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Abstract—Coalescent genealogy samplers are effective tools
for the study of population genetics. They are used to estimate
the historical parameters of a population based upon the sam-
pling of present-day genetic information. A popular approach
employs Markov chain Monte Carlo (MCMC) methods. While
effective, these methods are very computationally intensive,
often taking weeks to run. Although attempts have been made
to leverage parallelism in an effort to reduce runtimes, they
have not resulted in scalable solutions. Due to the inherently
sequential nature of MCMC methods, their performance has
suffered diminishing returns when applied to large-scale com-
puting clusters. In the interests of reduced runtimes and higher
quality solutions, a more sophisticated form of parallelism is
required. This paper describes a novel way to apply a recently
discovered generalization of MCMC for this purpose. The
new approach exploits the multiple-proposal mechanism of the
generalized method to enable the desired scalable parallelism
while maintaining the accuracy of the original technique.

I. INTRODUCTION

Coalescent genealogy samplers utilize stochastic statistical

methods in an attempt to discover the ancestral properties of

a population. They have been used to study the population

genetics of HIV-1, rabbits, and bison ([1], [2], [3]). By

providing significant insights into sampled populations [4],

coalescent genealogy samplers can estimate various param-

eters of past populations such as size, growth rate, time of

divergence and more ([5], [6], [7], [8]). Due to the high

computational demand of coalescent genealogy samplers,

parallel methods have been investigated. However, many

current approaches for applying parallelism to coalescent

genealogy samplers suffer from a lack of scalability due

to the inherently sequential nature of the Markov chain

Monte Carlo (MCMC) methods that these samplers are

built upon. Therefore, achieving highly-scalable parallelism

requires more sophisticated MCMC methods.

This paper demonstrates that scalable parallelism of

coalescent genealogy samplers is possible through a modified

version of the Generalized Metropolis-Hastings algorithm.

The new algorithm allows the previously sequential initializa-

tion stage to be parallelized, removing a significant barrier

to efficiently achieving a high degree of parallelism and

reducing the run-time of these important tools. We propose

an application, mpcgs (multi-proposal coalescent genealogy

sampler), to implement this parallel algorithm. This paper

introduces the algorithm, demonstrates its correctness in

reproducing the results of the original algorithm, and charac-

terizes the performance improvement that results from the

parallel implementation.

II. RELATED WORK

Analysis from coalescent genealogy samplers can be

computationally intensive and time-consuming, due to the

nature of the likelihood calculation for individual genealogies.

Since a post-order traversal of the genealogical tree for each

base pair position in the sequence data is required, every

term must be calculated in the process of sampling each

genealogical tree. Hence, the execution time of the algorithm

scales linearly with sequence length, sequence count, and

the number of genealogies. Numerous population-genetic

software programs exist, such as BEAST [9], GeneTree [10],

IM/IMa [11], MIGRATE-N [12], and LAMARC [13]. A

comparison of the capabilities of each program can be found

in [4]. Although these packages are useful, large-scale multi-

parameter analysis with a large amount of sequence data can

potentially take on the order of weeks to complete.

There has been recent progress made with respect to

parallelizing multiple techniques in phylogenetics [14], [15],

[16]. The application developed in this work, mpcgs, paral-

lelizes a common approach to genealogy sampling: likelihood

estimation. This approach utilizes MCMC, but the serial

dependency of each state upon the previous state makes

the parallelization of Markov chain algorithms non-trivial. A

common work-around to these inherent MCMC dependencies

is to execute multiple Markov chains in parallel [17], then

aggregate the results of each chain [18]. Other attempts at

parallelizing MCMC methods can be found in [19], [20],

[21], [22].

Importantly, to ensure samples are taken from the equilib-

rium distribution of a Markov chain, an initial ”burn-in” phase
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of the chain is created and discarded. In existing parallel

approaches, this burn-in phase is necessarily performed

independently for each chain. This required serial burn-

in phase leads to reduced efficiency at higher degrees

of parallelism. In order to create efficient, highly-parallel

coalescent genealogy samplers, a more sophisticated method

of parallelization is required. This novel method is described

in the next section, followed by implementation details and

results from our application: mpcgs.

III. METHOD

The new method is a variant of the Generalized Metropolis-

Hastings algorithm proposed by Calderhead [23], as applied

to the coalescent genealogy sampler described in Kuhner,

et al [24]. The massively-parallel computing platform used

is the general-purpose graphics processing unit (GPGPU),

utilizing the CUDA programming framework.

