
GPU-accelerated protein family identification for metagenomics

Changjun Wu

Xerox Innovation Group

Xerox Research Center

Webster, NY, USA

Email: changjun.wu@xerox.com

Ananth Kalyanaraman

School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA, USA

Email: ananth@eecs.wsu.edu

Abstract—The clustering of putative protein/Open Reading
Frame (ORF) sequences available from large-scale metage-
nomics survey projects is a core analytical function that
has led to the identification and characterization of novel
protein families of environmental microbial communities. The
implementation of this function, however, is currently chal-
lenged not only by data size but also by data complexity.
In this paper, we present a CPU-GPU implementation of a
randomized graph clustering heuristic called Shingling, which
was originally developed by Gibson et al. Our implementation
uses the CPU and GPU for different stages of computation,
using GPUs for the most time-consuming steps. Experimental
results of a 2M ocean metagenomics data set obtained from
the Sorcerer II Global Ocean Sampling project show that our
new implementation is able to achieve a ∼7X speedup over
our serial implementation without using asynchronous CPU-
GPU communication, with the GPU part alone contributing
to over ∼374X speedup in the accelerated part. Qualitative
evaluation of the 2M data set shows that our method is able to
improve sensitivity of clustering over existing methods, and is
more successful in recruiting more sequences into the clustering
without impacting the overall specificity. As a demonstration
of a large scale run, we were able to cluster a real world
homology graph, containing 11M vertices and 640M edges,
and constructed from sequences of an ongoing Pacific Ocean
metagenomics survey project, in about 94 minutes.

Keywords-Protein family identification; Parallel graph clus-
tering algorithm; Dense subgraph detection; GPGPU applica-
tion;

I. INTRODUCTION

Protein family identification is a fundamental problem

in bioinformatics and computational biology. There are

multiple accepted ways of relating protein sequences into

families [2] — by full sequence similarity, local sequence

or domain level similarity, functional and/or evolutionary re-

lation, etc. [3], [19], [26]. However, in all these different ap-

proaches, once the pairwise relationship between proteins is

determined, the family composition is typically determined

based on a tight clustering formulation — each member of a

family is related to most (if not all) of the other members in

the family. This problem can be reformulated into a graph-

theoretic problem: Given a protein graph G(V,E) where

V is a set of n proteins and (pi, pj) ∈ E if and only

if protein i is related to protein j, the problem becomes

one of identifying tightly knit clusters (alternatively, densely

connected components). Although information is sometimes

available to assign edge weights in this graph based on the

degree of pairwise relationship, the scope of this paper is

restricted to unweighted inputs.

Identifying protein families is of fundamental importance

to document the diversity of the known protein universe.

It also provides a means to determine the functional roles

of newly discovered protein sequences. This latter cause

has become highly significant of late because numerous

genome projects have been completed and as a result

there is a sudden expansion of the protein universe. The

most dominant contributor to this information-revolution

has been the projects in metagenomics. Metagenomics [12],

the sequencing and analysis of genetic content obtained

from environmental samples, has rapidly emerged as an

important area for discovery in environmental microbiology.

Metagenomics has applications to bioenergy, environmental

biotechnology, pharmaceuticals and agriculture [11]. For

over the last several years, there have been hundreds of

metagenomics projects [10], [17], [23], [26] resulting in an

explosion of metagenomics survey sequences in repositories

such as CAMERA [6] and IMG/M [13].

In a typical metagenomics project, DNA material is col-

lected from a target environment of interest (e.g., ocean, acid

mine, human gut) and passed through a shotgun sequencing

facility [16]. The collected DNA represents a pool of mi-

crobes living in that environmental sample, and the shotgun

sequencing approach shreds the DNA pool into millions of

tiny “fragments”, each measuring only a few hundred base

pairs (bp). Each of these fragments can then be individually

“sequenced” in a laboratory to have its nucleotide sequence

determined. The resulting environmental sequence DNA

data can be assembled, annotated for genetic regions and

subsequently translated into six frames to result in Open

Reading Frames (ORFs) or putative protein sequences. For

convenience, the terms “proteins”, “ORFs” and “sequences”

are used interchangeably in the rest of this paper.

A. Related Work

One of the traditional approaches used for clustering ORF

data has been to perform an all-against-all protein sequence

alignment using an alignment heuristic such as BLAST [1],

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.185

559

and subsequently cluster them using heuristic approaches

based on the resulting protein sequence homology graph.

An excellent example of such a large-scale application is the

Sorcerer II Global Ocean Sampling project [26], in which

a collection of ∼28.6 million ORFs (∼17 million newly

sequenced and remaining already processed) were analyzed

to result in the identification of thousands of new protein

families. However, this analysis took an aggregate of 106

CPU hours. The task was brute-force parallelized using 125

dual processors systems and 128 16-processor nodes each

containing between 16GB-64GB of RAM.

In 2008, we proposed an alternative approach to perform-

ing such large-scale analysis [24]. This approach, which we

refer to as the pGraph-pClust pipeline, differs from other

methods in both phases of analysis:

1) pGraph: Homology detection is achieved by first

identifying promising pairs of sequences based on a

maximal-matching heuristic (suffix trees are used in

our implementation to identify such pairs [14]), and

subsequently performing the optimality-guaranteeing

Smith-Waterman alignment algorithm [20] only on

those identified pairs.

2) pClust: In order to process the large scale input graph,

connected component detection is applied to the input

graph to break down the large problem instance into

subproblems of much smaller size. For each connected

component, we developed an approach based on a

well known graph clustering heuristic called Shingling

developed by Gibson et al. in 2005 in the context of

web communities [9] to report clusters.

