+δ4)−16δ4

)d/2+o(d)
(41)

·

(
α+ u

√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)d/2+o(d)
. (42)

For arbitrary δ, we can do a search over all values of α and u to obtain the
best time–space trade-off. For various δ the resulting trade-offs are depicted in
Figure 4a. Note that in the limit δ → 0, we have α0, α1 →

√
4/3. In other

words, we then always have p → 0 or p → 1 as δ → 0, which means that
rerandomizations do not help; either the algorithm almost always succeeds, or
it always fails.

To further illustrate the behavior of the limiting case δ → 0 (with α →√
4/3), note:

– For u = 1
2 , we have S ≈ 20.2075d+o(d) and T2 = (5/4)d/2+o(d) ≈ 20.1610d+o(d).

– For u = 1, we have S ≈ 20.2925d+o(d) and T2 = (9/8)d/2+o(d) ≈ 20.0850d+o(d).

In the limit of large u→
√

α2

α2−1 we again obtain S1,2,T1 → 2ω(d) and T2 → 2o(d)

(regardless of δ) similar to solving CVPP without a distance guarantee.

D.2 Solving CVPPκ

Besides BDD, where t lies unusually close to the lattice, another easier variant of
CVP is the Approximate Closest Vector Problem. Given a lattice L and a target
vector t ∈ Rd, the approximate closest vector problem with approximation factor
κ is to find a vector s ∈ L such that ‖s − t‖ is at most a factor κ larger than
the real distance from t to L. For random instances t, by the Gaussian heuristic
this means a lattice vector s counts as a solution for approximate CVP with
approximation factor κ iff s lies at distance at most κ · λ1(L) from t.

For the approach from Appendices B–C, we may hope to further improve
upon the query complexities (after the preprocessing phase), similar to BDD.
Without rerandomizations, instead of reducing t to a vector t′ of norm at most
λ1(L), as is needed for solving exact CVP (β = 1), we now update the analysis
to take into account that we want to make sure that the reduced vector t′ has
norm at most κ · λ1(L) (β = κ). If this is the case, then the vector t − t′ is a
lattice vector lying at distance at most κ ·λ1(L) from t, which w.h.p. qualifies as
a solution. This means that instead of substituting β = 1 in Lemma 10 for exact
CVPP (without rerandomizations), we now substitute β = κ, leading to the
condition that α4 − 4κ2α2 + 4β2 ≤ 0. By a similar analysis α must therefore be

larger than the smallest root r1 =
√

2κ(κ−
√
κ2 − 1) of this quartic polynomial.

A sanity check shows that κ = 1, corresponding to exact CVP, indeed results in
α ≥
√

2, while in the limit of κ→∞ a value α ≈ 1 suffices to obtain a vector t′

of norm at most κ · λ1(L). In other words, to solve approximate CVP with very
large (constant) approximation factors, a preprocessed list of size (1 + ε)d+o(d)

suffices. Further note that κ =
√

4/3 leads to the same value α =
√

4/3 as in
BDD with δ → 0.

With rerandomizations, the analysis can be updated as follows. Instead of
asking that the single closest vector s at distance λ1(L) from t′ is contained in
the list L (and has norm at most α · λ1(L)), we now want that at least one of
the κd+o(d) lattice vectors s at distance at most κ · λ1(L) from t′ has norm at

most α · λ1(L). This leads to the following alternative definition for the success
probability:

p(κ)α = κd · |B(t′, κ) ∩ B(0, α)|
|B(t′, κ)|

=

(
−β4+2β2(α2+κ2)−(α2−κ2)

2

4β2

)d/2+o(d)
. (43)

The conditions on the parameter α are analogous to BDD: we require that the
asymptotic formulas for p lie in the range [0, 1]. More precisely, if this asymptotic
expression exceeds 1, then the conditions of Lemma 11 are not met, and we
instead have p = 1−o(1). As increasing α beyond the smallest value for which p ≈
1 only leads to worse complexities, we can simply assume that α is chosen such
that for these asymptotic expressions, p ≤ 1. Substituting the above expressions
for p, with rerandomizations we now obtain the following result.

