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Abstract. Recently, it was shown that angular locality-sensitive hash-
ing (LSH) can be used to significantly speed up lattice sieving, leading
to a heuristic time complexity for solving the shortest vector problem
(SVP) of 20.337n+o(n) (and space complexity 20.208n+o(n). We study the
possibility of applying other LSH methods to sieving, and show that with
the spherical LSH method of Andoni et al. we can heuristically solve SVP
in time 20.298n+o(n) and space 20.208n+o(n). We further show that a prac-
tical variant of the resulting SphereSieve is very similar to Wang et al.’s
two-level sieve, with the key difference that we impose an order on the
outer list of centers.

Keywords: shortest vector problem (SVP), sieving algorithms, nearest
neighbor problem, locality-sensitive hashing (LSH), lattice cryptography

1 Introduction

Lattice cryptography. Lattice-based cryptography has recently received
wide attention from the cryptographic community, due to e.g. its pre-
sumed resistance against quantum attacks [10], the existence of lattice-
based fully homomorphic encryption schemes [18], and efficient crypto-
graphic primitives like NTRU [20] and LWE [40]. An important problem
in the study of lattices is the shortest vector problem (SVP): given a lat-
tice, find a shortest non-zero lattice vector. Although SVP is well-known
to be NP-hard under randomized reductions [2, 30], the computational
complexity of finding short(est) vectors is still not well understood, even
though it is crucial for applications in lattice-based cryptography [26,38].

Finding shortest vectors. Currently the four main methodologies for solv-
ing SVP are enumeration [15,23,37], sieving [3], constructing the Voronoi
cell of the lattice [31], and a recent method based on discrete Gaussian
sampling [1]. Enumeration has a low space complexity, but a time com-
plexity superexponential in the dimension n, which is suboptimal as the
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other methods all run in single exponential (2Θ(n)) time. Drawbacks of
the latter methods are that their space complexities are 2Θ(n) as well, and
that the hidden constants in the exponents are relatively big. As a result,
enumeration (with extreme pruning [17]) is commonly still considered the
most practical method for finding shortest vectors in high dimensions [33].

Sieving algorithms. On the other hand, these other SVP methods are less
explored than enumeration, and recent improvements in sieving have con-
siderably narrowed the gap with enumeration. Following the groundbreak-
ing work of Ajtai et al. [3], it was later shown that with sieving one can
provably solve SVP in arbitrary lattices in time 22.465n+o(n) [19, 35, 39].
Heuristic analyses further suggest that with sieving one can solve SVP in
time 20.415n+o(n) and space 20.208n+o(n) [7,32,35], or optimizing for time, in
time 20.378n+o(n) and space 20.293n+o(n) [7, 46, 47]. Various papers further
studied how to speed up sieving in practice [11,16,22,25,27,28,34,41,42],
and currently the highest dimension in which sieving was used to solve
SVP is 116 for arbitrary lattices [43], and 128 for ideal lattices [11,22,36].

Locality-sensitive hashing. Since sieving algorithms store long lists of
high-dimensional vectors in memory, and the main procedure of siev-
ing is to go through this list to find vectors nearby a target vector, one
might ask whether this can be done faster than with a linear search. This
problem is related to the nearest neighbor problem [21], and a well-known
method for solving this problem faster is based on locality-sensitive hash-
ing (LSH). Recently, it was shown that the efficient angular LSH technique
of Charikar [12] can be used to significantly speed up sieving, both in the-
ory and in practice [24,29], with heuristic time and space complexities of
20.337n+o(n) and 20.208n+o(n) respectively [24]. An open problem of [24] was
whether using other LSH techniques would lead to even better results.

Contributions. In this work we answer the latter question in the affirma-
tive. With spherical LSH [5, 6] we obtain heuristic time and space com-
plexities for solving SVP of 20.2972n+o(n) and 20.2075n+o(n) respectively,
achieving the best asymptotic time complexity for SVP to date. We ob-
tain the space/time trade-off depicted in Figure 1, and show how the
trade-off can be turned into a clean speed-up leading to the blue point
in Figure 1. We further show that a practical variant of our algorithm
appears to be very similar to the two-level sieve of Wang et al. [46], with
the key difference that the outer list of centers is ordered.

Outline. In Section 2 we first provide some background on (spherical)
LSH. Section 3 describes how to apply spherical LSH to the NV-sieve [35],
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Fig. 1. The space/time trade-offs of various heuristic sieve algorithms from the lit-
erature (red), the trade-off for spherical LSH (blue, cf. Proposition 1), and the
speedup when using hash tables sequentially rather than in parallel (the point at
(20.208n, 20.298n), cf. Theorem 1). The referenced papers are: NV’08: [35], MV’10: [32],
WLTB’11: [46], ZPH’13: [47], BGJ’14: [7], Laa’15: [24], BGJ’15: [8].

and Section 4 states the main result. In Section 5 we describe a practical
variant of our algorithm, and we discuss its relation with Wang et al.’s
two-level sieve [46]. In Section 6 we discuss practical implications of our
results, and remaining open problems for future work.