Our experiments with the pGraph-pClust pipeline showed

that the combination of techniques significantly improves

the quality of the overall clustering, with a particular im-

provement in cluster sensitivity [24]. We were also able to

efficiently parallelize the pGraph step to run on thousands

of processors on a distributed memory computer [25]. In

Daily et al. 2012 [7], an alternative approach based on work

stealing is proposed to further enhance scaling to hundreds

of thousands of cores.

While the homology detection phase is relatively easier

to parallelize, the clustering phase presents a number of

challenges for parallelization due to its inherent irregularity

in computation and demands in data movement. In Rytsareva

et al. [18], we report two very different approaches to

parallelize pClust — one using shared memory OpenMP

parallelization and another using the Hadoop MapReduce

model for distributed memory machines. Both these imple-

mentations enhanced the problem size reach by a couple

of orders of magnitude (to ×108 edges). The OpenMP

implementation was significantly faster than the Hadoop

implementation due to the expensive disk I/O operations

involved in the Hadoop platform.

B. Contributions

In this paper, we explore GPUs for parallelizing the clus-

tering step in metagenomics protein family identification.

The large number of processing cores on GPUs coupled

with the general amenability of multiple stages within the

serial clustering algorithm to benefit from data parallelism

(described in Section III-B) makes it a promising case

of application. However, there are also associated chal-

lenges imposed by the GPU model of computing for our

clustering implementation — notably, the limited device

memory availability, hierarchical memory organization, and

overheads associated with data movement. To overcome

these challenges, in this paper we present and evaluate a

CPU-GPU parallel implementation, which takes advantage

of the compute power of the GPUs and the larger memory

available in RAM to the CPUs. More specifically, the CPU

performs the inherently serial steps within the algorithm

in addition to hosting the memory-intensive data structures

in RAM, while off-loading the heavy duty computation to

GPUs.

Experimental results on 2M sequence graph show that our

new implementation is able to achieve a ∼7X speedup over

our serial implementation even without using asynchronous

CPU-GPU communication, with the GPU part alone con-

tributing to over ∼374X speedup in the accelerated part.

Qualitative evaluation over a 2M ocean metagenomics data

set shows that our method is able to improve sensitivity

of clustering over existing methods, and is more successful

in recruiting more sequences into the clustering without

impacting the overall specificity. As a demonstration of

a large scale run, our GPU accelerated algorithm is able

to cluster a real world homology graph, containing 11M

vertices and 640M edges, and constructed from sequences

from an ongoing Pacific ocean metagenomics survey project,

in about 94 minutes.

The rest of the paper is organized as follows: Section II

provides a brief introduction to the GPU model of com-

puting. In Section III we define the clustering problem,

present the serial algorithm and subsequently present our

approach for CPU-GPU parallelization. Experimental results

and evaluation of both performance and quality are presented

in Section IV. Section V summarizes the findings and

provide new directions for further research.

II. A BRIEF INTRODUCTION TO GPU COMPUTING

Compute Unified Device Architecture (CUDA) developed

by NVIDIA is a hardware and software platform to enable

programmers to write general purposed program on GPUs.

The GPU application usually contains a copy of host code

and a copy of device code. The host code is executed on

the CPU, and the device code is executed on the GPU. The

memory on the CPU side is referred as the host memory,

and the device memory is used to refer memory on the

GPU side — including shared memory, const memory and

560

...

...

memory

Grid 0

Grid 1

Thread block nThread block 1

Thread block 1 Thread block nThread block 0

Thread block 0

G
lo

ba
l m

em
or

yShared
memory memory

memorymemory memory
Shared

Shared Shared

SharedShared

Figure 1. An overview of the hierarchical memory space in GPU.

global memory located on GPU. Data can be copied from

host memory to device memory, and vice versa. However,

the CPU and the GPU cannot directly access each other’s

memory space.

The parallelization of the device code is achieved through

the execution of kernel functions on individual GPU thread.

The threads are organized into thread blocks, and thread

blocks are further grouped into grids. Figure 1 shows an

overview of the hierarchical memory space in GPU. Each

thread inside a thread block has its own local registers and

per-thread local memory, and it executes an instance of

the kernel. A thread inside a thread block is identifiable

through a threadID, and a thread block is identifiable through

a blockID inside each grid. Threads inside each thread

block are executed concurrently, and they can cooperate

with each other though barrier synchronizations or per-block

shared memory. Thread blocks are scheduled independently,

and the inter-block communication can be achieved through

synchronizations on the global memory. The size of the per-

block shared memory is much smaller comparing to the size

of the global memory, but its memory latency is roughly

100X lower comparing to the latency of the global memory.

To execute the device code on GPU, thread blocks need to

be physically mapped to streaming multiprocessors (called

SMs in Fermi, and SMXs in Kepler). SMs are independent

computation units, and they have their own control units,

registers, execution pipelines, caches. One or more thread

blocks can be mapped to a SM depending on the size

of the thread block. Threads inside a SM are executed in

a fixed sized group, called warp, and all the threads in

a warp share the same instruction unit. Warp is designed

as a single instruction multiple thread (SIMT) architectural

unit, and it runs most efficiently if all the threads inside a

warp execute same instructions. In case different instructions

are programmed into the threads of a warp, the hardware

will automatically handle the instruction divergence through

multiple rounds of executions.

III. METHODS

Notation: Let S = {s1, s2, . . . sn} denote the set of n input

protein sequences. Let G = (V,E) represent the similarity

graph of the set of sequences S, where each vi corresponds

to an individual sequence in S, and (vi, vj) ∈ E if and

only if si and sj have a significant sequence similarity. The

similarity relationship between two sequences is symmetric,

therefore similarity graph G = (V,E) is an undirected

graph. Γ(vi) is used to denote the set of vertices which are

adjacent to vertex vi. In addition, the number of edges in G

is denoted as m.