A. Generalized Metropolis-Hastings

Generalized Metropolis-Hastings, or Calderhead’s method,

differs from standard Metropolis-Hastings in that, at each

iteration of the algorithm, it makes multiple proposals

instead of a single proposal. That is, an implementation

of Calderhead’s method requires some proposal mechanism,

or proposal kernel. The proposal kernel produces an ordered

set of N new candidate states. As in the case of standard

Metropolis-Hastings, there is a current state which determines

the probability distribution out of which the set of proposals

is drawn, but unlike standard Metropolis-Hastings, the space

on which this probability distribution is defined is the set of

N -tuple vectors of the states of the state space.

Calderhead presents an overview of his method in [23]; a

modified version of his overview is given in Algorithm 1. The

notation of x̃i represents the ith member of the proposal set,

while xi represents the ith sample taken by the method as a

whole. Note that “the stationary distribution of I conditioned

on the set of proposals and the state used to generate those

proposals” is just the stationary distribution of the Markov

chain defined by the transition matrix A. The stationary

distribution of this Markov chain P (x̃i), for some member

x̃i of the set of proposals, is proportional to πx̃j
K(x̃j , x̃\j ),

which is the product of the density of the state in the target

distribution with the probability of that state generating the

rest of the current proposal set via the proposal kernel K.

Although the presence of a secondary transition matrix

that guides the transition probability during the sampling

stage may seem like a departure from the requirement that

the transition probabilities of a Markov chain are based

solely on the current state (and not on any other variables),

this is not the case. Calderhead’s method makes use of an

auxiliary variable [25], I , which serves as the index of the

set of proposals generated by the proposal kernel. Formally,

the states being traversed by the method are defined by an

ordered set of N + 1 “states” of the original problem plus

Algorithm 1 Overview of Calderhead’s Method

1: procedure GENERALIZED METROPOLIS-HASTINGS

2: Initialize starting atomic state x̃1, i = 1, and counter

n = 0.

3: for each iteration do
4: Update the set of proposals x̃\i by drawing N

new points from a proposal kernel, call this K(x̃i , ·)
5: Calculate the stationary distribution of I condi-

tioned on the set of proposals and the state used to

generate those proposals.

6: for m = 1 to N do
7: Sample i from the stationary distribution of

I , setting the sample xn +m = x̃i.

8: n = n+N

some value of I . The method as a whole then is a mixture
[25] of two different types of transitions. The first transition

is the proposal stage, which changes the set of proposals.

The second is the sampling stage, which changes the value of

I . Additionally, at each sampling step, the sampling output is

taken to be the member of the proposal set indexed by I . It is

important to realize that this method is not truly transitioning

from proposal to proposal, but is rather transitioning between

more complex states and translating these more complex

states into single proposals at each sampling step.

This method provides several opportunities for improved

parallelism over a standard implementation of Metropolis-

Hastings. First, the method of proposal generation can be par-

allelized. At the step in which the N proposals are generated,

the only state information required is that of the current state,

x̃\I . Therefore, the proposal kernel is dependent only upon

the current state, x̃\I . While that is a liability to parallelism in

standard Metropolis-Hastings, in Calderhead’s method each

proposal can be generated independently from all others. This

allows each parallel process to separately generate a proposal.

In other words, there is no interdependency between the

processes generating the individual proposals. Additionally,

most of the computation involved in the construction of the

transition matrix can be parallelized. Since the matrix is

(N + 1)× (N + 1) in size, each processor can populate one

row of the matrix. For coalescent genealogy samplers, these

two phases — proposal and sampling — account for the vast

bulk of the computation. The effect is to convert a necessarily

serial method to one that is very readily parallelizable. Note

also that there is no distinction between the parallelism

applied to the burn-in phase and that of the sampling phase.

In contrast to other methods [18], there is not a necessarily-

sequential burn-in component.

Developing a proposal kernel that can generate multiple

proposals which can be sampled is essential. Recall that

the stationary distribution of the Markov chain defined by

transition matrix A is proportional to πx̃j
K(x̃j , x̃\j ) for
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Figure 1: A tree with the neighborhood of resimulation

labeled

any x̃j in the proposal set. This means that for it to be

possible for a particular proposal x̃j to be sampled, it must

be possible for the multiple proposal kernel to propose the

rest of the proposal, to account for the situation that x̃j is

the current state at the start of the proposal phase. In other

words, for x̃j to possibly be sampled, it must be the case

that K(x̃j , x̃\j ) > 0.