2 Locality-sensitive hashing

2.1 Locality-sensitive hash families

The nearest neighbor problem is the following [21]: Given a list of n-
dimensional vectors of cardinality N , e.g., L = {w1,w2, . . . ,wN} ⊂ Rn,
preprocess L in such a way that given a target vector v /∈ L, we can
efficiently find an element w ∈ L closest to v. A common variant of this
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problem is the approximate nearest neighbor problem, where an accept-
able solution is a vector “nearby” the target vector (and a solution is
unacceptable if it is “far away”). While for low dimensions n there exist
ways to answer these queries in time sub-linear or even logarithmic in
the list size N , for high dimensions it generally seems hard to do bet-
ter than with a naive brute-force list search of time O(N). This inability
to efficiently store and query lists of high-dimensional data is sometimes
referred to as the “curse of dimensionality” [21].

Fortunately, if we know that the list L has a certain structure, or if
there is a significant gap between what is meant by “nearby” and “far
away,” then there are ways to preprocess L such that queries can be
answered in time sub-linear in N . One of the most well-known meth-
ods for this is locality-sensitive hashing (LSH), introduced by Indyk and
Motwani [21]. Locality-sensitive hash functions are functions h which map
n-dimensional vectors w to low-dimensional sketches h(w), such that vec-
tors which are nearby in Rn have a high probability of having the same
sketch and vectors which are far apart have a low probability of having
the same image under h. Formalizing this property leads to the following
definition of a locality-sensitive hash family H. Here D is a similarity
measure1 on Rn, and U is commonly a finite subset of N.

Definition 1. [21] A family H = {h : Rn → U} is called (r1, r2, p1, p2)-
sensitive for similarity measure D if for any v,w ∈ Rn:

– if D(v,w) < r1 then Ph∈H[h(v) = h(w)] ≥ p1;
– if D(v,w) > r2 then Ph∈H[h(v) = h(w)] ≤ p2.

Note that if there exists an LSH family H which is (r1, r2, p1, p2)-
sensitive with p1 � p2, then (without computing D(v, ·)) we can use H
to distinguish between vectors which are at most r1 away from v, and
vectors which are at least r2 away from v with non-negligible probability.

2.2 Amplification

In general it is not known whether efficiently computable (r1, r2, p1, p2)-
sensitive hash families even exist for the ideal setting of r1 ≈ r2 and p1 ≈ 1
and p2 ≈ 0. Instead, one commonly first constructs an (r1, r2, p1, p2)-
sensitive hash family H with p1 ≈ p2, and then uses several AND- and
OR-compositions to turn it into an (r1, r2, p

′
1, p
′
2)-sensitive hash family H′

with p′2 < p2 < p1 < p′1, thereby amplifying the gap between p1 and p2.

1 A similarity measure D may informally be thought of as a “slightly relaxed” metric,
which may not satisfy all properties associated to metrics; see e.g. [21] for details.
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AND-composition. Given an (r1, r2, p1, p2)-sensitive hash familyH, we
can construct an (r1, r2, p

k
1, p

k
2)-sensitive hash family H′ by taking a

bijective function α : Uk → U and k functions h1, . . . , hk ∈ H and
defining h ∈ H′ as h(v) = α(h1(v), . . . , hk(v)). This increases the
relative gap between p1 and p2 but decreases their absolute values.

OR-composition. Given an (r1, r2, p1, p2)-sensitive hash family H, we
can construct an (r1, r2, 1 − (1 − p1)

t, 1 − (1 − p2)
t)-sensitive hash

family H′ by taking h1, . . . , ht ∈ H, and defining h ∈ H′ by the
relation h(v) = h(w) iff hi(v) = hi(w) for some i ∈ {1, . . . , t}. This
compensates the decrease of the absolute values of the probabilities.

Combining a k-wise AND- with a t-wise OR-composition, we can turn an
(r1, r2, p1, p2)-sensitive hash family H into an (r1, r2, p

∗
1, p
∗
2)-sensitive hash

family H′ with p∗
def
= 1− (1− pk)t for p = p1, p2. Note that for p1 > p2 we

can always find values k and t such that p∗1 ≈ 1 and p∗2 ≈ 0.

2.3 Finding nearest neighbors

To use these hash families to find nearest neighbors, we can use the fol-
lowing method first described in [21]. First, choose t · k random hash
functions hi,j ∈ H, and use the AND-composition to combine k of them
at a time to build t different hash functions h1, . . . , ht. Then, given the
list L, build t different hash tables T1, . . . , Tt, where for each hash table
Ti we insert w into the bucket labeled hi(w). Finally, given the target
vector v, compute its t images hi(v), gather all the candidate vectors that
collide with v in at least one of these hash tables (an OR-composition),
and search this list of candidates for the nearest neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors de-
pends on the quality of the underlying hash family and on the parameters
k and t. Larger k and t amplify the gap between the probabilities of find-
ing nearby and faraway vectors as candidates, but this comes at the cost
of having to compute many hashes (both during the preprocessing phase
and in the querying phase) and having to store many hash tables, each
containing all vectors from L. The following lemma shows how to balance
k and t such that the overall query time complexity of finding near(est)
neighbors is minimized.

