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Abstract. The PRINCE cipher is the result of a cooperation between the Technical University of
Denmark (DTU), NXP Semiconductors and the Ruhr University Bochum. The cipher was designed
to reach an extremely low-latency encryption and instant response time. PRINCE has already gained
a lot of attention from the academic community, however, most of the attacks are theoretical, usually
with very high time or data complexity. Our work helps to fill the gap in more practically oriented
attacks, with more realistic scenarios and complexities. We present new attacks, up to 7 rounds,
relying on integral and higher-order differential cryptanalysis.
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1 Introduction

A need of low-cost cryptosystems for several fast-growing applications, such as RFID tags,
sensor networks or Internet of Things, has drawn great attention to the area of lightweight
cryptographic primitives over the last decade. It has been a vibrant research area, where a good
trade-off between security and efficiency is a particularly challenging task. Some well established
algorithms (e.g., AES[5]) may not meet the basic requirements of constrained devices — low
cost hardware implementation, low power usage and latency.

Recently, at Asiacrypt 2012 conference, a new lightweight block cipher called PRINCE has
been proposed [2]. PRINCE is the result of a cooperation between the Technical University
of Denmark (DTU), NXP Semiconductors and the Ruhr University Bochum. The cipher was
designed to reach an extremely low-latency encryption and instant response time. These re-
quirements are highly desirable for applications such as instant authentication or block-wise
read/write access to memory devices, e.g., in solid-state hard disks.

For PRINCE — a serious proposal with a clear motivation from industry — it is very
important to estimate the security margin, particularly for practical settings, regarding a future
deployment of the cipher. Too conservative design (e.g., too many rounds) might result in the
algorithm below industry expectations. On the other hand, insufficient level of security will make
the users and customers reluctant to deploy and use the algorithm.

PRINCE has already gained a lot of attention from the academic community and some
interesting cryptanalysis has been published [3, 7, 10, 11]. However, most of the attacks are the-
oretical, usually with very high time or data complexity. To spur on more practically oriented
research, PRINCE designers launched ‘PRINCE challenge’ [1] — a competition where crypt-
analysts are encouraged to find key recovery attacks with time complexity below 264 and a
number of plaintexts set to a more realistic scenario.

Our contribution helps to fill the gap in the practical attacks on PRINCE, giving a better
estimation of the security margin. Table 1 summarizes our results.

Related work

As stated, most of published work on PRINCE are theoretical attacks. Though, there are a few
attack with practical complexities. In [7], the integral attack was described, up to 6 rounds.



Table 1. Our key recovery attacks

Rounds Time Data Technique Reference

4 5 · 28 5 · 24 integral Section 3.1
4 228 6 · 23 bit-pattern integral Section 4
5 229 6 · 24 integral Section 3.2
6 241 6 · 216 integral Section 3.3
7 257 6 · 257 higher-order differential Section 5

However, the authors conclude that practical attacks can only be mounted for PRINCEcore (an
underlying primitive of the cipher) and applying the same technique to PRINCE results in an
increase of time complexity to 264. Our work clearly improves their findings. Very recently, two
other approaches (meet-in-the-middle attack and SAT-based cryptanalysis) led to practical (or
arguably close to practical) attacks, up to 10 rounds [6].

2 Description of PRINCE

In this section we give a description of the PRINCE cipher with all the details needed to follow
our attacks. For a complete specification and design rationale of the cipher, we refer a reader to
[2].

PRINCE is the 64-bit block cipher which uses 128-bit key k. First, k is divided into two
subkeys k0 ‖ k1 and then is expanded into 192 bits with a simple linear transformation L.

k = (k0 ‖ k1)→ (k0 ‖ k
′
0 ‖ k1), where k

′
0 = L(k0) = (k0 ≫ 1)⊕ (k0 � 63)
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Fig. 1. A scheme of the PRINCE cipher

The 64-bit subkeys k0 and k
′
0 can be treated as the input and output whitening keys to the

underlying block cipher named PRINCEcore with its internal 64-bit key k1. Figure 1 shows the
complete scheme.