B. The LAMARC Package

The method described here involves a modification to

the software package LAMARC (Likelihood Analysis with

Metropolis Algorithm using Random Coalescence) [13],

which is motivated from [24] on coalescent genealogy

samplers. It uses the Wright-Fischer model in estimating

the parameter θ, the product of the mutation rate μ and the

population size N . This approximation is found by iteratively

performing an Expectation-Maximization (EM) algorithm for

the likelihood of θ through Markov sampling of genealogies.

The implementation of the expectation-generation step of

the EM algorithm is modified in this work. The standard

proposal mechanism of LAMARC is to target one of the

non-root interior nodes (the target node) at random from the

current genealogical tree and resimulate the neighborhood

around that node in such a way that proposals are selected

from the distribution P (G|θ). See Figure 1 for an example

of a genealogical tree with the target, parent, and child nodes

labeled. Recall that each interior node represents a coalescent

event. Resimulating the neighborhood consists of replacing

the two deleted nodes, and possibly reordering the children

of those nodes, in accordance with population genetics and

coalescent theory [26].

Resimulating proportionally to P (G|θ) is achieved by

treating the genealogical tree as a series of time intervals

in order to determine time intervals in which the coalescent

events can legally be placed probabilistically, and then

placing them probabilistically inside those intervals. Figure 2

shows the tree from Figure 1 that is being resimulated. The

Figure 2: A tree with the neighborhood of resimulation

deleted, intervals marked

lineages that have been removed and must be resimulated

are called active lineages. At the beginning of the region

being resimulated, there is a single active lineage. This

lineage descends from the ancestor node, which is the

parent of the parent of the targeted node. The first task in

resimulation is to establish where coalescent events occurred.

At each coalescent event, one active lineage splits into two.

The earliest a coalescent event could occur is immediately

following the ancestor. The times of coalescent events are

bound by the location of the children in the region being

resimulated. At each child, an active lineage terminates, so

coalescent events must occur before the children that descend

from them. Any interval that could contain a coalescent

event is a feasible interval. In Figure 2, there are six feasible

intervals. The significance of these as defined intervals is

that the same number of lineages are present for the duration

of the interval, which is relevant to the resimulation of the

neighborhood.

The method of finding the interval in which the active

lineages coalesce (i.e. the interval contains a coalescent

event) is to calculate the probability of zero, one, or two

active lineages coalescing for each interval, and then work

backwards from the knowledge that there is exactly one

active lineage at the end of the last feasible interval for

coalescent placement. Suppose that higher-numbered intervals

are chronologically later than lower-numbered intervals, such

that interval i+1 is the interval immediately following interval

i. Further, suppose that Pi(n) is the probability that there

are n active lineages at the start of interval i and that Si,j(t)
is the probability of starting an interval of length t with i
active lineages, but finishing with j active lineages. As an

example, S2,3(1.0) is the probability of a single coalescent

event happening in an interval of time length 1.0 which ends

with three active lineages.

The probability function Si,j(t) can be derived from
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Figure 3: A possible resimulation of Figure 1

Kingman’s coalescent theory [26] based upon a constant

chance of coalescence of two active lineages, integrated

over the length of the interval. This constant chance of

coalescence is a function of the number of active lineages,

the number of inactive lineages (lineages that are not being

resimulated) and the parameter θ. Given the way intervals

have been defined, there are a fixed number of inactive

lineages throughout the interval. These probabilities can be

used to continue backwards through the feasible intervals,

populating the values of Pi(n), until the ancestor node is

reached.

Once the probabilities of Pi(n) have been populated for

all feasible intervals, the genealogical tree can then be

resimulated starting from the earliest feasible interval, with

the knowledge that there is exactly one active lineage at the

beginning of that interval. This is accomplished by a walk

forward in time, probabilistically deciding if the next interval

has zero, one, or two coalescent events weighted by the values

of Pi(n). Once the interval in which all coalescent events

will occur has been selected, the probabilistic distribution of

placement within an interval is selected by treating Si,j(t)
as a cumulative distribution function of the density of the

coalescent. Additionally, the proposal may rearrange the

children of the original target and its parent in order to

change the structure of the overall tree [24].

The end result is a proposal which is a candidate successor

genealogy. It is a modification at one interval of the current

genealogical tree. See Figure 3 for an example of how Figure

1 could have been resimulated. Notice that the children have

been reshuffled, changing the structure of the tree, not just

the timing of the coalescent events. In this way, proposals are

generated out of a distribution that is proportional to P (G|θ),
where G is the proposed genealogy. Following the Metropolis-

Hastings algorithm [27], the acceptance ratio necessary to

sample from the posterior distribution P (G|D, θ) is
P (D|G)
P (D|G0)

.