Lemma 1. [21] Suppose there exists a (r1, r2, p1, p2)-sensitive hash fam-
ily H. Then, with

ρ =
log(1/p1)

log(1/p2)
, k =

log(N)

log(1/p2)
, t = O(Nρ), (1)



6 Thijs Laarhoven and Benne de Weger

with high probability we can find an element w∗ ∈ L with D(v,w∗) ≤ r2
or (correctly) conclude that no element w∗ ∈ L with D(v,w∗) ≤ r1 exists,
with the following costs:

1. Time for preprocessing the list: O(kN1+ρ).

2. Space complexity of the preprocessed data: O(N1+ρ).

3. Time for answering a query v: O(Nρ).

(a) Hash evaluations of the query vector v: O(Nρ).

(b) Candidates to compare to the query vector v: O(Nρ).

Although Lemma 1 only shows how to choose k and t to minimize the
time complexity, we can generally tune k and t to use slightly more time
and less space. In a sense this algorithm can be seen as a generalization
of the naive brute-force search method, as k = 0 and t = 1 corresponds to
checking the whole list in linear time with linear space. Note that the main
costs of the algorithm are determined by the value of ρ, which is therefore
often considered the central parameter of interest in LSH literature. The
goal is to design H so that ρ is as small as possible.

2.4 Spherical locality-sensitive hashing

In [24] the family of hash functions that was considered was Charikar’s
cosine hash family [12] based on angular distances. In the same paper
it was suggested that other hash families, such as Andoni and Indyk’s
celebrated Euclidean LSH family [4], may lead to even better results.
The latter method however does not seem to work well in the context of
sieving2, and instead we will focus on yet another LSH family, recently
proposed by Andoni et al. [5, 6] and coined spherical LSH.

Hash family. In spherical LSH, we assume3 that all points in the data
set L lie on the surface of a hypersphere Sn−1(R) = {v ∈ Rn : ‖x‖ =
R}. In the following description of the hash family we further assume
that all vectors lie on Sn−1(1), although these definitions can trivially be
generalized to the general case Sn−1(R).

2 Technically speaking, [4] uses the Johnson-Lindenstrauss lemma to project n- to n0-
dimensional vectors with n0 = o(n), so that single-exponential costs in n0 (2Θ(n0))
are sub-exponential in n (2o(n)). However, this projection only preserves inter-point
distances up to small errors if the length of the list is sufficiently small (N = 2o(n)),
which is not the case in sieving. Moreover, we estimated the potential improvement
using Euclidean LSH to be smaller than the improvement we obtain here.

3 In Section 3 we will justify why this assumption makes sense in sieving.
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First, we sample U = 2Θ(
√
n) vectors s1, s2, . . . , sU ∈ Rn from an n-

dimensional Gaussian distribution with average norm E‖si‖ = 1.4 This
equivalently corresponds to drawing each vector entry from a univariate
Gaussian distribution N (0, 1n). To each si we associate a hash region Hi:

Hi = {v ∈ Sn−1(1) : 〈v, si〉 ≥ n−1/4} \
⋃i−1
j=1Hj . (i = 1, . . . , U) (2)

Since we assume that v ∈ Sn−1(1) and w.h.p. we have ‖si‖ ≈ 1, the
condition 〈v, si〉 ≥ n−1/4 is equivalent to ‖v − si‖ ≤

√
2−Θ(n−1/4), i.e.,

v lies in the almost-hemisphere of radius
√

2−Θ(n−1/4) defined by si.
Note that the parts of Sn−1(1) that are covered by multiple hash

regions are assigned to the first region Hi that covers the point. As a re-
sult, the size of hash regions generally decreases with i. Also note that the
choice of U = 2Θ(

√
n) guarantees that with high probability, at the end the

entire sphere is covered by these hash regions H1, H2, . . . ,HU ; informally,
each hash region covers a 2−Θ(

√
n) fraction of the sphere, so we need 2Θ(

√
n)

regions to cover the entire hypersphere. Finally, taking U = 2Θ(
√
n) also

guarantees that computing hashes can trivially be done in 2Θ(
√
n) = 2o(n)

time by going through each of the hash regions H1, H2, . . . ,HU and check-
ing whether it contains a given point v.

In our analysis we will use the following result, which is implicitly
stated in [5, Lemma 3.3] and [6, Appendix B.1]. Note that in the appli-
cation of sieving later on, vectors v and w are not assumed to lie on the
surface of a sphere, but inside a thin spherical shell with some inner radius
γR and outer radius R, with γ = 1 − o(1). We can however still apply
spherical hashing, due to the observation that ‖ vR −

w
R ‖ − ‖

v
‖v‖ −

w
‖w‖‖ =

O(1−γ) = o(1). In other words, by applying the hash method to normal-
ized vectors x̃ = x

‖x‖ which all do lie on a hypersphere, the inter-point

distances are preserved up to a negligible additive term o(1), which trans-
lates to an o(1) term in the application of LSH.

