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Abstract—CUDASW++ is a parallelization of

the Smith-Waterman algorithm for CUDA graph-

ical processing units that computes the similarity

scores of a query sequence paired with each

sequence in a database. The algorithm uses one

of two kernel functions to compute the score

between a given pair of sequences: the inter-task

kernel or the intra-task kernel. We have identified

the intra-task kernel as a major bottleneck in

the CUDASW++ algorithm. We have developed

a new intra-task kernel that is faster than the

original intra-task kernel used in CUDASW++.

We describe the development of our kernel as a

series of incremental changes that provide insight

into a number of issues that must be considered

when developing any algorithm for the CUDA

architecture. We analyze the performance of our

kernel compared to the original and show that the

use of our intra-task kernel substantially improves

the overall performance of CUDASW++ on the

order of three to four giga-cell updates per second

on various benchmark databases.

I. INTRODUCTION

Sequence alignment is an important problem

in bioinformatics. In typical usage, a query se-

quence of nucleotides (DNA, RNA) or amino

acids (proteins) is compared to a large database

of known sequences in order to determine which

database sequences have the most similarity to

the query. Smith-Waterman (SW) [8] is a dy-

namic programming algorithm that always re-

turns the optimal local alignment between two

sequences of length m and n with O(nm) time

and space complexity.

Because of the time and memory demands

of SW, heuristic algorithms such as the Basic

Local Alignment Search Tool (BLAST) [1], [2]

have been developed to quickly compare a query

sequence to a large database of sequences. Such

algorithms are much faster than a naive im-

plementation of SW but do not guarantee the

optimality of the alignment found.

Implementations of SW for various parallel

architectures such as the Compute Unified De-

vice Architecture (CUDA) [4], [5], Streaming

SIMD Extensions (SSE) [3], [6] and Cell Broad-

band Engine Architecture (Cell) [9], [7] have

been developed that are capable of outperform-

ing BLAST and other heuristic algorithms [5].

In this paper we present improvements over

CUDASW++ [5], the best performing CUDA

implementation of SW. These improvements are

not only useful for practitioners who require fast

and optimal local alignments but also provide

general insights into the development process

that can be applied to any algorithm for the

CUDA architecture.

CUDASW++ uses one of two kernel functions

to compare a query sequence to each sequence

in an entire database. The length of the database

sequence determines which kernel is used: the

inter-task kernel is used below a threshold length

and the intra-task kernel is used above the

threshold (the names are due to the CUDASW++

authors). The inter-task kernel uses only a single

thread to perform the alignment. The intra-task

kernel uses one thread block to compute the
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alignment. We observed that the intra-task kernel

was not highly optimized.

In the UniProtDB/Swiss-Prot database (called

Swissprot from now on) used for performance

benchmarks of CUDASW++ [4], [5], 99.88%

of the database sequences are below the thresh-

old, meaning the inter-task kernel is used the

vast majority of the time. However, altering the

threshold even slightly has a major impact in

the performance of the overall algorithm, leading

us to believe that the intra-task kernel is a

bottleneck.

We improve the performance of the intra-

task kernel by over 11 times, and when we

replace the intra-task kernel in CUDASW++

with an improved implementation of the intra-

task kernel, this results in over a 25% speedup in

overall running time on the Swissprot database,

and over 50% speedup on some databases.

Our results may seem surprising if we note

that the intra-task kernel is only being called

on slightly under 0.12% of the over 500,000

sequences contained in the Swissprot database.

Ideally, it should be tuned to the database, since

Swissprot is only one instance of one class of

sequence databases. By varying the threshold

between intra-task and inter-task kernel calls,

we show that CUDASW++, using our improved

intra-task kernel, is not nearly as sensitive to

longer sequences as is the original implemen-

tation. The performance gains for the entire

application, obtained by using our improved

intra-task kernel can only increase for databases

with a higher percentage of sequences over the

threshold.

We describe the incremental improvements we

made to the intra-task kernel. These improve-

ments show that memory usage is the largest

performance factor, thus indicating that SW is

a memory bandwidth limited problem. Further-

more, we find several interesting aspects of the

CUDA architecture which prevent the NVIDIA

CUDA compiler (nvcc) from properly optimiz-

ing our code. Hand optimization is required to

gain the expected performance.