PRINCE is the substitution-permutation network composed of 12 rounds. The 64-bit state
can be organized as the 4× 4 array of nibbles and we use this convention throughout the paper.
To specify a given nibble we use a notation [x,y]. Four nibbles sharing the same x coordinate
are called a column.

The 4-bit Sbox S can be specified in the hexadecimal notation S = [B,F, 3, 2, A,C, 9, 1, 6, 7,
8, 0, E, 5, D, 4]. In each round the Sbox S (or its inverse S−1) is applied to all 16 nibbles. For one



of our attacks, we need an explicit form of the Sbox equations given in the Algebraic Normal
Form. Four Sbox outputs y0 . . . y3 are described as follows:

y3 = x1 ⊕ x0 ⊕ x3x2 ⊕ x3x0 ⊕ x2x1 ⊕ x1x0 ⊕ x3x2x1 ⊕ 1

y2 = x3x1 ⊕ x2x1 ⊕ x2x0 ⊕ x3x2x1 ⊕ x2x1x0 ⊕ 1

y1 = x3x2 ⊕ x3x0 ⊕ x2x0 ⊕ x3x2x0 ⊕ x2x1x0 ⊕ x3 ⊕ x0
y0 = x2x1 ⊕ x1x0 ⊕ x3x2x1 ⊕ x3x2x0 ⊕ x3x1x0 ⊕ x2 ⊕ x0 ⊕ 1

The linear step M consists of the linear matrix M
′

and the nibble shifting SR (similar to
ShiftRows in AES); M = SR ◦M ′

. The M
′

is an involutive, linear transformation, a kind of
equivalent of MixColumns in AES. We give the bitwise equations of M

′
in Appendix. For a

detailed algebraic description and design rationale of M , we refer to [2].

In the first 5 rounds, an order of steps is as follows. First, the subkey k1 and the round
constant RCi are added to the state. Then, the Sbox layer is applied, followed by the linear
transformation M . In the last 5 rounds, the inverse transformations S−1 and M−1 are used, also
the order of them is reversed, as shown in Figure 1. The middle rounds consist of only S, M−1,
and S−1.

We attack the round-reduced variants of PRINCE. In case of an even number of rounds, we
keep the symmetry of the cipher, that is the same number of rounds are before and after the
middle rounds. In case of an odd number of rounds, one extra round is added at the beginning
of the cipher. (If an extra round would be added at the end, all the reported attacks still work.)

3 Integral Attacks

Integral cryptanalysis was originally designed as a dedicated attack against the Square cipher
[4]. This cryptanalytic attack is particularly applicable to block ciphers based on substitution-
permutation networks and PRINCE falls into this category.

Unlike differential cryptanalysis, where we usually trace the XOR difference between a pair
of plaintexts, integral cryptanalysis uses bigger sets, e.g., 256 chosen plaintexts. Typically, most
part of plaintexts is set to a constant and some words vary through all possibilities. (These
words are called active.) Then, we study how the XOR sum in given words changes through the
subsequent steps of a cipher. We hope that after a few steps/rounds, some words still sum up to
zero. Such the property would distinguish a given cipher from a random permutation and often
leads to a key recovery attack.

The base for all our integral attacks is the 3.5-round integral distinguisher. We start from
one active nibble (the position of the nibble is arbitrary) and after 3.5 rounds, all nibbles are
still balanced, that is, their XOR sum is zero. A subsequent Sbox layer destroys the property.
An integral distinguisher is very similar to the one presented originally for the Square cipher
and AES. Figure 2 shows the 3.5-round integral distinguisher.