Lemma 2. Let v,w ∈ Rn with ‖v‖, ‖w‖ ∈ [γR,R] and γ = 1−o(1), and
let θ denote the angle between v and w. Then spherical LSH satisfies:

Ph∈H[h(v) = h(w)] = exp

[
−
√
n

2
tan2

(
θ

2

)
(1 + o(1))

]
. (3)

Note that for θ1 = π
3 and θ2 = π

2 this leads to ρ = ln(p1)
ln(p2)

= tan2(π/6)
tan2(π/4)

(1+

o(1)) = 1
3+o(1). This is significantly smaller than the related value of ρ for

angular hashing with θ1 = π
3 and θ2 = π

2 , which is ρ′ = log2(
3
2) ≈ 0.585.

4 Note that Andoni et al. sample vectors with average norm
√
n instead, which means

that everything in our description is scaled by a factor
√
n.
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Algorithm 1 The Nguyen-Vidick sieve algorithm (sieving step)

1: Compute the maximum norm R = maxv∈Lm ‖v‖
2: Initialize empty lists Lm+1 and Cm+1

3: for each v ∈ Lm do
4: if ‖v‖ ≤ γR then
5: Add v to the list Lm+1

6: else
7: for each w ∈ Cm+1 do
8: if ‖v −w‖ ≤ γR then
9: Add v −w to the list Lm+1 and continue the outer loop

10: Add v to the centers Cm+1

3 From the Nguyen-Vidick sieve to the SphereSieve

We will now describe how spherical LSH can be applied to sieving. More
precisely, we will show how spherical LSH can be applied to the heuristic
sieve algorithm of Nguyen and Vidick [35]. Applying the same technique
to the practically superior GaussSieve [32] seems difficult, and whether
this is at all possible is left as an open problem.

3.1 The Nguyen-Vidick sieve

Initially the Nguyen-Vidick sieve starts with a long list L0 of long lattice
vectors (generated from a discrete Gaussian distribution on the lattice),
and it iteratively builds shorter lists of shorter lattice vectors Lm+1 by
applying a sieve to Lm. After poly(n) applications of the sieve, one hopes
to be left with a list LM containing a shortest non-zero lattice vector. At
the heart of the heuristic sieve algorithm of Nguyen and Vidick lies the
sieving step, mapping a list Lm to the next list Lm+1, and this sieving
step is described in Algorithm 1.

The sieving step in Algorithm 1 can be described as follows. We start
with an exponentially long list of vectors Lm, and we assume the longest of
these vectors has length R; computing R can trivially be done in Õ(|Lm|)
time. Then, for a given parameter γ < 1 close to 1, we immediately add
all vectors of norm less than γR to the next list Lm+1; these vectors are
not modified in this iteration of the sieve. In the next iteration we want
all vectors in Lm+1 to have norm less than γR, and the remaining vectors
in the spherical shell S = {v ∈ Lm : γR < ‖v‖ ≤ R} do not satisfy
this condition, so the main task of the sieving step is to combine lattice
vectors in Lm ∩ S to make shorter vectors, which can then be added to
Lm+1. To do this, we first initialize an empty list of centers Cm+1, and
for each vector v ∈ S we do one of the following:
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– If v is far away from all center vectors w ∈ Cm+1, we add v to Cm+1;

– If v is close to a center vector w ∈ Cm+1, we add v −w to Lm+1.

We go through all vectors in Lm one by one, each time deciding whether
to add something to Lm+1 or to Cm+1. Note that for each list vector,
this decision can be made in O(|Cm+1|) = O(|Lm|) time by simply going
through all vectors w ∈ Cm+1 and checking whether it is close to v.
Finally, we obtain a set Cm+1 ⊂ Lm which intuitively covers S with balls
of radius γR, and we obtain a set Lm+1 of short vectors. Since the size
of Cm+1 is bounded from above by 2Θ(n), we know that if |Lm| is large
enough, many vectors will be included in |Lm+1| as well.

To analyze their heuristic sieve algorithm, Nguyen and Vidick used (a
slightly stronger version of) the following heuristic assumption.

Heuristic 1 The angle Θ(v,w) between two vectors v and w in Line 8
in Algorithm 1 follows the same distribution as the distribution of angles
Θ(v,w) obtained by drawing v and w at random from the unit sphere.

Using this heuristic assumption, Nguyen and Vidick showed that an
initial list of size |L0| = (4/3)n/2+o(n) ≈ 20.2075n+o(n) suffices to find a
shortest vector if γ ≈ 1 [35]. Since the time complexity is dominated by
comparing almost every pair of vectors in Li in each sieving step, this leads
to a time complexity quadratic in |Li|. Overall, this means that under the
above heuristic assumption, the Nguyen-Vidick sieve solves SVP in time
20.415n+o(n) and space 20.2076n+o(n).

3.2 The SphereSieve

Algorithm 2 describes how we can apply spherical LSH to the sieve step
of Nguyen and Vidick’s heuristic sieve algorithm, in a similar fashion as
how angular LSH was applied to sieving in [24].

To apply spherical LSH to sieving efficiently, there are some subtle
issues that we need to consider. For instance, while the angular hashing
technique of Charikar considered in [24] is scale invariant, the parameters
of spherical LSH slightly change if all vectors in L and the target vector are
multiplied by a scalar. This means that for each application of the sieving
step, the parameters might change and we must build fresh hash tables.
Although this might increase the practical time and space complexities,
this does not affect the algorithm’s asymptotics.