A. Problem Definition

Given a set of protein sequences S, the protein sequence

clustering problem is defined as the problem of dividing the

protein sequences into subgroups, and each sequence in the

subgroup is expected to similar to majority of the sequences

included in the same subgroup. In some extreme cases, all

the sequences included in the same subgroup are expected

to be related to all the other group members, and this

extreme case corresponds the clique detection problem in the

graph theory domain. However protein sequence clustering

problem is a relaxed version of the clique detection problem,

and it can also be mapped into a problem of detecting dense

subgraphs. This related optimization problem is proved to be

NP-Hard [8].

B. The Serial Shingling Algorithm

Definition 1: Given an integer constant s, a “shingle” [5]

of a vertex u is defined as an arbitrary s−element subset of

Γ(u).
If two vertices are part of a dense subgraph, they can

be expected to share a large fraction of their neighbors in

common. Therefore, a brute-force way to detect vertices that

are part of the same dense subgraph would be to compute

the Jaccard Index (defined in Equation 1) of the two sets of

neighbors for every pair of vertices.

J(A, B) =
|A ∩B|

|A ∪B|
(1)

This pairwise neighbor comparison method leads to an

expensive quadratical computation. To reduce the compu-

tation overhead, a min-wise permutation theory [4] based

shingling approach is used to evaluate the similarity between

neighbors. More specifically, it obtains random samples of

size s (called shingles) from Γ(u) for every vertex u ∈ V ,

and compares them against one another. If two vertices are

part of the same dense subgraph, then by definition they

should also share most of their neighbors and hence with

a high probability of sharing a significant number of their

shingles. There are two options of grouping vertices into the

same cluster. One option is to group two vertices into the

same cluster if they share at least one shingle, and this one

shingle based approach can be too aggressive. A second,

561

shingles

......

Pass I Report Dense Subgraphs

...

Pass II

shinglesshinglesshingles

shingles shingles

Vl

Vr

Vl Vl

Vr Vr

Figure 2. Illustration of the different steps in the Shingling heuristic. Typically, Vl = Vr = V .

albeit more conservation approach, is to group two vertices

into the same cluster if all their shingles are identical. As a

middle ground, an approach that groups vertices sharing a

significant number of shingles (out of a fixed number c of

shingles) is chosen.

Generation of c shingles for any vertex u ∈ V that has

at least s links is achieved as follows [9]: First, c random

permutations of the vertices in Γ(u) are obtained using a

fixed set of c random number pairs {<Aj , Bj>|j ∈ [1, c]}.
The top s elements within each permutation are then said

to represent a shingle. The random permutation of Γ(u) for

a given random trial j ∈ [1 . . . c] is obtained as follows:

Assume that every v ∈ Γ(u) is associated with a unique

integer id. Then a bijection from the set Γ(u) to a new set

Γj(u) is computed by taking every v ∈ Γ(u) and mapping it

to an element vj ∈ Γj(u) such that vj = (Aj×v+Bj)%P ,

where P is a big prime number. Γj(u) becomes a random

permutation of the original adjacency list Γ(u), and its top

minimum elements are selected as a shingle subsequently.

A permutation thus obtained preserves the min-wise inde-

pendent property that guarantees, with high probability, that

vertices of a densely connected subgraph would also share

significant number of shingles.

The serial shingling algorithm containing two passes

of shingling followed by a cluster enumeration phase is

illustrated in Figure 2. In what follows, we describe the

implementation of the Shingling algorithm in our serial

implementation pClust [24]:

Shingling Pass I: We first treat the input graph G(V,E)
in its equivalent bipartite graph representation G(Vl, Vr, E)
where Vl = Vr = V . The graph is made available as an

adjacency list. The algorithm first generates c shingles for

each vertex in Vl as described above. In our implementation,

the sorting required to generate a shingle from Γj(u) is

implemented by performing an on-the-fly enumeration of

Γj(u) and alongside keeping track of an s-sized array

that records the minimum s elements at any point of time

through a simple insertion sort. The small values of s

expected to be used in practice (typically under 10) justify

a simple insertion sort-based approach. Let sj denote a

shingle generated for some vertex during the jth random

trial, and assume that it is in an integer representation

obtained using a hash function. Since the same shingle sj

could have been generated by multiple vertices in Vl, a

sorting is done to gather all vertices that generated each

shingle. This shingle is done once for each random trial

(so that shingles from different trials do not get mixed).

Let L(sj) denote the set of vertices which generated a

shingle sj . The algorithm then outputs tuples of the form

<sj, L(sj)>. Note that these tuples collectively define a

new bipartite graph GI(S1, V
′

l , E
′) in its adjacency list

form, such that S1 represents the set of distinct shingles

generated during this phase, and V ′

l ⊆ Vl represents the

subset of vertices that contributed to at least one shingle.

Therefore, the output of this phase is GI . We call the

shingles in S1 first level shingles.

Shingling Pass II: Using GI as the new input, the

algorithm executes the same series as steps as in Phase I.

This generates a new bipartite graph GII(S2, S
′

1
, E′′) in

its adjacency list form, such that S2 represents the new set

of shingles generated during this phase (referred to as the

second level shingles), and S′

1
⊆ S1 represents the subset

of first level shingles that contributed to at least one second

level shingle in S2.

Phase III - Reporting dense subsgraphs: The final set

of clusters is generated from GII . There are two ways in

which this can be accomplished, depending on the stringency

required for clustering.