The proposal is accepted with probability min(1, r).

Figure 4: A tree with node labels

C. Modifying Calderhead’s Algorithm for LAMARC

There is a challenge in attempting to apply Calderhead’s

algorithm using LAMARC’s proposal mechanism. If two

genealogies vary by more than one neighborhood, they cannot

mutually propose each other. This means that Calderhead’s

method cannot be applied directly by simply sampling N
times using the standard LAMARC mechanism, as this has a

high probability of producing proposals that cannot mutually

propose some other member of the proposal set. For example,

consider the tree in Figure 4. If one proposal, x̃i, is generated

by resimulating the neighborhood around target node 6 and

another proposal in the proposal set, x̃j , is generated by

resimulating the neighborhood around any other node, then

the two proposals will vary by more than one neighborhood.

There is no way that the standard proposal mechanism of

LAMARC will be able to propose x̃j as a successor to x̃i,

or vice versa. In fact, any other proposal in the set will

vary by more than one neighborhood from x̃i, x̃j , or both.

This means that if any two proposals vary by more than one

neighborhood, then no member of the proposal set, other

than the original generator of the set, could mutually propose

the rest of the proposal set. Hence, no other member of the

proposal set can be sampled, which is pathological.

The method created for this research avoids the problem

by using a modified proposal mechanism. The new proposal

mechanism maintains an auxiliary variable, ϕ, which is

sampled from a uniform distribution of 1 : N , where N
is the number of interior nodes in the genealogical tree.

The value of ϕ is sampled prior to each proposal set being

generated, and determines which neighborhood is targeted

for resimulation.

Because ϕ is picked from a uniform distribution (unin-

formed by state information from the Markov chain) it is

trivially invariant. The impact of this variable is to reduce

to zero the probability of a generator state generating a set

of proposals where any two proposals vary by more than
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one neighborhood. Any remaining set has its probability of

being proposed reduced by a factor of N , however the prob-

ability distribution of these sets remains proportional to the

distribution in the original LAMARC proposal mechanism.

This means that the target distribution of the method remains

the same, preserving correctness. This modification ensures

that all proposals will be able to mutually propose the entire

set, guaranteeing a non-zero sampling probability during the

application of Calderhead’s method.

Instead of a single acceptance ratio, Calderhead’s method

computes a stationary distribution on the proposal set, and

samples states directly from that distribution. Recall that, in

terms of coalescent genealogy samplers, the distribution is

proportional to πG̃i
K(G̃i, G̃\i) for any G̃i in the proposal

set, where πG̃i
is the posterior probability of the proposal

and K(G̃i, G̃\i) is the probability of G̃i mututally proposing

the rest of the proposal set. These terms are calculated as

follows:

πG̃i
= P (G̃i|D, θ) =

P (D|G̃i)P (G̃i|θ)
P (D|θ)

and

K(G̃i, G̃\i) =

∏N+1
j P (G̃j |θ)
P (G̃i|θ)

∝ 1

P (G̃i|θ)
.

πG̃i
K(G̃i, G̃\i) ∝

(P (D|G̃i)P (G̃i|θ)
P (D|θ)

) 1

P (G̃i|θ)
=

P (D|G̃i)

P (D|θ) ∝ P (D|G̃i)

Given a discrete set of proposals, this distribution is

easily sampled from by sampling a real number, x, uni-

formly from the interval (0,
∑N+1

i=1 P (D|G̃i)), and iterating

through the proposals until reaching the lowest j such that∑j
i=1 P (D|G̃i) ≥ x. The hidden variable I then takes

value j, and the Markov chain samples the genealogy

G̃j . This sampling occurs an arbitrary number of times

before generating a new sample set out of the distribution

K(G̃i, G̃\i).

IV. IMPLEMENTATION

A. Program Flow

The main flow of the program is given in Figure 5. This

section provides implementation details of the program,

expanding on the figure as necessary.

1) Program Entry: The proposed application is called

mpcgs (multi-proposal coalescent genealogy sampler). See

https://github.com/philip-davis/mpcgs for the current version

of the source code.

The command-line arguments that mpcgs requires at

initialization are the name of a file that contains the formatted

sequence data and an initial estimate of θ (θ0.) The sequence

data are expected to be in the PHYLIP genealogical data

Program initialization:

./mpcgs <seqdata.phy> <init theta>

Read sequence data

Seed random number generator

Initialize Markov chain and proposal states

Have there been

N chain iterations?