The remainder of this paper is orga-

nized as follows: Section II describes the

Smith-Waterman problem and previous paral-

lel implementations, including the details of

CUDASW++. Section III describes our imple-

mentation of the intra-task kernel and the impact

of our incremental improvements. In Section IV,

we analyze the differences between our intra-

task kernel and the original kernel and com-

pare the overall performance of CUDASW++

using both kernels on multiple databases. Sec-

tion V summarizes our conclusions and pro-

vides several ideas for further improvements to

CUDASW++.

II. BACKGROUND

The sequence alignment problem is to find the

optimal alignment between a query sequence q

of length m symbols and a database sequence

d of length n from some alphabet A. In most

bioinformatics applications, A consists of sym-

bols representing amino acids or nucleotides. To

determine the score of a particular alignment, a

scoring function w : (a, b) ∈ A×A 7→ N is used

to score each pair of symbols in the alignment.

A gap open penalty ρ, and a gap extension

penalty σ, are commonly used to penalize gaps

of unpaired symbols.

The Smith-Waterman (SW) algorithm is a

dynamic programming algorithm that determines

the optimal local alignment between q and d

given w, ρ, and σ. SW fills in three m x n

tables E, F and H as shown in (1). The optimal

alignment score is given by the maximum score

in table H. The dependencies for a cell in H are

shown in Figure 1.

Ei,j = max

{

Ei,j−1 − σ

Hi,j−1 − ρ

}

Fi,j = max

{

Fi−1,j − σ

Hi−1,j − ρ

}

(1)

Hi,j = max















0
Ei,j

Fi,j

Hi−1,j−1 + w(qi, dj)















The optimal alignment can be found by back-

tracking through H, but for comparisons of a
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Fig. 1. Dependencies for a cell in H of the Smith-

Waterman algorithm.

query sequence to an entire database, we are

generally only concerned with the score and not

the actual alignment. The table can be computed

with computational complexity of O(nm) but,

when only the optimal score is required, the

space complexity is linear.

A. Advances in SSE

Wozniak [10] and later Rognes and Seeberg

[6] proposed an algorithmic improvement that

significantly benefits vector implementations.

The first implementation [10] suffered from the

problem that although the cell updates were

vectorized, the similarity function lookup was

still sequential. To address this problem, a query

profile creates a vectorized lookup table for the

similarity scores that is unique for a given query

sequence [6]. The query sequence is split into

pieces with length equal to the vector length

used by SSE. The profile is built by storing

vectors of similarity scores for each piece of the

query sequence compared to all symbols in the

alphabet. This allows similarity function lookups

to be performed in parallel. We observed that

although CUDASW++ uses this optimization

and builds a query profile, it does so only in

the inter-task kernel. We make use of the query

profile in our improved intra-task kernel.

B. CUDASW++

CUDASW++ [5], [4] uses either the intra-task

kernel or the inter-task kernel to compare a sin-

gle query sequence to a database of sequences.

Each kernel uses a different strategy to find the

optimal score. For each query/database sequence

pair, only one kernel is used. If the database

sequence length is below 3072, the inter-task

kernel is used. Otherwise, the intra-task kernel is

used. Our improvements are solely to the intra-

task kernel, but we briefly describe both kernels

to make the explanation self-contained.

1) Inter-task: The inter-task kernel uses a

single thread to compare a query and a target

sequence. It tiles the tables into 8×4 tiles which

are computed sequentially by the same thread

in row major order. Within a tile, the thread

will compute cells in a tile in a column major

order, storing all values needed for dependencies

within a tile in registers. Once a tile is computed,

the bottom row is stored in global memory and

the rightmost column is retained in registers to

satisfy the dependencies required by bordering

tiles.

2) Intra-task: The intra-task kernel uses an

entire thread block to find the optimal alignment

score between a query sequence and database

sequence. No tiling is used and the table is

computed in the usual wavefront parallel order.

Therefore, all threads in the block are busy only

when the length of the minor diagonal (number

of points on the wavefront) is a multiple of the

number of threads per block, which is 256 by

default. Global memory is used to store each

wavefront as it is computed and three wavefronts

need to be saved at each time step to satisfy the

dependencies for the next time step.

