
Parallel NGS Assembly Using Distributed Assembly Graphs Enriched
with Biological Knowledge

Julia D. Warnke-Sommer
Department of Pathology and Microbiology

University of Nebraska Medical Center
Omaha, NE 68198, USA
julia.warnke@unmc.edu

Hesham H. Ali
College of Information Science and Technology

University of Nebraska Omaha
Omaha, NE 68182, USA

hali@unomaha.edu

Abstract—High performance computing has become essential

for many biomedical applications as the production of biological
data continues to increase. Next Generation Sequencing (NGS)
technologies are capable of producing millions to even billions of
short DNA fragments called reads. These short reads are
assembled into larger sequences called contigs by graph theoretic
software tools called assemblers. High performance computing
has been applied to reduce the computational burden of several
steps of the NGS data assembly process. Several parallel de
Bruijn graph assemblers rely on a distributed assembly graph.
However, the majority of assemblers that utilize distributed
assembly graphs do not take the input properties of the data set
into consideration to improve the graph partitioning process.
Furthermore, the graph theoretic foundation for the majority of
these assemblers is a distributed de Bruijn graph. In this paper,
we introduce a distributed overlap graph based model upon
which our parallel assembler Focus is built. The contribution of
this paper is three-fold. First, we demonstrate that the
application of data specific knowledge regarding the inherent
linearity of DNA sequences can be used to improve the
partitioning processes for distributing the assembly graph.
Second, we implement several parallel graph algorithms for
assembly with greatly improved speedup. Finally, we
demonstrate that for metagenomics datasets, the graph
partitioning provides insights into the structure of the microbial
community.

Keywords—next generation sequencing; assembly graph; high
performance computing; algorithms

I. INTRODUCTION
Current biomedical technologies are producing massive
amounts of data at increasingly faster rates. In particular, next
generation sequencing technologies are capable of producing
gigabases and even terabases of genetic sequence data in a
single run. Next generation sequencing is used to determine
the order of nucleotides in a given strand of DNA. This is
accomplished by a fragmenting sample DNA sequence into a
library of short segments. These DNA segments are then
sequenced to obtain the ordering of their nucleotide bases. The
resulting sequences, ranging from 102 – 104 base pairs (bps) in
length depending on which sequencing technology was used,
are called reads. Illumina technologies such as the HiSeq X
series are able to output up to 1800 Gb of sequence data with
150 bp long reads [1]. PacBio systems are currently able to
produce reads exceeding 10 kb in length with up to 1 Gb of
data produced per run [2].

The relatively short lengths of the produced reads in
comparison to the input sample DNA strand to be analyzed

makes it difficult to extract any information from the reads
individually. However, the reads are produced at a high
coverage of the original DNA sequence, such that many of the
reads overlap. These overlap relationships can be used to order
and merge the reads into a representation of the original target
sequence. Specialized software tools called assemblers are
used to order and merge the reads into contiguous stretches of
sequence called contigs. Most of these assembly tools rely on
graph theoretical approaches to model the reads and their
overlap relationships. Two primary approaches exist for
modeling next generation reads. Typically, the overlap graph
based assemblers [3] model each read as a node in an overlap
graph and overlap relationships as edges in the overlap graph.
Edges can be weighted by criteria such as the length of the
overlap shared between the two reads represented by the
endpoints of that edge. String graphs [4] are an extension of
the basic overlap graph formed by removing transitive edges
and other redundant information. The de Bruijn graph
assemblers [3] split each read into its set of component k-
mers. Each unique k-mer becomes an edge in the de Bruijn
graph. The left and right k-1-mers of each unique k-mer
becomes an edge in the de Bruijn graph. In both graph
approaches an ordering of the reads is obtained by traversing
the assembly graph.

Due the massive size of next generation sequencing data
sets, the assembly graph can become extremely large and
difficult to process. To address this issue, several parallel
assemblers have been developed that distribute the assembly
graph across processors. De Bruijn graph assemblers such as
AbySS [5], Ray [6], PASHA [7], and the SWAP-Assembler
[8] distribute the de Bruijn graph by assigning the generated k-
mers to different processors. MPI communication is then used
for parallel graph simplification and traversal of the
distributed de Bruijn graph. The PCAP [9] assembler is an
overlap-layout-consensus assembler that uses parallel
processing to speed up read overlap detection and scaffold
processing. HipMer [10] is a parallel version of the
Meraculous assembler designed in particular for extreme scale
analysis. Map reduce has been applied to process a string
graph assembly model [11]. Other assemblers such as
MEGAHIT [12] take advantage of GPU architecture for
parallel assembly.

Due to the linearity of DNA, reads covering a contiguous
region in the sequence will form a cluster within the assembly
graph. The parallel assemblers discussed in the previous
paragraph do not take this input characteristic of the read data

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.143

273

into consideration during the graph partitioning process. In
many applications, high performance computing is primarily
viewed as a means for speeding up computational solutions
for the purpose of producing faster results for downstream
analysis. However, we propose that high performance
computing is not just a method for obtaining faster results but
can be applied in intelligent ways to extract meaningful
information from big data. It is very tempting to use naïve
methods for high performance computing but by using domain
knowledge one may get rewarded.

Previously, we introduced a novel hybrid graph model for
assembly that integrates multiple levels of an iteratively
coarsened overlap graph to capture the structural features of
the input data set, such as repetitive or transposable sequence
regions, in a concise yet feature rich approach. This model
forms the foundation of an assembly and analysis tool called
Focus [13]. Here we describe a distributed version of this
graph model and associated parallel graph assembly methods.

The contributions of this paper are three-fold. 1) We show
that the integration of previous knowledge of the structure of
the input data set can benefit the graph partitioning algorithm's
performance. Due to the linear nature of the DNA sequence,
groups of nodes representing contiguous sequence regions can
simply be assigned to the same graph partition with minimal
processing. Results show that this dramatically improves
runtime for all data sets and the edge cut of the partitioning in
the majority of cases. 2) We develop several parallel graph
algorithms applied on our distributed graph model for
sequence assembly. Results demonstrate greatly improved
speedup times for the distributed algorithms, which include
graph cleaning and graph traversal methods. 3) Finally, we
demonstrate that we are rewarded for integrating domain
knowledge into our graph partitioning process. Insights into
metagenomics community structure can be obtained from the
resulting graph partitioning. For metagenomics read data sets,
where the underlying DNA sample is obtained from a
community of organisms, it is shown that related species tend
to cluster within the same graph partition. This information
may be useful to researchers trying to identify the composition
of a given metagenomics data set. The concept of knowledge
integration into naive algorithms may have important
extensions to additional methods in high performance
computing.