Output the final, best estimate of theta

Program termination

Do burn-in period in parallel

Do sampling in parallel

Find MLE for theta and

replace theta estimate

No

Yes

Figure 5: The overall flow of the program. The main loop

runs N times, performing N iterations of the Expectation-

Maximization algorithm. N is statically defined.

format [28], in which the first line provides the number of

samples and the length of the samples. Each successive line

leads with a fixed-length name of the sample followed by

the sequence data. The sequence data pulled from the file

specified in the first command-line argument constitutes the

D term. There are no constraints on the initial estimate of

θ that is provided as the second command-line argument,

beyond being positive: the method as a whole is designed to

be insensitive to the initial driving value of θ.

2) Pseudo-Random Number Generator: There are two

pseudo-random number generators (PRNGs) utilized in the

program. The first is MT19937, a common variant of the

Mersenne Twister [29]. The state for this PRNG is maintained

on the host, and it is intended for random number generation

by the CPU. This PRNG is used primarily to sample

the auxiliary value ϕ from a discrete uniform distribution.

However, the PRNG used by the host cannot conveniently be

used by the CUDA kernels to generate random numbers since

the state is held in the memory of the host (as opposed to

the memory on the GPU device). Additionally, the standard

deployments of MT19937 are not yet optimized for use

by a GPGPU. It is therefore necessary to have a second

PRNG, with its state held in the memory of the graphics card.

An implementation exists of Mersenne Twister for CUDA,

MTGP32, based upon [30]. This implementation maintains

state for up to 256 separate threads simultaneously, and is
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thread-aware when run inside a CUDA kernel. This means

that calls from different threads keep their state independently,

with a goal of zero correlation between the numbers generated

for different threads at the same point in execution.

3) Data Initialization: During the initialization stage,

all memory that will be necessary over the course of the

program’s execution is preallocated, values that are invariant

across the execution of the program are populated in device

memory, the initial tree G0 is generated and the term P (D|G)
is calculated.

The data structures that are preallocated include a place-

holder proposal set for performing Calderhead’s method.

This set consists of N + 1 genealogical tree structures,

where N is the number of proposals that will be made

in the proposal stage. The preallocated data structures also

include space for M genealogies that have been reduced

to an array of time-intervals, where M is the number of

genealogies sampled for MLE calculation. Nothing more

than the time intervals are stored for each sample, since the

time intervals between the coalescent events are all that is

necessary to calculate the P (G|θ) term; i.e. the structure

of the genealogy is not needed. Additionally, since memory

allocation inside a CUDA kernel is much less efficient than

allocations performed remotely on the host, it is advantageous

to allocate memory for intermediate calculations as “scratch”

space at this stage, rather than to continually allocate and

deallocate space at run-time.

The CUDA platform provides Read-Only memory specifi-

cally for constants that will not change over the lifetime of

a CUDA kernel. This constant space is highly optimized for

read access. For the coalescent genealogy sampler, the data

that will not change over the lifetime of execution are the

sequence data. It is therefore desirable that this information

be stored in constant memory for improved performance.

Constant memory has optimal performance when every thread

in a warp is reading the same value from constant space at the

same time. In all versions of the CUDA platform, there are

32 threads in each warp. There are only four possible values

that each base pair position in each sequence can take (A,

C, G, or T), so each base-pair position in each sequence can

be stored in two bits. The data likelihood kernel is designed

such that each thread holds the value of a single position in

a single sequence, so an entire warp can be populated out of

64 bits of data. This means that each thread in the warp can

read the same 8-byte value out of constant space in order to

optimize the reading of sequence data in the kernel.

Following Kuhner et al [24], mpcgs initializes the initial

starting genealogy of the Markov chain, G0, to be the UP-

GMA tree [28] generated by the distance between sequences

in D. A UPGMA tree is built by clustering leafs and sub-trees

according to some distance measure. The distance between

individual sequences is taken to be the number of base pair

positions that are different between the two sequences, while

the distance between two subtrees is the arithmetic mean

Figure 6: The multiple proposal and sampling workflow

of the distances between all the leafs across the two trees.

Shorter branch lengths mean closer relations. As a deviation

from the standard application of UPGMA, the branch lengths

are scaled by the assumed driving value of θ. The Markov

chain is then seeded with G0 as the generating genealogy,

which accomplishes step 2 of Algorithm 1.