What is interesting is how the linear M
′

affects a single column when one nibble is active
and the rest are constant. In the classic Square attack (also applied to AES) if a byte is active
and other three bytes are constant, then applying MixColumn operation gives you 4 active
bytes (in that column). However, in PRINCE, the M

′
step transforms such column in a way

that each nibble (in that column) takes exactly 8 distinct values (rather than 16, as one might
expect). Each of these 8 values is present two times, so they balance each other and a nibble is
still balanced (sums up to zero) and behaves as it were an active nibble. This property of M

′

becomes clear when one studies its bitwise equations. We give such analysis in Appendix.
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Fig. 2. 3.5-round integral distinguisher for PRINCE

3.1 4-round Attack

First, we encrypt a set of 24 plaintexts, with one active nibble. We guess a value of k1 ⊕
k

′
0, partially decrypt ciphertexts through the last Sbox and check whether the given nibble is

balanced or not. With a correct guess, a nibble must be balanced. This is repeated for all 16
nibbles. Our implementation shows that there are many false positives and it is better to use
more sets, making the filter stronger. (5 sets are sufficient to eliminate all false positives.)

Then, the standard procedure would be to peel off the 4th round (as k1 ⊕ k
′
0 is already

known) and next recover k1, nibble by nibble. However, this is not possible since at the end of
the 3rd round all nibbles are still balanced, then any k1 guess would be ‘correct’, so there is no
filter. To deal with that, the attacker may exhaustively search k1 (or k0) and recover the whole
key with time complexity 264 (as it was done in [8]). However, we can do better by using an
extra set of plaintexts.

Instead of using the 3.5-round distinguisher, we now use the 2.5-round one, starting from
four active nibbles (placed as in the second diagram in Figure 2). We peel off the 4th round and
then recover k1 key, on nibble by nibble basis. Now a filter works as at the end of the 3rd round
a nibble is not guaranteed to be balanced.

Once we know k1 and (k1⊕ k
′
0), k

′
0 is also known. Therefore, we can easily calculate k0 from

a set of linear equations L(k0) = k
′
0. The complete scheme of the attack is as follows.

1. Encrypt 5 sets of 24 plaintexts with one active nibble

2. for all 16 nibbles

(a) for all values of k1 ⊕ k
′
0 nibble

i. for all 5 sets of plaintexts

A. Decrypt all ciphertexts for a given set through the Sbox
B. Sum the nibbles calculated in Step A. If the sum is zero, then the guess is a

candidate for correct k1 ⊕ k
′
0

(b) Identify a candidate of k1 ⊕ k
′
0 which appears in all 5 sets for a given nibble

3. Encrypt another 5 sets of 24 plaintexts with four active nibbles (placed as in the second
diagram in Figure 2)

4. Peel off the 4th round with the recovered k1 ⊕ k
′
0

5. for all 16 nibbles

(a) for all values of k1 nibble

i. for all 5 sets of plaintexts



A. Decrypt all ciphertexts for a given set through the Sbox
B. Sum the nibbles calculated in Step A. If the sum is zero, then the guess is a

candidate for correct k1
(b) Identify a candidate of k1 which appears in all 5 sets for a given nibble

6. Recover 64 bits of k0 by solving a set of linear equations of the form L(k0) = k
′
0

Data complexity of the attack is 5 · 24 + 5 · 24 ∼= 27 chosen plaintexts. Time complexity
is dominated by the Sbox calls and is equal to 16(nibbles) · 5(sets)·24 + 16 · 5 · 24 ∼= 211. We
implemented the attack on a desktop PC and the full key recovery takes a fraction of a second.

3.2 5-round Attack

An extension of the attack to 5 rounds is done by guessing a complete column (4 nibbles)
of k1 ⊕ k

′
0, rather than a single nibble. Consequently, we can partially decrypt a column of

ciphertexts through the Sbox layer and M-layer. Then, we can guess a single nibble of k1[0, 0] to
pass through the subsequent Sbox. If the guesses are correct, the balance property should hold
(according to our 3.5-round distinguisher). The pseudo-code of the attack is given below.