II. FOCUS ASSEMBLER OVERVIEW
The Focus assembly algorithm is composed of six component
steps. These steps include read data preprocessing, read
alignment, multilevel graph set generation, hybrid graph set
generation, hybrid graph trimming, and hybrid graph traversal.
These steps are discussed briefly in the following sections.
Please see [13] for an in-depth discussion of the Focus
algorithm.

A. Read Data Preprocessing
The Focus assembler accepts both fasta and fastq data as input.
Each read is processed individually. First the 5’ end and 3’ end
of a given read is trimmed by fixed lengths specified by the

user to remove any tags or adaptors. Then each read is trimmed
from its 3’ end based on quality values. A sliding window w of
length l is applied starting from the 3’ end and moving to the 5’
end with a user specified step size of k. The average quality
value for the sliding window is calculated at each step. Once
the average quality value becomes greater than a minimum
threshold q specified by the user, the read is trimmed from the
right end of the sliding window to the 3’ end of the read. The
reverse complement of the trimmed read is generated and
added to the read dataset. Once the read trimming and reverse
complement generation is complete, the read data set is split
into a number of subsets specified by the user that can be
processed in parallel by the read alignment module. For more
information regarding parallel read alignment of Focus please
see [13].

B. Parallel Read Alignment
Each pair of read subsets produced by the read preprocessor is
analyzed for determining read overlap relationships between
reads. For parallel read alignment, each pair of read subsets
can be sent to a different processor for independent analysis.
A reference read sub set Rr is indexed by a suffix array Sr [14].
Each read in the query read sub set Rq is visited successively.
Let rq be a read that is currently being visited in Rq. The read
rq is decomposed into its component k-mers, where k is
specified by the user. Each k-mer is used to query the suffix
array Sr to search for short k-mer matches in the reads of Rr.
Let rr be a read in Rr. If rr contains number of k-mer hits
greater than a specified threshold, then rr will be extracted
from Rr and aligned to rq using banded Needleman-Wunsch
alignment. If the alignment produces an overlap relationship,
where the prefix of rr is the suffix of rq or vice versa or where
one read is completely contained in the other, then the overlap
relationship is evaluated against minimum user specified
thresholds. If the overlap meets minimum thresholds for
alignment length and alignment minimum identity, then the
ids of the query and reference reads are recorded to file along
with the alignment length and minimum alignment identity.

C. Multilevel Graph Set
The initial overlap relationships produced by the read
alignment algorithm are loaded into an overlap graph G0. Let
V(G0) be the node set of G0 and E(G0) be the edge set of G0.
|V(G0)| is the number of nodes in G0 and |E(G0)| is the number
of edges in G0. In this overlap graph each node represents a
sequencing read and edges represent the overlap relationships
between reads. Each edge records both the alignment length
and alignment identity. The weight of each edge in G0 is set to
its recorded alignment length. This graph is extremely large,
making both assembly and any graph-based data analysis
processes difficult. Graph coarsening [15] reduces the overlap
graph G0 by finding a matching M on G0 and then merging
pairs of nodes that are the endpoints of the edges in M to form
G1. Heavy edge matching [15] and node merging is applied on
G1 to form G2. This process produces a multilevel graph set G
= {G0, G1, … Gn}, where |V(G0)| ≤� |V(G1)| ≤�…�≤�|V(Gn)|.
An example of the multilevel graph set is shown in Fig. 1.A.

274

D. Hybrid Graph Set
The result of the graph coarsening process is the multilevel
graph set G = {G0, G1, … Gn}. In this multilevel graph set for
each graph Gi where i ≥�1, every node in Gi corresponds to a
cluster of nodes in G0 and therefore a cluster of reads. It would
be optimal if each read cluster represented by a node in
G1…Gn assembled into a contiguous contig. However, this is
not likely, as certain genomic regions may not be best
represented at all levels in the multilevel graph set. For
example, a repetitive region might be over reduced in later
graph levels. To address this issue, best representative nodes
are integrated from multiple levels of the multilevel graph set
to create a hybrid graph set G’ = {G’

0, G’
1, ... G’

n}. A best
representative node is defined to be a node that is selected
from the most reduced graph as possible whose corresponding
read cluster assembles into a contiguous contig. The graph G’

0
is denoted as the hybrid graph as it will contain all of the best
representative nodes selected from Gn, Gn-1, … G0. Fig. 1.B
provides an example of a hybrid graph set obtained from a
multilevel graph set.

E. Graph simplification and error correction�
Focus follows the graph trimming algorithms introduced by
previous assembly algorithms [16] to remove short dead end
paths and small bubbles from the hybrid graph. We have
adapted our graph-trimming module to be run in parallel on
the distributed hybrid graph. More details regarding our graph
trimming methods and their parallel implementations will be
discussed under Sections V-A, V-B, and V-C of this paper.

F. Maximal Path Extraction and Contig Construction
For the purpose of contig construction, maximal paths are
extracted from the hybrid graph. The contigs are constructed
following the order of the read clusters represented by the
nodes in the maximal path. Section V-D provides more details
regarding the implementation of the maximal path algorithm
and its parallel application on the distributed hybrid graph.

III. GRAPH COARSENING
The Focus algorithm follows the approach introduced by
Karypis and Kumar [15] for partitioning large graphs. This
multilevel approach first coarsens an input graph to form a
multilevel graph set G = {G0, G1, … Gn}, where |V(Gn)| ≤
|V(Gn-1)| ≤�…�≤�|V(G0)|. The most reduced graph Gn is then
partitioned into two approximately equal halves while
attempting to minimize the edge-cut between the partitions.
The final step is un-coarsening. During this stage the partition
on Gn is projected recursively through graph levels Gn-1 to G0.
At each projection onto a given graph Gi in the spectrum, a
refinement algorithm refines the projection.