1) Enumerate all connected components in GII . Note that

the nodes in each of the connected components of GII

represent the first level shingles only, and the second

level shingles are used to union the first level shingles.

For each connected component, report the set of all

vertices in G that constitute the first-level shingles of

that component as a “cluster”. This formulation could

produce potential overlaps between the output clusters,

as the same input vertex can be part of two entire

different shingles and different connected components.

2) Alternatively, initialize a union-find data structure [21]

of size n, with all vertices in G in a cluster by itself

initially. Next, enumerate all connected components in

GII and For each connected component, perform a

union (using the union-find data structure) of the set of

all vertices in G that constitute the first- and second-

562

G
PU

1

3

report dense subgraphs

4

2

compute shingle graph

shingles

shingles

adjacency lists

adjacency lists

first level shingling

second level shingling

C
PU

Figure 3. The computing framework of gpClust.

level shingles of that component as a “cluster”. The

clusters reported in this way represent a partition of

the input vertices, and no vertex belong two different

clusters.

In this paper, we use the second approach which does

not allow any overlap between different clusters. The run-

time complexity of the implementation is dominated by

the shingle generation step in Shingling Phase I and II:

O(m×c×s). The peak memory complexity of the algorithm

is O(max{m+ n, |E′|}). For proofs, please refer to [18].

C. CPU-GPU Parallelization of the Shingling Algorithm

In general, graph algorithms are difficult to be parallelized

on the GPU platform, as random memory access is heavily

needed while accessing the graph data structure itself. The

random memory access pattern will lead to non-coalesced

memory access, thus will directly lead to the poor perfor-

mance of an application. To understand the performance

behavior of the shingling algorithm, we implemented a serial

version of the shingling algorithm, and profiling results show

that roughly 80% of the runtime is consumed by the hashing

and sorting operations in the first and second level shingling

steps. Therefore, to parallelize the shingling algorithm on

GPU, it is important to focus on the parallelization of

these two basic functions. Fortunately, these two functions

have been well studied in the GPU community, and they

can achieved through two efficient primitives transform()

and sorting() [15] implemented in the Thrust [22] library.

Thrust library is a high level parallel library implemented

using CUDA C/C++, and it can be used to fast prototype a

CUDA program. However, the data movement operations

are implemented using synchronous mechanism, and the

overhead of transferring data between the host and device

memory is unavoidable in the current Thrust release.

From a practical point of view, an effective GPU ap-

plication should take advantage of the strengths of both

CPU and GPU. CPU is designed to minimize the latency

experienced by one processor through on-chip caches and

sophisticated control logic, while GPU is designed to max-

imize the overall throughput of the system through massive

multithreading. Therefore CPU is very efficient to handle the

sophisticated programming logic, while GPU is extremely

efficient to perform the massive repetitive tasks. Figure 3

shows the computing framework of our parallel approach.

In this framework, CPU is used to aggregate the data for

the GPU, and GPU is responsible of the compute-intensive

work. Our current implementation is implemented using

the Thrust library, and data movement overhead between

CPU and GPU is unavoidable because of the synchronous

data movement operations implemented in current Thrust.

Better performance could be achieved through asynchronous

operations provided in CUDA C/C++.

The general idea of our parallel shingling algorithm on

GPU is as follows: First, the input graph in an adjacency

list format is loaded by the CPU from the I/O into the host

memory. Subsequently, loaded adjacency lists are transferred

from the host memory to the device memory for the first

level shingling. The generated first level shingles are copied

back from the device memory to the host memory to prepare

a shingle graph for the second level shingling. At the end,

the generated second level shingles are transferred back to

the host memory to report dense subgraphs. In order to

process the large-scale input graph on the relative small

device memory, the input graph for the first and second level

shingling can be partitioned into batches of adjacency lists,

and subsequently moved to the device memory batch by

batch.

There are two shingling steps happening on the GPU side,

and they are identical from the algorithmic perspective. The

only difference is the parametric settings and the input data.

In the following, we describe the details of our shingling

algorithm on the GPU. As observed in the serial shingling

algorithm, shingle extraction operation applies exact the

same set of operations to each adjacency list. Therefore, to

match the SIMT architectural design of the GPU computing

unit, our approach aggregates adjacency lists to the device

memory and processes them all at once. As described in the

serial shingling algorithm, multiple iterations of shingling

are expected on the same adjacency list, and there is no data

dependency between each iteration. Therefore, it is safe to

transfer the generated shingles back to the host memory after

each iteration for the immediate processing on the CPU side.

Ideally, we would like to overlap the data communication

stage with the shingle computation stage to eliminate the

data transfer overhead. Eliminating the data latency will

enable the device code and host code to run in parallel, thus

leading to a better performance. Current data transfer module

implemented in Thrust is synchronous, and therefore our

current implementation is not capable of taking advantage

of this level of parallelism.

563

segmented sorting

D

D’

< v1, si(v1) > < v2, si(v2) > < v3, si(v3) > < vm, si(vm) >

Γ(v1) Γ(v2) Γ(v3) Γ(vm)

hi(Γ(vm))hi(Γ(v3))hi(Γ(v1)) hi(Γ(v2))

hi()

Figure 4. An iteration of shingling step on a batch of adjacency lists on
the GPU platform.

Let H = {h1, h2 . . . , hc} denote a set of random hash

functions, and they can be implemented through c random

number pairs {<Aj, Bj>|j ∈ [1, c]} as described in sec-

tion III-B. Let hi(Γ(vi)) denote a random permutation of

Γ(vi) through hi. A tuple <vm, si(vm)> denotes a shingle

generated from hi(Γ(vm)).

