
Divide-and-conquer approach to the parallel computation of elementary flux modes
in metabolic networks

Dimitrije Jevremovic, Daniel Boley
Department of Computer Science & Engineering

University of Minnesota
Minneapolis, MN, USA

Email: jevrem@cs.umn.edu, boley@cs.umn.edu

Carlos P Sosa
IBM, and

Biomed. Infor. & Comp’l. Biology, Univ. of Minnesota
Rochester, MN, USA

Email: cpsosa@us.ibm.com

Abstract—Elementary flux modes are an important class of
metabolic pathways used to characterize the functioning and
behavior of metabolic networks of biochemical reactions in a
biological cell. The computation of the elementary flux modes
is accomplished by using the so-called Nullspace Algorithm
whose high computational cost and memory requirements still
limit the computation to relatively small metabolic networks.
We combine a “combinatorial” parallelization with a novel
divide-and-conquer paradigm into a new implementation of
the Nullspace Algorithm with lower memory requirements. We
discuss the disadvantages of the combinatorial parallelization
and divide-and-conquer ideas and explain why their combina-
tion attains more computational power. The improved parallel
Nullspace Algorithm is used to compute up to nearly 50 million
elementary flux modes for a metabolic network for yeast, a
task which was previously not possible using either of the two
approaches individually.

Keywords-metabolic network pathways; divide-and-conquer;
parallel algorithms; computational biology;

I. INTRODUCTION

Metabolic networks belong to a class of biological net-
works which allow the representation of biochemical reac-
tions and their relationships within a biological cell or its
compartments. One potent way of observing the metabolic
network and its interactions is throughout feasible metabolic
pathways which satisfy thermodynamic and stoichiometric
constraints. Metabolic pathways, in particular a class of
elementary flux modes, have many different applications
in chemical engineering and biochemistry. Elementary flux
modes were used in the dissection of a biological cell and
analysis of cellular metabolic capabilities [1], [2], phenotype
prediction [3], gene knockout studies [4]–[7] and estimation
of overall reaction flux distribution [8]–[12].
We propose a new parallel algorithm for the improved

computation of elementary flux modes which combines an
earlier distributed-memory parallel algorithm and a divide-
and-conquer idea. The combined algorithm attains lower
memory requirements and allows computation of the ele-
mentary modes for larger metabolic networks.
This paper is organized as follows. In section II we

briefly sketch the background of the metabolic networks and

metabolic pathway theory, the elementary flux modes and
the Nullspace Algorithm. We also illustrate the Nullspace
Algorithm through a simple example network and describe
both the combinatorial parallel Nullspace Algorithm and
the divide-and-conquer approach. The novel “combined”
parallel Nullspace Algorithm is described in section III,
and the results of its application to the yeast (S. cerevisiae)
metabolic network are given in the section IV.

II. BACKGROUND AND RELATED WORK

A. Metabolic networks and pathways

We use the sample metabolic network in Figure 1 to
illustrate our parallel algorithm. This ‘toy’ network has
five internal metabolites (A,B,C,D,P) and nine reactions
(r1, r2, r3, r4, r5, r6r, r7, r8r, r9). Each reaction consumes
and produces metabolites in fixed proportions. All but two
reactions are thermodynamically irreversible, flowing only in
the positive direction. Reversible reactions are denoted with
a trailing ‘r’. Every reaction is characterized by the reaction
rate (also known as flux rate) which numerically gives the
rate at which the substrate metabolites are converted to the
product metabolites.
The dotted line in Figure 1 marks the boundary between

the interior and exterior of the given structure, which may
be an entire cell or an internal compartment (organelle).
Reactions crossing the network boundary and limited to
transport of a particular metabolite between the interior and
exterior of the system are known as exchange reactions
(r1, r4, r8r, r9 in the simple example).
To represent the metabolic network in an analytical way

we use the stoichiometry matrix illustrated in equation (2)
where rows correspond to metabolites and columns corre-
spond to reactions. Matrix element Ni,j , if non-zero, gives
the molar amount of metabolite i produced (if Ni,j > 0) or
consumed (if Ni,j < 0) by a unit flux of reaction j. The
flux rate for the reaction can be negative only if the reaction
is reversible.
At any given moment, some of the reactions in the

metabolic network will have non-zero reaction rate, while
some others will have zero reaction rate. The complete set

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.188

501

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.188

497

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.188

497

A

B

C P
r1

D

r8r

r5 r6r

r2

r9

r4

r7

r3

Bext

Aext Pext

Dext

Figure 1: Simple illustrative metabolic network [13]

of flux rates is collected into a reaction rate (flux rate) vector
r:

r =
(
r1 r2 r3 r4 r5 r6 r7 r8 r9

)T
(1)

The reaction rate vector is equivalent to the concept of
a metabolic pathway. It was earlier determined that the
metabolic network in a biological cell can be considered
to be in quasi steady-state when the concentration of each
internal metabolite is assumed to be constant [14] and
the relationship between the stoichiometry matrix and the
reaction rate vector satisfies the constraint (3).

N =

A

B

C

D

P

⎛
⎜⎜⎝

1

r1

−1

r2

0

r3

0

r4

−1

r5

0

r6r

0

r7

0

r8r

0

r9

0 0 0 0 1 −1 −1 −1 0
0 1 −1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 −1
0 0 1 −1 0 0 2 0 0

⎞
⎟⎟⎠
(2)

N · r = 0 (3)

In the typical metabolic network the number of reactions
is higher than the number of metabolites so that the con-
straints (3) have many solutions. Of particular interest is a
subset of solutions known as elementary flux modes (EFM)
[15], [16]. The elementary flux mode is a metabolic pathway
or a reaction rate vector with a property that there is no other
valid reaction rate vector whose non-zero elements form a
subset of the non-zero elements of the given flux vector.

B. Nullspace Algorithm

Currently, the most efficient algorithm for the computation
of elementary flux modes is the Nullspace Algorithm [17]–
[22] which is derived from the “double description method”
for the enumeration of extreme rays (or vertices) in the con-
vex polyhedral cone (polytope) [23], [24]. The complexity
of the enumeration of extreme rays in the convex cone still
remains an open question [25]–[27]. It is however known
that the related problem of enumerating vertices in the
unbounded polyhedron is NP-hard. Genome-scale metabolic
networks [28] may have up to more than 3000 reactions,
and the computation of elementary modes in that case still
represents a computational challenge.

C. Example: Nullspace Algorithm and EFM computation

Using the example of the metabolic network given in Fig-
ure 1, we will illustrate the Nullspace Algorithm [17]–[22]
and the parallelization ideas. Prior to running the algorithm,
the metabolic network and its stoichiometry matrix may
be reduced by eliminating redundant reactions, metabolites,
and constraints using known methods [19], [21], [29]. The
original stoichiometry matrix in equation (2) can thus be
reduced to the equivalent matrix in equation (4). It has been
shown [19], [21], [29] that such reduced network has the
equivalent set of elementary flux modes as the original one,
and this preprocessing reduction step yields a more efficient
computation of the elementary flux modes.