1. Encrypt 6 sets of 24 plaintexts with one active nibble
2. for all 4 columns of nibbles

(a) for all values of (k1 ⊕ k
′
0) column and k1[0, 0] nibble

i. for all 6 sets of plaintexts
A. Decrypt the column through S-Layer and M-Layer
B. Decrypt a nibble [0,0] through the Sbox
C. Sum the nibbles calculated in Step B. If the sum is zero, then the guess is a

candidate for correct k1 ⊕ k
′
0 column

(b) Identify a candidate of k1 ⊕ k
′
0 which appears in all 6 sets for a given column

3. Peel off the 5th round with the recovered k1 ⊕ k
′
0

4. for all 16 nibbles
(a) for all values of k1 nibble

i. for all 6 sets of plaintexts
A. Decrypt all ciphertexts for a given set through the Sbox
B. Sum the nibbles calculated in Step A. If the sum is zero, then the guess is a

candidate for correct k1
(b) Identify a candidate of k1 which appears in all 6 sets for a given nibble

5. Recover 64 bits of k0 by solving a set of linear equations of the form L(k0) = k
′
0

Our implementation indicates that 6 sets of plaintexts make the filter strong enough. Thus,
data complexity is 6 · 24 chosen plaintexts. Time complexity is dominated by the Sbox calls (the
most inner loop in the pseudo-code) and is equal to 6 · 24 (plaintexts) · 4(columns) · 216+4 ∼= 229.
We implemented the attack and the secret key is recovered in about 3 minutes on a desktop PC.

3.3 6-round Attack

The 6-round attack is exactly the same as the 5-round variant except that we start with a larger
structure of 216 plaintexts. We use the same idea which allows to add one more round (at the
beginning) for the integral attack against Square or AES. Four nibbles from the same column
takes all possible 216 values and the remaining nibbles are set to some arbitrary constant. After
the first round, we have, in fact, 212 sets of 24 plaintexts ready for the 5-round attack. So, data
and time complexity have to be multiplied by a factor of 212 (in comparison to the 5-round
attack). Thus, required data is 6 · 216 chosen plaintexts and time is 241. The 6-round attack



would take a couple of days on a single PC, but it can be easily parallelized and 241 complexity
is not an obstacle to get the very practical time. We experimented with the limited pool of keys
(including the correct key) to confirm that indeed the correct key is recovered and false ones are
discarded.

4 Bit-Pattern Based Integral Attack

The integral attack naturally fits to the primitives with the word-oriented structure such as
Square, AES and also PRINCE. However, it has been shown [12], that a modified variant of the
technique (called bit-pattern based integral attack) can be applied to the bit-oriented algorithms.
The classic integral attack starts with (at least) one active s-bit word, so a number of chosen
plaintexts (data complexity) has a lower bound 2s. The bit-pattern variant of the integral attack
allows to work with fewer chosen plaintexts. For practical attacks, where the adversary might
have very limited power to harvest chosen plaintexts, we believe it is important to push data
complexity to the lowest possible value. Hence our motivation to mount the bit-pattern based
integral attack against PRINCE.

Let us first briefly describe how the technique works. There are two features which differ
the bit-pattern based attack from the classic integral attack. First, we trace single bits (their
patterns) rather than the whole words (such as nibbles in PRINCE or bytes in AES). Second,
we care about the order of plaintexts. It will becomes clearer as we take a closer look at the bit
patterns. In a given structure (e.g., 8 plaintexts), each bit position holds a specific sequence of
0’s and/or 1’s. For example, ‘00000000’ (8 zeros) is called the constant pattern, while ‘11110000’
is the active pattern denoted by a2. According to the notation introduced in [12], we have the
following patters:

• constant pattern c: bits within the structure consists of either all 0’s or all 1’s.

• active pattern ai: alternating values of bits in 2i-bit blocks is repeated throughout the struc-
ture.

• pattern bi: consecutive bits in 2i-bit blocks, but the values of the blocks are not necessarily
repeated in an alternating manner.

• dual pattern di: bits hold either the c (constant) or the ai (active) pattern.

If the XOR sum of all bits in one pattern equals 0, the pattern is balanced. All the above
patterns are balanced except for b0 which may or may not be balanced. In this paper we use the
following convention: b0 is treated as balanced and when it is unknown whether b0 is balanced
or not, the new symbol ‘?’ is introduced.

A key recovery attack with the bit-pattern variant of the integral attack works the same as
for the classic integral attack. Once we have the bit-pattern integral distinguisher, we guess a
part of the key from the last round, partially decrypt ciphertexts through the Sbox layer and
check the balance property of certain bits. If the property holds (according to a distinguisher),
then our key guess, most likely, is correct.