C. CUDASW++ Performance Issues

The standard performance metric for SW is

“Cell Updates Per Second” (CUPs). We mea-

sured the CUPS of each kernel separately and

found that the inter-task kernel averages approx-

imately 17 gigaCUPs (GCUPs) while the intra-

task kernel averages 1.5 GCUPs when compar-

ing the same query and database sequence on

the Tesla C1060.

As previously stated, the intra-task kernel is

only run on sequences longer than 3072. Using

the default threshold on the Swissprot database,

CUDASW++ achieves a performance of 17

GCUPs on a Tesla C1060. When we increase

this threshold to 36,000 so that all sequences in
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the database are compared using the inter-task

kernel, the performance of CUDASW++ drops

to 10 GCUPs. Because the threshold is based

on sequence length it may appear that the intra-

task kernel is, for some reason, better than the

inter-task kernel when the database sequences

are long. However, this is not the case.

To understand why the intra-task kernel is

sometimes faster than the inter-task kernel, it is

necessary to first understand how the database

sequences are passed to the inter-task kernel. The

database is sorted by length and partitioned into

groups of s sequences each. As there will be

one thread per database sequence in an inter-task

kernel call, s is calculated at runtime based on

machine parameters to maximize the occupancy,

which is a measure of how well the kernel makes

use of the available GPU resources. Once all

the database sequences below the threshold are

sorted and partitioned into groups, CUDASW++

makes one call to the inter-task kernel for each

group. The kernel uses s independent threads to

find the optimal alignment scores for database

sequence in the group. This process continues

until all groups have been processed.

What this means in terms of the performance

of the inter-task kernel is that the computational

time required for a single kernel call is en-

tirely dependent on the length of the longest

sequence in that group. Because the threads are

synchronized between kernel calls, even if all

but one of the threads have finished computing

their alignment scores, they all must wait until

the last thread is complete before another kernel

call can be launched.

The distribution of sequence lengths in a typ-

ical protein database, such as Swissprot, resem-

bles a log-normal distribution. If the sequences

are sorted by length and broken into groups of

size s, the distribution of lengths within a group

are somewhat uniform except at the tail of the

distribution. For this reason, CUDASW++ uses

a threshold to separate the distribution into those

sequences that are processed with inter-task and

those processed with intra-task.

To examine exactly how the sequence length

500 1000 1500
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2
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Standard Deviation of Database Sequence Lengths

G
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U
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s

Inter−task Kernel

Intra−task Kernel

Fig. 2. The performance of the two kernels as a function

of the variance of sequence lengths in the database. Ob-

serve that unlike the intra-task kernel, performance of the

inter-task kernel is very sensitive to the variance. This is

essentially a load balancing issue.

distribution of a database can impact the per-

formance of the two kernels, we generated sev-

eral random databases containing s sequences

using a log-normal distribution of the sequence

lengths. We set the standard deviation between

100 and 1800. Because we used a log-normal

distribution the mean to varies from 1000 to

1600. We ran both the intra-task kernel and

the inter-task kernel of CUDASW++ on the

databases with the same query sequence of

length 567.

Figure 2 shows the GCUPs performance as a

function of the standard deviation of sequence

lengths in the database and indicates that unlike

the intra-task kernel, the inter-task kernel is very

sensitive to the distribution of these lengths. The

optimal threshold is dependent on the distribu-

tion of lengths in the database and this matter is

discussed further in Section VI.

When using this threshold of 3072 on

the Swissprot database, as the authors of

CUDASW++ [4], [5] did, only 0.12% of ap-

proximately 500,000 sequences fall above this

threshold. Only this relatively small portion of

the database is aligned using the intra-task ker-
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Fig. 3. GCUPs of CUDASW++ on Swissprot as a function

of the threshold length. Even a small percentage increase

in the number of sequences that use the intra-task kernel

causes a huge drop in performance.

nel. Therefore, it may at first seem that, by an

argument similar to Amdahl’s law, although the

intra-task kernel is not as highly optimized as

the inter-task kernel, improvements to it would

not yield significant performance gains.

To examine how much of an impact the intra-

task kernel has on the overall performance, we

changed the default threshold of 3072. We mea-

sured the GCUPs of the overall algorithm while

comparing a query sequence of length 572 to

the entire Swissprot database while decreasing

the threshold by 100 for each of the 20 runs.