Algorithm 1 Shingling on GPU (D, s, c)

1. DM stands for the device memory

2. H = {h1, h2 . . . , hc}: a set of random hash functions

3. MD: a memory space on the DM

4. M ′

D: a memory space on the DM

5. RD: a memory space to store shingles

6. R← ∅
7. MD ← {Γ(v1),Γ(v2) . . .}
8. for i← 1, c do

9. // can be achieved through thrust::transform()

10. for all dp ∈MD do

11. M ′

D[p]← hi(dp)
12. end for

13. // can be achieved through thrust::sort()

14. Segmented sorting on M ′

D

15. for j ← 1, m do

16. RD ← top s elements in hi(Γ(vj))
17. end for

18. end for

Shingling on the GPU: An iteration of the shingle ex-

traction step on a batch of adjacency lists is illustrated in

Figure 4. A batch of adjacency lists is first loaded into an

continuous memory space of the global memory on the

device, and an auxiliary data structure on the device is

used to mark the boundaries of each adjacency list. In case

an adjacency list has to be split between two batches, a

subsequent data aggregation on the CPU side will remember

this case and the merge the different copies of shingles into

one correct copy for the split adjacency list. Later a random

hash function hi ∈ H is applied to each vertex in the batch.

The hashing operation can be executed highly efficiently

on the GPU platform owing to the efficient SIMT archi-

tectural design of the GPU computing unit. This random

Algorithm 2 GPU accelerated shingling algorithm

1. HM stands for the host memory

2. DM stands for the device memory

3. bi: a batch of adjacency list

4. graphH = {b1, b2 . . . , bk}: partitioned input graph on

HM

5. sglGraphH = {sb1, sb2 . . . , sbk}: partitioned input graph

on HM

6. sglsD: a memory space on DM

7. sglsH : a memory space on HM

8. // CPU initiate the task by loading graph into HM

9. graphH ← CPU loads from disk I/O

10. while graphH 	= ∅ do

11. DM ← bi
12. sglsD ← Shingling on GPU (DM, s1, c1)

13. sglsH ← sglsD
14. end while

15. // data aggregation on CPU

16. sglGraphH ← CPU aggregates sglsH into a graph.

17. while sglGraphH 	= ∅ do

18. DM ← sbi
19. sglsD ← Shingling on GPU (DM, s2, c2)

20. sglsH ← sglsD
21. end while

22. // final data aggregation on CPU

23. CPU reports dense subgraphs from sglsH

hashing operation will generate a random permutation of the

original adjacency list. Based on this random permutation,

a segmented sorting operation is applied to reorganize the

permutations in each segment. At the end, the top s elements

in each segment are selected as a shingle. To enumerate

all the shingles through different random permutations, the

shingling iteration is executed multiple times with different

random hash function hi ∈ H . Algorithm 1 summarizes the

algorithmic steps of the shingle extraction operation on the

GPU platform.

Role of the CPU: CPU is extremely efficient to handle

the sophisticated programming logics, therefore the task of

the CPU is to aggregate the data for the GPU. Initially,

CPU is responsible for loading input graph from disk to

the host memory, and later the graph is transferred either

fully or in partial batches to the device memory (depending

on its size). After GPU enumerates shingles, these shingle

data are transferred back to the host memory for CPU to

prepare the shingle graph for the second level shingling. At

the end, all the generated second level shingles are copied

back to the CPU, and a connected component detection is

executed on CPU to report the dense subgraphs. To handle

the case described earlier that an adjacency list has to be split

between two job batches, CPU has to combine the shingle

results for the split adjacency lists after it receives shingles

564

Vertices # Edges Avg. degree Largest CC size

1,562,984 56,919,738 73 ± 153 10,707

Table II
INPUT GRAPH STATISTICS FOR THE SIMILARITY GRAPH OF ∼2M

SEQUENCES. CC STANDS FOR CONNECTED COMPONENTS.

from the GPU.

Putting it all together, the GPU accelerated shingling

algorithm is described in Algorithm 2.

D. Implementation

The algorithm is implemented in C/C++ using CUDA

Thrust parallel library version 1.5. All parameters described

in the algorithm section were set to values based on pre-

liminary empirical tests. The default settings are as fol-

lows: s1 = 2, c1 = 200 for the first level shingling, and

s2 = 2, c2 = 100 for the second level shingling.

IV. EXPERIMENTAL RESULTS

There are no standard benchmark data for metagenomic

protein families. Therefore to evaluate the quality of our

algorithm, we took the predicted protein families from the

Sorcerer II GOS project [26]. Section IV-C presents the

extensive performance studies of our gpClust system, and

some comparative quality studies with regard to the GOS

clustering method is presented in the section IV-D.

A. Input Data

For our experiments, an arbitrary subset of predicted

protein families of 2M sequences from GOS project are

used as our benchmark. Based on the 2 million sequences,

pGraph [25], a parallel software to construct sequence

similarity graph is used to build the input graph for our

gpClust algorithm. Table II shows some basic statistics of

our 2M input graph.

B. Experimental Platform

Our experiment was performed on a commodity server

equipped with a Tesla K20 card from NVIDIA. The Tesla

K20 card has a total number of 2,496 CUDA cores and a

5GB per-board memory. The peak single precision perfor-

mance of the GPU code is 3.52 teraflops. The CPU node is

an 8-core Intel Xeon 2.0 GHz processor with 32 GB RAM

running Red Hat Enterprise Linux 6.3.

C. Performance Study

In order to understand the behavior of gpClust system,

we performed extensive studies on each component of our

GPU shingling algorithm. Two dataset are used in our

experiments. One dataset with 20K sequences is an arbitrary

subset of the 2M sequences, and the other dataset is the

2M sequences itself. The medium sized graph with 20K

sequences is chosen to test the scalability of our system.

