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Abstract—High performance computing has become essential 

for many biomedical applications as the production of biological 
data continues to increase. Next Generation Sequencing (NGS) 
technologies are capable of producing millions to even billions of 
short DNA fragments called reads. These short reads are 
assembled into larger sequences called contigs by graph theoretic 
software tools called assemblers. High performance computing 
has been applied to reduce the computational burden of several 
steps of the NGS data assembly process.  Several parallel de 
Bruijn graph assemblers rely on a distributed assembly graph. 
However, the majority of assemblers that utilize distributed 
assembly graphs do not take the input properties of the data set 
into consideration to improve the graph partitioning process. 
Furthermore, the graph theoretic foundation for the majority of 
these assemblers is a distributed de Bruijn graph. In this paper, 
we introduce a distributed overlap graph based model upon 
which our parallel assembler Focus is built.  The contribution of 
this paper is three-fold. First, we demonstrate that the 
application of data specific knowledge regarding the inherent 
linearity of DNA sequences can be used to improve the 
partitioning processes for distributing the assembly graph. 
Second, we implement several parallel graph algorithms for 
assembly with greatly improved speedup. Finally, we 
demonstrate that for metagenomics datasets, the graph 
partitioning provides insights into the structure of the microbial 
community.  

Keywords—next generation sequencing; assembly graph; high 
performance computing; algorithms  

I. INTRODUCTION 
Current biomedical technologies are producing massive 
amounts of data at increasingly faster rates. In particular, next 
generation sequencing technologies are capable of producing 
gigabases and even terabases of genetic sequence data in a 
single run. Next generation sequencing is used to determine 
the order of nucleotides in a given strand of DNA. This is 
accomplished by a fragmenting sample DNA sequence into a 
library of short segments. These DNA segments are then 
sequenced to obtain the ordering of their nucleotide bases. The 
resulting sequences, ranging from 102 – 104 base pairs (bps) in 
length depending on which sequencing technology was used, 
are called reads. Illumina technologies such as the HiSeq X 
series are able to output up to 1800 Gb of sequence data with 
150 bp long reads [1]. PacBio systems are currently able to 
produce reads exceeding 10 kb in length with up to 1 Gb of 
data produced per run [2].  

The relatively short lengths of the produced reads in 
comparison to the input sample DNA strand to be analyzed 

makes it difficult to extract any information from the reads 
individually. However, the reads are produced at a high 
coverage of the original DNA sequence, such that many of the 
reads overlap. These overlap relationships can be used to order 
and merge the reads into a representation of the original target 
sequence. Specialized software tools called assemblers are 
used to order and merge the reads into contiguous stretches of 
sequence called contigs. Most of these assembly tools rely on 
graph theoretical approaches to model the reads and their 
overlap relationships. Two primary approaches exist for 
modeling next generation reads. Typically, the overlap graph 
based assemblers [3] model each read as a node in an overlap 
graph and overlap relationships as edges in the overlap graph. 
Edges can be weighted by criteria such as the length of the 
overlap shared between the two reads represented by the 
endpoints of that edge. String graphs [4] are an extension of 
the basic overlap graph formed by removing transitive edges 
and other redundant information. The de Bruijn graph 
assemblers [3] split each read into its set of component k-
mers.  Each unique k-mer becomes an edge in the de Bruijn 
graph. The left and right k-1-mers of each unique k-mer 
becomes an edge in the de Bruijn graph. In both graph 
approaches an ordering of the reads is obtained by traversing 
the assembly graph.  

Due the massive size of next generation sequencing data 
sets, the assembly graph can become extremely large and 
difficult to process. To address this issue, several parallel 
assemblers have been developed that distribute the assembly 
graph across processors. De Bruijn graph assemblers such as 
AbySS [5], Ray [6], PASHA [7], and the SWAP-Assembler 
[8] distribute the de Bruijn graph by assigning the generated k-
mers to different processors. MPI communication is then used 
for parallel graph simplification and traversal of the 
distributed de Bruijn graph. The PCAP [9] assembler is an 
overlap-layout-consensus assembler that uses parallel 
processing to speed up read overlap detection and scaffold 
processing. HipMer [10] is a parallel version of the 
Meraculous assembler designed in particular for extreme scale 
analysis. Map reduce has been applied to process a string 
graph assembly model [11]. Other assemblers such as 
MEGAHIT [12] take advantage of GPU architecture for 
parallel assembly.   

Due to the linearity of DNA, reads covering a contiguous 
region in the sequence will form a cluster within the assembly 
graph. The parallel assemblers discussed in the previous 
paragraph do not take this input characteristic of the read data 
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into consideration during the graph partitioning process. In 
many applications, high performance computing is primarily 
viewed as a means for speeding up computational solutions 
for the purpose of producing faster results for downstream 
analysis. However, we propose that high performance 
computing is not just a method for obtaining faster results but 
can be applied in intelligent ways to extract meaningful 
information from big data. It is very tempting to use naïve 
methods for high performance computing but by using domain 
knowledge one may get rewarded.  

Previously, we introduced a novel hybrid graph model for 
assembly that integrates multiple levels of an iteratively 
coarsened overlap graph to capture the structural features of 
the input data set, such as repetitive or transposable sequence 
regions, in a concise yet feature rich approach. This model 
forms the foundation of an assembly and analysis tool called 
Focus [13].  Here we describe a distributed version of this 
graph model and associated parallel graph assembly methods.  