Theorem 5 (Optimized CVPPκ complexities). Let p
(κ)
α be as in (43). Let

α
(κ)
0 , α

(κ)
1 be the smallest values α larger than 1 with p

(κ)
α = 0 and p

(κ)
α = 1

respectively. Let α ∈ (α
(κ)
0 , α

(κ)
1) and u ∈ (

√
α2−1
α2 ,

√
α2

α2−1). With approximate

Voronoi cells we can heuristically solve CVPPκ with preprocessing space and
time S1 and T1, and query space and time S2 and T2, where:

S1 = max

{
S2,

(
4

3

)d/2+o(d)}
, T1 = max

{
S2,

(
3

2

)d/2+o(d)}
, (44)

S2 =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)
, (45)

T
(κ)
2 =

(
16α4

(
α2 − 1

)
−9α8+8α6(3+5κ2)−8α4(2+9κ2+2κ4)+32α2(κ2+κ4)−16κ4

)d/2+o(d)
(46)

·

(
α+ u

√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)d/2+o(d)
. (47)

Various optimized trade-offs for different values κ are depicted in Figure 4a,
with the curve for κ =

√
4/3 partially overlapping with the BDD-curve for δ → 0.

Recall that for 0-BDD, the interval for α only contains one value, resulting in
one trade-off. For

√
4/3-CVP, this interval is not just one value, and choosing

α <
√

4/3 leads to better space complexities than for 0-BDD.
Also observe that from the bottom (thick, red) curve in Figure 4a, we can

see that (after preprocessing the lattice) we can solve 2-CVPP in time and space
both less than 20.05d+o(d), which follows from setting α ≈ 1.035 and u ≈ 0.381,
and only storing a small list of vectors L in memory. As κ increases, both α0, α1

tend to 1 + 1/(8κ2) + O(κ−4), and for arbitrary superconstant κ we therefore
obtain query time and space complexities both tending to 2o(d).

Corollary 1 (Subexponential query complexities for CVPPκ). For ar-
bitrary ε > 0, for sufficiently large κ we can use approximate Voronoi cells to

heuristically solve approximate CVPP with approximation factor κ with prepro-
cessing time T1 = (3/2)d/2+o(d), preprocessing space S1 = (4/3)d/2+o(d), and
query time and space complexities T2,S2 = 2εd+o(d). In particular, for κ = ω(1)
we can solve CVPPκ in 2o(d) time and space.

The corresponding algorithm is rather simple as well: (1) run a standard
sieve for solving SVP; (2) discard all but the 2εd+o(d) shortest vectors found
by the algorithm; and (3) use Algorithm 1 to find a sufficiently close lattice
vector to t. To obtain slightly subexponential query complexities one does not
even need rerandomizations or nearest neighbor searching; these subexponential
costs follow directly from κ = ω(1).

To compare Corollary 1 with previous work, note that α0, α1 both tend to
1 + 1/(8κ2) + O(κ−4) as κ grows. The query space and time complexities are
both proportional to αΘ(d). To obtain polynomial query complexities, we can
solve for κ, leading to the following result.

Corollary 2 (Polynomial query complexities for CVPPκ). Using approx-
imate Voronoi cells we can heuristically solve CVPPκ in polynomial query time
and space iff κ = Ω(

√
d/ log d).

Proof. The query time and space complexities are given by αΘ(d), where α =
1+Θ(1/κ2). To obtain polynomial complexities in d, we must have αΘ(d) = dO(1),
or equivalently:

1 +Θ

(
1

κ2

)
= α = dO(1/d) = exp O

(
log d

d

)
= 1 +O

(
log d

d

)
. (48)

Solving for κ leads to the given relation between κ and d.

This is equivalent (minus the heuristic assumptions) to a result of Aharonov
and Regev [5], who previously showed that the decision version of CVPP with
approximation factor κ = Ω(

√
d/ log d) can provably be solved in polynomial

time. This also heuristically improves upon results of [33,56], who showed how to
solve the search-version of CVPP with polynomial time and space complexities
for κ = O(d3/2) and κ = Ω(d/

√
log d) respectively. These comparisons suggest

that this sieving-based approximate Voronoi cell method may well be optimal
from a theoretical point of view as well.

	Lecture Notes in Computer Science