4) Sampling by Calderhead’s Method: Once the data

initialization stage is complete, the Markov chain can be run

using Calderhead’s method. Running the chain involves two

distinct periods: the burn-in period and the sample generation

period. Both of these periods are realized by repeated iteration

of Algorithm 1, with the addition that ϕ is sampled prior

to each proposal set generation and passed to the CUDA

kernel (called the proposal kernel) that produces proposal

genealogies. The result of executing the proposal kernel is

the generation of a proposal set, each member of which has

a non-zero probability of proposing the rest of the set, given

the value of ϕ. The proposal kernel additionally calculates

the terms of the stationary distribution that allows sampling

of the proposal set. The flow of this process can be seen in

Figure 6.

5) Maximum Likelihood Estimation: Once sampling is

complete, the program searches for the value of θ that has

the greatest relative likelihood. This is accomplished through
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an iterative gradient ascent of the relative likelihood curve,

the basic method of which is shown in Algorithm 2. The

value of L(θ) is computed using another CUDA kernel, the

posterior likelihood kernel.

Algorithm 2 Gradient Ascent

1: set δ, ε very small

2: θnext = θ0
3: do
4: θ = θnext
5: gradient = L(θnext+δ)−L(θnext−δ)

2δ
6: while (L(θnext) − L(θnext+gradient)) > δ or

(θnext+gradient ) < 0 do
7: gradient = gradient × 1

2

8: θnext = θnext+ gradient
9: while |θ − θnext| > ε

10: θ0 = θnext

B. Kernels

The program described here implements three separate

CUDA kernels: the proposal kernel, the data likelihood kernel,

and the posterior likelihood kernel.

1) Proposal Kernel: The main difference in method

from LAMARC [24] is that the neighborhood targeted for

resimulation is passed to the kernel as an argument. Each

thread running the proposal kernel generates one proposal

genealogy. Also, each thread running the proposal kernel

has the responsibility of calculating the value of P (D|G̃i),
where G̃i is the proposal generated by that thread.

Since each thread produces one proposal, the total size

of the generated proposal set will be equal to the number

of threads executing the kernel in parallel. Each thread has

an ID assigned by the CUDA runtime, and that thread ID

is taken to be the index of the generated proposal in the

proposal set. The thread with an ID equal to that of the

current generator for Calderhead’s method is idle for most of

the processing, as it does not have to produce a new proposal.

All random numbers are generated prior to any possible

branching of the thread execution. That is because it is a

necessary condition of the MTGP32 PRNG that all threads

must be executing the same random number generation

request at the same time, to avoid one thread overwriting the

state of another thread. The random numbers are generated

prior to the resimulation of the target neighborhood, and are

stored in space that was allocated during the data initialization

step.

Once the proposal has been generated, each thread indi-

vidually initiates an instance of the data likelihood kernel

in order to determine the value of P (D|G̃i), which is

the data likelihood of G̃i. In order to guarantee parallel

execution, a different stream of execution is initialized for

each data likelihood kernel. Note that there are two layers of

parallelism occurring: multiple individual proposal threads

are each launching multiple child threads to calculate the

data likelihood. This is an example of dynamic parallelism,

supported in CUDA as the ability of threads running on the

GPU device to launch new kernels. Because of the large

number of total threads across all kernel executions, the load

of the data likelihood calculation as a whole is shared across

all the processing units of the graphics card.

After the data likelihood has been calculated, an additive

reduction is performed across all the proposal threads. This

is done by using the warp shuffle operators to reduce each

warp down to a single value, placing that value into shared

memory, and then additively reducing the values in shared

memory down to a single value, a step which occurs on a

single thread. Although it may seem inefficient to serially

reduce this value in a single thread, in practice the number

of warps will be small enough that this is not a significant

portion of the total computation.

The output of this kernel is a set of proposals, as well

as a discrete weighted distribution on those proposals that

can be readily sampled from in order to produce sample

genealogies.

2) Data Likelihood Kernel: The data likelihood kernel

calculates the value of P (D|G) for a given genealogy G.

The D term represents the sequence data, which will be

constant throughout the execution of the program. Each

thread calculates the likelihood for a particular base pair

position in the sequence data. In other words, each thread

calculates Li(G) =
∑

X πXLn1
(X), where i is taken to be

the thread ID.