The contributions of this paper are three-fold.  1) We show 
that the integration of previous knowledge of the structure of 
the input data set can benefit the graph partitioning algorithm's 
performance. Due to the linear nature of the DNA sequence, 
groups of nodes representing contiguous sequence regions can 
simply be assigned to the same graph partition with minimal 
processing. Results show that this dramatically improves 
runtime for all data sets and the edge cut of the partitioning in 
the majority of cases. 2) We develop several parallel graph 
algorithms applied on our distributed graph model for 
sequence assembly. Results demonstrate greatly improved 
speedup times for the distributed algorithms, which include 
graph cleaning and graph traversal methods.  3) Finally, we 
demonstrate that we are rewarded for integrating domain 
knowledge into our graph partitioning process. Insights into 
metagenomics community structure can be obtained from the 
resulting graph partitioning. For metagenomics read data sets, 
where the underlying DNA sample is obtained from a 
community of organisms, it is shown that related species tend 
to cluster within the same graph partition. This information 
may be useful to researchers trying to identify the composition 
of a given metagenomics data set. The concept of knowledge 
integration into naive algorithms may have important 
extensions to additional methods in high performance 
computing.  

II. FOCUS ASSEMBLER OVERVIEW 
The Focus assembly algorithm is composed of six component 
steps. These steps include read data preprocessing, read 
alignment, multilevel graph set generation, hybrid graph set 
generation, hybrid graph trimming, and hybrid graph traversal. 
These steps are discussed briefly in the following sections. 
Please see [13] for an in-depth discussion of the Focus 
algorithm.   

A. Read Data Preprocessing 
The Focus assembler accepts both fasta and fastq data as input.  
Each read is processed individually. First the 5’ end and 3’ end 
of a given read is trimmed by fixed lengths specified by the 

user to remove any tags or adaptors. Then each read is trimmed 
from its 3’ end based on quality values. A sliding window w of 
length l is applied starting from the 3’ end and moving to the 5’ 
end with a user specified step size of k.  The average quality 
value for the sliding window is calculated at each step. Once 
the average quality value becomes greater than a minimum 
threshold q specified by the user, the read is trimmed from the 
right end of the sliding window to the 3’ end of the read.  The 
reverse complement of the trimmed read is generated and 
added to the read dataset. Once the read trimming and reverse 
complement generation is complete, the read data set is split 
into a number of subsets specified by the user that can be 
processed in parallel by the read alignment module. For more 
information regarding parallel read alignment of Focus please 
see [13].  

B. Parallel Read Alignment 
Each pair of read subsets produced by the read preprocessor is 
analyzed for determining read overlap relationships between 
reads. For parallel read alignment, each pair of read subsets 
can be sent to a different processor for independent analysis. 
A reference read sub set Rr is indexed by a suffix array Sr [14]. 
Each read in the query read sub set Rq is visited successively. 
Let rq be a read that is currently being visited in Rq.  The read 
rq is decomposed into its component k-mers, where k is 
specified by the user. Each k-mer is used to query the suffix 
array Sr to search for short k-mer matches in the reads of Rr. 
Let rr be a read in Rr. If rr contains number of k-mer hits 
greater than a specified threshold, then rr will be extracted 
from Rr and aligned to rq using banded Needleman-Wunsch 
alignment. If the alignment produces an overlap relationship, 
where the prefix of rr is the suffix of rq or vice versa or where 
one read is completely contained in the other, then the overlap 
relationship is evaluated against minimum user specified 
thresholds. If the overlap meets minimum thresholds for 
alignment length and alignment minimum identity, then the 
ids of the query and reference reads are recorded to file along 
with the alignment length and minimum alignment identity.           

C. Multilevel Graph Set 
The initial overlap relationships produced by the read 
alignment algorithm are loaded into an overlap graph G0. Let 
V(G0)  be the node set of G0 and E(G0) be the edge set of G0. 
|V(G0)| is the number of nodes in G0 and |E(G0)| is the number 
of edges in G0.  In this overlap graph each node represents a 
sequencing read and edges represent the overlap relationships 
between reads. Each edge records both the alignment length 
and alignment identity. The weight of each edge in G0 is set to 
its recorded alignment length. This graph is extremely large, 
making both assembly and any graph-based data analysis 
processes difficult. Graph coarsening [15] reduces the overlap 
graph G0 by finding a matching M on G0 and then merging 
pairs of nodes that are the endpoints of the edges in M to form 
G1. Heavy edge matching [15] and node merging is applied on 
G1 to form G2. This process produces a multilevel graph set G 
=  {G0, G1, … Gn}, where  |V(G0)| ≤� |V(G1)| ≤�…�≤�|V(Gn)|.  
An example of the multilevel graph set is shown in Fig. 1.A.  
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D. Hybrid Graph Set 
The result of the graph coarsening process is the multilevel 
graph set G =  {G0, G1, … Gn}. In this multilevel graph set for 
each graph Gi where i ≥�1, every node in Gi corresponds to a 
cluster of nodes in G0 and therefore a cluster of reads. It would 
be optimal if each read cluster represented by a node in 
G1…Gn assembled into a contiguous contig. However, this is 
not likely, as certain genomic regions may not be best 
represented at all levels in the multilevel graph set.  For 
example, a repetitive region might be over reduced in later 
graph levels. To address this issue, best representative nodes
are integrated from multiple levels of the multilevel graph set 
to create a hybrid graph set G’ = {G’

0, G’
1, ... G’

n}. A best 
representative node is defined to be a node that is selected 
from the most reduced graph as possible whose corresponding 
read cluster assembles into a contiguous contig. The graph G’

0 
is denoted as the hybrid graph as it will contain all of the best 
representative nodes selected from Gn, Gn-1, … G0.  Fig. 1.B 
provides an example of a hybrid graph set obtained from a 
multilevel graph set.  