Additionally, the parallel homology graph construction soft-

ware (pGraph [25]) is used to build the input graph for the

two sets of sequences in our following experiments.

20K sequence graph: Within the 20K graph, 2,921 vertices

are singleton vertices, and they will be ignored in the

subsequent analysis as they do not affect the final result.

The remaining 17,079 sequences formed a graph of 374,928

edges, and the average vertex degree is 44 ± 69. The

serial and GPU implementation of the shingling algorithms

complete the 20K graph in 392.32 seconds and 66.75

seconds respectively; thus leading to a ∼6X speedup. In

order to better understand our system, a breakdown runtime

of each component in our computing framework is reported

in Table I. As noted in the table, 52.70 seconds are spent on

the CPU side, while only 7.57 seconds are spent on the GPU

side. A comparison between the CPU runtime in parallel

and CPU runtime in serial further confirmed that 80% of

the runtime in the serial implementation is spent on the two

levels of shingling. The observation further confirmed our

system design choice by moving the most compute-intensive

task to the GPU side in order to increase the performance.

For this small sized graph, our system looks inefficient since

the CPU consumes the 79% of the total runtime - CPU

consumes 52.70 seconds, and GPU consumes 7.57 seconds.

A careful examination reveals that the shingling task that

used to take 339.63 seconds on the GPU in just 7.57 seconds,

and this leads to a ∼45X speedup on the GPU accelerated

part. Also an extra 4.82 seconds data transfer overhead

incurred while transferring the shingling results back from

the device memory to the host memory.

2M sequence graph: There are 1,562,984 non-singleton

vertices in the 2M sequence graph, and the average vertex

degree is 73 ± 153. This graph is sparser than the 20K

sequence graph. The overall system speedup is ∼7X, and

the GPU accelerated speedup is ∼374X. This extremely

high speedup is credited to the powerful GPU node used

in our system. Also the increased performance regarding

to the 20K sequence graph is contributed by significant

increased shingling workload in the 2M graph, as the SIMT

architectural GPU is extremely efficient executing these

repetitive operations in large scale. The more workload

can be executed in parallel on GPU, the better speedup it

will contribute to the overall system. Also the data transfer

overhead of 108.19 seconds from GPU to CPU can be

eliminated through asynchronous data transfer.

D. Comparative Quality Study

An arbitrary subset of predicted protein families from

GOS project was used as our benchmark data to perform the

qualitative assessment, and the total number of sequences in

the benchmark is roughly 2 million. To compute the protein

family relationship, the GOS team used a k−neighbor

linkage (k=10) [26] based graph heuristic to cluster the

565

#Input #Non-singleton
#Edges

Runtime of each component in gpClust Serial Total GPU

graph vertices CPU GPU Datac→g Datag→c Disk I/O Total runtime runtime speedup speedup

20K 17,079 374,928 52.70 7.57 1.26 4.82 0.40 66.75 392.32 5.88 44.86
2M 1,562,984 56,919,738 2685.06 447.97 5.99 108.19 28.77 3275.98 23,537.80 7.18 373.71

Table I
SERIAL RUNTIME AND THE RUNTIME OF EACH COMPONENT IN gpClust (IN SECS). DATAc→g DENOTES THE OVERHEAD OF MOVING DATA FROM THE

HOST MEMORY TO THE DEVICE MEMORY, AND THE OVERHEAD FROM THE DEVICE MEMORY TO THE HOST MEMORY IS DENOTED AS DATAg→c. GPU
SPEEDUP MEANS THE SPEEDUP CONTRIBUTED BY THE GPU ON THE ACCELERATED PART.

sequences, and those reported clusters were further expanded

into predicted protein families through profile-sequence and

profile-profile matching techniques. The expansion further

combined the related sequences or clusters into loosely

defined clusters, which represent the membership in protein

families. The reason behind this expansion is that sequence-

sequence based matching is less sensitive comparing to the

profile-based matching techniques, and protein family is a

relatively loosed defined term compared to the convention-

ally accepted clustering concept. The reported clusters from

the GOS and our approach are basically “core sets” of the

protein families.

To perform a comparative study, reported clusters of

our approach and the GOS approach are compared against

the benchmark respectively. For notational simplicity, the

clusters reported by our approach are labeled as “gpClust

partition”, and the “GOS partition” is used to denote the

clusters reported by the GOS k−neighbor approach. In

the GOS study, only clusters of size ≥ 20 are reported,

therefore we only use clusters of size ≥ 20 from our gpClust

approach for the qualitative assessment. To examine the

membership quality reported by both approaches, we defined

the following measurements. If si and sj are grouped into

the same cluster in one approach, and the relationship is also

preserved in the benchmark data, then it is marked as a true

positive (TP). Similarly, we define false positive (FP), false

negative (FN) and true negative (TN), and formal definitions

are as follows.

Let si and sj be any two sequences in S. Let gp(i)
denote the group that owns si in partition p. To compare

a test partition (“t”) against the benchmark partition (“b”),

we classified every such pair (si, sj) into one of the four

classes:

1) TP: If gt(i) = gt(j) and gb(i) = gb(j);
2) FP: If gt(i) = gt(j) and gb(i) 	= gb(j);
3) FN: If gt(i) 	= gt(j) and gb(i) = gb(j);
4) TN: If gt(i) 	= gt(j) and gb(i) 	= gb(j).