The results, shown in Figure 3 indicate that

even small variations in the threshold result in

large performance impacts. Therefore, the intra-

task kernel is indeed a bottleneck in the algo-

rithm even though it is only called relatively

infrequently. Not only will improving the intra-

task kernel yield an improvement on the Swiss-

prot database, but it will also have an even larger

impact on those databases with a more varied

distribution of sequence lengths. The remain-

der of this paper will detail our improvements

and the subsequent performance gains on both

NVIDIA Tesla C1060 (Tesla) and Tesla C2050

Fig. 4. The tiling of a SW table and the wavefront of

threads. Each thread is responsible for four rows and fills

them in column-major order. The darkest blocks indicate

cells that have been computed. The lighter shaded blocks

indicate tiles. The arrows indicate the update order that each

thread follows.

(Fermi) GPUs.

III. IMPROVING THE INTRA-TASK KERNEL

We implemented our own intra-task kernel

using a tiling approach. As in the original kernel,

one thread block is responsible for computing

the SW tables and returning the alignment score

for a single query/database sequence pair. The

tables are broken into tiles and the tiles are

traversed in a wavefront order as shown in

Figure 4. We empirically found that a tile size

of 4 × 1 yields the best performance. At each

time step, a thread is assigned a tile and is

responsible for computing all cells in this tile.

After all threads have computed the cells in their

tile, the threads are synchronized, the necessary

data dependencies are shared, and the threads

compute the next tile in their row.

The size of a table that can be calculated in a

single pass is limited by the number of threads

(nth) and the tile height (theight). We will refer

to a set of nth · theight rows as a strip. If a query

sequence is longer than the size of the strip,

the table must be calculated in multiple passes.

Because of the dependencies inherent in the SW

algorithm, the bottom row of a strip must be

saved for the next pass. Although global memory

access is the slowest of all available memories

493489489



on the CUDA device, we use global memory

for the temporary storage of these values since

the amount of memory required depends on the

database sequence length, which may be arbitrar-

ily large. Registers are used for the horizontal

dependencies and shared memory is used for

the vertical and diagonal dependencies between

threads.

Our first implementation of this approach did

not show any improvements over the original

intra-task kernel from CUDASW++. Several in-

cremental improvements allowed us to gain a

significant performance increase over the orig-

inal implementation. We will explain the most

significant factors in detail. Unless otherwise

noted, the following performance results were

obtained using the Swissprot database with a

block size of 256 threads and a 4 × 1 tile size.

A. Global Storage of Local Variables

“Local memory,” as defined in CUDA, is

global memory that is used for local variables

when registers cannot be used. This typically

occurs when the number of local variables ex-

ceeds the register capacity. However, we found

two cases in which global memory was being

used instead of registers even when the capacity

was not exceeded.

In the first implementation of our kernel,

we swapped two register arrays by swapping

pointers to those arrays at the end of a loop.

Thus, at subsequent iterations, the variable could

be referencing one of two arrays. Because of

this shallow swap, the NVIDIA compiler (nvcc)

was unable to map the arrays directly to hard-

ware registers and used global memory. We fixed

this issue by swapping each element of the arrays

in a deep swap.

We also found an issue with the loop unrolling

process of nvcc. If texture memory is used

within a loop, nvcc does not unroll the loop and

array variables cannot be mapped to registers.

Global memory will be used instead. Since the

query profile uses texture memory, we hand

unrolled the loops that access the query profile.

Fixing both these issues yielded about a two-fold

performance increase when the registers were

being utilized as intended.

B. Query Profile

In the original CUDASW++ implementation,

a query profile stored in texture memory is used

in the inter-task kernel but is not used in the

intra-task kernel. We applied the query profile

to our intra-task implementation so that it stores

the similarity scores of four symbols in a single

variable. By making our tile height a multiple

of four, only a single read is required for every

four cells, reducing these memory operations by

a factor of four. On pre-Fermi GPUs, the use

of texture memory allows for caching, further

increasing the significant performance gain we

observed by using the query profile. On Fermi

GPUs, caching is performed on all global mem-

ory transactions, and it is likely that the use

of texture memory for the query profile is not

required on these devices to achieve the same

performance.