More importantly, to justify that we can apply spherical LSH (i.e., to
justify the application of Lemma 2), we need to guarantee that ‖v‖ ≈
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Algorithm 2 The SphereSieve algorithm (sieving step)

1: Compute the maximum norm R = maxv∈Lm ‖v‖
2: Initialize an empty list Lm+1

3: Initialize t empty hash tables Ti
4: Sample k · t random spherical hash functions hi,j ∈ H
5: for each v ∈ Lm do
6: if ‖v‖ ≤ γR then
7: Add v to the list Lm+1

8: else

9: Obtain the set of candidates C =
t⋃
i=1

Ti[hi(±v)]

10: for each w ∈ C do
11: if ‖v −w‖ ≤ γR then
12: Add v −w to the list Lm+1

13: Continue the outermost loop

14: Add v to all t hash tables Ti

‖w‖ for targets v and (candidate) near neighbors w, i.e., that all these
vectors approximately lie on the surface of a sphere. To see why this is
true, consider a target vector v and a list vector w. By definition of R,
we know that v and w both have norm at most R. Moreover, the case
‖v‖ ≤ γR is handled separately (in polynomial time) in Lines 6–7, and
the fact that w ∈ Cm+1 implies that ‖w‖ > γR as well. So when we
get to the search in Lines 10–13, we know that the norms of both vectors
satisfy ‖v‖, ‖w‖ ∈ [γR,R]. To get the optimal asymptotic time and space
complexities, Nguyen and Vidick further let γ → 1, which we needed to
apply Lemma 2.

4 Theoretical results

To obtain a first basic estimate of the potential improvements to the time
and space complexities using spherical LSH, we first note that in high
dimensions “almost everything is orthogonal.” In other words, angles close
to 90◦ are much more likely to occur between two random vectors than
much smaller angles. So one might guess that for a target vector v and a
random list vector w, with high probability their angle is close to 90◦. On
the other hand, two non-reduced vectors v,w of similar norm for which
the if-clause in Line 8 is true (i.e., for which ‖v−w‖ ≤ γR = R(1− o(1))
and ‖v‖, ‖w‖ ≈ R), always have a common angle of at most 60◦ + o(1).
We therefore expect this angle to be close to 60◦ with high probability.
Under the extreme (and imprecise) assumption that all angles between
pairwise reduced vectors are exactly 90◦, and non-reduced angles are at
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most 60◦, we obtain the following estimate for the optimized time and
space complexities using spherical LSH.

Estimate 1 Assuming that all reduced pairs of vectors are exactly orthog-
onal, under Heuristic 1 the SphereSieve solves SVP in time and space at
most (4/3)2n/3+o(n) = 20.2767n+o(n), using the following parameters:

k = Θ(
√
n), t = (4/3)n/6+o(n) = 20.0692n+o(n). (4)

Proof. Assuming all reduced pairs of vectors are orthogonal, we obtain
ρ = 1

3 as described in Section 2.4. Since the time complexity is dominated
by performing O(N) nearest-neighbor searches on a list of size O(N),
with N = (4/3)n/2+o(n) ≈ 20.2075n+o(n), the result follows from Lemma 1.

Of course in practice not all reduced angles are actually 90◦, and
one should carefully analyze what is the real probability that a vector w
whose angle with v is more than 60◦, is found as a candidate due to a
collision in one of the hash tables. In that sense, Estimate 1 should only be
considered a rough estimate, and it gives a lower bound on the best time
complexity that we may hope to achieve with this method. Note however
that the estimated time complexity is significantly better than the similar
estimate obtained for the angular LSH-based HashSieve of Laarhoven [24],
for which the estimated time complexity was 20.3289n+o(n). Therefore, one
might guess that also the actual asymptotic time complexity, derived after
a more precise analysis, is better than that of the HashSieve.

The following proposition shows that this is indeed the case, and it
describes exactly what the asymptotic time and space complexities are
when the parameters are fully optimized to minimize the asymptotic time
complexity. A proof of Proposition 1 and an explanation of the constant
0.2972 can be found in Appendix A.

Proposition 1. The SphereSieve heuristically solves SVP in time and
space 20.2972n+o(n) using the following parameters:

k = Θ(
√
n), t = 20.0896n+o(n). (5)

By varying k and t, we further obtain the trade-off between the time and
space complexities indicated by the solid blue curve in Figure 1.

Note that the estimated parameters from Estimate 1 are not far off
from the main result of Proposition 1. In other words, assuming that
reduced vectors are always orthogonal is not entirely realistic, but it pro-
vides a reasonable first estimate of the parameters that we have to use.



12 Thijs Laarhoven and Benne de Weger

Finally, note that the space complexity increases by a factor t and
thus increases exponentially compared to the Nguyen-Vidick sieve. To
get rid of this exponential increase in the memory, instead of storing all
hash tables in memory at the same time we may choose to go through the
hash tables one by one, as in [24]; we first build one hash table by adding
all vectors to their corresponding hash buckets, and then we look for pairs
of nearby vectors in each bucket (whose difference has norm less than γR),
and add all the found vectors to our new list Lm+1. As the number of
vectors in each hash bucket is 2o(n), comparing all pairs of vectors in a
hash bucket can be done in 2o(n) time and the cost of processing one hash
table is 20.208n+o(n). We then repeat this t = 20.0896n+o(n) times (each
time removing the previous hash table from memory) to finally achieve
the following result.