Nred =

A

B

C

P

⎛
⎜⎝

1

r1

−1

r2

0

r3

0

r4

−1

r5

0

r6r

0

r7

0

r8r

0 0 0 0 1 −1 −1 −1
0 1 −1 0 0 1 0 0
0 0 1 −1 0 0 2 0

⎞
⎟⎠ . (4)

The Nullspace Algorithm begins by computing a basis
for the nullspace of Nred (the “nullspace matrix”). This is
usually accomplished by reducing Nred to row echelon form
and permuting the columns so that the stoichiometric matrix
takes on the form (−R(2), I). The resulting nullspace matrix
then has the form

Kredperm =

(
R(1)

R(2)

)
=

(
I

R(2)

)
=

r2

r4

r5

r7

r1

r3

r6r

r8r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 −2
−1 1 0 −2
1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(5)

with the rows corresponding to the identity matrix being
pushed to the top. The remaining rows are ordered by the
increasing number of non-zero elements in the row [19],
[21], [23], a heuristic proven to often improve the efficiency
of Nullspace Algorithm. We also reorder the columns of
Nred to to match the row order of (5), obtaining

Nredperm =

A

B

C

P

⎛
⎜⎝
−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r6r

0

r8r

0 0 1 −1 0 0 −1 −1
1 0 0 0 0 −1 1 0
0 −1 0 2 0 1 0 0

⎞
⎟⎠ .

(6)
The columns of the initial nullspace matrix form the

initial set of columns which will be iteratively paired as a
convex linear combination of two columns to form candidate
elementary flux modes. Some of the candidate columns will
be accepted and retained in the nullspace matrix, while some
others will be rejected using a so-called ”algebraic rank test”
[18], [20], [21], [30], as will be described below.
Having reduced the size of the initial metabolic network,

computed the initial nullspace matrix and reordered its rows
according to proven heuristics [19], [21], [23] we may start
the core of the Nullspace Algorithm. In Fig. 2 we show the
intermediate nullspace matrices obtained at each iteration

502498498

K
(1)
redperm =

r2

r4

r5

r7

r1

r3

r6r

r8r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 −2
−1 1 1 −2
1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, K
(2)
redperm =

r2

r4

r5

r7

r1

r3

r6r

r8r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 −2
−1 1 1 −2
1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, K
(3)
redperm =

r2

r4

r5

r7

r1

r3

r6r

r8r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 0
−1 1 0 0
1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

K
(4)
redperm =

r2

r4

r5

r7

r1

r3

r6r

r8r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
0 1 0 2 1
0 0 1 0 0
0 0 0 1 0
1 0 1 0 1
0 1 0 0 1
−1 1 0 0 0
1 −1 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, K
(5)
redperm =

r2

r4

r5

r7

r1

r3

r6r

r8r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 0
0 1 0 2 1 2 1 2
0 0 1 0 0 0 1 1
0 0 0 1 0 1 0 1
1 0 1 0 1 1 1 1
0 1 0 0 1 0 1 0
−1 1 0 0 0 −1 1 0
1 −1 1 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 2: Steps of the Nullspace Algorithm on network of Fig. 1.

of the Nullspace Algorithm. The Nullspace Algorithm starts
by processing the first row of the matrix R(2) and ends by
processing the last row of the nullspace matrix. In each
iteration, we separate the columns according to whether
their entry in the row currently being processed is positive,
negative, or zero. Columns with a zero entry are simply
passed along to the next iteration. Each column with a
positive entry is paired with each column with a negative
entry to form a convex linear combination such that the
combined entry in the current row is zero. The result is
a new candidate flux mode.
A rank test [18], [20], [21], [30] is then used to check

that the new candidate flux modes are indeed elementary.
For every candidate column, we extract the columns from
Nredperm corresponding to the non-zero entries in the candi-
date flux mode to form a submatrix. The nullity (dimension
of the right nullspace) of this submatrix should be equal to
1 in order to retain the candidate elementary flux mode, or
otherwise it will be rejected [18], [20], [21], [30]. If this
submatrix has at least two more columns (reactions with
non-zero fluxes) than rows (metabolites), then the candidate
column has too many non-zeros and therefore is summarily
rejected. Otherwise the rank of the submatrix must be
computed by using a numerical algorithm such as the LU,
QR or SVD [31].
The columns (flux modes) that survive to the next iteration

consist of those columns from the previous iteration which
had a zero entry in the row currently being processed,
plus those columns which had a positive entry, plus the
new candidate columns which have passed the rank test.
These latter columns necessarily have a zero in the cur-
rently processed row. Old columns with negative entries are
removed if the reaction corresponding to the current row is
irreversible, but these columns are kept if the current reaction
is reversible. Because of the fact that during the processing
of a row corresponding to a reversible reaction, no column is
removed, a usual heuristic is to process reversible reactions

last.

We now illustrate in Figure 2 the steps outlined above on
the example of Figure 1. We start with the nullspace matrix
K

(1)
redperm and begin the first iteration at row r1. Since, all the

columns have either positive or zero elements in this row, we
skip to the next iteration because no candidate columns can
be formed. The second iteration is at row r3 and there is one
column with a positive entry and one column with a negative
entry. This allows the formation of a single candidate flux
mode equal to

(
0 2 0 1 0 0 0 −1

)T
.

We then extract the submatrix using the indices of non-
zero elements in this candidate column, and compute its
nullity. Since the nullity is equal to 1, we retain this column
for the next iteration. As the current row corresponds to
the irreversible reaction r3, prior to proceeding to the next
iteration, we remove the column having the negative element
(-2). The resulting nullspace matrix after the second iteration
is given in the matrix K

(3)
redperm. In third iteration, there are

again one column with a positive entry and one with a neg-
ative entry, which allows the formation of a single candidate
elementary flux mode

(
1 1 0 0 1 1 0 0

)T
. This

candidate column is retained as well after computing that
the nullity is equal to 1.