E. Graph simplification and error correction�
Focus follows the graph trimming algorithms introduced by 
previous assembly algorithms [16] to remove short dead end 
paths and small bubbles from the hybrid graph. We have 
adapted our graph-trimming module to be run in parallel on 
the distributed hybrid graph.  More details regarding our graph 
trimming methods and their parallel implementations will be 
discussed under Sections V-A, V-B, and V-C of this paper.  

F. Maximal Path Extraction and Contig Construction 
For the purpose of contig construction, maximal paths are 
extracted from the hybrid graph.  The contigs are constructed 
following the order of the read clusters represented by the 
nodes in the maximal path. Section V-D provides more details 
regarding the implementation of the maximal path algorithm 
and its parallel application on the distributed hybrid graph.  

III. GRAPH COARSENING 
The Focus algorithm follows the approach introduced by 
Karypis and Kumar [15] for partitioning large graphs.  This 
multilevel approach first coarsens an input graph to form a 
multilevel graph set G = {G0, G1, … Gn}, where |V(Gn)| ≤ 
|V(Gn-1)| ≤�…�≤�|V(G0)|. The most reduced graph Gn is then 
partitioned into two approximately equal halves while 
attempting to minimize the edge-cut between the partitions. 
The final step is un-coarsening. During this stage the partition 
on Gn is projected recursively through graph levels Gn-1 to G0. 
At each projection onto a given graph Gi in the spectrum, a 
refinement algorithm refines the projection.   

The approach described above requires that the reduced 
graph be un-coarsened completely to obtain a partitioning on 
the original overlap graph G0. Refinement algorithms can 
become fairly costly for finer graph levels that have a large 
number of edges and nodes.  However, if the data that a given 
graph represents have intrinsic characteristics specific to the 
data domain, then that domain specific knowledge can be used 
to improve the partitioning process. Since the nodes of the 
overlap graph represent consecutive regions in the genome, it 
is likely that many groups of nodes representing the same 
genomic region can be safely assigned to the same partition 
without dramatically impacting the overall edge-cut between 
partitions.   

The multilevel graph set represents complete un-
coarsening. In contrast, the hybrid graph set represents a 
compromise between complete un-coarsening and 
incorporation of biological knowledge.  Recall nodes in hybrid 
graph represent clusters of nodes in the original overlap graph. 
If there is biological knowledge regarding which nodes should 
cluster together then there is no need to completely un-coarsen 
the graph. The representative nodes in the hybrid graph 
represent clusters of nodes whose corresponding read clusters 
have already been determined to form a contiguous contig. It 
would be reasonable to assume that a cluster of nodes in the 

Fig. 1. Multilevel graph set and hybrid graph set. (A) Heavy edge matching and node merging is used to create a set of multilevel graphs G0, G1, G2, where |V(G0)|  
≥ |V(G1)| ≥ |V(G2)|. (B) Nodes are integrated from different levels of the multilevel graph set to create the hybrid graph set G’

0, G
’
1, G

’
2. The graph G’

2 contains all 
of the best representatives from G’

2 as well as the non-representative nodes from G’
2. The graph G’

1 contains all of the best representative nodes from G2, G1 as well 
as the non-representative nodes from G1. The graph G’

0 contains all of the best representative nodes selected from all graph levels and is called the hybrid graph. 
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original overlap graph that maps to a single node in the hybrid 
graph would belong to the same partition.  

This paper demonstrates that a partitioning on the hybrid 
graph will be as good as of a partitioning on the overlap graph 
in terms of edge cut and has a much faster running time.  This 
partitioning found on the hybrid graph can then be simply 
mapped to the original overlap graph and multilevel graph set.  

IV. GRAPH PARTITIONING 
The graph partitioning process proceeds as following on a 

coarsened graph set to create k partitions, where k = 2i and i is 
an integer number as recursive bisectioning is used to partition 
the graph. A partitioning P on a graph G is defined as P = P1, 
P2, … Pk, where P1, P2, … Pk are disjoint sets of nodes of in 
V(G) and P1 � P2�� … ��Pk = V(G).  Each P1, P2, … Pk is a 
partition of V(G). First, an initial partitioning with two equal 
halves is created on the most reduced graph, Gn, by a greedy 
graph growing algorithm.  This initial partitioning is refined 
with the Kernighan-Lin [17] refinement algorithm.  The refined 
partitioning is projected onto the next graph level Gn-1. This 
projected partitioning is then refined by the Kernighan-Lin 
algorithm. The projection and subsequent refinement of the 
partitioning is continued until the final graph G0 is partitioned.  
Each generated partition is recursively partitioned, projected, 
and refined until G0 is partitioned into the desired number of 
sections, k.  After the k partitions on the multilevel graph set 
G0, G1, … Gn.  are obtained, each graph level is refined by a 
heuristic k-way Kernighan-Lin algorithm. The graph 
partitioning method is discussed in detail in the following 
sections.  

A. Greedy Graph Growing 
The approach by Karypis and Kumar [15] is followed with 
some modifications to customize the greedy graph growing 
algorithm to the data characteristics. This algorithm attempts 

to greedily add nodes to initial partitions P1 and P2 on the most 
reduced graph Gn. Define the gain gvz of a node vz in graph Gn  

by placing vz into a partition Pi as:  
 

�
�����

� ���
�

� �� �� �� �� �����

� �� � ���
�

� �� �� �� �� �����

� �� 

 
where w(vz, v) is the weight of the edge e(vz, v). The greedy 
algorithm begins by choosing a random seed node vs to insert 
into the partition P1. The gains of the nodes adjacent to vs are 
calculated and the nodes placed into a priority queue 
according to their gains. The nodes whose gains have been 
computed are the horizon of the currently growing partition. 
The node with the greatest gain vg is removed from the 
priority queue and added to P1.  The gains of the neighbors of 
vg are calculated and the nodes are added to the priority queue 
or, if they are already in the queue, their gains are updated.   