To trace how bit patters change through the subsequent rounds in PRINCE, first we need
the bitwise description of the cipher. The linear M/M

′
-layer involves only XORs of nibbles, so

the bit-level description is straightforward. (The bitwise equations are given in Appendix.) For
the Sbox layer we use four ANF equations given in Section 2). Therefore, the whole cipher can
be expressed with only the bitwise AND and XOR. Now we have to figure out how to operate
on patterns with these two operators. Some operations are pretty obvious, for example, the
constant pattern c XORed with any other pattern p gives p. A detailed list of operations on the
patterns is given in Appendix.



Figure 3 shows an evolution of patterns through the first 3 rounds. We start with three active
bits, so 23 chosen plaintexts are needed. Please note that three active bits are placed in separate
nibbles. This way they do not interact in the first round and the b0 pattern does not appear
right after the first S-Layer. Addition of secret key and round constants can be omitted as these
operations do know bring any changes to patterns of bits (XORing with the the constant pattern
c). The balance property holds up to 2.5 rounds and the third layer of the Sboxes destroys the
property.

We experimented with other placement of active bits (e.g., all three active bits in a single
nibble) but it did not lead to better results than 3 rounds.

a0 c c c c a1 c c c c a2 c c c c c
c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c
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↓
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↓
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d1 d1 c d1 d2 c d2 d2 c c c c d0 c d0 d0
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d1 d1 d1 d1 d2 d2 d2 d2 c c c c d0 d0 d0 d0
d2 d2 d2 d2 c c c c d0 d0 d0 d0 d1 d1 d1 d1
c c c c d0 d0 d0 d0 d1 d1 d1 d1 d2 d2 d2 d2

↓
M

′
-Layer
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b1 b0 b0 b0 b1 b0 b0 b0 b0 b0 b1 b0 b0 b0 b1 b0
b0 b1 b0 b0 b0 b1 b0 b0 b0 b0 b0 b1 b0 b0 b0 b1
b0 b0 b1 b0 b0 b0 b1 b0 b1 b0 b0 b0 b1 b0 b0 b0
b0 b0 b0 b1 b0 b0 b0 b1 b0 b1 b0 b0 b0 b1 b0 b0

↓
S-Layer
↓

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Fig. 3. Evolution of patterns through the first 3 rounds. After the third Sbox layer the balance property does not
hold any more for any of bits.

One may ask why, instead of three active bits (a0, a1, a2), we do not take only two active
bits and limit a number of chosen plaintexts even further. The problem is that with two active



bits (structure of four plaintexts) the symbolic operations do not work in the same way as for
bigger structures. For example, (a1 XOR a0) AND c is no longer guaranteed to be balanced,
while for bigger structures the outcome is balanced, namely b0. Consequently, the ‘?’ symbol
would appear earlier. (It becomes even more clear with a trivial structure of two plaintexts, with
only a0 bit.)

4.1 4-round Attack

The scheme of the attack is very similar to the 5-round classic integral attack shown earlier.

1. Encrypt 6 sets of 23 plaintexts where active bits a0, a1 and a2 are placed in separate columns
(an example placement shown in Figure 3).

2. for all 4 columns of nibbles

(a) for all values of (k1 ⊕ k
′
0) column and k1[0, 0] nibble

i. for all 6 sets of plaintexts
A. Decrypt the column through S-Layer and M-Layer
B. Decrypt a nibble [0,0] through the Sbox
C. Sum the nibbles calculated in Step B. If the sum is zero, then the guess is a

candidate for correct k1 ⊕ k
′
0 column

(b) Identify a candidate of k1 ⊕ k
′
0 which appears in all 6 sets for a given column

3. Peel off the 4th round with the recovered k1 ⊕ k
′
0

4. for all 16 nibbles

(a) for all values of k1 nibble

i. for all 6 sets of plaintexts
A. Decrypt all ciphertexts for a given set through the Sbox
B. Sum the nibbles calculated in Step A. If the sum is zero, then the guess is a

candidate for correct k1
(b) Identify a candidate of k1 which appears in all 6 sets for a given nibble