The third iteration corresponds to the reversible
reaction r6r , hence the columns having negative
elements for the current row are not removed. In
the fourth iteration, the nullspace matrix K

(4)
redperm

has two columns with positive and two columns
with negative elements for the row corresponding
to the reaction r8r . This produces four candidate
elementary flux modes

(
1 1 0 0 1 1 0 0

)T
,(

1 2 0 1 1 0 −1 0
)T

,
(
0 1 1 0 1 1 1 0

)T
,(

0 2 1 1 1 0 0 0
)T . Two of these columns are

duplicates, so only three are probed using the rank test
to check whether they are elementary flux modes. As the
generation of candidates may yield duplicated columns a

503499499

Algorithm 1 [EFM] = NullspaceAlg(N, K)

Input:
reduced stoichiometry matrix (Nm×q); initial nullspace matrix

Kq×(q−m) =

[
R(1)

R(2)

]
Output:

matrix of elementary flux modes EFMq×nems

1: K(q−m+1) = K

2: for k = q −m + 1 to q do
3: candEFM = GenerateEFMCands(K(k))
4: candEFM = Sort&RemoveDuplicates(candEFM)
5: candEFM = RankTests(N, candEFM)
6: K(k) = RemoveNegColumns(K(k))
7: K(k+1) = [K(k) candEFM]
8: end for
9: return K(q+1)

procedure for their removal is to sort the columns by their
binary representation and eliminate duplicated columns in
one run.
The final nullspace matrix can be directly obtained from

the matrix K
(5)
redperm, and the core of the Nullspace Algo-

rithm is complete. The K
(5)
redperm matrix corresponds to the

permuted reduced stoichiometry matrix given in (6). Rows
of the matrix K

(5)
redperm of EFMs are permuted to the original

order, and the row corresponding to the redundant reaction
r9 is added back to obtain the matrix EFM in equation (7).

EFM =

r1

r2

r3

r4

r5

r6r

r7

r8r

r9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 1 1 1
1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0
0 1 0 2 1 2 1 2
0 0 1 0 0 0 1 1
−1 1 0 0 0 −1 1 0
0 0 0 1 0 1 0 1
1 −1 1 −1 0 0 0 0
0 1 0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

The high-level pseudocode for the Nullspace Algorithm
is sketched in Algorithm 1.

D. Combinatorial parallel Nullspace Algorithm

A shared-memory based parallelization of the Nullspace
Algorithm was earlier proposed in EFMTools [19], while
the distributed memory parallelization based on message
passing was implemented [17] as a better fit to the available
computer architecture. Our parallelization when run on a
single processor was found in [17] to have similar perfor-
mance to the serial version of EFMTools. We name this
distributed memory version as the “combinatorial parallel
Nullspace Algorithm” and give its pseudocode in Algorithm
2. The description of functions used in the pseudocode of
the algorithm is given in Table I.

Algorithm 2 [K] = ParallelNullspAlg(N, K, Nnodes)

Input:
reduced stoichiometry matrix (Nm×q); initial nullspace matrix

Kq×(q−m) =

[
R(1)

R(2)

]
Output:

bit-valued matrix of elementary modes EFMq×nems

1: K(q−m+1) = K

2: procId⇐ compute node ID

3: for k = q −m + 1 to q do
4: candEFM = ParallelGenerateEFMCands(K(k),

P rocId,Nnodes)
5: candEFM = Sort&RemoveDuplicates(candEFM)
6: candEFM = RankTests(N, candEFM)
7: {communicate candEFM and merge }
8: candEFM = Communicate&Merge(candEFM)
9: K(k) = RemoveNegColumns(K(k))
10: K(k+1) = [K(k) candEFM]
11: end for
12: return K(q+1)

Table I
DESCRIPTION OF FUNCTIONS USED IN ALGORITHMS 1 AND 2

GenerateEFMCands:
Generates next set of candidate elementary modes by convex com-
binations of current set of modes that annihilates the flux of the
current reaction.

ParallelGenerateEFMCands:
Generates candidate elementary modes local for the current compute
node.

Sort RemoveDuplicates:
Sorts the candidate elementary flux modes and removes local
duplicates.

RankTests:
Applies the algebraic rank tests to the candidates local to current
compute node.

RemoveNegColumns:
If the current iteration corresponds to an irreversible reaction, re-
move all columns (modes) for which this reaction’s flux is negative.

Communicate Merge:
Send each compute node’s locally computed EFMs to other compute
nodes. Merge the incoming EFMs with local set and remove
duplicates.

The combinatorial parallel Nullspace Algorithm [17] at-
tained good scalability, reduced overhead in the communi-
cation and merge of exchanged candidate elementary flux
modes among the compute nodes. However, its disadvantage
is that it still requires to store the copies of the current matrix
of candidate EFMs (Fig. 2) in the local memory across all
compute nodes during the computation, which imposes an
upper limit of the size of the networks which can be handled.

E. Divide-and-conquer

In [32], the authors proposed a parallelization based on
the divide-and-conquer approach to compute the complete
set of the elementary flux modes. The complete set of the
elementary flux modes is partitioned across the selected
subset of qsub reactions into 2qsub disjoint EFM subsets
where the zero/nonzero flux pattern of the elementary flux
modes in the ith subset corresponds to the binary repre-

504500500

sentation of the number i, for i ∈ 0, . . . , 2qsub − 1. In the
example of 8 elementary flux modes from matrix EFM

in (7), the partitions across reactions r8r and r9 will be
{6,8}, {1,3,4}, {5,7}, {2} where subset elements are column
indices. The reactions for partitioning elementary flux modes
can not be randomly selected, as the pre-processing step
of reducing metabolic network size will eliminate some of
them. This divide-and-conquer approach is also based on the
following proposition [30], [32], which can easily be proved
by mathematical induction.
Proposition 1: If the Nullspace Algorithm is stopped at

its (q−q′)th iteration, then the set of elementary flux modes
with all the last q′ reactions having non-zero flux values
coincides with the set of columns in the current nullspace
matrix having non-zero flux values in the last q′ elements.
We use Proposition 1 to incorporate the divide-and-

conquer idea with the combinatorial parallel Nullspace Al-
gorithm (Algorithm 2), as described in the following section.

III. COMBINED PARALLEL NULLSPACE ALGORITHM

In Algorithm 3, we propose the incorporation of the
divide-and-conquer approach in the combinatorial parallel
Nullspace Algorithm described in Algorithm 2. Initially, the
reaction subset size qsub is selected and the elementary
modes are computed for each of the 2qsub subsets. In lines
5 and 6 indices of reactions which should have non-zero
and zero flux values are extracted according to the binary
representation of the current iteration value k. For the i-
th subset, a reduced stoichiometry matrix is formed by
removing the columns corresponding to the indices zfRows

of reactions with zero flux values. This results in the reduced
stoichiometry matrix Ni (line 8), and new nullspace matrix
Ki is recomputed (line 9). The rows of the nullspace matrix
Ki are reordered so that the reactions corresponding to the
indices in nzfRows are put at the bottom of the matrix
(line 11). We then run the combinatorial parallel Nullspace
Algorithm (line 14) described in Algorithm 2 on the pair
(Ni, Ki). Rows corresponding to those reactions which
should have zero reaction flux values are appended back to
the matrix EFMi (lines 17-21) and the iteration is complete.