Theorem 1. The SphereSieve heuristically solves the exact shortest vec-
tor problem in time 20.2972n+o(n) and space 20.2075n+o(n).

5 A practical SphereSieve variant and two-level sieving

Let us briefly consider how this algorithm can be made slightly more prac-
tical. In particular, note that each spherical hash function requires the use
of U = 2Θ(n) vectors s1, . . . , sU , which are (roughly) sampled from the
surface of the unit hypersphere. In total, this means that the algorithm
uses t ·k ·U random unit vectors to define hash regions on the sphere, and
all these vectors need to be stored in memory. Generating so many ran-
dom vectors from the surface of the unit hypersphere seems unnecessary,
especially considering that we already have a list Lm containing vectors
which (almost) lie on the surface of a hypersphere as well.

The above suggests to make the following modification to the al-
gorithm: for building a single hash function hi,j , instead of sampling
s1, . . . , sU randomly from the surface of the sphere, we randomly sample
these vectors from (a scaled version of) Lm. In other words, we use the
vectors in Lm to shape the hash regions, rather than sampling and storing
new vectors in memory solely for this purpose. According to Heuristic 1
these vectors are also distributed randomly on the surface of the sphere,
and so using the same heuristic assumption we can justify that this modi-
fication does not drastically alter the behavior of the algorithm. Note that
since we need t ·k hash functions, we need t ·k selections of U vectors from
Lm. Fortunately t · k ·U � |Lm| (cf. Proposition 1), so by independently
sampling U random vectors from Lm for each of the t · k hash functions,
the hash functions hi,j can practically be considered independent.
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Relation with two-level sieving. Now, note that for a single hash function,
we first use a small set of hash region-defining vectors U (where the radius
of each hash region is approximately (

√
2 − o(1))R), and then we use

the NV-sieve in each of these regions separately to make lists of centers
Cm+1 (where a vector is considered nearby if it is within a radius of
approximately (1− o(1))R). This very closely resembles the ideas behind
Wang et al.’s two-level sieve algorithm [46], where a list C1(∼= U) of outer
centers is built (defining balls of radius γ1 · R), and each of the centers
w of this outer list contains an inner list Cw

2 (∼= Cm+1) of center vectors
(defining a ball of radius γ2 · R). In fact, for t = k = 1, the SphereSieve
is almost identical to the two-level sieve with γ1 ≈

√
2 and γ2 ≈ 1!

How order matters. One difference between the two methods is that the
size of U in the SphereSieve is sub-exponential (2Θ(

√
n)), compared to

single exponential (2Θ(n)) in the two-level sieve, which means that in our
case, one of these hash tables is relatively ‘cheap’ to build. As a result, the
asymptotic exponential overhead in our case only comes from t. However,
the key difference that allows us to obtain the improved performance
overall seems to be that the analysis of spherical LSH [5, 6] (and the
closely related analysis of the celebrated Euclidean LSH family [4]) makes
crucial use of the fact that the outer list C1 is ordered, and this same
order is used each time a vector is assigned to a hash region. Without
this observation, Lemma 2 does not hold, and as in [46, 47] one would
then have to resort to computing intersections of volumes of complicated
n-dimensional objects to obtain bounds on the number of points needed
to make this method work. One might say that the order imposed on C1

is exactly what makes spherical LSH asymptotically more efficient than
the two-level sieve of Wang et al. [46] with γ1 ≈

√
2 and γ2 ≈ 1.

6 Discussion

Theoretically, Theorem 1 shows that for sufficiently high dimensions n,
spherical LSH leads to even bigger speed-ups than angular LSH [24].
With a heuristic time complexity less than 20.2972n+o(n) < 23n/10+o(n), the
SphereSieve is the fastest heuristic algorithm to date for solving SVP in
high dimensions. As a result, one might conclude that in high dimensions,
to achieve 3k bits of security for a lattice-based cryptographic primitive
relying on the hardness of exact SVP, one should use a lattice of dimension
at least 10k. As most cryptographic schemes are broken even if a short
lattice vector is found (which by using BKZ [44,45] means we can reduce
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the dimension in which we need to solve SVP), and the time complexity of
the SphereSieve is lower than 2n/3+o(n), one should probably use lattices
of dimension higher than 10k to guarantee 3k bits of security. So various
parameter choices relying on the estimates of e.g. Chen and Nguyen [13]
(solving SVP in dimension 200 takes time 2111) would be too optimistic.

Although the leading term 0.2972n in the exponent is the best known
so far and dominates the complexity in high dimensions, this does not tell
the whole story. Especially for the SphereSieve presented in this paper,
the o(n)-terms in the exponent are not negligible at all for moderate n.
Experiments further indicate [16, 24, 27, 28, 32, 35, 41] that the practical
time complexity of various sieving algorithms in moderate dimensions n
may be higher than quadratic in the list size if we set γ close to 1, while
setting γ � 1 makes the use of spherical LSH problematic. Moreover,
while the angular LSH method of Charikar [12] considered in [24] is very
efficient and hashes can be computed in linear time, with spherical LSH
even the cost of computing a single hash value (before amplification) is
already sub-exponential (and super-polynomial) in n. So in practice it is
not clear whether the SphereSieve will outperform the angular LSH-based
sieving algorithm of Laarhoven [24] for any feasible dimension n. Finding
an accurate description of the practical costs of finding short(est) vectors
in dimension n remains a central problem in lattice cryptography.