The approach described above requires that the reduced
graph be un-coarsened completely to obtain a partitioning on
the original overlap graph G0. Refinement algorithms can
become fairly costly for finer graph levels that have a large
number of edges and nodes. However, if the data that a given
graph represents have intrinsic characteristics specific to the
data domain, then that domain specific knowledge can be used
to improve the partitioning process. Since the nodes of the
overlap graph represent consecutive regions in the genome, it
is likely that many groups of nodes representing the same
genomic region can be safely assigned to the same partition
without dramatically impacting the overall edge-cut between
partitions.

The multilevel graph set represents complete un-
coarsening. In contrast, the hybrid graph set represents a
compromise between complete un-coarsening and
incorporation of biological knowledge. Recall nodes in hybrid
graph represent clusters of nodes in the original overlap graph.
If there is biological knowledge regarding which nodes should
cluster together then there is no need to completely un-coarsen
the graph. The representative nodes in the hybrid graph
represent clusters of nodes whose corresponding read clusters
have already been determined to form a contiguous contig. It
would be reasonable to assume that a cluster of nodes in the

Fig. 1. Multilevel graph set and hybrid graph set. (A) Heavy edge matching and node merging is used to create a set of multilevel graphs G0, G1, G2, where |V(G0)|
≥ |V(G1)| ≥ |V(G2)|. (B) Nodes are integrated from different levels of the multilevel graph set to create the hybrid graph set G’

0, G
’
1, G

’
2. The graph G’

2 contains all
of the best representatives from G’

2 as well as the non-representative nodes from G’
2. The graph G’

1 contains all of the best representative nodes from G2, G1 as well
as the non-representative nodes from G1. The graph G’

0 contains all of the best representative nodes selected from all graph levels and is called the hybrid graph.

���

���

���

��
��

��
��

��
��

�	�
	�

275

original overlap graph that maps to a single node in the hybrid
graph would belong to the same partition.

This paper demonstrates that a partitioning on the hybrid
graph will be as good as of a partitioning on the overlap graph
in terms of edge cut and has a much faster running time. This
partitioning found on the hybrid graph can then be simply
mapped to the original overlap graph and multilevel graph set.

IV. GRAPH PARTITIONING
The graph partitioning process proceeds as following on a

coarsened graph set to create k partitions, where k = 2i and i is
an integer number as recursive bisectioning is used to partition
the graph. A partitioning P on a graph G is defined as P = P1,
P2, … Pk, where P1, P2, … Pk are disjoint sets of nodes of in
V(G) and P1 � P2�� … ��Pk = V(G). Each P1, P2, … Pk is a
partition of V(G). First, an initial partitioning with two equal
halves is created on the most reduced graph, Gn, by a greedy
graph growing algorithm. This initial partitioning is refined
with the Kernighan-Lin [17] refinement algorithm. The refined
partitioning is projected onto the next graph level Gn-1. This
projected partitioning is then refined by the Kernighan-Lin
algorithm. The projection and subsequent refinement of the
partitioning is continued until the final graph G0 is partitioned.
Each generated partition is recursively partitioned, projected,
and refined until G0 is partitioned into the desired number of
sections, k. After the k partitions on the multilevel graph set
G0, G1, … Gn. are obtained, each graph level is refined by a
heuristic k-way Kernighan-Lin algorithm. The graph
partitioning method is discussed in detail in the following
sections.

A. Greedy Graph Growing
The approach by Karypis and Kumar [15] is followed with
some modifications to customize the greedy graph growing
algorithm to the data characteristics. This algorithm attempts

to greedily add nodes to initial partitions P1 and P2 on the most
reduced graph Gn. Define the gain gvz of a node vz in graph Gn

by placing vz into a partition Pi as:

�
�����

� ���
�

� �� �� �� �� �����

� �� � ���
�

� �� �� �� �� �����

� ��

where w(vz, v) is the weight of the edge e(vz, v). The greedy
algorithm begins by choosing a random seed node vs to insert
into the partition P1. The gains of the nodes adjacent to vs are
calculated and the nodes placed into a priority queue
according to their gains. The nodes whose gains have been
computed are the horizon of the currently growing partition.
The node with the greatest gain vg is removed from the
priority queue and added to P1. The gains of the neighbors of
vg are calculated and the nodes are added to the priority queue
or, if they are already in the queue, their gains are updated.

The growing graph algorithm in this paper attempts to
maintain balanced node weight and edge weight across the
partitions. This is done so that the distribution of edges and
nodes will be balanced across the final partitioning. The edge
weight of a given partition Pi is defined as the following.

����������� �� � ����� ���

� ����� ���������������

where w ���� ��� is the weight of the edge e ��� �� �� If
ewpartition(P1) becomes greater than 1.03ewpartition(P2), then the
partition growing of P1 is terminated. The value of 1.03 places
an upper bound of 3% on edge weight balance between the
partitions. A new seed vs is chosen and added to P2. The
partition P2 is grown according to the method introduced
previously. If ewpartition(P2) becomes greater than
1.03ewpartition(P1), than the partition growing of P2 is terminated
and a new seed is chosen for P1. This alternating partition
growing is continued until nwpartition(P1) ≥�0.5nwgraph(Gn) or
nwpartition(P2) ≥�0.5nwgraph(Gn); the remaining nodes are then
placed into the smaller partition. Thus each partition will have
approximately equal node weight. The terms nwpartition and
nwgraph are the node weight of a given partition Pi or graph Gi,
respectively, and are defined as following.

����������� �� � �����

�����

����������� � �����

���������

Any remaining nodes are added to the partition with the least
node weight. Thus the greedy growing algorithm will produce
an initial partitioning P = P1, P2, while attempting to balance
the partitions according to both node and edge weight. An
illustration of the greedy graph growing algorithm can be
found in Fig. 2.

Fig. 2. Greedy graph growing. (A) Node A is placed into partition P1. The gains
of A’s adjacent neighbors are calculated. (B). The node B has the greatest gain
and is placed into P1. The gains are updated. (C). The final node C is added to
P1 according to its gain. The partitions are now evenly weighted so the greedy
graph growing is terminated.