C. Parameter Space Exploration

The strip height is a product of two inter-

related parameters, thread block size (nth) and

tile height (theight). The strip height determines

the number of passes required to fill the table

and, therefore, the number of times intermedi-

ate values are stored and retrieved from global

memory. Increasing the strip height will reduce

the number of global memory operations, but it

will also increase the pipeline latency. We ob-

served that strip height is the relevant parameter

to optimize. Therefore, several combinations of

nth and theight result in essentially the same

performance.

Increasing the tile width does not provide any

benefit. The number of shared memory opera-

tions is not affected by tile width because the

horizontal dependencies are stored in registers

and the dependencies of the bottom row of a

tile still need to be written to shared memory.

Also, an increase in width will not change the

number of rows computed in a strip and thus will

not affect the number of global memory opera-

tions. The number of thread synchronizations is

494490490



reduced, but the pipeline latency is increased.

Overall, the latency increase dominates the sav-

ings from reducing synchronizations. Therefore,

a tile width of one is optimal.

IV. RESULTS

Since the performance of CUDASW++ de-

pends on the performance of both the kernels

and the choice of the threshold, we first con-

ducted a number of experiments to observe the

effect of the threshold on the performance of

CUDASW++ using both the original and the

improved intra-task kernels.

A. Performance of the Intra-Task Kernels

To determine the optimal values for nth and

theight, we ran CUDASW++ with our implemen-

tation of the intra-task kernel using 64, 128, 192,

256 and 320 threads per block and tile height

of 4 and 8. We found that a strip size of 512

was optimal on the Tesla C1060 and 1024 was

optimal on the Tesla C2050. We use these values

for all of the subsequent experiments.

We then ran the same experiment used to

generate Figure 3 by varying the threshold value

using both the improved and the original intra-

task kernels. Changing the threshold essentially

controls the number and variance of the se-

quences compared by the inter-task and the intra-

task kernels. Figure 5 shows the performance

of the original and improved CUDASW++ im-

plementations as the threshold is varied on both

the Tesla C1060 and C2050. Figure 5(a) shows

the GCUPs as a function of sequences over

the threshold in the database and Figure 5(b)

shows the percentage of time spent in the intra-

task kernel as a function of sequences over the

threshold.

Figure 5(a) shows that the performance in-

crease of CUDASW++ using our intra-task ker-

nel improves as the percentage of sequences

above the threshold rises. For example, if ap-

proximately 0.12% of the database sequences

are above the threshold, as is the case in Swiss-

prot with the default threshold value of 3072,

the improvement is about 25.0%. But if 2.5%

of the sequences are above the threshold, the

Total Memory Transactions

Kernel Query Len. 567 Query Len. 5478

Imp. Kernel 13,828 4,233,197

Orig. Kernel 28,345,473 291,179,739

TABLE I. Number of total global memory accesses

performed by both kernels on queries of two different sizes

against the Swissprot database.

improved kernel leads to a 67.0% increase in

performance. CUDASW++ with our improved

intra-task kernel is not as sensitive to the per-

centage of sequences above the threshold as is

CUDASW++ with the original kernel. This is

especially important for other databases that may

have a larger percentage of sequences over the

threshold, as do the majority of databases in

Table II.

Figure 5(b) shows that CUDASW++ using

the original kernel spends up to 50% of its

running time in the intra-task kernel when run

on a Tesla C1060, but shows an improvement

when run on a Tesla C2050. While our improved

implementation reduces the percentage of time

spent in the intra-task kernel kernel by more than

half, there is no significant difference between

the C1060 and C2050.

This is because the C2050 introduces two

levels of cache to global memory accesses: an

L1 cache, which is shared by threads of the

same multi-processor, and an L2 cache, which

is shared by all threads. While both the orig-

inal intra-task kernel and the improved intra-

task kernel can benefit from the L1 and L2

cache, the original intra-task kernel makes many

more global memory accesses than the improved

kernel, which allows it to gain more of a benefit

from caching.

We used a profiler to count the number of

global memory accesses of both the improved

and the original kernel. We used a query se-

quence of length 567 and a query sequence of

length 5478 and ran each against the Swissprot

database. The total number of memory transac-

tions are reported in Table I.