In theory, it is only necessary to recalculate the likelihood

of nodes of the tree that are the parents of branches that

have changed due to the resimulation of the tree. If no aspect

of a tree’s structure or branch lengths has changed, then its

data likelihood will not have changed either. However, in

practice, the cost of uncached memory access on the CUDA

platform means that it is computationally more efficient to

simply recalculate the likelihood of every node in every

tree for every proposal, as opposed to reading some of the

values from memory. Memory accesses are required in order

to find the sequence data at the tips of the tree. However,

this information is stored in constant space, which decreases

access times substantially.

In order to keep the results of all intermediate calculations

in stack registers, the program is executed as a recursive

descent through the tree, which creates one new stack frame

per node in the tree per thread of execution. Unfortunately,

the stack depth then varies depending on runtime variables,

and there is the real possibility that a set of sequence data

could overflow the stack on the CUDA device, leading to a

crash. Fortunately, CUDA stack depth is configurable prior

to launching a kernel, so as a solution to this problem, the

program dynamically increases the size of the CUDA stack

during the data initialization stage.
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Once each thread has determined its value of Li(G), a

multiplicative reduction must occur. Recall that the likeli-

hoods at each base pair site are considered to be mutually

independent. Just as in the reduction that occurs at the end

of the proposal kernel, warp shuffle operators are used to

generate one value per warp, which is placed into shared

memory and then further reduced by a master thread. One

thread per block (a higher level of thread organization than

a warp) places the value into device memory. If there are

enough threads to warrant multiple blocks, the execution

thread that calls the data likelihood thread must perform a

final reduction of the block-level aggregates. This last step

is performed in serial, but the factor of reduction is so great

that it does not add significantly to computation costs. The

result of this kernel is the P (D|G) value having been stored

for the given genealogy G.

3) Posterior Likelihood Kernel: The posterior likelihood

kernel calculates the value of the relative likelihood of L(θ)
for a given θ and group of genealogy samples Gi, which

have been previously generated by Calderhead’s method. The

form of L(θ) is the mean of the posterior probabilities of the

members of Gi, given θ, P (Gi|θ). Each thread calculates this

posterior probability term for a given genealogy in the set of

samples. There are as many threads as sampled genealogies,

and the thread ID is used as an index on the sample set.

Each individual thread calculates the fraction for the given

genealogy. This is the main computation of the thread. Once

this ratio has been computed for each genealogy of the

set of samples, a reduction is performed across all threads

to find the largest posterior likelihood. This provides a

normalizing factor and serves to prevent value overflow.

Once this normalization is complete, an additive reduction is

performed on the normalized posterior values. This operation

executes in the same manner as in the other two kernels.

The result of this kernel is that the expected likelihood

of θ as a ratio to the likelihood of the sample-generating

θ0 has been calculated. The kernel as a whole is an

implementation of the relative posterior likelihood function

which is the function that is subsequently maximized in the

MLE calculation in order to find a successor value of θ.

This is the input into the ‘Maximize’ phase of the coalescent

genealogy sampler, when it is viewed as an Expectation-

Maximization method.

V. RESULTS

The results consist of a demonstration of the correctness of

the new algorithm in reproducing the results of the original

algorithm of LAMARC, and also characterizing the perfor-

mance improvement attained by the parallel implementation.

The method used to quantify correct operation was to

synthesize genealogical data from a known “generating” θ
value, and then compare the results of running θ-estimation

using both the production LAMARC package and the

proposed application, mpcgs.

The procedure used to synthesize genealogical data is

to first generate a simulated genealogical tree using the

program ms [31]. This program simulates the evolution of a

set of “chromosomes” using a model of genetic drift.Typically,

ms provides a set of permutations of different variants of

chromosomes to represent different organisms, but it can also

include the genealogical tree that was simulated to provide

these results. In this case, the output of interest is the tree

alone. Therefore, the command

ms 12 1 -T

was used to produce a tree in the Newick tree format [32].

The first argument specifies how many separate samples

of genetic information to simulate. This will define the

size of the tree. The second argument specifies how many

different independent sequences of genetic information ms
will generate for each sample.

Once a tree has been simulated, the program seq-gen
[33] can be used to create genealogical sequence data

corresponding to the tree. This program generates sequences

of nucleotides which match the expected genetic separation

of sequences that are related by the distances specified in

the trees that ms generates. The command

seq-gen -mF84 -l 200 -s 1.0 < treefile

generates a set of genealogical data. The first argument

(-mF84) specifies the model of mutation that should be

used, in this case, the model is F84 (see [32] for details).