The growing graph algorithm in this paper attempts to 
maintain balanced node weight and edge weight across the 
partitions. This is done so that the distribution of edges and 
nodes will be balanced across the final partitioning. The edge 
weight of a given partition Pi is defined as the following. 
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where w ���� ���  is the weight of the edge e ��� �� �� If 
ewpartition(P1) becomes greater than 1.03ewpartition(P2), then the 
partition growing of P1 is terminated. The value of 1.03 places 
an upper bound of 3% on edge weight balance between the 
partitions. A new seed vs is chosen and added to P2. The 
partition P2 is grown according to the method introduced 
previously. If ewpartition(P2) becomes greater than 
1.03ewpartition(P1), than the partition growing of P2 is terminated 
and a new seed is chosen for P1. This alternating partition 
growing is continued until nwpartition(P1)  ≥�0.5nwgraph(Gn) or 
nwpartition(P2)  ≥�0.5nwgraph(Gn); the remaining nodes are then 
placed into the smaller partition. Thus each partition will have 
approximately equal node weight. The terms nwpartition and 
nwgraph are the node weight of a given partition Pi or graph Gi, 
respectively, and are defined as following.  
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Any remaining nodes are added to the partition with the least 
node weight. Thus the greedy growing algorithm will produce 
an initial partitioning P = P1, P2, while attempting to balance 
the partitions according to both node and edge weight.  An 
illustration of the greedy graph growing algorithm can be 
found in Fig. 2.  

Fig. 2. Greedy graph growing. (A) Node A is placed into partition P1. The gains 
of A’s adjacent neighbors are calculated. (B). The node B has the greatest gain 
and is placed into P1. The gains are updated. (C). The final node C is added to 
P1 according to its gain. The partitions are now evenly weighted so the greedy 
graph growing is terminated. 
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B. Kernighan-Lin Refinement Algorithm 
Once the initial partitioning P = P1, P2 is created by the greedy 
graph growing algorithm, it is then refined by the Kernighan-
Lin refinement algorithm. The Kernighan-Lin refinement 
algorithm relies on node swapping to improve the edge cut of 
a partitioning.  First we provide definitions need for the 
Kernighan-Lin algorithm. Given a node vz in a given partition 
Pi on Gn, the external cost �

��
 and the internal cost �

��
of vz is 

defined as follows. 
  

�
��
� ���

�

� �� �� �� �� �����

� �� 

 

�
��
� ���

�

� �� �� �� �� �����

� �� 

 

The D value of vz, written as �
��
� is defined as �

��
� �

��
�

�
��

. Let vz � P1 and vy � P2. The gain �
����

of swapping vz and 

vy is defined as �
��

+��
��
� �� �

�
� �� �if e(vz, vy) � E(Gn) and 

�
��

+��
��

 if e(vz, vy) � E(Gn). 

The Kernighan-Lin algorithm is iterative in nature. Given a 
partitioning P = P1, P2 such that |P1| ≈ |P2| on the graph Gn, all 
nodes in P1 and P2 are initially unlocked, meaning that they 
can be exchanged to a different partition. The algorithm then 
identifies the pair of nodes (vz, vy) that have the greatest gain 
�
����

. This pair of vertex is then swapped between partitions 

and vz and vy are locked. The D values of the remaining 
unlocked nodes are updated. The selection and locking of the 
pair of nodes with the greatest swapping gain and subsequent 
updating of the remaining node’s D values is continued until 
there are no longer any unlocked node pairs remaining. For 
each pair  (vzk, vyk)k of nodes that was selected, the partial sum 
S(vzk,vyk)k = ��

������
��

�
���  of the total gain is computed. The 

pair of nodes such that the partial sum is maximized is 
identified. All node pair exchanges that occurred after this 
node pair are undone. This is a single pass of the Kernighan-
Lin algorithm. Multiple passes are conducted until the 
maximal partial sum of gains is zero, meaning that no more 
improvement on the partition edge cut can be found.      A 
straightforward implementation of this algorithm would have 
a complexity of O(n3), where n = |P1 | + |P2|, as it would 
require �

�

�
�� to find the best node pair to exchange and 

�

�
  node 

pairs exchanged. This leads to a complexity of O(
�

�
�
�

�
��) = 

O(n3).  
Using appropriate data structures and strategies, the 

complexity of the Kernighan - Lin algorithm can be reduced to 
O(n2 log(n) ). This is the approach taken in this paper and will 
be discussed briefly.  The nodes assigned to each partition P1 
and P2 are inserted into two priority queues Q1 and Q2, 

respectively, according to their D values, where nodes with 
greater D values have greater priority within the queue. It is 
reasonable that the node pair that has the greatest gain value 
will be near the top of the priority queues Q1and Q2. Indeed, 
only a subset of the node pairs need to be explored from Q1 

and Q2.  Pairs of nodes (vzk,vyk) are evaluated in decreasing 
order of Dvzk + Dvyk and the gain �

������
is computed. The 

maximum �
������

encountered thus far as the node pairs are 

being sequentially evaluated is recorded as the current gmax. 
Once a pair of nodes (vzk,vyk) is found such that Dvzk + Dvzy ≤�
gmax the search through the nodes pairs is terminated. The node 
pair (vzk,vyk) such that  �

������
is the current gmax, is selected as 

the node pair to exchange. This approach requires 
�

�
���

�

�
 to 

sort the nodes in the priority queues. Since 
�

�
 node exchanges 

are made, the total complexity is O( �
�

�
�
�

�
����

�

�
�� ) = 

O(�� ������). The diagonal scanning approach in [18] is used 
to determine the ordering of node pairs evaluated from Q1 and 
Q2. An additional strategy is also utilized from [15] to speed up 
run time. Let Smax be the maximal partial sum of gains that has 
been encountered thus far as the node pairs are being 
evaluated. If Smax does not increase for fifty node exchanges, 
then the node exchanges are terminated. As before, all node-
pairs exchanges that occurred after Smax are undone. Figure 3 
provides an example of the Kernighan-Lin algorithm.  

C. Projection of the Partition 
After the partitioning P = P1, P2 is found on Gn, it is projected 
iteratively onto Gn-1, Gn-2 … G0. If vz is a node in N(Gn) 
assigned to a partition Pi, then its component child nodes in 
N(Gn-1) will be assigned to Pi on Gn-1.  Once a projected 
partitioning P = P1, P2 is established on Gn-1 from Gn, it is 
refined by the Kernighan-Lin algorithm. The partitioning on 
Gn-1 is then projected onto Gn-2 and refined.  

Recursive bisection is applied to create a partitioning P = 
P1, P2, … Pk in log2(k) steps, using the greedy graph growing 
and Kernighan-Lin algorithms described earlier. First Gn is 
partitioned into two equal partitions that are projected and 
refined onto Gn-1, Gn-2, … G0. These two partitions are then 
partitioned into four partitions, which are projected and 
refined. These partitions continue to be recursively bisected 
until k partitions are created. Observe that there is a natural 

Fig. 3. Kernighan-Lin. (A) Let nodes A and B be the node pair with the greatest 
gain. The E, I, and D values are also shown for A and B. (B) The nodes A and B 
are swapped. The updated edge cut is shown.  
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parallelism as the coarsened graph set is being recursively 
bisected. At each recursive bisection step i = 0 … log2(k)-1 
there are 2i partitions that can be processed concurrently. The 
number of partitions that will need to be bisected in a given 
step i is 2i. Thus if 2i processors are assigned at each ith step, 
the partitioning P = P1, P2, … Pk on Gn, Gn-1, … G0 can be 
generated in log2(k) steps in contrast to k-1 number of steps.  

Thus the upper bound on parallelism is O(
���

�������
� .    

D. Global K-Way Kernighan-Lin Refinement Algorithm 
After the multilevel recursive bisection with the greedy graph 
growing and Kernighan-Lin algorithm is complete, there is a 
partitioning P = P1, P2, … Pk on Gn, Gn-1, … G0. This paper 
follows the global Kernighan-Lin heuristic approach in [19] to 
perform a k-way refinement on P for each graph level. Let Gi 
be the graph level currently begin refined and P = P1, P2, … Pk 

be the partitioning on Gi. First, the boundary nodes in P are 
identified. A given node vz in Gi is a boundary node in P if �

��

�0. The boundary nodes in P are inserted into a priority 
queue Q according to their gains. Here the gain �

��
of a node 

vz is calculated as �
��
� �

��
�   The nodes in Q are then 

evaluated in the order of descending gain. Let vz be the current 
node being evaluated and Pi be the partition that vz is currently 
assigned to. Let �

�����
be the external cost of moving vz to a 

partition Pj given by �
�����

� ���
�� �� �� �� �� ������ �����
� ��. The 

node vz is moved to a partition Pj such that �
�����

is the 

maximum external cost out of all of the external costs 
calculated for each partition. Partition balancing conditions 
must also be met; a node will not be moved to a partition Pj 
from a partition Pi if |Pj| ≥�1.03|Pi|.  As before, let Smax be the 
maximal partial sum of gains that has been encountered thus 
far as nodes have been moved between partitions. The k-way 
refinement algorithm terminates after fifty moves have been 
made and no improvement to Smax occurs. All node moves that 
occurred after the Smax was identified are undone. This is a 
single pass of the global k-way Kernighan-Lin heuristic 
algorithm. Multiple passes are conducted until no more node 
move improvements can be made.  Each graph level can be 
refined independently by the global k-way Kernighan-Lin 
algorithm with multiple processors.  

V. DISTRIBUTED GRAPH ALGORITHMS  
In this section, distributed graph algorithms for graph 
simplification, error correction, and graph traversal are 
introduced.  

A. Transitive edge reduction  
Let P = {P1, P2, … Pk} be a partitioning on the hybrid graph 
G’

0. Each partition Pi is assigned to a different worker 
processor. In parallel, each worker processor iterates through 
the nodes assigned to its partition sequentially. Following the 
approach described by [4], the edges of each node in V(G’

0) 
are examined to identify transitive edges. Each transitive edge 
is recorded for removal from the hybrid graph. After each 
worker processor completes the transitive reduction of its 
partition, the master process removes the recorded transitive 

edges from the hybrid graph. If a transitive edge crosses a 
graph partition, then both of the partitions to which the 
endpoints of that edge are assigned will record that edge as 
being transitive. The master process will remove the recorded 
transitive edge from the hybrid graph. 