We generated the improved intra-task kernel

results using 256 threads per block and a tile

height of four. Thus, a strip size is 1024. Five full

495491491
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(b) Percentage of time in intra-task

Fig. 5. The four curves in each figure show (a) the performance in GCUPs and (b) the percentage of time spent in

the intra-task kernel by CUDASW++ on C1060 and C2050 with and without our improved kernel, as a function of the

percentage of sequences compared by the intra-task kernel. Our kernel always improves performance. The gain is at least

6.7% on the C2050 (17.5% on the C1060) and as much as 39.3% on the C2050 (67.0% on the C1060). We ran this

experiment on Swissprot with a single query of length 576.

passes are required on a query size of 5478, and

we can approximate about 106 global memory

transactions per strip from the data of Table I.

The original kernel requires global memory ac-

cesses for every cell updated. Therefore, dividing

the values of the original kernel by the respective

query lengths in Table I gives us an approxi-

mation of 50,000 global memory accesses per

symbol in the query length when run against

the Swissprot database. This means the original

kernel performs approximately 5 × 107 global

memory accesses per 1024 query symbols com-

pared to 106 accesses in the improved kernel.

The improved kernel needs to communicate

data to and from global memory for each strip

of 1024 elements in the query sequence, using

the default parameters. The original kernel needs

to perform global communications for each ele-

ment of the query sequence. This is the main

source of our performance gain and also the

reason for the improvement found in the original

intra-task kernel on the Tesla C2050 as seen in

Figure 5(b).

Because the L1 and L2 caches only affect

global memory transactions, the performance

gained by caching is only significant in the orig-

inal kernel because of the large number of global

memory transactions performed by that kernel.

To show that the cache is indeed responsible for

the improvement shown in Figure 5(b), we per-

formed the same experiment on a Tesla C2050

with both of the L1 and L2 caches turned off.

These results are shown in Figure 6. This shows

that the improvements gained by the original

kernel on a Tesla C2050 are almost completely

attributed to the cache.

Any kernel making extensive use of global

memory can gain a performance boost by the

L1 and L2 cache introduced in the Fermi line

of GPUs, but it is not enough to compete with

a kernel which eliminates the majority of the

transactions altogether. Even though L1 has the

same throughput as shared memory, if the access

pattern results in L1 misses, tiling for the explicit

use of shared memory is ideal.
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Fig. 6. Results of varying the threshold between inter-task

and intra-task kernel calls on the Swissprot database with

L1 and L2 cache turned off.

B. Performance of the Complete Application

To determine the performance gain of the

overall CUDASW++ algorithm using our im-

proved intra-task kernel, we ran CUDASW++

with the improved kernel and with the original

kernel against the Swissprot database. We used

the same query sequences from the original

CUDASW++ study [4]. The length of the query

sequences ranges from 144 to 5478 residues in

length.

We ran the algorithms on a single Tesla C1060

GPU and a single Tesla C2050 GPU. While we

did not run the algorithm on multiple GPU cards,

we note that the kernel tasks are independent,

and thus the running time will scale almost

linearly with the number of GPUs available, as

seen in previous studies [4], [5]. For both GPUs,

we used CUDA version 3.2. We measure the

GCUPs from multiple query sequences against

the Swissprot database. As a point of reference,

we also ran SWPS3 [9], a vectorized SSE imple-

mentation of Smith-Waterman using four cores

of an Intel Xeon processor clocked at 2.33 GHz.

The results are shown in Figure 7.

A benefit of both versions of CUDASW++

is that it is not as sensitive to query length
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Fig. 7. GCUPs of CUDASW++ with our improved intra-

task kernel and with the original intra-task task kernel on

the Swissprot database.

as SWPS3. This is mainly due to the need of

SWPS3 to correct errors which are a result of

a vertical traversal through the SW tables. The

correction requires at least another pass, which

is known as the Lazy-F loop that is required

for efficient vectorization [3], [9]. CUDASW++

outperforms SWPS3 at all points tested using

one GPU card. We note that while SWPS3

can be run on more processors to increase the

performance, CUDASW++ can similarly be run

on multiple GPUs. Using eight x86 cores will

give SWPS3 roughly a two times increase in

speed; CUDASW++ will likewise see a twofold

increase if two GPUs are used.