�
�

�

�

 �

��� �
�

��

��

��

��

��
��

��

����� �����

� ��

�� ��

� �

�

�

 �

�

��� �
�

��

��

��

��

��
��

��

����� �����

�� ��

�� ��

�

�

�

�

 ��

��� �
�
��

�� ��

��

��
��

��

�����������������

���������
������
������ !�����

�"�

"�

�"�

276

B. Kernighan-Lin Refinement Algorithm
Once the initial partitioning P = P1, P2 is created by the greedy
graph growing algorithm, it is then refined by the Kernighan-
Lin refinement algorithm. The Kernighan-Lin refinement
algorithm relies on node swapping to improve the edge cut of
a partitioning. First we provide definitions need for the
Kernighan-Lin algorithm. Given a node vz in a given partition
Pi on Gn, the external cost �

��
 and the internal cost �

��
of vz is

defined as follows.

�
��
� ���

�

� �� �� �� �� �����

� ��

�
��
� ���

�

� �� �� �� �� �����

� ��

The D value of vz, written as �
��
� is defined as �

��
� �

��
�

�
��

. Let vz � P1 and vy � P2. The gain �
����

of swapping vz and

vy is defined as �
��

+��
��
� �� �

�
� �� �if e(vz, vy) � E(Gn) and

�
��

+��
��

 if e(vz, vy) � E(Gn).

The Kernighan-Lin algorithm is iterative in nature. Given a
partitioning P = P1, P2 such that |P1| ≈ |P2| on the graph Gn, all
nodes in P1 and P2 are initially unlocked, meaning that they
can be exchanged to a different partition. The algorithm then
identifies the pair of nodes (vz, vy) that have the greatest gain
�
����

. This pair of vertex is then swapped between partitions

and vz and vy are locked. The D values of the remaining
unlocked nodes are updated. The selection and locking of the
pair of nodes with the greatest swapping gain and subsequent
updating of the remaining node’s D values is continued until
there are no longer any unlocked node pairs remaining. For
each pair (vzk, vyk)k of nodes that was selected, the partial sum
S(vzk,vyk)k = ��

������
��

�
��� of the total gain is computed. The

pair of nodes such that the partial sum is maximized is
identified. All node pair exchanges that occurred after this
node pair are undone. This is a single pass of the Kernighan-
Lin algorithm. Multiple passes are conducted until the
maximal partial sum of gains is zero, meaning that no more
improvement on the partition edge cut can be found. A
straightforward implementation of this algorithm would have
a complexity of O(n3), where n = |P1 | + |P2|, as it would
require �

�

�
�� to find the best node pair to exchange and

�

�
 node

pairs exchanged. This leads to a complexity of O(
�

�
�
�

�
��) =

O(n3).
Using appropriate data structures and strategies, the

complexity of the Kernighan - Lin algorithm can be reduced to
O(n2 log(n)). This is the approach taken in this paper and will
be discussed briefly. The nodes assigned to each partition P1
and P2 are inserted into two priority queues Q1 and Q2,

respectively, according to their D values, where nodes with
greater D values have greater priority within the queue. It is
reasonable that the node pair that has the greatest gain value
will be near the top of the priority queues Q1and Q2. Indeed,
only a subset of the node pairs need to be explored from Q1

and Q2. Pairs of nodes (vzk,vyk) are evaluated in decreasing
order of Dvzk + Dvyk and the gain �

������
is computed. The

maximum �
������

encountered thus far as the node pairs are

being sequentially evaluated is recorded as the current gmax.
Once a pair of nodes (vzk,vyk) is found such that Dvzk + Dvzy ≤�
gmax the search through the nodes pairs is terminated. The node
pair (vzk,vyk) such that �

������
is the current gmax, is selected as

the node pair to exchange. This approach requires
�

�
���

�

�
 to

sort the nodes in the priority queues. Since
�

�
 node exchanges

are made, the total complexity is O(�
�

�
�
�

�
����

�

�
��) =

O(�� ������). The diagonal scanning approach in [18] is used
to determine the ordering of node pairs evaluated from Q1 and
Q2. An additional strategy is also utilized from [15] to speed up
run time. Let Smax be the maximal partial sum of gains that has
been encountered thus far as the node pairs are being
evaluated. If Smax does not increase for fifty node exchanges,
then the node exchanges are terminated. As before, all node-
pairs exchanges that occurred after Smax are undone. Figure 3
provides an example of the Kernighan-Lin algorithm.

C. Projection of the Partition
After the partitioning P = P1, P2 is found on Gn, it is projected
iteratively onto Gn-1, Gn-2 … G0. If vz is a node in N(Gn)
assigned to a partition Pi, then its component child nodes in
N(Gn-1) will be assigned to Pi on Gn-1. Once a projected
partitioning P = P1, P2 is established on Gn-1 from Gn, it is
refined by the Kernighan-Lin algorithm. The partitioning on
Gn-1 is then projected onto Gn-2 and refined.

Recursive bisection is applied to create a partitioning P =
P1, P2, … Pk in log2(k) steps, using the greedy graph growing
and Kernighan-Lin algorithms described earlier. First Gn is
partitioned into two equal partitions that are projected and
refined onto Gn-1, Gn-2, … G0. These two partitions are then
partitioned into four partitions, which are projected and
refined. These partitions continue to be recursively bisected
until k partitions are created. Observe that there is a natural

Fig. 3. Kernighan-Lin. (A) Let nodes A and B be the node pair with the greatest
gain. The E, I, and D values are also shown for A and B. (B) The nodes A and B
are swapped. The updated edge cut is shown.

��� ���

�
�� ��

��

��
��

���#��	����#���
�
�#��	��
�#���
�
���#��	��
�#���
�
��
#���
�
�

��� ���

���

��

��

��

��

��
�����#����

��
�����#���

���

��

277

parallelism as the coarsened graph set is being recursively
bisected. At each recursive bisection step i = 0 … log2(k)-1
there are 2i partitions that can be processed concurrently. The
number of partitions that will need to be bisected in a given
step i is 2i. Thus if 2i processors are assigned at each ith step,
the partitioning P = P1, P2, … Pk on Gn, Gn-1, … G0 can be
generated in log2(k) steps in contrast to k-1 number of steps.