An important question for future work remains whether spherical
LSH can be made truly efficient. While asymptotic costs are important,
lower order terms matter in practice as well, and being able to compute
hashes in poly(n)-time would make the SphereSieve significantly faster.
As mentioned in Section 3, being able to apply spherical LSH to the faster
GaussSieve [32] may also lead to a faster sieve. The recent work [9] takes
a first step in this direction, showing that the same asymptotics as the
SphereSieve can be achieved with efficient hashing.
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A Proof of Proposition 1

To prove Proposition 1, we will show how to choose a sequence of param-
eters {(kn, tn)}n∈N such that for large n, the following holds:
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1. The probability that a list vector w close5 to a target vector v collides
with v in at least one of the t hash tables is at least constant in n:

p∗1 = P{hi,j}⊂H(v,w collide | θ(v,w) ≤ π
3 ) ≥ 1− ε. (ε 6= ε(n)) (6)

2. The average probability that a list vector w far away5 from a target
vector v collides with v is exponentially small:

p∗2 = P{hi,j}⊂H(v,w collide | θ(v,w) > π
3 ) ≤ N−0.5681+o(1). (7)

3. The number of hash tables grows as t = N0.4319+o(1).

This would imply that for each search, the number of candidate vectors
is of the order N · N−0.5681 = N0.4319. Overall we search the list Õ(N)
times, so after substituting N = (4/3)n/2+o(n) this leads to the following
time and space complexities:

– Time (hashing): O(N · t) = 20.2972n+o(n).

– Time (searching): O(N2 · p∗2) = 20.2972n+o(n).

– Space: O(N · t) = 20.2972n+o(n).

The next two subsections are dedicated to proving Equations (6) and (7).

A.1 Good vectors collide with constant probability

The following lemma shows how to choose k (in terms of t) to guarantee
that (6) holds.

Lemma 3. Let ε > 0 and let k = 6n−1/2(ln t− ln ln(1/ε)) ≈ (6 ln t)/
√
n.

Then the probability that reducing vectors collide in at least one of the
hash tables is at least 1− ε.

Proof. The probability that a reducing vector w is a candidate vector,
given the angle Θ = Θ(v,w) ∈ (0, π3 ), is p∗1 = EΘ∈(0,π

3
) [p∗(Θ)], where

we recall that p∗(θ) = 1− (1 − p(θ)k)t and p(θ) = Ph∈H[h(v) = h(w)] is
given in Lemma 2. Since p∗(Θ) is strictly decreasing in Θ, we can obtain
a lower bound by substituting Θ = π

3 above. Using the bound 1−x ≤ e−x
which holds for all x, and inserting the given expression for k, we obtain

p∗1 ≥ p∗
(
π
3

)
= 1− (1− exp(ln ln(1ε )− ln t))t = 1−

(
1− ln(1/ε)

t

)t
≥ 1− ε.

5 Here “close” means that ‖v−w‖ ≤ γR, which corresponds to θ(v,w) ≤ 60◦+ o(1).
Similarly “far away” corresponds to a large angle θ(v,w) > 60◦ + o(1).
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A.2 Bad vectors collide with low probability

We first recall a lemma about the density of angles between random
vectors. In short, the density at an angle θ is proportional to (sin θ)n.

Lemma 4. [24, Lemma 4] Assuming Heuristic 1 holds, the pdf f(θ) of
the angle between target vectors and list vectors satisfies

f(θ) =

√
2n

π
(sin θ)n−2 [1 + o(1)] = 2n log2 sin θ+o(n). (8)

The following lemma relates the collision probability p∗2 of (7) to the
parameters k and t. Since Lemma 3 relates k to t, this means that only t
ultimately remains to be chosen.

Lemma 5. Suppose N = 2cn·n with cn ≥ γ1 = 1
2 log2(

4
3) ≈ 0.2075, and

suppose t = 2ct·n. Let k = 6 ln t√
n

(1−o(1)). Then, for large n, under Heuris-

tic 1 we have

p∗2 = P{hi,j}⊂H(v,w collide | θ(v,w) > π
3 ) ≤ O(N−α), (9)

where α ∈ (0, 1) is defined as

α =
−1

cn

[
max

θ∈(π
3
,π
2
)

{
log2 sin θ −

(
3 tan2

(
θ

2

)
− 1

)
ct

}]
+ o(1). (10)

Proof. First, if we know the angle θ ∈ (π3 ,
π
2 ) between two bad vectors,

then according to Lemma 2 the probability of a collision in at least one
of the hash tables is equal to

p∗(θ) = 1−
(

1− exp

[
−k
√
n

2
tan2

(
θ

2

)
(1 + o(1))

])t
. (11)