When our improved intra-task kernel is

incorporated into CUDASW++, the perfor-

mance is consistently higher than the origi-

nal CUDASW++ by an average of about four

GCUPs or 25%. In addition, the performance

is consistent for query lengths above 1000. In

general, our improved CUDASW++ implemen-

tation is less sensitive to varying query lengths

and outperforms both the original CUDASW++

implementation and SWPS3.

In practice, many different protein, RNA, or

DNA databases are routinely used for compar-
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ison purposes. To test our improved kernel on

others databases, we chose several databases

from various sources. The databases used were

the most recent versions as of this writing.

Table II shows the performance of CUDASW++

with both the original intra-task kernel and the

improved version on the Tesla C1060 and Tesla

C2050.

We see that the improved intra-task kernel

increases the performance of CUDASW++ on

all databases tested. The performance gain is

typically more pronounced when there are more

sequences over the threshold, with the low-

est performance gain occurring on the TAIR

database with only 0.06% of the sequences over

the threshold. This is to be expected since the

inter-task kernel remains unchanged and very

few sequences are being compared by the intra-

task kernel. The gains of the improved intra-

task kernel are also more noticeable on the Tesla

C1060 than the C2050. Again, this is a result of

the performance boost gained by the original im-

plementation due to the global memory caching

available on the Fermi.

However, we have not addressed another

benefit our improved intra-task kernel provides

the CUDASW++ algorithm. By increasing the

performance of the intra-task kernel, we have

changed the tradeoff point where intra-task is

better than inter-task as the distribution of se-

quence lengths becomes non-uniform, i.e. the

intersection point shown in Figure 2. This means

the algorithm may benefit from lowering the

threshold on some databases from the default

3072.

We decreased the threshold from 3072 to

1500 and reran CUDASW++ with our improved

kernel on the TAIR database. At this threshold

setting, 0.96% of the sequences were over the

threshold. For query sequences longer than 144,

the performance increased to over 21 GCUPs

in all cases on the C2050. This is close to a 4

GCUPs increase over the performance reported

in Table II by simply decreasing the threshold.

Exploratory experiments into the optimal thresh-

old value have shown us that we can gain similar

performance increases in almost all databases by

lowering the threshold when CUDASW++ uses

our improved kernel.

V. CONCLUSIONS

In this paper we started with a detailed analy-

sis of the CUDASW++ algorithm and found the

original intra-task kernel to be a large bottleneck.

Although the intra-task kernel is slower than the

inter-task kernel when performing at its peak, we

have shown that the performance of the inter-

task kernel is highly dependent on the distribu-

tion of sequence lengths in the database, but the

intra-task kernel does not have this dependency.

Thus, when the distribution of sequence lengths

deviates far enough from a uniform distribution,

the intra-task kernel becomes necessary.

Even though the intra-task kernel is only used

to compare the query sequence to a small portion

of the database sequences, we have shown when

as few as 2% of the sequences in the database

are compared using the intra-task kernel, more

than 50% of the overall running time is used by

this kernel. We have shown that the bottleneck

is primarily due to the large number of global

memory accesses performed by the intra-task

kernel.

We have presented an improved imple-

mentation of the intra-task kernel used in

CUDASW++, which substantially improves on

the performance of the original intra-task kernel

on both Tesla and Fermi GPUs. Our kernel was

designed to tile the computation in order to

reduce the number of global memory accesses

and make use of the shared memory. We have

shown that our kernel achieves an approximate

50:1 reduction in the number of global memory

accesses on the Swissprot database. We have

also found and described our workarounds for

several non-trivial instances when global mem-

ory was being used instead of registers as we

had intended. Our improved kernel is pleasantly

parallel 1 at the scope of kernel calls, allowing

CUDASW++ with our improved implementation

1many authors call this embarrassingly parallel
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Database
% over