Thus the upper bound on parallelism is O(
���

�������
� .

D. Global K-Way Kernighan-Lin Refinement Algorithm
After the multilevel recursive bisection with the greedy graph
growing and Kernighan-Lin algorithm is complete, there is a
partitioning P = P1, P2, … Pk on Gn, Gn-1, … G0. This paper
follows the global Kernighan-Lin heuristic approach in [19] to
perform a k-way refinement on P for each graph level. Let Gi
be the graph level currently begin refined and P = P1, P2, … Pk

be the partitioning on Gi. First, the boundary nodes in P are
identified. A given node vz in Gi is a boundary node in P if �

��

�0. The boundary nodes in P are inserted into a priority
queue Q according to their gains. Here the gain �

��
of a node

vz is calculated as �
��
� �

��
� The nodes in Q are then

evaluated in the order of descending gain. Let vz be the current
node being evaluated and Pi be the partition that vz is currently
assigned to. Let �

�����
be the external cost of moving vz to a

partition Pj given by �
�����

� ���
�� �� �� �� �� ������ �����
� ��. The

node vz is moved to a partition Pj such that �
�����

is the

maximum external cost out of all of the external costs
calculated for each partition. Partition balancing conditions
must also be met; a node will not be moved to a partition Pj
from a partition Pi if |Pj| ≥�1.03|Pi|. As before, let Smax be the
maximal partial sum of gains that has been encountered thus
far as nodes have been moved between partitions. The k-way
refinement algorithm terminates after fifty moves have been
made and no improvement to Smax occurs. All node moves that
occurred after the Smax was identified are undone. This is a
single pass of the global k-way Kernighan-Lin heuristic
algorithm. Multiple passes are conducted until no more node
move improvements can be made. Each graph level can be
refined independently by the global k-way Kernighan-Lin
algorithm with multiple processors.

V. DISTRIBUTED GRAPH ALGORITHMS
In this section, distributed graph algorithms for graph
simplification, error correction, and graph traversal are
introduced.

A. Transitive edge reduction
Let P = {P1, P2, … Pk} be a partitioning on the hybrid graph
G’

0. Each partition Pi is assigned to a different worker
processor. In parallel, each worker processor iterates through
the nodes assigned to its partition sequentially. Following the
approach described by [4], the edges of each node in V(G’

0)
are examined to identify transitive edges. Each transitive edge
is recorded for removal from the hybrid graph. After each
worker processor completes the transitive reduction of its
partition, the master process removes the recorded transitive

edges from the hybrid graph. If a transitive edge crosses a
graph partition, then both of the partitions to which the
endpoints of that edge are assigned will record that edge as
being transitive. The master process will remove the recorded
transitive edge from the hybrid graph.

B. Containment removal
The graph simplification process removes redundant
information in the hybrid graph G’

0. This includes nodes that
represent contigs whose sequences are contained within longer
contigs represented by nodes in the hybrid graph. To remove
these nodes, each worker processor again iterates through the
nodes assigned to its partition sequentially. Let vy be a node
that is currently being evaluated. The contig cy corresponding
to node vy will be aligned to the contigs represented by the
neighboring nodes of vy. If cy is found to be contained within a
neighboring contig sequence, then vy will be recorded for
removal from the hybrid graph. This alignment process is also
used to detect false-positive edges within the hybrid graph. If
the contigs corresponding to the endpoints of an edge in G’

0
have an overlap length less than 50 bps, then that edge will be
recorded for removal from G’

0. After each worker process
completes the evaluation of its assigned nodes, then the master
process removes those nodes from the hybrid graph.

C. Error removal
Focus employs short dead end path trimming and bubble
removal techniques utilized by many assembly tools and
described in [16]. Each worker node evaluates its own
partition and explores each node to see if it is part of a dead
end path or bubble. Nodes that are a part of a short dead end
path or bubble are recorded. These nodes are removed from
the hybrid graph by the master process.

D. Graph traversal
Focus constructs contigs by recovering all maximal paths in
the hybrid graph. Each worker processor evaluates the nodes
in its partition sequentially. Let vy be a node that is currently
being evaluated and is not already in a path. The node vz
becomes the seed for a new path and is first extended by out-
edges. If vy has a single out-edge e = (vy, vz) and e is the only
in-edge of vz, then vz is added to the growing path. If vz is not
part of the same partition as vy or the above criteria is not met,
the path extension with out-edges is terminated. The path is
then extended by out-edges from vz by the same method used
for vy. Path extension by out-edges continues until no
additional nodes can be added to the path. The path is then
extended from vy by in-edges following the same approach as
the extension by out-edges. Once all of the worker processes
have finished path extension, the master process joins the sub-
paths produced by each worker process. Let p1 and p2 be two
sub paths such that the right endpoint of p1 has an out-edge
incident to the left endpoint of p2. If the left endpoint of p2 has
no other in-edges incident to it, then the master processor joins
p1 and p2. If p2 has other incident in-edges, then the two paths
are not joined. The produced paths are used to construct
contigs, which are output by the assembler.

278

VI. RESULTS
This results section is organized into five subsections. First
the data sets and computational environment are described in
detail. In the next section, an experiment is performed to
demonstrate the natural parallelism that can be exploited
during the graph partitioning process. In Section VI-C, it is
shown that incorporating biological knowledge improves the
partitioning process. Section VI-D describes the speed up
curve for trimming and graph traversal algorithms
implemented on the distributed hybrid graph. Finally, the
results section is concluded by showing that the partitions on
the hybrid graph are able to capture features of metagenomics
community structure.

A. Data sets and computational environment
For the purpose of evaluating the graph partitioning and
associated parallel processes for the Focus assembler
algorithm, three Illumina read data sets were downloaded
from the NCBI Sequence Read Archive (SRA) [20].

These Illumina read data sets were sequenced from the gut
microbiome of healthy individuals. Details regarding these
data sets can be found in Table 1. All experiments were run
on the Crane high performance computing cluster at the
Holland computing center [21]. This cluster has 452 nodes
with two Intel Xeon E5-2670 2.60GHz processors/16 cores
per node. Each node has 64 GB of memory.