B. Containment removal 
The graph simplification process removes redundant 
information in the hybrid graph G’

0. This includes nodes that 
represent contigs whose sequences are contained within longer 
contigs represented by nodes in the hybrid graph. To remove 
these nodes, each worker processor again iterates through the 
nodes assigned to its partition sequentially. Let vy be a node 
that is currently being evaluated. The contig cy corresponding 
to node vy will be aligned to the contigs represented by the 
neighboring nodes of vy. If cy is found to be contained within a 
neighboring contig sequence, then vy will be recorded for 
removal from the hybrid graph. This alignment process is also 
used to detect false-positive edges within the hybrid graph. If 
the contigs corresponding to the endpoints of an edge in G’

0 
have an overlap length less than 50 bps, then that edge will be 
recorded for removal from G’

0. After each worker process 
completes the evaluation of its assigned nodes, then the master 
process removes those nodes from the hybrid graph.   

C. Error removal 
Focus employs short dead end path trimming and bubble 
removal techniques utilized by many assembly tools and 
described in [16]. Each worker node evaluates its own 
partition and explores each node to see if it is part of a dead 
end path or bubble. Nodes that are a part of a short dead end 
path or bubble are recorded. These nodes are removed from 
the hybrid graph by the master process.    

D. Graph traversal 
Focus constructs contigs by recovering all maximal paths in 
the hybrid graph. Each worker processor evaluates the nodes 
in its partition sequentially. Let vy be a node that is currently 
being evaluated and is not already in a path. The node vz 
becomes the seed for a new path and is first extended by out-
edges. If vy has a single out-edge e = (vy, vz) and e is the only 
in-edge of vz, then vz is added to the growing path. If vz is not 
part of the same partition as vy or the above criteria is not met, 
the path extension with out-edges is terminated. The path is 
then extended by out-edges from vz by the same method used 
for vy. Path extension by out-edges continues until no 
additional nodes can be added to the path. The path is then 
extended from vy by in-edges following the same approach as 
the extension by out-edges. Once all of the worker processes 
have finished path extension, the master process joins the sub-
paths produced by each worker process. Let p1 and p2 be two 
sub paths such that the right endpoint of p1 has an out-edge 
incident to the left endpoint of p2.  If the left endpoint of p2 has 
no other in-edges incident to it, then the master processor joins 
p1 and p2.  If p2 has other incident in-edges, then the two paths 
are not joined. The produced paths are used to construct 
contigs, which are output by the assembler. 
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VI. RESULTS
This results section is organized into five subsections.  First 
the data sets and computational environment are described in 
detail.  In the next section, an experiment is performed to 
demonstrate the natural parallelism that can be exploited 
during the graph partitioning process. In Section VI-C, it is 
shown that incorporating biological knowledge improves the 
partitioning process. Section VI-D describes the speed up 
curve for trimming and graph traversal algorithms 
implemented on the distributed hybrid graph. Finally, the 
results section is concluded by showing that the partitions on 
the hybrid graph are able to capture features of metagenomics 
community structure.  

A. Data sets and computational environment 
For the purpose of evaluating the graph partitioning and 
associated parallel processes for the Focus assembler 
algorithm, three Illumina read data sets were downloaded 
from the NCBI Sequence Read Archive (SRA) [20].   

These Illumina read data sets were sequenced from the gut 
microbiome of healthy individuals. Details regarding these 
data sets can be found in Table 1.   All  experiments  were  run 
on the Crane high performance computing cluster at the 
Holland computing center [21]. This cluster has 452 nodes 
with two Intel Xeon E5-2670 2.60GHz processors/16 cores 
per node.  Each node has 64 GB of memory.  

Prior to graph partitioning, the Focus algorithm was first 
used to perform pairwise alignment of the reads with a 
minimum overlap length of 50bps and minimum alignment 
identity of 90%. Focus was then applied to produce both 
multilevel and hybrid graph sets for each read data set.   

 

B. Parallel graph partitioning 
Recall that Section IV-C discussed the natural parallelism of 
the graph partitioning process. Let G0, G1 … Gn be a graph set 
created by graph coarsening, where | N(Gn) | ≤� | N(Gn-1) | ≤�
…�≤�| N(G0) |.  Let P = P0, P1, … Pk be a partitioning that is 

Part. Num Data Set Edge Cut (Hyb.) Edge Cut (Ovl.) 

8 1 18878760 17240330

2 72303920 74859760 

3 26310110 30489660 

16 1 21097730 21308940 

2 80966850 85452040 

3 31688290 35577120 

32 1 26994530 25354840 

2 84722430 89415260 

3 34377760 41504860 

64 1 31898070 32828080

2 90542060 95242730 

3 38594120 47502740 

Data set SRA ID Data set size (GBases) Read length 
(bps) 

1 SRR513170 5.02 Gb 100 bp 

2 SRR513441 4.93 Gb 100 bp 

3 SRR061581 4.97 Gb 100 bp
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TABLE I. DATA SET CHARACTERISTICS 
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Fig. 4. Graph partitioning speedup. Speedup curve for graph partitioning on the 
hybrid graph sets for the three read data sets (blue, red, green). The number of 
graph partitions generated by each run was held constant at 16.     

Fig. 5. Hybrid graph set vs. multilevel graph set. Each hybrid and multilevel 
graph set was partitioned four times with 8, 16, 32, and 64 final partitions. For 
each graph partitioning, ���������� processors were assigned, where k is the 
final number of partitions.  The runtime is shown for partitioning the hybrid 
graph set (blue) and multilevel graph set (red) for each read set (1, 2, and 3).   