GPU Kernel
GCUPs for Query Sequences of Length

Thresh. 144 1000 2005 3005 4061 5478

Ensembl Dog Proteins .53%

C1060
Original 7.85 8.78 8.82 9.05 9.19 9.72

Improved 8.87 11.37 11.53 11.51 11.50 11.41

C2050
Original 12.01 15.44 15.46 15.27 15.09 15.02

Improved 13.28 17.29 17.35 17.38 17.41 17.29

Ensembl Rat Proteins .35%

C1060
Original 7.90 8.61 8.68 8.87 9.02 9.55

Improved 8.83 10.98 11.14 11.10 11.11 11.04

C2050
Original 11.77 14.61 14.66 14.47 14.32 14.26

Improved 12.98 16.11 16.16 16.19 16.23 16.16

NCBI RefSeqHuman Proteins .56%

C1060
Original 6.71 7.12 7.70 7.91 8.04 8.52

Improved 7.77 10.34 10.43 10.42 10.40 10.31

C2050
Original 11.19 15.10 15.06 14.83 14.61 14.54

Improved 12.37 17.48 17.54 17.61 17.60 17.42

NCBI RefSeq Mouse Proteins .54%

C1060
Original 6.77 7.72 7.93 8.11 8.24 8.73

Improved 7.91 11.05 10.95 10.88 10.87 10.76

C2050
Original 9.44 12.49 12.40 12.21 12.10 12.06

Improved 10.29 14.21 14.18 14.14 14.17 14.08

TAIR Arabidopsis Proteins .06%

C1060
Original 9.83 10.50 10.74 10.83 10.87 11.01

Improved 10.03 11.04 11.24 11.30 11.28 11.28

C2050
Original 15.29 17.40 17.53 17.63 17.52 17.54

Improved 15.31 17.69 17.81 17.94 17.89 17.89

UniProtDB/Swiss-Prot .12%

C1060
Original 14.98 14.79 15.50 15.77 15.95 16.59

Improved 16.16 18.02 18.31 18.29 18.30 18.23

C2050
Original 24.20 27.46 27.29 26.97 26.77 26.71

Improved 26.02 29.29 29.26 29.28 29.19 29.20

TABLE II. Results for both versions of CUDASW++ on several databases.

to linearly scale with multiple GPUs as does the

original CUDASW++ [5].

Our results show that using our improved

kernel yields a significant performance boost to

CUDASW++ when run on multiple real world

databases of protein sequences on both a Tesla

C1060 and a Tesla C2050. Even though the Tesla

C2050 provides two levels of caching to increase

the performance of global memory accesses and

the L1 cache has the same throughput as shared

memory, we have shown that tiling for explicit

shared memory usage outperforms the original

intra-task kernel despite the performance gained

by caching.

VI. FUTURE WORK

We believe that there are several key im-

provements to the algorithm that would cause

significant increases in the performance. One,

the global memory accesses can be coalesced for

improved performance. Currently, the last thread

in the bottom row of the strip must write out

its values to global memory one at a time. This

can be improved by adding an intermediary step

to first write these values to a shared memory

buffer. Once this buffer is full, all threads in the

block would be responsible for moving these

values from shared memory to global memory

in a coalesced fashion. The same concept can

be applied to the global memory reads when

starting a new strip. It is also possible to use

the increased amount of shared memory on the

Fermi to completely eliminate global memory

for shorter sequences. Our implementation uses

such a small amount of global memory that it

can all be done in shared memory for sequence

lengths less than 10,000.

Since we know from our tile height experi-

ments that the latency for filling and flushing the

pipeline can impact the performance, the algo-

rithm can be changed so that only one pipeline

fill/flush is required for the entire alignment,

rather than one fill/flush for every strip. When

a thread finishes its last tile on a strip, it can

immediately start working on the next strip.

A more high-level change can be incorporated
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that would streamline the host to device memory

copy. Rather than copy the entire database to

device memory before starting any alignments,

the algorithm could copy over a small portion of

the database and start performing alignments on

those sequences. Then the rest of the database

can be copied in the background, essentially

hiding the majority of the host to device memory

transfer time. Additionally, this would allow

large databases to be used, such as the NR

database or TrEMBL, which are currently too

large to fit in the memory of a single Tesla

C1060 or C2050.

Finally, as shown by our initial experiments

conducted by varying the threshold on the TAIR

database, the automatic detection of the optimal

threshold value could have a significant impact

on the performance. It is possible to characterize

the relative performance of the inter-task and

intra-task kernels based on the mean and maxi-

mum lengths of a given group of sequences. In

this way, during the database preprocessing step,

we can find the transition point where the intra-

task kernel will outperform the inter-task kernel

to determine the optimal threshold value.
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