Prior to graph partitioning, the Focus algorithm was first
used to perform pairwise alignment of the reads with a
minimum overlap length of 50bps and minimum alignment
identity of 90%. Focus was then applied to produce both
multilevel and hybrid graph sets for each read data set.

B. Parallel graph partitioning
Recall that Section IV-C discussed the natural parallelism of
the graph partitioning process. Let G0, G1 … Gn be a graph set
created by graph coarsening, where | N(Gn) | ≤� | N(Gn-1) | ≤�
…�≤�| N(G0) |. Let P = P0, P1, … Pk be a partitioning that is

Part. Num Data Set Edge Cut (Hyb.) Edge Cut (Ovl.)

8 1 18878760 17240330

2 72303920 74859760

3 26310110 30489660

16 1 21097730 21308940

2 80966850 85452040

3 31688290 35577120

32 1 26994530 25354840

2 84722430 89415260

3 34377760 41504860

64 1 31898070 32828080

2 90542060 95242730

3 38594120 47502740

Data set SRA ID Data set size (GBases) Read length
(bps)

1 SRR513170 5.02 Gb 100 bp

2 SRR513441 4.93 Gb 100 bp

3 SRR061581 4.97 Gb 100 bp

��������
��������
��������
	��
�����
	��	
����

��������

��������
���������
���
�����
���	
����
���������

	�
� �� �� �� 	�� 	
� 	�� 	�� 	��
��

�
��

��
��

�
��
	

�
�
�
��
�

�

���������������������

����
��������������������

	�

�

��

TABLE I. DATA SET CHARACTERISTICS

��������

��������

��������

	��
�����

	��	
����

��������

��������

���������

�� 	�� �
� ���

��
��
��

��
�

�
�
�
��
��
�

	��
����
����������

��

��������

�
�����

��������

	�	
����

��������

	
�������

	��
�����

	��������

	��	
����

�� 	�� �
� ���

��
��
��

��
�

�
�
�
��
��
�

	��
����
����������

 �

��������

�
�����

��������

	�	
����

��������

	
�������

	��
�����

	��������

	��	
����

	�������

�� 	�� �
� ���

��
��
��

��
�

�
�
�
��
��
�

	��
����
����������

!�

��
��������
���"���#���������������
���"��

Fig. 4. Graph partitioning speedup. Speedup curve for graph partitioning on the
hybrid graph sets for the three read data sets (blue, red, green). The number of
graph partitions generated by each run was held constant at 16.

Fig. 5. Hybrid graph set vs. multilevel graph set. Each hybrid and multilevel
graph set was partitioned four times with 8, 16, 32, and 64 final partitions. For
each graph partitioning, ���������� processors were assigned, where k is the
final number of partitions. The runtime is shown for partitioning the hybrid
graph set (blue) and multilevel graph set (red) for each read set (1, 2, and 3).

TABLE II. EDGE CUT FOR THE OVERLAP AND HYBRID GRAPHS

279

created in log2(k) recursive bisection steps on G0, G1 … Gn.
There are 2i partitions that can be processed concurrently for
each recursive bisection step i = 0 … log2(k)-1. Observe that
the maximum number of processors needed to fully take
advantage of this inherent parallelism is ����� � ��. Thus for
any partitioning of size k for a given graph, the number of
processors needed to achieve optimal speedup is ����� � ��.
After recursive bisection of the graph set is complete, the
multilevel Kernighan-Lin algorithm further refines each graph
in G0, G1 … Gn. Each graph G0, G1, … Gn can be processed
independently, thus the number of processors needed to
achieve the best speedup overall will be max (n, ����� � ��).

Here we present the results of applying an increasing
number of processors to create a speedup curve for
partitioning the hybrid graph sets of each read data set into 16
partitions. For each number of processors, the graph
partitioning algorithm was run three times. The average of
those runs and their standard deviation are shown in Fig. 4.
Multiple runs were averaged together in this experiment due
to time variation introduced by the random seed nodes
selected by the greedy graph growing algorithm. As expected
the speedup curve gains begin to level off at about eight to ten
processors as 2log(16)-1 = 8 and there were ten graph levels for
each of the multilevel and hybrid graph sets.

C. Incorporation of domain knowledge for graph partitioning
As stated previously, the multilevel graph set represents full
graph uncoarsening to the original overlap graph G0. The
hybrid graph set represents a compromise between full graph
uncoarsening and incorporation of biological knowledge. Each
node in the hybrid graph G’

0 represents a cluster of nodes in
G0 that are likely to represent consecutive genomic regions
within the sample DNA.

In this section, results from partitioning both the multilevel
graph set and hybrid graph set are provided. For each of the
read data sets, the multilevel graph sets and hybrid graph sets
were partitioned into 8, 16, 32, and 64 partitions in four
separate runs. The number of processors used to generate
each partitioning was set to ����� � ��, where k is the number
of partitions.

Results from the runs are shown in Fig. 5 and Table 2. Fig.
5 displays the runtimes for partitioning the hybrid and

multilevel graph sets for each data set into 8, 16, 32, and 64
partitions. The runtime for partitioning the hybrid graph is
shown in blue, while the red bars represent the runtime of the
partitioning of the multilevel graph spectrum. Observe that the
runtime for partitioning the hybrid graph sets was nearly half
of the runtime needed to partition the multilevel graph sets.
The edge cut for each partitioning was recorded in Table 2.
None of the edge cuts were more than 0.43% of the total edge
weight of the original overlap graphs.

For each data set and partition size, the edge cut for the
hybrid graph G’

0 and overlap graph G0 is shown. The lowest
edge cut for either the hybrid graph or overlap graph is
shaded. For all cases except for two, the partitioning of the
hybrid graph set produced the lowest edge cut numbers. These
results demonstrate the improvement that the partitioning
algorithm was able to obtain by the inclusion of biological
knowledge. To obtain a partitioning on the original multilevel
graph set, the hybrid graph set partitioning can simply be
projected onto the multilevel graph set.