Using the above definitions, we derived the following

measurements:

Positive predictive value (PPV) =
TP

TP+FP
(2)

Approach PPV NPV SP SE

gpClust vs. Benchmark 97.17% 92.43% 99.88% 17.85%
GOS vs. Benchmark 100.00% 90.62% 100.00% 13.92%

Table III
QUALITATIVE COMPARISON OF THE gpClust PARTITION AND THE GOS

PARTITION AGAINST THE BENCHMARK FOR THE 2M SEQUENCES.

Negative predictive value (NPV) =
TN

FN+TN
(3)

Specificity (SP) =
TN

FP+TN
(4)

Sensitivity (SE) =
TP

TP+FN
(5)

Based on the above defined measurements, comparative

quality results of different partitions against the benchmark

can be found in Table III. Ideally, we would expect PPV =

NPV = SP = SE = 100%, and this means that the evaluated

approach reported exactly the same clustering membership

as the benchmark. As expected, the reported clusters are

“core sets” of the benchmark, therefore the PPV is expected

to high, while the sensitivity is expected to be low. In

our comparison, the PPVs reported from both approaches

are almost 100%, but the sensitivities are relative low for

both approaches — 17.85% for the gpClust approach and

13.92% for the GOS approach. This high PPV and low SE

scenario implies that reported clusters from both approaches

are sub-partitions of the protein families in the benchmark.

The low sensitivity is expected because both partitions

are sequence-sequence matching based approaches, which

are less sensitive comparing to the profile-matching based

approaches used in the benchmark data. Note the gpClust

approach outperforms the GOS approach in sensitivity, and

this higher sensitivity is contributed by the high configurable

s and c parameters used in our approach based on the size

of the input graph.

density =
#(Edges in a cluster)

Total number of possible edges
(6)

566

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

20-49

50-99

100-199

200-499

500-999

1000-2000

>2000

N
u

m
b

e
r

o
f

g
ro

u
p

s

Group size

gpClust approach
GOS approach

 0

 100000

 200000

 300000

 400000

 500000

 600000

20-49

50-99

100-199

200-499

500-999

1000-2000

>2000

N
u

m
b

e
r

o
f

se
q

u
e

n
ce

s

Group size

gpClust approach
GOS approach

Figure 5. (a) Distribution of the dense subgraphs by their size in the gpClust and GOS approaches respectively. (b) Sequence distribution among the
different group size bins in gpClust and GOS approaches.

Partition # Groups
Seqs. Group size

included Largest Average

Benchmark 813 2,004,241 56,266 2, 465 ± 4, 372

GOS 6,152 1,236,712 20,027 201 ± 650

gpClust 6,646 1,414,952 19,066 213 ± 721

Table IV
TABLE SHOWING THE STATISTICS OF DIFFERENT PARTITIONS FOR THE 2

MILLION SEQUENCES.

To evaluate the quality of reported clusters, “density”

— defined in Equation 6 is used to measure the intra-

connectivity of a cluster. The highest expected density of a

cluster is 1, and it corresponds to a clique. The higher density

score of a cluster implies a better intra-connectivity among

the members in the cluster. According to this definition,

the average density of the GOS partition and our gpClust

partition is 0.40 ± 0.27 and 0.75 ± 0.28 respectively. The

average density of the benchmark partition is only 0.09

± 0.12. The low average density of the benchmark data

explained the low sensitivities reported in above compar-

isons, as the protein family is a loosely defined concept

in terms of the connectivity of their members. In addition,

the higher density of our reported clusters demonstrates

the high quality of our results comparing to the GOS

k−neighbor approach. In the GOS approach, two vertices

are included into a cluster if they share a fixed number

(k) of neighbors, and this clustering strategy makes sense

if and only if all the clusters in the input graph are of

the same fixed size k; otherwise GOS approach will falsely

group potentially unrelated vertices into the same cluster.

Furthermore, the choice of k could potentially influence the

clustering results for different inputs. A careful examination

of the 2M sequence graph shows that the assumption of fixed

size clusters does not hold. Also to be noted, the density

alone cannot be used as the criterion to evaluate the quality

of the reported clusters. For example, if each vertex from the

input graph is reported as an individual cluster by itself, then

the average density of the reported clusters is 1. However,

this high density does not imply the high quality of the

reported clusters.

Statistics of reported clusters from both approaches are

shown in Table IV. In total, the GOS approach reported

6,152 clusters, and the gpClust approach reported 6,646

clusters. A careful examination shows that GOS approach

grouped some highly-connected clusters into a relatively

loosely-connected cluster due to the limitation of the fixed

size k, and that is one of the reasons why the GOS approach

reported less number of clusters than our approach. The

average group size of the reported clusters in the GOS

approach and our approach is 201 ± 650 and 213 ± 721.

The high standard deviation of group size in GOS clusters

further shows the limitation of the GOS approach in terms

of reporting clusters of the correct size.

In Figure 5(a), we compare the group size distribution in

the gpClust and GOS partitions. As can be observed, both

partitions show roughly the same distribution. The gpClust

partition also reported the “small” clusters of size under

20, and they are not shown in the plot. Figure 5(b) shows

how the sequence included in the individual partitions are

distributed among different group sized bins. Overall, they

have the similar distribution.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a GPU accelerated dense

subgraph detection approach, called gpClust to compute the

“core sets” of protein families in metagenomics data. This

approach combined the strengths of both CPU and GPU

by off-loading the repetitive compute-intensive workload to

567

the GPU, while keeping the logic sophisticated data aggre-

gation tasks on the CPU. Based on an arbitrary set of 2M

metagenomic sequences from the GOS project, our approach

reported a ∼7X total speedup and a∼374X GPU accelerated

speedup, and further performance could be achieved through

asynchronous data transfer primitives provided by CUDA

C/C++. As a demonstration of a large scale run, we were

able to cluster a real world homology graph, containing 11M

vertices and 640M edges, and constructed from sequences of

an ongoing Pacific Ocean metagenomics survey project, in

about 94 minutes. Additionally, comparative quality studies

with regard to the GOS approach confirmed the high quality

of our reported clusters.