TABLE II. EDGE CUT FOR THE OVERLAP AND HYBRID GRAPHS 
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created in log2(k) recursive bisection steps on G0, G1 … Gn. 
There are 2i partitions that can be processed concurrently for 
each recursive bisection step i = 0 … log2(k)-1. Observe that 
the maximum number of processors needed to fully take 
advantage of this inherent parallelism is ����� � ��. Thus for 
any partitioning of size k for a given graph, the number of 
processors needed to achieve optimal speedup is ����� � ��. 
After recursive bisection of the graph set is complete, the 
multilevel Kernighan-Lin algorithm further refines each graph 
in G0, G1 … Gn. Each graph G0, G1, … Gn can be processed 
independently, thus the number of processors needed to 
achieve the best speedup overall will be max (n, ����� � ��).  

Here we present the results of applying an increasing 
number of processors to create a speedup curve for 
partitioning the hybrid graph sets of each read data set into 16 
partitions. For each number of processors, the graph 
partitioning algorithm was run three times. The average of 
those runs and their standard deviation are shown in Fig. 4. 
Multiple runs were averaged together in this experiment due 
to time variation introduced by the random seed nodes 
selected by the greedy graph growing algorithm. As expected 
the speedup curve gains begin to level off at about eight to ten 
processors as 2log(16)-1 = 8 and there were ten graph levels for 
each of the multilevel and hybrid graph sets.   

C. Incorporation of domain knowledge for graph partitioning  
As stated previously, the multilevel graph set represents full 
graph uncoarsening to the original overlap graph G0. The 
hybrid graph set represents a compromise between full graph 
uncoarsening and incorporation of biological knowledge. Each  
node in the hybrid graph G’

0 represents a cluster of nodes in 
G0 that are likely to represent consecutive genomic regions  
within the sample DNA.  

In this section, results from partitioning both the multilevel 
graph set and hybrid graph set are provided. For each of the 
read data sets, the multilevel graph sets and hybrid graph sets 
were partitioned into 8, 16, 32, and 64 partitions in four 
separate runs.  The number of processors used to generate 
each partitioning was set to ����� � ��, where k is the number 
of partitions.  

Results from the runs are shown in Fig. 5 and Table 2. Fig. 
5 displays the runtimes for partitioning the hybrid and 

multilevel graph sets for each data set into 8, 16, 32, and 64 
partitions. The runtime for partitioning the hybrid graph is 
shown in blue, while the red bars represent the runtime of the 
partitioning of the multilevel graph spectrum. Observe that the 
runtime for partitioning the hybrid graph sets was nearly half 
of the runtime needed to partition the multilevel graph sets. 
The edge cut for each partitioning was recorded in Table 2. 
None of the edge cuts were more than 0.43% of the total edge 
weight of the original overlap graphs. 

For each data set and partition size, the edge cut for the 
hybrid graph G’

0 and overlap graph G0 is shown. The lowest 
edge cut for either the hybrid graph or overlap graph is 
shaded. For all cases except for two, the partitioning of the 
hybrid graph set produced the lowest edge cut numbers. These 
results demonstrate the improvement that the partitioning 
algorithm was able to obtain by the inclusion of biological 
knowledge. To obtain a partitioning on the original multilevel 
graph set, the hybrid graph set partitioning can simply be 
projected onto the multilevel graph set.  

D. Performance of Distributed Graph Algorithms  
In this section, the performance of the distributed graph 
trimming and graph traversal algorithms is described. First the 
distributed graph-trimming algorithm, which includes 
transitive reduction, dead-end trimming, bubble popping, and 
containment removal, was applied to the distributed hybrid 
graphs for each of the three read data sets. The trimming 
algorithm was applied for the 8, 16, 32, and 64 partitionings 
generated for each hybrid graph. Following distributed graph 
trimming, distributed graph traversal was used to obtain an 
ordering of the hybrid graphs’ nodes for contig construction. 
The runtimes for the distributed graph trimming and graph 
traversal algorithm can be found in Fig. 6.    

For the distributed trimming algorithm, run time decreased 
steeply for data sets 2 and 3 as the hybrid graph was split into 
increasing numbers of partitions.  For data 1, the run time also 
decreased, but not as sharply as data sets 2 and 3. This may be 
due to the underlying complexity of the input data sets as data 
set 1 also required much less run time than data set 2 or 3.  
Graph traversal of all of the hybrid graphs required very little 
run time, which remained static across the number of 
partitions of the hybrid graph.  

Data set Part. Num. N50 (bp) 
Max 
Contig (bp) 

Num. of 
Contigs 

1 4 2 082 25 968 104 185 

 16 2 083 25 968 104 219 
 32 2076 25 968 104 470 

 64 2076 25 968 104 470 
2 4 1 513 10 486 151 411 
 16 1 514 9 920 151 408 

 32 1 520 9 920 151 210 
 64 1 520 9 920 151 210 

3 4 1 286 6 861 117 596 
 16 1 285 6 861 117 629 
 32 1 284 6 861 117 632 

 64 1284 6861 117 632 
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Fig. 6. Distributed graph algorithms. The trimming and traversal algorithms 
were applied to the different hybrid graph partitionings. The runtimes for the 
three read data sets are shown in blue, red, and green. 

Data set Part. Num. N50 (bp)
Max 
Contig (bp)

Num. of 
Contigs

TABLE III. ASSEMBLY STATISTICS 
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Finally, to assess the consistency of the assembler 
performance across various partitionings of the hybrid graph, 
contigs were fully assembled and analyzed from the hybrid 

graph traversals.  The results for each assembly of contigs can 
be found in Table 3.  