D. Performance of Distributed Graph Algorithms
In this section, the performance of the distributed graph
trimming and graph traversal algorithms is described. First the
distributed graph-trimming algorithm, which includes
transitive reduction, dead-end trimming, bubble popping, and
containment removal, was applied to the distributed hybrid
graphs for each of the three read data sets. The trimming
algorithm was applied for the 8, 16, 32, and 64 partitionings
generated for each hybrid graph. Following distributed graph
trimming, distributed graph traversal was used to obtain an
ordering of the hybrid graphs’ nodes for contig construction.
The runtimes for the distributed graph trimming and graph
traversal algorithm can be found in Fig. 6.

For the distributed trimming algorithm, run time decreased
steeply for data sets 2 and 3 as the hybrid graph was split into
increasing numbers of partitions. For data 1, the run time also
decreased, but not as sharply as data sets 2 and 3. This may be
due to the underlying complexity of the input data sets as data
set 1 also required much less run time than data set 2 or 3.
Graph traversal of all of the hybrid graphs required very little
run time, which remained static across the number of
partitions of the hybrid graph.

Data set Part. Num. N50 (bp)
Max
Contig (bp)

Num. of
Contigs

1 4 2 082 25 968 104 185

 16 2 083 25 968 104 219
 32 2076 25 968 104 470

 64 2076 25 968 104 470
2 4 1 513 10 486 151 411
 16 1 514 9 920 151 408

 32 1 520 9 920 151 210
 64 1 520 9 920 151 210

3 4 1 286 6 861 117 596
 16 1 285 6 861 117 629
 32 1 284 6 861 117 632

 64 1284 6861 117 632

��

�����

�����

�����

�����

�����

�����

	����

� ��� ��� ���

��
��
$�

��
�%�
��
��

	�

�

�����
������
$$����

����
�����	��
��������
������

����
��

����
��

����
��

�����������

�����������

�����������

Fig. 6. Distributed graph algorithms. The trimming and traversal algorithms
were applied to the different hybrid graph partitionings. The runtimes for the
three read data sets are shown in blue, red, and green.

Data set Part. Num. N50 (bp)
Max
Contig (bp)

Num. of
Contigs

TABLE III. ASSEMBLY STATISTICS

280

Finally, to assess the consistency of the assembler
performance across various partitionings of the hybrid graph,
contigs were fully assembled and analyzed from the hybrid

graph traversals. The results for each assembly of contigs can
be found in Table 3.

Table 3 demonstrates the consistency of each assembly
produced from runs on different partitionings of the hybrid
graph. The N50 lengths are very consistent throughout
different numbers of partitions. The number of contigs
produced for the different partitionings is very similar, only
varying by less than a couple hundred contigs for any of the
data sets. The maximum length of contigs produced is stable
across different partitioning configurations on the hybrid
graph. Thus the assembly performance is consistent across
different partition configurations of the hybrid graph.

The algorithms implemented to run on the hybrid graph are
basic in nature. We plan to expand the number of analysis
algorithms that can be applied to the distributed hybrid graph.
For example, variant detection algorithms can be implemented
to be run on the distributed hybrid graph.

E. Extracting Biological Knowledge from Graph
Partitionings
In this section it is shown that the partitions generated for

the hybrid graph built from the three gut metagenomics data
sets can capture the community structure of those data sets.
First, the gut microbiome reference sequence database for the
human microbiome project was downloaded. BWA [22] was
used to index this database and align the sequence reads to the
reference gut microbiome sequences. The sequence reads
were classified to a genus according to their best hits. If no
hits were found for a given read, it remained unclassified.

After the alignment of the reads to the gut microbiome
database was complete, the major genera for the three data
sets were computed. The read classification counts for each of
the three data sets were pooled together. The top ten genera
that had the greatest pooled read counts were selected for
further analysis (Alistipes, Bacteroides, Clostridium,
Escherichia, Eubacterium, Faecalibacterium, Prevotella,
Parabacteroides , Roseburia). The distribution of these genera
across the 16-partitioning for each of the three data sets was
analyzed. The distribution of a given genera was calculated as
the fraction of its classified reads that correspond to nodes in
each partition.

 The distribution of the major genera can be found in Fig.
7. Observe that the distribution of the different genera is not
static across the partitions. Different genera cluster
preferentially into different partitions. This is understandable
as the nodes representing a contiguous genome are likely to be
adjacent to one another in the hybrid graph. Nodes that are
highly connected are more likely to be assigned to the same
partition.

Also, it is notable that many genera that belong to the same
phylum often tend to have greater read counts across the same
partitions. For example, the genera Roseburia and Clostridium
both have higher fractions of read counts in the same
partitions. Both of these genera belong to the phylum
Firmicutes. Eubacterium is found more frequently in the same
partitions as Roseburia and Clostridium for data sets 1 and 2.
The genus Eubacterium also belongs to the Phylum

Fig. 7. Distribution of major genera across partitions. A partitioning of size 16
is represented by the columns of the heat map. Genera are represented by the
rows. The colors of the heat map represents the fraction of reads from a genera
which is found in a partition. Darker red colors represent a greater fraction of
reads

X
13

X
14

X
11

X
12 X
9

X
4

X
16 X
5

X
8

X
2

X
6

X
7

X
10 X
3

X
1

X
15

Acinetobacter

Faecalibacterium

Eubacterium

Roseburia

Clostridium

Escherichia

Alistipes

Prevotella

Bacteroides

Parabacteroides
X
4

X
16

X
11

X
10 X
9

X
12 X
5

X
6

X
2

X
15 X
7

X
3

X
8

X
1

X
14

X
13

Acinetobacter

Escherichia

Faecalibacterium

Alistipes

Eubacterium

Clostridium

Roseburia

Parabacteroides

Bacteroides

Prevotella

X
8

X
12

X
13

X
14 X
5

X
2

X
1

X
7

X
4

X
6

X
3

X
10

X
16 X
9

X
11

X
15

Escherichia

Eubacterium

Clostridium

Roseburia

Alistipes

Prevotella

Acinetobacter

Faecalibacterium

Bacteroides

Parabacteroides

��

��

��

���������

���������

���������

����	�
��
��
�����
	�����	����	
�����	��
���

281

Firmicutes. Sequences that are genetically related will have
many similar regions of genome that will be represented by
interconnected nodes in the hybrid graph. These connected
nodes are more likely to be assigned to the same partition.