A. Example

We now illustrate the divide-and-conquer idea on our
sample metabolic network. Once the initial nullspace matrix
is found for the stoichiometry matrix, we consider the four
subproblems across the two reactions r6r and r8r .

• Reactions r6r, r8r should both have zero flux values.
Columns corresponding to the reactions r6r, r8r are
removed from the matrix Nredperm in equation (6) to
obtain the matrix given in equation (8).

Nr00 =

A

B

C

P

⎛
⎜⎝
−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0 0 1 −1 0 0
1 0 0 0 0 −1
0 −1 0 2 0 1

⎞
⎟⎠ . (8)

Algorithm 3 [K] = CombParallelNullspAlg(N, K, qsub)
Input:

stoichiometry matrix (Nm×q); initial nullspace of the form

Kq×(q−m) =

[
R(1)

R(2)

]
Output:

matrix of elementary modes EFMq×nems

1: {Reduce initial metabolic network (N, K) to equivalent smaller net-
work.}

2: (Nred, Kred)⇐ (N, K); EFM = [];
3: for k = 0 to 2qsub − 1 do
4: {dec2binvec - get binary representation of number as a vector.

nzfRows - indices of last qsub rows which must have non-zero flux.
zfRows - indices of last qsub rows which must have zero flux.}

5: nzfRows = q − qsub + find(dec2binvec(k))
6: zfRows = q − qsub + find(¬dec2binvec(k))
7: {from last qsub rows of nullspace matrix remove rows correspond-

ing to zero reaction flux for the kth subproblem }
8: Ni = Nred;Ni(:, zfRows) = [];
9: Ki = null(Ni)
10: {reorder rows in Ki so that rows corresponding to nzfRows are

at the bottom }
11: Ki = ReorderRows(Ki);Ni = ReorderColumns(Ni);
12: lastRowIter := q − qsub

13: {Run parallel algorithm on the pair (Ni, Ki) until reaching
iteration corresponding to lastRowIterth row}

14: EFMi = ParallelNullspAlg(Ni, Ki, Nnodes, lastRowIter)

15: {keep only those columns in EFMi which have non-zero values
in the last length(nzfRows) rows }

16: selectedRowInd = q − qsub + (1 : length(nzfRows))
17: EFMi = EFMi(:, all(EFMi(selectedRowInd, :)))
18: {add zero-rows to the EFMi in order to obtain the wanted subset

of EFMs}
19: numEmsi = size(EFMi, 2)
20: EFMi(nzfRows , :) = EFMi(selectedRowInd, :)
21: EFMi(zfRows , :) = zeros(length(zfRows), numEms)
22: EFM = [EFM EFMi]
23: end for
24: return EFM

The nullpace matrix corresponding to the matrix Nr00
is given as Kr00.

Kr00 =

r2

r4

r5

r7

r1

r3

⎛
⎜⎜⎜⎜⎝

2 0
0 2
−1 1
−1 1
1 1
2 0

⎞
⎟⎟⎟⎟⎠×

1

2
. (9)

When the Nullspace Algorithm is run on the pair
(Nr00, Kr00) two elementary flux modes are obtained:

EFMr00 =

r2

r4

r5

r7

r1

r3

⎛
⎜⎜⎜⎜⎝

0 1
2 1
1 0
1 0
1 1
0 1

⎞
⎟⎟⎟⎟⎠ . (10)

• Reaction r6r should have zero and reaction r8r should
have non-zero flux values. This requires the removal
of the column corresponding to the reaction r6r in the
matrix Nredperm to obtain matrix Nr01

505501501

Nr01 =

A

B

C

P

⎛
⎜⎝
−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r8r

0 0 1 −1 0 0 −1
1 0 0 0 0 −1 0
0 −1 0 2 0 1 0

⎞
⎟⎠ . (11)

The nullpace matrix corresponding to the matrix Nr01
is given as Kr01.

Kr01 =

r2

r4

r5

r7

r1

r3

r8r

⎛
⎜⎜⎜⎜⎜⎝

2 0 0
0 2 0
0 0 2
−1 1 0
2 0 2
2 0 0
1 −1 2

⎞
⎟⎟⎟⎟⎟⎠
×

1

2
. (12)

Running the Nullspace Algorithm until before the
row corresponding to the reaction r8r on a pair
(Nr01, Kr01), and extracting those columns having non-
zero flux values for the reaction r8r we obtain two
elementary flux modes:

EFMr01 =

r2

r4

r5

r7

r1

r3

r8r

⎛
⎜⎜⎜⎜⎜⎝

0 0
2 0
0 1
1 0
0 1
0 0
−1 1

⎞
⎟⎟⎟⎟⎟⎠

. (13)

• Reaction r6r should have non-zero and reaction r8r

should have zero flux values. This requires the removal
of the column corresponding to the reaction r8r in the
matrix Nredperm to obtain matrix Nr10.

Nr10 =

A

B

C

P

⎛
⎜⎝
−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r6r

0 0 1 −1 0 0 −1
1 0 0 0 0 −1 1
0 −1 0 2 0 1 0

⎞
⎟⎠ . (14)

The nullspace matrix corresponding to the matrix Nr10
is given as Kr10.

Kr10 =

r2

r4

r5

r7

r1

r3

r6r

⎛
⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
−1 1 −1
1 0 1
2 −1 2
1 −1 2

⎞
⎟⎟⎟⎟⎟⎠

. (15)

Similarly, using the Nullspace Algorithm and running it
until before the reaction corresponding to the row r6r,
two elementary flux modes are obtained:

EFMr10 =

r2

r4

r5

r7

r1

r3

r6r

⎛
⎜⎜⎜⎜⎜⎝

1 0
2 1
0 1
1 0
1 1
0 1
−1 1

⎞
⎟⎟⎟⎟⎟⎠

. (16)

• reactions r6r and r8r have both non-zero fluxes.

Nr11 =

A

B

C

P

⎛
⎜⎝
−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r6r

0

r8r

0 0 1 −1 0 0 −1 −1
1 0 0 0 0 −1 1 0
0 −1 0 2 0 1 0 0

⎞
⎟⎠ .

(17)

Kr11 =

r2

r4

r5

r7

r1

r3

r6r

r8r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 −2
−1 1 0 −2
1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

In this last case, the Nullspace Algorithm is run on
a pair of matrices (Nr11, Kr11) until before the row
corresponding to the reaction r6r, and the elementary
flux modes having non-zero values for both reactions
r6r and r8r are extracted. This yields two elementary
flux modes:

EFMr11 =

r2

r4

r5

r7

r1

r3

r6r

r8r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
1 0
0 1
−1 1
1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

We see that the union of elementary flux modes obtained
for all four cases coincides with the elementary flux modes
given in Fig. 2. In our combined parallel Nullspace Algo-
rithm, each of the four subtasks would be run independently
using the combinatorial parallel Nullspace Algorithm given
earlier in Algorithm 2 and described in [17].