The second set of arguments (-l 200) specifies the length

of each sequence. The argument given will result in each

sequence being 200 nucleotides long. The third argument

(-s 1.0) specifies that the input generating θ for simulation

purposes is 1.0. The Newick tree generated by ms is also

given as an argument to the seq-gen program by input

redirection. The seq-gen program produces sequence data

in the PHYLIP format. LAMARC is packaged with utility

programs to convert PHYLIP files into the necessary input

format, and mpcgs can take these files as direct input.

The methodology was to test LAMARC and mpcgs with

identical settings: 1,000 burn-in sample genealogies and

10,000 chain samples. Every 20th sample was used to perform

gradient ascent. Each chain used the final state of the previous

chain as its starting point (with the exception of the first

chain, which used UPGMA). The final run consisted of 1,000

burn-in and 100,000 samples and was repeated five times.

Table I: Comparison of LAMARC and mpcgs with respect

to θ-estimation. Average θ ± σ (standard deviation) for five

trials of each “generating“ input θ is shown.

Input θ LAMARC θ ± σ mpcgs θ ± σ (ours)

0.5 0.858± 0.024 0.966± 0.047
1.0 0.959± 0.018 1.131± 0.03
2.0 2.521± 0.064 2.423± 0.136
3.0 5.432± 0.064 5.32± 0.16
4.0 4.384± 0.067 3.913± 0.138
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The comparison of LAMARC vs. mpcgs in terms of

average estimated θ can be seen in Table I. Note that

estimated θ values for LAMARC and mpcgs are not expected

to be exact since these are stochastic processes. Accuracy (i.e.

similarity between the methods) was tested by determining

the Pearson correlation coefficient, which shows a correlation

between θ-values of r = 0.996. Despite the differences in

implementation details (such as the proposal mechanism

[24]), a strong correlation is observed between the estimated

θ in these two methods. Due to run-time constraints, only five

trials of each generating θ per method were performed. As

such, a non-parametric Friedman test for differences between

the two methods was conducted and resulted in a p-value of

0.6547. Thus, we fail to reject the conclusion that there are

differences between the methods. Future work will expand

these analyses and explore more robust trials.

The method of testing performance improvement due to

the application of parallelism (i.e. speedup) was to compare

the runtime of LAMARC and mpcgs when provided the

same data sets with equivalent scaling parameters. This

performance characterization was made across three different

dimensions of analysis that could affect performance. These

were: the number of genealogical samples generated at each

iteration of expectation calculation, the number of sequences

in the genealogical data, and the size of the sequences

(number of base pairs.)

The speedup was constant (≈ 4) with respect to the

number of genealogical samples taken by each iteration of

the expectation calculation phase of the EM-algorithm (or the

number of samples produced by each run of the coalescent

genealogy sampler). Similarly, the speedup was constant

(≈ 3) relative to the number of sequences in the genealogical

data being used to produce an estimate of θ. However,

increasing sequence size produced scalable performance

enhancements. Figure 7 demonstrates speedup increasing

linearly with increased sequence length. The length of the

sequence determines the amount of computation required to

calculate the data likelihood for each proposal genealogy in

the course of performing Calderhead’s method.

VI. CONCLUSION

A novel method of parallelizing the coalescent genealogy

sampler has been found. It allows for the parallelizaton of the

burn-in period which confounded previous efforts to apply

parallelism to this class of sampler algorithm. This inherently

sequential component would otherwise eventually dominate

computation time at higher degrees of parallelism.

With the burn-in segment parallelized, the idealized

computation time for sampling becomes B+N
P , where B is

the burn-in time, N is the sampling time, and P is the number

of processing units on which the program is executing. Of

course, in practice, there will be smaller serial components

and additional implementation limits on scale, but this

new method removes a significant algorithmic limitation.

Figure 7: Speedup with varying sequence size

Applying this method to large and complex data sets using

modern massively-parallel platforms should provide estimates

of population parameters much faster than would otherwise

be attainable.

The results also indicate that the method of implementation

is most efficient at larger sequence sizes. This is fortunate,

since the authors of LAMARC identify increasing the

amount of genetic information per sample as generally the

best way to improve study results [13]. The reason for

this increased efficiency with sequence size is likely that

increasing sequence size primarily increases the number of

data likelihood threads executing simultaneously. This more

fully utilizes the processing units of the GPU, hiding memory

latency as there is a larger queue of instructions available

for execution.

Overall, this method is promising for future development

and scientific use. The application of Calderhead’s method

to create parallel coalescent genealogy samplers has the

potential to greatly reduce the amount of time necessary

to perform studies in population genetics by allowing the

efficient application of large-scale parallelism.
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