5. Recover 64 bits of k0 by solving a set of linear equations of the form L(k0) = k
′
0

Six sets of plaintexts are enough to identify the correct guess of a column of k1 ⊕ k
′
0 and

eliminate all false positives. Then, the same sets of plaintexts are used to recover k1, on a nibble
by nibble basis. Thus, data complexity is 6 ·23 chosen plaintexts, fewer than 10 ·24 needed for the
classic integral attack from Section 3.1. Time complexity is dominated by the Sbox calls in Step
2. So, 6 · 23 (plaintexts) ·4 (columns) ·216+4 ∼= 228 operations. We implemented the attack on a
desktop PC (2.2 GHz, single core) and it takes a minute to recover the key. In Step 5, we observe
that for some nibbles there are more than one suggestion of k1. To identify the correct 64-bit
k1, we run trial encryptions with all suggested combinations of k1 nibbles and then compare the
obtained ciphertexts to the real ciphertexts from our data set. We mounted the attack for 100
randomly chosen keys and every time a number of those extra cipher calls was negligible and
did not affect time complexity.

5 7-round Higher-order Differential Attack

Higher order differential attack is applicable to ciphers which can be represented as Boolean
polynomials of a low algebraic degree [9]. In PRINCE the only non-linear step is the Sbox layer,
so an algebraic degree of a single round is the same as the degree of the SBox, which is 3. We
can take advantage of this relatively small degree to reach 7 rounds.

For the standard differential cryptanalysis we operate on differences between a pair of plain-
texts. Higher-order differential cryptanalysis is a natural extension, where we trace differences



between a larger set of plaintexts. In our attack, we are interested in calculating i-th derivative
at some selected points. To do so, we need to form a set of 2i plaintexts, where i plaintext
variables change through all possible values, while the rest of the state is set to an arbitrary
constant.

A ciphertext variable (expressed as a polynomial in plaintext and key variables) of the 3-
round PRINCE has an algebraic degree (at most) 33 = 27. Therefore, any 28-th order derivative
(or higher) must be 0, regardless of the actual key values. This simple observation could lead
us to the 5-round attack (similar to the integral attack), but we would have to use 228 chosen
plaintexts (to calculate a derivative), so it would not bring a better result than that obtained
with the integral attack. However, we can get the first few steps for ‘free’ and start the actual
attack after the second S-Layer.

We form a structure of 232 chosen plaintexts, where two columns (8 nibbles) take all possible
values. As the PRINCE Sbox is a bijection, the first Sbox layer preserves the property, that
is, two selected columns still take all possible values. The next step M

′
works on columns

independently (see Appendix), thus we still have 32 state bits taking all possible combinations.
Then, the SR step only shifts nibbles in the state. The second Sbox layer keeps the desired state
property and eventually M

′
in the second round destroys the property.

Therefore, we get first 1.5 rounds (two S-Layers) for free and then we can launch the attack
which covers another three S-Layers. (It is not possible to cover four S-Layers as the algebraic
degree 34 = 81 would be greater than 32 and hence the 32-th derivative is not guaranteed to be
0.)

The scheme of the attack (taking the attack ‘interface’ point of view) is basically the same
as the one given for the 5-round integral attack in Section 3.2. The only difference is that we
start with a larger structure of 232 plaintexts, so time and data complexities are higher. Time
complexity is 6 · 232 (plaintexts) · 4(columns) · 216+4 ∼= 257 operations. (We assume, that as in
the previous attacks, 6 sets of plaintexts make the filter strong enough.)