IV. RESULTS

We used the “Calhoun” parallel platform of the Minnesota
Supercomputing Institute and Blue Gene/P of IBM to test
our combined parallel Nullspace Algorithm.
Blue Gene/P parallel configuration with up to 512 com-

pute nodes was used to perform the computation [33]. To
provide a better understanding of the results of executing
combined parallel Nullspace Algorithm and software we
give a brief overview of the Blue Gene/P platform. The
smallest component in the system is the chip. Single chip has
a PowerPC 450 quad-core processor with 4GB of memory.
Each processor core runs at a frequency of 850 MHz, and
each processor core can perform four floating-point opera-
tions per cycle, giving a theoretical peak performance of 13.6
gigaFLOPS/chip. The chip constitutes the compute card. The
I/O card is the next building block. This card is physically
very similar to the compute card. However, the I/O card
has the integrated Ethernet enabled for communication with
the outside world. The I/O cards and the compute cards
form a so-called node card. The node card has 2 rows of
16 compute cards and 0-2 I/O nodes depending on the I/O
configuration. Further, a midplane has 16 node cards. A

506502502

R4 : F6P + ATP =⇒ FDP + ADP
R5 : FDP =⇒ F6P
R9 : PYR + ATP =⇒ PEP + ADP
R10 : PEP + ADP =⇒ PYR + ATP
R12 : GL3P + FAD mit =⇒ DHAP + FADH mit
R26 : GL3P =⇒ GLY
R15 : G6P + 2 NADP =⇒ 2 NADPH + CO2 + RL5P
R21 : ACCOA + OA =⇒ COA + CIT
R23 : ICIT + NADP =⇒ CO2 + NADPH + AKG
R24 : AKG mit + NAD mit + COA mit =⇒ CO2 + NADH mit + SUCCOA mit
R27 : FUM + FADH =⇒ SUCC + FAD
R33 : PYR + COA =⇒ ACCOA + FOR
R37 : PYR + ATP + CO2 =⇒ ADP + OA
R38 : PYR =⇒ ACEADH + CO2
R40 : ACEADH + NADH =⇒ ETOH + NAD
R41 : ACEADH + NADP =⇒ AC + NADPH
R42 : OA + ATP =⇒ PEP + CO2 + ADP
R43 : PEP + CO2 =⇒ OA
R46 : ICIT =⇒ GLX + SUCC
R47 : ACCOA + GLX =⇒ COA + MAL
R53 : ACEADH + NAD =⇒ AC + NADH
R54 : ATP =⇒ ADP
R58 : NADH + NAD mit =⇒ NAD + NADH mit
R59 : NH3ext =⇒ NH3
R60 : GLY =⇒ GLYext
R62 : GLCext + PEP =⇒ G6P + PYR
R63 : AC =⇒ ACext
R64 : LAC =⇒ LACext
R65 : FOR =⇒ FORext
R66 : ETOH =⇒ ETOHext
R67 : SUCC =⇒ SUCCext
R68 : O2ext =⇒ O2
R69 : CO2 =⇒ CO2ext
R70 : 7437 G6P + 611 G3P + 437 R5P + 130 E4P + 500 PEP + 2060 PYR + 45
ACCOA mit + 362 ACCOA + 733 AKG + 1232 OA + 1158 NAD + 434 NAD mit +
6413 NADPH + 1568 NADPH mit + 40141 ATP + 5587 NH3 =⇒ 1000 BIO + 247
CO2 + 45 COA mit + 362 COA + 1158 NADH + 434 NADH mit + 6413 NADP +
1568 NADP mit + 40141 ADP
R72 : PYR mit + COA mit + NAD mit =⇒ ACCOA mit + NADH mit + CO2
R73 : OA mit + ACCOA mit =⇒ CIT mit + COA mit
R75 : ICIT mit + NAD mit =⇒ AKG mit + NADH mit + CO2
R76 : ICIT mit + NADP mit =⇒ AKG mit + NADPH mit + CO2
R77 : ICIT + NADP =⇒ AKG + NADPH + CO2
R82 : MAL mit + NADP mit =⇒ PYR mit + NADPH mit + CO2
R85 : ETOH mit + COA mit + 2 ATP mit + 2 NAD mit =⇒ ACCOA mit + 2
ADP mit + 2 NADH mit
R86 : ACEADH mit + NAD mit =⇒ AC mit + NADH mit
R87 : ACEADH mit + NADP mit =⇒ AC mit + NADPH mit
R93 : ADP + ATP mit =⇒ ADP mit + ATP
R98 : FUM mit + SUCC =⇒ SUCC mit + FUM
R100 : SUCC =⇒ SUCC mit
R101 : AKG + MAL mit =⇒ AKG mit + MAL

Figure 3: S. cerevisiae Metabolic Network I with 62
metabolites and 78 reactions: the irreversible reactions

rack holds 2 midplanes, for a total of 32 node cards or
1024 compute cards. A full petaflop system contains 72
racks. Finally, the compute nodes may be configured at boot
time to operate in one of three modes: a) symmetric multi-
processing mode b) virtual node mode and c) dual mode.
Symmetric-multiprocessing mode runs the main process on
one processor and can spawn up to 3 threads on the
remaining processors. In dual mode, the CPUs with rank
0 and 2 run a main program process, and each can spawn
an additional thread. Virtual node mode runs the underlying
program on all four processors, without additional threading.
“Calhoun” is an SGI Altix XE 1300 Linux cluster. The

cluster consists of 256 compute nodes, each containing two
quad-core 2.66 GHz Intel Xeon “Clovertown”-class proces-
sors sharing 16 GB of main memory. In total, “Calhoun”

R3r : G6P ⇐⇒ F6P
R6r : FDP ⇐⇒ G3P + DHAP
R7r : G3P ⇐⇒ DHAP
R8r : G3P + NAD + ADP ⇐⇒ PEP + ATP + NADH
R13r : DHAP + NADH ⇐⇒ GL3P + NAD
R16r : RL5P ⇐⇒ R5P
R17r : RL5P ⇐⇒ X5P
R18r : R5P + X5P ⇐⇒ G3P + S7P
R19r : X5P + E4P ⇐⇒ F6P + G3P
R20r : G3P + S7P ⇐⇒ E4P + F6P
R22r : CIT ⇐⇒ ICIT
R25r : SUCCOA mit + ADP mit ⇐⇒ ATP mit + COA mit + SUCC mit
R28r : FUM ⇐⇒ MAL
R29r : MAL + NAD ⇐⇒ NADH + OA
R30r : PYR + NADH ⇐⇒ NAD + LAC
R32r : ACCOA + 2 NADH ⇐⇒ ETOH + 2 NAD + COA
R36r : ATP + AC + COA ⇐⇒ ADP + ACCOA
R74r : CIT mit ⇐⇒ ICIT mit
R78r : ACEADH mit + NADH mit ⇐⇒ ETOH mit + NAD mit
R79r : SUCC mit + FAD mit ⇐⇒ FUM mit + FADH mit
R80r : FUM mit ⇐⇒ MAL mit
R81r : MAL mit + NAD mit ⇐⇒ OA mit + NADH mit
R88r : CIT + MAL mit ⇐⇒ CIT mit + MAL
R89r : MAL + SUCC mit ⇐⇒ MAL mit + SUCC
R90r : CIT + ICIT mit ⇐⇒ CIT mit + ICIT
R92r : AC mit ⇐⇒ AC
R94r : PYR =⇒ PYR mit
R95r : ETOH =⇒ ETOH mit
R96r : MAL mit =⇒ MAL
R97r : ACCOA mit =⇒ ACCOA
R102r : OA ⇐⇒ OA mit