ACKNOWLEDGMENT

Our sincere thanks to Dr. Steven Hallam and his lab

at the University of British Columbia, Vancouver, BC, for

providing us with the Pacific Ocean metagenomics data set

and helping us with scientific interpretation.

A.K. was funded for this research in parts by DOE award

DE-SC-0006516 and NSF grant IIS 0916463.

REFERENCES

[1] S.F. Altschul, W. Gish, W. Miller et al. Basic local alignment
search tool. Journal of Molecular Biology, 215:403–410, 1990.

[2] R. Apweiler, A. Bairoch and C.H. Wu. Protein sequence
databases. Current Opinion in Chemical Biology, 8(1):76–80,
2004.

[3] A. Bateman, L. Coin, R. Durbin et al. The Pfam protein
families database. Nucleic Acids Research, 32:D138–141,
2004.

[4] A.Z. Broder, M. Charikar, A. Frieze and M. Mitzenmacher.
Min-wise independent permutations. Journal of Computer and
System Sciences, 60:630–659, 2000.

[5] A.Z. Broder, S. Glassman, M. Manasse and G. Zweig. Syn-
tactic clustering of the web. WWW6/Computer Networks,
29:1157–1166, 1997.

[6] CAMERA - Community Cyberinfrastructure for Advanced Mi-
crobial Ecology Research & Analysis. http://camera.calit2.net.
Last date accessed 6/12/2012.

[7] J. Daily, S. Krishnamoorthy and A. Kalyanaraman. Towards
Scalable Optimal Sequence Homology Detection. Proc. Par-
Graph’11 - Workshop on Parallel Algorithms and Software for
Analysis of Massive Graphs, 2012

[8] U. Feige, D. Peleg and G. Kortsarz. The dense k-subgraph
problem. Algorithmica, 29(3):410–421, 2001.

[9] D. Gibson, R. Kumar and A. Tomkins. Discovering large dense
subgraphs in massive graphs. In Proc. VLDB Conference, pp.
721–732, 2005.

[10] S.R. Gill, M. Pop, R.T. DeBoy et al. Metagenomic analysis
of the human distal gut microbiome. Science, 312(5778):1355–
1359, 2006.

[11] J. Handelsman. Metagenomics: Application of genomics
to uncultured microorganisms. Microbiology and Molecular
Biology Reviews, 68(4):669–685, 2004.

[12] J. Handelsman, M.R. Rondon, S.F. Brady et al. Molecular
biological access to the chemistry of unknown soil microbes:
a new frontier for natural products. Chemistry & Biololgy,
5(R):245–249, 1998.

[13] V.M. Markowitz, N.N. Ivanova, and E. Szeto et al. IMG/M:
a data management and analysis system for metagenomes.
Nucleic Acids Research, 36(D):534–538, 2008.

[14] A. Kalyanaraman, S.J. Emrich, P.S. Schnable and S. Aluru.
Assembling genomes on large-scale parallel computers. Jour-
nal of Parallel and Distributed Computing, 67:1240–1255,
2007.

[15] D. Merrill and A. Grimshaw. High Performance and Scal-
able Radix Sorting: A case study of implementing dynamic
parallelism for GPU computing. Parallel Processing Letters,
21(2):245–272, 2011.

[16] E.W. Myers, G.G. Sutton, A.L. Delcher et al. A Whole-
Genome Assembly of Drosophila. Science, 287:2196–2204,
2000.

[17] D.B. Rusch, A.L. Halpern, G. Sutton et al. The Sorcerer
II Global Ocean Sampling Expedition: Northwest Atlantic
through Eastern Tropical Pacific. PLoS Biology, 5(3):e77,
2007.

[18] I. Rytsareva, T. Chapman, and A. Kalyanaraman. Parallel
algorithms for clustering biological graphs on distributed and
shared memory architectures. International Journal of High
Performance Computing and Networking, In Press, 2013.

[19] O. Sasson, A. Vaaknin, H. Fleischer et al. ProtoNet: hierarchi-
cal classification of the protein space. Nucleic Acids Research,
31(1):348–352, 2003.

[20] T.F. Smith and M.S. Waterman. Identification of com-
mon molecular subsequences. Journal of Molecular Biology,
147:195–197, 1981.

[21] R.E. Tarjan. Efficiency of a good but not linear set union
algorithm. Journal of the ACM, 22(2):215–225, 1975.

[22] J. Hoberock and N. Bell. Thrust: A Parallel Template Library.
http://www.meganewtons.com/, 2010.

[23] J.C. Venter, K. Remington, J.F. Heidelberg et al. Environmen-
tal genome shotgun sequencing of the Sargasso Sea. Science,
304(5667):66–74, 2004.

[24] C. Wu, and A. Kalyanaraman. An efficient parallel approach
for identifying protein families in large-scale metagenomic data
sets, Proceedings ACM/IEEE conference on Supercomputing,
pp.1–10.2008

[25] C. Wu, A. Kalyanaraman, and W.R. Cannon. pGraph:
Efficient parallel construction of large-scale protein sequence
homology graphs. IEEE Transactions on Parallel and Dis-
tributed Systems, 23(10):1923 – 1933, 2012.

[26] S. Yooseph, G. Sutton, D. B. Rusch et al. The Sorcerer II
Global Ocean Sampling Expedition: Expanding the Universe
of Protein Families. PLoS Biology, 5(3):e16, 2007.

568