VII. DISCUSSION
In this paper, the construction of a distributed assembly graph
for next generation sequencing data was presented. Unlike
most previous approaches that utilize a distributed de Bruijn
graph model, this approach discussed methods for partitioning
an extended overlap graph based model.

 This paper covered three major objectives. First it was
demonstrated that the integration of prior biological knowledge
into a naïve graph partitioning algorithm could improve its
performance. Partitioning the multilevel graph set represents
the original naïve partitioning algorithm since the multilevel
graph set is fully uncoarsened to the overlap graph during
partitioning. Partitioning the hybrid graph set and projecting
that partitioning onto the original multilevel graph set
represents a compromise between full uncoarsening and
incorporation of biological knowledge regarding the linearity
of DNA. The runtime for partitioning the hybrid graph set was
roughly half of the runtime for partitioning the full multilevel
graph set. Finally, the edge cut was improved in most cases for
the hybrid graph set in comparison to the multilevel graph set.
Results demonstrate that the edge cut obtained from the
partitioning was never more than 0.43 % of the original overlap
graph edge weights for both the multilevel graph set and hybrid
graph set.

The second objective was to successfully develop parallel
algorithms for NGS assembly on the distributed graph model.
Multilevel graph partitioning was applied to partition both the
multilevel graph set and the hybrid graph set. Several
distributed graph algorithms were then implemented on the
distributed hybrid graph. Results demonstrated a substantial
speedup for the graph trimming algorithm. The graph traversal
algorithm did not show a great speedup; however, this
algorithm had a very fast runtime. Finally, assembly results
obtained from different graph partitionings were consistent,
demonstrating that assembly quality is not affected by
partitioning the hybrid graph.

The third objective was to demonstrate that biological
knowledge could be obtained from the graph partitioning. It
was shown that the distribution of genera was not equal across
partitions, but that nodes representing reads from a given genus
tended to be assigned to the same partition. Furthermore,
phylogenetically related genera were also often found in the
same partition.

This paper demonstrates high performance computing
techniques for information extraction from big data. Typically,
high performance computing focuses solely on faster runtimes.
High performance computing is also a tool for extracting
usable knowledge from big data that would have other been
impossible with limited computing resources. Finally, this
paper demonstrates the importance of taking input data
characteristics into consideration when designing and applying
algorithms. It was shown that integrating biological knowledge
into the naïve partitioning process can greatly improve its
results. We anticipate that this prior knowledge integration

approach can improve numerous other naïve computational
algorithms.

REFERENCES
[1] “Illumina | Sequencing and array-based solutions for genetic research.”

[Online]. Available: http://www.illumina.com/. [Accessed: 07-Dec-
2016].

[2] Pacific Biosciences. [Online]. Available: http://www.pacb.com/.
[Accessed: 07-Dec-2016].

[3] J. R. Miller, S. Koren, and G. Sutton, “Assembly algorithms for next-
generation sequencing data,” Genomics, vol. 95, no. 6, pp. 315–327,
Jun. 2010.

[4] E. W. Myers, “The fragment assembly string graph,” Bioinformatics,
vol. 21, no. suppl 2, pp. ii79–ii85, Jan. 2005.

[5] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M. Jones, and
İ. Birol, “ABySS: A parallel assembler for short read sequence data,”
Genome Res., vol. 19, no. 6, pp. 1117–1123, Jun. 2009.

[6] S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: Simultaneous Assembly
of Reads from a Mix of High-Throughput Sequencing Technologies,” J.
Comp. Biol., vol. 17, no. 11, pp. 1519–1533, Oct. 2010.

[7] Y. Liu, B. Schmidt, and D. L. Maskell, “Parallelized short read assembly
of large genomes using de Bruijn graphs,” BMC bioinformatics, vol. 12,
no. 1, p. 354, 2011.

[8] J. Meng, B. Wang, Y. Wei, S. Feng, and P. Balaji, “SWAP-Assembler:
scalable and efficient genome assembly towards thousands of cores,”
BMC Bioinformatics, vol. 15, no. Suppl 9, p. S2, Sep. 2014.

[9] X. Huang, J. Wang, S. Aluru, S.-P. Yang, and L. Hillier, “PCAP: A
Whole-Genome Assembly Program,” Genome Res., vol. 13, no. 9, pp.
2164–2170, Sep. 2003.

[10] E. Georganas et al., “HipMer: An Extreme-scale De Novo Genome
Assembler,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, New York,
NY, USA, 2015, pp. 14:1–14:11.

[11] Y. Chang, et al. "A de novo next generation genomic sequence
assembler based on string graph and MapReduce cloud computing
framework." BMC genomics 13.7 (2012): 1.

[12] D. Li, C.-M. Liu, R. Luo, K. Sadakane, and T.-W. Lam, “MEGAHIT: an
ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph,” Bioinformatics, vol. 31, no. 10,
pp. 1674–1676, May 2015.

[13] J. Warnke and H. Ali, “Focus: A New Multilayer Graph Model for Short
Read Analysis and Extraction of Biologically Relevant Features,” in
Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics, New York, NY, USA,
2014, pp. 489–498.

[14] N. J. Larsson and K. Sadakane, “Faster Suffix Sorting,” Theor. Comput.
Sci., vol. 387, no. 3, pp. 258–272, Nov. 2007.

[15] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359–392, Jan. 1998.

[16] D. R. Zerbino and E. Birney, “Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs,” Genome Res., vol. 18, no. 5, pp. 821–
829, May 2008.

[17] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol. 49, no. 2,
pp. 291–307, Feb. 1970.

[18] S. Dutt, “New faster Kernighan-Lin-type graph-partitioning algorithms,”
in Proceedings of 1993 International Conference on Computer Aided
Design (ICCAD), 1993, pp. 370–377.

[19] G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme for
Irregular Graphs,” Journal of Parallel and Distributed Computing, vol.
48, no. 1, pp. 96–129, Jan. 1998.

[20] “Home - SRA - NCBI.” [Online]. Available:
https://www.ncbi.nlm.nih.gov/sra. [Accessed: 07-Dec-2016].

[21] “Holland Computing Center | University of Nebraska–Lincoln.”
[Online]. Available: http://hcc.unl.edu/. [Accessed: 07-Dec-2016].

[22] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows–Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–
1760, July 2009.

282