Letting f(θ) denote the density of angles θ on (π3 ,
π
2 ), we have

p∗2 = EΘ∈(π
3
,π
2
) [p∗(Θ)] =

∫ π/2

π/3
f(θ)p∗(θ)dθ. (12)

Substituting p∗(θ) and the expression of Lemma 4 for f(θ), noting that∫ π/2
π/3 f(θ)dθ ≈

∫ π/2
0 f(θ)dθ = 1, we get

p∗2 =

∫ π/2

π/3
(sin θ)n

[
1−

(
1− exp

[
−3 ln t tan2

(
θ
2

)
(1 + o(1))

])t]
dθ. (13)
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For convenience, let us write w(θ) = [−3 ln t tan2
(
θ
2

)
(1+o(1)). Note that

for θ � π
3 we have w(θ)� − ln t so that (1− expw(θ))t ≈ 1− t expw(θ),

in which case we can simplify the expression between square brackets.
However, the integration range includes π

3 as well, so to be careful we will

split the integration interval at π
3 + δ, where δ = Θ(n−1/2). (Note that

any value δ with 1
n � δ � 1 suffices.)

p∗2 =

∫ π/3+δ

π/3
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I1

+

∫ π/2

π/3+δ
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I2

. (14)

Bounding I1. Using f(θ) ≤ f(π3 + δ), p∗(θ) ≤ 1, and sin(π3 + δ) =
1
2

√
3 [1 +O(δ)] (which follows from a Taylor expansion of sinx around

x = π
3 ), we obtain

I1 ≤ poly(n) sinn(π3 + δ) = poly(n)(
√
3
2 )n (1 +O(δ))n = 2−γ1n+o(n). (15)

Bounding I2. For I2, our choice of δ is sufficient to make the aforemen-
tioned approximation work6. Thus, for I2 we obtain the simplified expres-
sion

I2 ≤ poly(n)

∫ π/2

π/3+δ
(sin θ)nt exp

[
−3 ln t tan2

(
θ

2

)
(1 + o(1))

]
dθ (16)

≤
∫ π/2

π/3
2n log2 sin θ−(3 tan2( θ2)−1) log2 t+o(n)dθ. (17)

Note that the integrand is exponential in n and that the exponent E(θ) =
n log2 sin θ+ (−3 tan2 θ

2 − 1) log2 t is a continuous, differentiable function
of θ. So the asymptotic behavior of the entire integral I2 is the same as
the asymptotic behavior of the integrand’s maximum value:

log2 I2 ≤ max
θ∈(π

3
,π
2
)

{
n log2 sin θ −

(
3 tan2 θ

2 − 1
)

log2 t
}

+ o(n). (18)

Bounding p∗2 = I1 + I2. Combining (15), (18), and ct = 1
n log2 t, we have

log2 p
∗
2

n ≤ max{−γ1, max
θ∈(π

3
,π
2
)
{log2 sin θ − (3 tan2 θ

2 − 1)ct}}+ o(1). (19)

The assumption cn ≥ γ1 and the definition of α ≤ 1 now give log2 p
∗
2 ≤

−αcnn+ o(n) which completes the proof.

6 By choosing the order terms in k appropriately, the o(1)-term inside w(θ) may be
cancelled out, in which case the δ-term dominates. Note that the o(1)-term in w(θ)
can be further controlled by the choice of γ = 1− o(1).
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A.3 Balancing the parameters

Recall that the overall time and space complexities are given by O(N ·t) =
2(cn+ct)n+o(n) (time for hashing), O(N2·p∗2) = 2(cn+(1−α)cn)n+o(n) (time for
comparing vectors), and O(N · t) = 2(cn+ct)n+o(n) (memory requirement).
For the overall time and space complexities 2ctimen and 2cspacen we find

ctime = cn + max{ct, (1− α)cn}+ o(1), cspace = cn + ct + o(1). (20)

Further recall that from Nguyen and Vidick’s analysis, we have N =
(4/3)n/2+o(n) or cn = γ1. To balance the time complexities of hashing
and searching, so that the overall time complexity is minimized, we solve
(1− α)γ1 = ct numerically7 for ct to obtain the following corollary. Here
θ∗ denotes the dominant angle θ maximizing the expression in (10). Note
that the final result takes into account the density at θ = θ∗ as well, and
so the result does not simply follow from Lemma 2.

Corollary 1. Taking ct ≈ 0.089624 leads to:

θ∗ ≈ 0.42540π, α ≈ 0.56812, ctime ≈ 0.29714, cspace ≈ 0.29714. (21)

Thus, setting t ≈ 20.08962n and k = Θ(
√
n), the heuristic time and space

complexities of the SphereSieve algorithm are balanced at 20.29714n+o(n).

A.4 Trade-off between the space and time complexities

Finally, note that ct = 0 leads to the original Nguyen-Vidick sieve algo-
rithm, while ct ≈ 0.089624 minimizes the heuristic time complexity at
the cost of more space. One can obtain a continuous trade-off between
these two extremes by considering values ct ∈ (0, 0.089624). Numerically
evaluating the resulting complexities for this range of values of ct leads
to the curve shown in Figure 1.

7 Note that α is implicitly a function of ct as well.
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