Table 3 demonstrates the consistency of each assembly 
produced from runs on different partitionings of the hybrid 
graph. The N50 lengths are very consistent throughout 
different numbers of partitions. The number of contigs 
produced for the different partitionings is very similar, only 
varying by less than a couple hundred contigs for any of the 
data sets. The maximum length of contigs produced is stable 
across different partitioning configurations on the hybrid 
graph. Thus the assembly performance is consistent across 
different partition configurations of the hybrid graph.  

The algorithms implemented to run on the hybrid graph are 
basic in nature.  We plan to expand the number of analysis 
algorithms that can be applied to the distributed hybrid graph. 
For example, variant detection algorithms can be implemented 
to be run on the distributed hybrid graph. 

E. Extracting Biological Knowledge from Graph 
Partitionings  
In this section it is shown that the partitions generated for 

the hybrid graph built from the three gut metagenomics data 
sets can capture the community structure of those data sets. 
First, the gut microbiome reference sequence database for the 
human microbiome project was downloaded. BWA [22] was 
used to index this database and align the sequence reads to the 
reference gut microbiome sequences.  The sequence reads 
were classified to a genus according to their best hits. If no 
hits were found for a given read, it remained unclassified.  

After the alignment of the reads to the gut microbiome 
database was complete, the major genera for the three data 
sets were computed.  The read classification counts for each of 
the three data sets were pooled together. The top ten genera 
that had the greatest pooled read counts were selected for 
further analysis (Alistipes, Bacteroides, Clostridium, 
Escherichia, Eubacterium, Faecalibacterium, Prevotella, 
Parabacteroides , Roseburia). The distribution of these genera 
across the 16-partitioning for each of the three data sets was 
analyzed. The distribution of a given genera was calculated as 
the fraction of its classified reads that correspond to nodes in 
each partition.  

 The distribution of the major genera can be found in Fig. 
7. Observe that the distribution of the different genera is not 
static across the partitions. Different genera cluster 
preferentially into different partitions. This is understandable 
as the nodes representing a contiguous genome are likely to be 
adjacent to one another in the hybrid graph. Nodes that are 
highly connected are more likely to be assigned to the same 
partition.  

Also, it is notable that many genera that belong to the same 
phylum often tend to have greater read counts across the same 
partitions. For example, the genera Roseburia and Clostridium 
both have higher fractions of read counts in the same 
partitions. Both of these genera belong to the phylum 
Firmicutes. Eubacterium is found more frequently in the same 
partitions as Roseburia and Clostridium for data sets 1 and 2. 
The genus Eubacterium also belongs to the Phylum 

Fig. 7. Distribution of major genera across partitions. A partitioning of size 16 
is represented by the columns of the heat map. Genera are represented by the 
rows. The colors of the heat map represents the fraction of reads from a genera 
which is found in a partition. Darker red colors represent a greater fraction of 
reads   
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Firmicutes. Sequences that are genetically related will have 
many similar regions of genome that will be represented by 
interconnected nodes in the hybrid graph. These connected 
nodes are more likely to be assigned to the same partition.  

VII. DISCUSSION 
In this paper, the construction of a distributed assembly graph 
for next generation sequencing data was presented. Unlike 
most previous approaches that utilize a distributed de Bruijn 
graph model, this approach discussed methods for partitioning 
an extended overlap graph based model.   

 This paper covered three major objectives. First it was 
demonstrated that the integration of prior biological knowledge 
into a naïve graph partitioning algorithm could improve its 
performance. Partitioning the multilevel graph set represents 
the original naïve partitioning algorithm since the multilevel 
graph set is fully uncoarsened to the overlap graph during 
partitioning. Partitioning the hybrid graph set and projecting 
that partitioning onto the original multilevel graph set 
represents a compromise between full uncoarsening and 
incorporation of biological knowledge regarding the linearity 
of DNA. The runtime for partitioning the hybrid graph set was 
roughly half of the runtime for partitioning the full multilevel 
graph set. Finally, the edge cut was improved in most cases for 
the hybrid graph set in comparison to the multilevel graph set. 
Results demonstrate that the edge cut obtained from the 
partitioning was never more than 0.43 % of the original overlap 
graph edge weights for both the multilevel graph set and hybrid 
graph set.   

The second objective was to successfully develop parallel 
algorithms for NGS assembly on the distributed graph model. 
Multilevel graph partitioning was applied to partition both the 
multilevel graph set and the hybrid graph set. Several 
distributed graph algorithms were then implemented on the 
distributed hybrid graph. Results demonstrated a substantial 
speedup for the graph trimming algorithm. The graph traversal 
algorithm did not show a great speedup; however, this 
algorithm had a very fast runtime. Finally, assembly results 
obtained from different graph partitionings were consistent, 
demonstrating that assembly quality is not affected by 
partitioning the hybrid graph. 

The third objective was to demonstrate that biological 
knowledge could be obtained from the graph partitioning. It 
was shown that the distribution of genera was not equal across 
partitions, but that nodes representing reads from a given genus 
tended to be assigned to the same partition. Furthermore, 
phylogenetically related genera were also often found in the 
same partition.  

This paper demonstrates high performance computing 
techniques for information extraction from big data. Typically, 
high performance computing focuses solely on faster runtimes. 
High performance computing is also a tool for extracting 
usable knowledge from big data that would have other been 
impossible with limited computing resources. Finally, this 
paper demonstrates the importance of taking input data 
characteristics into consideration when designing and applying 
algorithms. It was shown that integrating biological knowledge 
into the naïve partitioning process can greatly improve its 
results. We anticipate that this prior knowledge integration 

approach can improve numerous other naïve computational 
algorithms. 
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