Figure 4: S. cerevisiae Metabolic Network I with 62
metabolites and 78 reactions: the reversible reactions.

additional internal metabolite:
GLC
added reactions:
R1 : GLC + ATP =⇒ G6P + ADP
R14 : GLY + ATP =⇒ GL3P + ADP
R56 : 24 ADP + 20 NADH mit + 10 O2 =⇒ 24 ATP + 20 NAD mit
R57 : 24 ADP + 20 FADH + 10 O2 =⇒ 24 ATP + 20 FAD
R61 : GLCext =⇒ GLC
reactions made reversible:
R54r : ATP ⇐⇒ ADP
R60r : GLY ⇐⇒ GLYext
R63r : AC ⇐⇒ ACext
modified reaction:
R62 : GLC + PEP =⇒ G6P + PYR

Figure 5: S. cerevisiae Metabolic Network II with 63
metabolites and 83 reactions: differences from Network I.

consists of 2048 compute cores and 4 TB of main mem-
ory. Compute node is consists of two multi-chip modules
(MCMs) each composed of two dies. These dies are two
separate pieces of silicon connected to each other and ar-
ranged on a single module. Each die has two processor cores
that share a 4 MB L2 cache. Each MCM communicates with
the main memory in the system via a 1,333 MHz front-side
bus (FSB). All of the systems within “Calhoun” are inter-
connected with a 20-gigabit non-blocking InfiniBand fabric
used for interprocess communication (IPC). The InfiniBand
fabric is a high-bandwidth, low-latency network, the intent
of which is to accommodate high-speed communication for
large MPI jobs. The nodes are also interconnected with
two 1-gigabit ethernet networks for administration and file
access, respectively.
Algorithms 1, 2 and 3 are implemented in software which

507503503

is distributed under the GNU General Public License (GPL).
Source code and documentation are freely available at the
web site: http://elmocomp.sourceforge.net/.
We used two metabolic networks of S. cerevisiae : Net-

work I of dimensions 62× 78 (35× 55) and Network II of
dimension 63× 83 (40× 61), respectively, where values in
parentheses correspond to the size of the reduced metabolic
network after elimination of redundant constraints. The
list of reactions in the Metabolic Network I is given in
Figures 3 and 4. Metabolic Network II is the same except
for the modifications listed in Figure 5. In these figures
reversible reactions are denoted with suffix “r” and external
metabolites with suffix “ext”. Elementary flux modes were
computed for Network I using the combinatorial paral-
lel Nullspace Algorithm (Algorithm 2) and the combined
parallel Nullspace Algorithm (Algorithm 3) on Intel Xeon
(Clovertown) machine. The results of the computation using
Algorithm 2 are given in table II, while the results of
using Algorithm 3 are given in table III. In table III the
row subset identifies the subproblem in the divide-and-
conquer partitioning, and the zero-flux pattern in the two
reactions R89r and R74r used (R and R denote that the
reaction R has zero and non-zero flux value in the given
EFM subproblem, respectively). To compute the elementary
flux modes for the subproblems in the combined parallel
Nullspace Algorithm we used 16 cores across 4 compute
nodes and compared that results with the column in Table II
corresponding to 16 cores. The divide-and-conquer splitting
in the Algorithm 3 decreased the number of intermediate
candidate modes from 159,599,700,951 to 81,714,944,316,
what resulted in the effective reduction of the computation
time from 208.98 seconds ((Table II)) to 141.6 seconds.
The set of EFMs for Metabolic Network II was computed

using the combined parallel Nullspace Algorithm (Algorithm
3) on the Blue Gene/P parallel platform (Table IV) using 256
processors in SMP mode. Initially, we tried computing the
elementary modes for this network using the combinatorial
parallel Nullspace Algorithm (Algorithm 2), but due to high
memory requirements the computation had to be abandoned
at 59th iteration, two iterations before completion. We
used this as a guidance to estimate the number of the
partitioning reactions in a divide-and-conquer approach to
compute the elementary modes using the combined parallel
Nullspace Algorithm. The reactions which were used as
the partitioning subset comprised of the last three reac-
tions in the reordered nullspace matrix {R60r, R90r, R54r},
where the reaction R60r corresponds to the last row in the
nullspace matrix. However, for partitions R60r R90rR54r

(interrupted during the execution of the last iteration step)
and R60rR90rR54r we were not able to complete the
computation irrespective of the number of compute nodes
used due to high memory requirements. This required the
partitioning of the two subproblems by addition of one
more reaction to the subset. We performed further splitting

within the two subsets using four instead of three reactions
and computed the elementary flux modes for the partitions
across the last four reactions in the nullspace matrix corre-
sponding to R60r R90rR54rR22r , R60r R90rR54rR22r,
R60rR90rR54rR22r , R60rR90rR54rR22r. For the case
of subset ID=1 in a three-reaction split we were able to esti-
mate the number of generated intermediate candidate modes
to be equal to 21,268,414,872,504. By addition of the fourth
reaction to the partitioning subset the number of candidate
elementary modes, as shown in Table IV, was reduced to
4,447,206,371,897 (=4,340,558,712,549+106,647,659,348).
For the case of subset ID=3, we were not able to compute the
number of generated candidate modes in the three-reaction
split, as the computation was interrupted two iteration steps
before the end, but the number of generated candidate modes
in the four-reaction split is given in Table IV.

A. Time scalability

Computation time is proportional to the number of gen-
erated intermediate elementary modes. Divide-and-conquer
approach usually leads to the decrease of the cumulative
number of intermediate modes compared to the unsplit
problem, and the execution times are proportional to these
numbers of modes. It is yet unclear how to select the sub-
set of reactions in divide-and-conquer that may maximally
decrease the number of intermediate candidate elementary
flux modes.