6 Conclusion

We presented a few new attacks on the round-reduced (up to 7 rounds) variants of PRINCE.
We focused on the practical attacks, most of them implemented and verified on a single desktop
PC. Such analysis should help to evaluate the security margin of the cipher, especially regarding
real-life scenarios and potential deployment of the algorithm. Using integral cryptanalysis we
managed to reach 6 rounds with low data complexity. We also mounted the 7-round attack with
an aid of higher-order differential cryptanalysis. We conclude that the full, 12-round PRINCE
has sufficient security margin against the attacks which exploit a low algebraic degree in a
cryptosystem.
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Appendix

Bitwise Equations of M
′

M
′

can be expressed as the parallel application of two independent transformations: M̂ (0) and
M̂ (1). M̂ (0) is applied to columns 0 and 3, whereas M̂ (1) is applied to columns 1 and 2. So, four
nibbles (x3 . . . x0) are transformed into other four nibbles (y3 . . . y0) by these transformations.
Bitwise equations behind M̂ (0) and M̂ (1) are as follows. (A nibble in a column and a particular
bit in a nibble are denoted by a lower and an upper index, respectively.)

M̂ (0):

y00 = x01 ⊕ x02 ⊕ x03 y01 = x00 ⊕ x01 ⊕ x02 y02 = x00 ⊕ x01 ⊕ x03 y03 = x00 ⊕ x02 ⊕ x03
y10 = x10 ⊕ x12 ⊕ x13 y11 = x11 ⊕ x12 ⊕ x13 y12 = x10 ⊕ x11 ⊕ x12 y13 = x10 ⊕ x11 ⊕ x13
y20 = x20 ⊕ x21 ⊕ x23 y21 = x20 ⊕ x22 ⊕ x23 y22 = x21 ⊕ x22 ⊕ x23 y23 = x20 ⊕ x21 ⊕ x22
y30 = x30 ⊕ x31 ⊕ x32 y31 = x30 ⊕ x31 ⊕ x33 y32 = x30 ⊕ x32 ⊕ x33 y33 = x31 ⊕ x32 ⊕ x33

M̂ (1):

y01 = x01 ⊕ x02 ⊕ x03 y00 = x00 ⊕ x01 ⊕ x02 y01 = x00 ⊕ x01 ⊕ x03 y02 = x00 ⊕ x02 ⊕ x03
y11 = x10 ⊕ x12 ⊕ x13 y10 = x11 ⊕ x12 ⊕ x13 y11 = x10 ⊕ x11 ⊕ x12 y12 = x10 ⊕ x11 ⊕ x13
y21 = x20 ⊕ x21 ⊕ x23 y20 = x20 ⊕ x22 ⊕ x23 y21 = x21 ⊕ x22 ⊕ x23 y22 = x20 ⊕ x21 ⊕ x22
y31 = x30 ⊕ x31 ⊕ x32 y30 = x30 ⊕ x31 ⊕ x33 y31 = x30 ⊕ x32 ⊕ x33 y32 = x31 ⊕ x32 ⊕ x33

These equations are helpful to analyse how M
′

affects the column with one active nibble
and other three constant. We stated that M

′
step transforms such a column in a way that each

nibble (in that column) takes exactly 8 distinct values (rather than 16, as one might expect). For
example, let us assume that M̂ (0) is applied to a column and the nibble x0 is active; x0 consists
of four bits (x00, x

1
0, x

2
0, x

3
0). Now, if we look carefully, for all four output nibbles (y3, y2, y1, y0),

there is one output bit (y33, y22, y11, y00, respectively) which does not depend on any of these active
bits (x00, x

1
0, x

2
0, x

3
0). Hence, such a bit has to be constant. Consequently, a nibble can not take

all 16 values (but takes 8), as one bit is constant. Reasoning for other situations (e.g., three
constant nibbles and one quasi-active A8) can be done in a similar way.



Operations on Symbolic Patters Used in Bit-pattern Integral Attack

symbol 1 symbol 2 operator result

p c ⊕ p
p ? ⊕ ?
ai aj ⊕ bi
ai bj ⊕ bi
bi bj ⊕ bi
di aj ⊕ di
di bj ⊕ bi
di dj ⊕ bi
p b0 & ?
p ? & ?
ai aj & bi
ai bj & bi
bi bj & bi
di aj & bi
di bj & bi
di dj & bi
ai c & di
di c & di
bi c & bi

All symbols and their meaning were introduced in Section 4. We assume that i 6 j. Both
bitwise operators are commutative.