B. Memory scalability

The combinatorial parallel Nullspace Algorithm has the
disadvantage that it requires the storage of the current
nullspace matrix in the local memory across all compute
nodes at each step. Hence, until that bottleneck is removed,
the combinatorial parallel Nullspace Algorithm may only be
used for problems where the current nullspace matrix may fit
in the local memory of the compute node. The divide-and-
conquer feature of the combined parallel Nullspace algo-
rithm “fits” the larger problem to the available architecture,
where combinatorial parallel algorithm only could not be
applied. However, cumulative memory requirements for all
subproblems compared to the original problem remain the
same.

C. Discussion

The divide-and-conquer approach requires the selected of
the initial subset of reactions to be used in the partitioning.
If the size of this subset is large, the number of partitions to
explore may be impractically high. Currently the estimation
of the minimal number of partitions that should be used in
elementary mode computations is a manual procedure. An
automated method to select the subset and estimate the ap-
proximate number of elementary modes for a given reaction
partition would be helpful to make the combined parallel
Nullspace Algorithm a fully automated procedure. In order

508504504

Table II
PARALLEL COMPUTATION OF EFMS ON S. cerevisiae METABOLIC

NETWORK I USING ALGORITHM 2 ON INTEL XEON MACHINE

nodes 1 2 1 1 4 8 16

cores per node 1 1 4 8 4 4 4

total # cores 1 2 4 8 16 32 64

memory per core 12gb 12gb 3gb 1.5gb 3gb 3gb 3gb

gen. cand (sec) 2744.76 1383.93 688.60 349.05 179.04 95.44 46.83

rank test (sec) 112.88 77.42 52.80 33.98 20.38 12.21 8.01

communicate (sec) 0 0.06 0.09 0.18 0.17 0.19 0.18

merge (sec) 0 0.68 1.01 1.40 1.45 1.62 1.74

total time (sec) 2894.40 1490.85 761.29 404.33 208.98 115.46 61.87

Total # candidate modes: 159,599,700,951 Total # EFM: 1,515,314

Table III
PARALLEL COMPUTATION OF EFMS ON S. cerevisiae METABOLIC
NETWORK I USING ALGORITHM 3 ON INTEL XEON (CLOVERTOWN)
MACHINE WITH PARTITIONING ACROSS REACTIONS {R89r , R74r}

USING 16 PROCESSORS

subset R89r R74r R89r R74r R89r R74r R89rR74r

EFM 274,919 599,344 207,533 433,518
gen. cand

17.50 57.36 17.29 24.61
(sec)

rank test
2.96 7.18 2.34 3.78

(sec)
comm

0.05 0.10 0.05 0.10
(sec)
merge

0.16 0.44 0.11 0.36
(sec)

total time
21.97 67.77 20.79 31.07

(sec)
Cumulative total time: 141.6 secs Total # EFM: 1,515,314
Total # candidate modes: 81,714,944,316

Table IV
PARALLEL COMPUTATION OF EFMS ON S. cerevisiae METABOLIC
NETWORK II USING ALGORITHM 3 ON BLUE GENE/P PARALLEL

PLATFORM WITH PARTITIONING ACROSS REACTIONS

{R54r , R90r , R60r} AND USING 256 COMPUTE NODES

subset binary partition # candidate modes # EFM time
ID subset (sec)

0 R60r R90r R54r 6,214,645,617,622 5,461,652 1575.23

1
R60r R90r R54r R22r 4,340,558,712,549 5,192,050 1105.26

R60r R90r R54r R22r 106,647,659,348 713,038 53.45

2 R60r R90r R54r 15,066,250,207,733 9,565,657 3342.69

3
R60r R90rR54r R22r 4,644,781,999,541 7,768,777 1380.74

R60r R90rR54r R22r 378,647,219,526 2,070,396 178.15

4 R60r R90r R54r 692,798,105,813 2,004,634 255.18

5 R60r R90r R54r 5,498,326,647,776 5,902,918 1437.18

6 R60rR90r R54r 1,634,149,803,325 3,170,692 548.96

7 R60rR90rR54r 1,724,004,561,529 7,920,995 766.17

Total # EFM:49,764,544 Total time: 2h 57min 23 secs

to give an intuition about the computational complexity of
this problem it would be worth mentioning that to enumerate
all the elementary modes having non-zero flux for a specific
reaction is NP-hard [26], [27]. In addition, to decide if there

exists an elementary mode with non-zero fluxes for two or
more given reactions is NP-hard as well.

V. CONCLUSION

This paper gives an improved parallel Nullspace Algo-
rithm to compute the elementary flux modes in the metabolic
network. The earlier combinatorial parallel Nullspace Al-
gorithm [17] which had high memory requirements was
combined with the divide-and-conquer idea [32] for the
computation of the elementary flux modes. The efficiency
of applying the divide-and-conquer approach depends on the
proper selection of the reactions subset used to partition the
space of elementary flux modes into disjoint subsets com-
puted independently. The combination of two algorithmic
ideas may reduce the computation time by lowering the total
number of intermediate candidate elementary modes and
fit the larger problems to the available parallel architecture
where previously the combinatorial parallel Nullspace Algo-
rithm failed. Using this method, we were able to complete
the computation of the nearly 50 million elementary flux
modes on the variation of the yeast metabolic network.
Future work should focus on several points. First, the current
nullspace matrix should not be stored across all the compute
nodes in the combinatorial parallel Nullspace Algorithm, but
should be partitioned in an efficient way instead. Second,
design of the strategy of selecting the reaction subset used
in the divide-and-conquer part of the algorithm that gen-
erates minimal number of intermediate elementary mode
candidates would lead to the improvement of the compu-
tation time. Third, different algorithmic paradigms such as
partitioning of the metabolic network graph as an alternative
to the divide-and-conquer approach exposed in this paper
should also be considered.

ACKNOWLEDGMENT

This work was supported by NSF grant 0534286, IBM
Ph.D. fellowship program and Biomedical Informatics and
Computational Biology Program of the University of Min-
nesota, Rochester. We would like to thank Friedrich Srienc
of the Chemical Engineering and Materials Science Depart-
ment, University of Minnesota, Twin Cities for providing the
metabolic network data. We are grateful for the resources
and technical support from the Minnesota Supercomputing
Institute and IBM Rochester Blue Gene Center, as well as
to Cindy Mestad and Steven Westerbeck for their support.

REFERENCES

[1] S. Schuster, D. Fell, and T. Dandekar, “A general definition
of metabolic pathways useful for systematic organization and
analysis of complex metabolic networks,” Nature Biotechnol-
ogy, vol. 18, no. 3, pp. 326–332, 2000.

[2] S. Wiback and B. Palsson, “Extreme pathway analysis of hu-
man red blood cell metabolism,” Biophysics Journal, vol. 83,
no. 2, pp. 808–818, 2002.

509505505

[3] J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster, and E. D.
Gilles, “Metabolic network structure determines key aspects
of functionality and regulation,” Nature, vol. 420, no. 6912,
pp. 190–193, 2002.

[4] U. Haus, S. Klamt, and T. Stephen, “Computing knock-out
strategies in metabolic networks,” Journal of Comp. Biology,
vol. 15, no. 3, pp. 259–268, 2008.

[5] C. Trinh, P. Unrean, and F. Srienc, “A minimal Escherichia
coli cell for most efficient ethanol production from hexoses
and pentoses,” Applied and Environ. Microbiology, vol. 74,
no. 12, pp. 3634–3643, 2008.

[6] C. Trinh and F. Srienc, “Metabolic engineering of Escherichia
coli for efficient conversion of glycerol to ethanol,” Applied
and Environmental Microbiology, vol. 75, no. 21, pp. 6696–
6705, 2009.

[7] O. Hädicke and S. Klamt, “CASOP: A computational ap-
proach for strain optimization aiming at high productivity,”
Journal of Biotechnology, vol. 147, no. 2, pp. 88–101, 2010.

[8] J. Schwartz and M. Kanehisa, “A quadratic programming
approach for decomposing steady-state metabolic flux distri-
butions onto elementary modes,” Bioinformatics, vol. 21, pp.
ii204–ii205, 2005.

[9] J. Schwartz and M. Kanehisa, “Quantitative elementary mode
analysis of metabolic pathways: the example of yeast glycol-
ysis,” BMC Bioinformatics, vol. 7, no. 186, 2006.

[10] Q. Zhao and H. Kurata, “Maximum entropy decomposition
of flux distribution at steady state to elementary modes,” J.
of Bioscience and Bioeng., vol. 107, no. 1, pp. 84–89, 2009.

[11] Q.Zhao and H.Kurata, “Genetic modification of flux for flux
prediction of mutants,” Binformatics Systems biology, vol. 25,
no. 13, pp. 1702–1708, 2009.

[12] Q.Zhao and H.Kurata, “Use of maximum entropy principle
with lagrange multipliers extends the feasibility of elementary
mode analysis,” J. of Bioscience and Bioeng., vol. 110, no. 2,
pp. 254–261, 2010.

[13] C. Trinh, A. Wlaschin, and F. Srienc, “Elementary mode
analysis: a useful metabolic pathway analysis tool for char-
acterizing cellular metabolism,” Appl. Microbiol. Biotechnol,
vol. 22, no. 5, pp. 813–826, 2009.

[14] B. Clarke, “Stoichiometric network analysis,” Cell Bio-
physics, vol. 12, pp. 237–53, 1988.

[15] S. Schuster, T. Dandekar, and D. Fell, “Detection of elemen-
tary flux modes in biochemical networks: a promising tool
for pathway analysis and metabolic engineering,” Trends in
Biotechnology, vol. 17, no. 2, pp. 53–60, 1999.

[16] S. Schuster and C. Hilgetag, “On elementary flux modes
in biochemical reaction systems at steady state,” Journal of
Biological Systems, vol. 2, no. 2, pp. 165–182, 1994.

[17] D. Jevremovic, C. T. Trinh, F. Srienc, , C. Sosa, and D. Boley,
“Parallelization of nullspace algorithm for the computation
of elementary flux modes,” Univ. of Minnesota, Computer
Science and Eng. Dept. Tech. Rep. 10-028, 2010.

[18] D. Jevremovic, C. T. Trinh, F. Srienc, and D. Boley, “A simple
rank test to distinguish extreme pathways from elementary
modes in metabolic networks,” Univ. of Minnesota, Computer
Science and Eng. Dept. Tech. Rep. 08-029, 2008.

[19] M. Terzer and J. Stelling, “Large Scale computation of
elementary flux modes with bit pattern trees,” Bioinformatics,
2008.

[20] R. Urbanczik and C. Wagner, “An improved algorithm for
stoichiometric network analysis: theory and applications,”
Bioinformatics, vol. 21, no. 7, pp. 1203–1210, 2005.

[21] J. Gagneur and S. Klamt, “Computation of elementary modes:
a unifying framework and the new binary approach,” BMC
Bioinformatics, vol. 5, no. 175, 2004.

[22] C. Wagner, “Nullspace approach to determine the elementary
modes of chemical reaction systems,” J. Phys. Chem., vol.
108, no. 7, pp. 2425–2431, 2004.

[23] K. Fukuda and A. Prodon, “Double description method
revisited,” in Combinatorics and Computer Science, M. Deza,
R. Euler, and I. Manoussakis, Eds. Springer, 1996, pp.
91–111, also tech. report, Mathematics, ETH, 1995. [Online].

[24] T. Motzkin, H. Raiffa, G. Thompson, and R. Thrall, “The
double description method,” in Contributions to theory of
games, H. Kuhn and A. Tucker, Eds. Princeton University
Press, 1953, vol. II, pp. 51–73.

[25] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gur-
vich, “Generating all vertices of a polyhedron is hard,” Pro-
ceedings of the seventeenth annual ACM-SIAM symposium on
discrete algorithms, pp. 758 – 765, 2006.

[26] V. Acuña, F. Chierichetti, V. Lacroix, A. Marchetti-
Spaccamela, M. Sagot, and L. Stougie, “Modes and cuts
in metabolic networks: Complexity and algorithms,” BioSys-
tems, vol. 95, no. 1, pp. 51–60, 2009.

[27] V. Acuña, A. Marchetti-Spaccamela, M. Sagot, and
L. Stougie, “A note on the complexity of finding and enu-
merating elementary modes,” Biosystems, vol. 99, no. 3, pp.
210–214, 2010.

[28] J. Schellenberger, J. Park, T. Conrad, and B. Palsson,
“BiGG: a biochemical genetic and genomic knowledgebase of
large scale metabolic reconstructions,” BMC Bioinformatics,
vol. 11, no. 213, 2010.

[29] D. G. Luenberger, Linear and nonlinear programming,
2nd ed. Springer, 2003.

[30] D. Jevremovic, C. Trinh, F. Srienc, and D. Boley, “On alge-
braic properties of extreme pathways in metabolic networks.”
Journal of Comp. Biology, vol. 17, no. 2, pp. 107–119, 2010.

[31] G. H. Golub and C. F. V. Loan, Matrix computations, 3rd ed.
John Hopkins Univ. Press, 1996.

[32] S. Klamt, J. Gagneur, and A. von Kamp, “Algorithmic ap-
proaches for computing elementary modes in large biochem-
ical reaction networks,” Systems Biology, IEE Proceedings,
vol. 152, no. 4, pp. 249–255, 2005.

[33] C. Sosa and B. Knudsen, “IBM System Blue Gene Solution:
Blue Gene/P Application Development,” http://www.redbooks.
ibm.com/abstracts/sg247287.html, 2008.

510506506

