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Abstract—The so-called site repeats (SR) technique can be used
to accelerate the widely-used phylogenetic likelihood function
(PLF) by identifying identical patterns among multiple sequence
alignment (MSA) sites, thereby omitting redundant calculations
and saving memory. However, this complicates the optimal data
distribution of MSA sites in parallel likelihood calculations, as
the cost of computing the likelihood for individual sites strongly
depends on the sites-to-cores assignment. We show that finding a
’good’ sites-to-cores assignment can be modeled as a hypergraph
partitioning problem, more specifically, a specific instance of
the so-called judicious hypergraph partitioning problem. We
initially develop, parallelize, and make available HyperPhylo, an
efficient open-source implementation for this flavor of judicious
partitioning where all vertices have the same degree. Using
empirical MSA data, we then show that sites-to-core assignments
computed via HyperPhylo are substantially better than those
obtained via a previous naı̈ve approach for phylogenetic data
distribution under SRs.

Index Terms—phylogenetic inference, data distribution, paral-
lel efficiency, judicious hypergraph partitioning

I. INTRODUCTION

Phylogenetic inference, that is, the reconstruction of evo-

lutionary trees based on the molecular sequence data of the

species under study, has numerous applications in medical

and biological research. Thus, tools for phylogenetic inference

such as RAxML [1] or MrBayes [2] are widely used and

highly cited. With the advent of new molecular sequencing

technologies, the field faces a substantial scalability challenge

as phylogenetic analyses of empirical data sets under the

standard likelihood models of sequence evolution can require

thousands to millions of CPU hours. Most state-of-the art tools

for phylogenetic inference have already been parallelized and

are regularly deployed on large clusters for production runs.

Therefore, an optimal data distribution is key for achieving

’good’ parallel efficiency.

Here, we analyze specific properties of the, so far, most

complex variant of the phylogenetic data distribution problem.

Part of this work was supported by the Klaus-Tschira foundation and DFG
grant STA 860/6-1.

We initially transform the problem into a hypergraph parti-

tioning problem and show that it corresponds to a particular

instance of the so-called judicious hypergraph partitioning

problem [3] (henceforth, denoted as judicious partitioning).

As no efficient implementation of a judicious partitioning

algorithm was available, we develop, parallelize, and present

HyperPhylo1 an efficient open-source implementation of the

specific judicious partitioning flavor where all vertices have the

same degree. We then apply HyperPhylo to our phylogenetic

data distribution problem and compare the data distribution

computed via judicious partitioning to the data distribution

obtained via a simple ad hoc heuristic [4]. We find that

phylogenetic data distributions computed with HyperPhylo

are substantially better than those obtained via the ad hoc

heuristic.

The remainder of this paper is organized as follows. In Sec-

tion II we introduce the phylogenetic preliminaries, motivate

as well as state our problem, and discuss related work. In

the subsequent Section III we introduce judicious partitioning

and describe our efficient algorithm, implementation, and

parallelization. In Section IV we present experimental results.

We conclude in Section V.

II. PHYLOGENETIC PRELIMINARIES

The input to a phylogenetic inference is a multiple se-
quence alignment (MSA) which comprises the sequences of
the species under study. The MSA columns are also called

sites. In empirical phylogenetic analyses, the sites of the
MSA are typically subdivided into p disjoint partitions (e.g.,
corresponding to individual genes) for which a separate set

of likelihood model parameters is estimated. Given the MSA

and a partitioning scheme, one can calculate the phylogenetic

likelihood function (PLF) on a given candidate tree. PLF

calculations typically account for 85-95% of total running time

in current tools such as RAxML and MrBayes. Thus, the PLF

1available at https://github.com/lukashuebner/HyperPhylo
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is the target function for optimization and parallelization. PLF
calculations are typically parallelized over MSA sites as per-

site likelihood calculations are independent from each other.

Once all per-site likelihoods have been computed, only one

collective communication is required to compute the product

(or the sum over the logarithms) over all per-site likelihoods to

obtain the overall likelihood score. For instance, if there is only

one partition, the MSA sites can be distributed to the cores in a

cyclic fashion. However, given a list of p partitions and c cores
for a partitioned MSA, finding a ’good’ (w.r.t. load balance)

site-to-core assignment becomes more challenging [5]. As the

per-site likelihood calculation cost is identical for all sites,

each partition has a computation cost that is linear in the

number of sites it comprises.

At an abstract level, the data distribution problem can be

stated as follows: For a given number of c cores we need to
balance the data (MSA sites) among the c cores such that the
maximal per-core load (sites assigned to core) is minimized.

The MSA partitions are divisible, since a partition consists
of sites whose likelihoods can be computed independently.

We can thus improve load balance by splitting partitions into

disjoint sets (hereafter referred to as blocks) of sites that are
allocated to distinct cores. However, splitting a partition does

not come for free as the computational cost of a partition has

two components: All partitions incur an identical constant base

cost α at every core (see [5] for details). Thus, if we split a
partition among cores, each block of that partition incurs this

base cost α. For instance, if the sites of a partition are assigned
to two distinct cores, α needs to be computed redundantly (i.e.,
once per core). The second component of the per-partition PLF

calculation cost is the variable cost β which is linear in the
number of sites per partition. To maximize parallel efficiency,

we need to minimize redundant calculations of α by only

splitting partitions when necessary, while distributing sites

evenly among cores. In [5], we have shown that the problem

is NP-hard and introduced an approximation algorithm which

solves it in practice.

Thus far, we assumed that per-site calculations costs are

identical for each site. That means, if we split a partition

into two blocks of equal size among two cores, the respective

computational cost is α+β/2 per core. With the introduction
of site repeats (SR [6]), an algorithmic optimization of the
PLF, the above does not hold. The technique takes repeating

(shared) patterns in distinct partial sites (subsets of characters

of MSA sites) of a partition into account to reduce per-

site calculation cost. The amount of savings depends on the

current tree topology and the MSA. Site repeats reduce the
cost β by detecting and re-using identical intermediate results
among two or more sites belonging to the same partition.

Thus, distinct sites of a single partition now exhibit varying
computational cost. If we assign two sites that share a large

fraction of common intermediate results to different cores, the

accumulated computational cost and memory for those two

sites will increase.

The above complicates data distribution of parallel SR-

based PLF calculations. We can still split a single partition
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Fig. 1. One MSA partition split among two cores and its respective PLF
computation costs with and without SRs.

among several cores, but now have to sacrifice some SRs

which induces additional redundant computations. We denote

this phenomenon as repeat loss. Note that, computing a lower
bound for the minimal repeat loss is straight-forward, as

the minimum amount of SR-based calculations can easily be

computed for a sequential execution of the PLF (see [7]). Thus,

for SR-based parallel PLF computations we might have to also

conduct redundant computations for component β. Hence, the
cost β increases if sites that belong to the same partition and
share repeats are allocated to distinct cores [7]. We illustrate

the impact of SRs on load balance via a simple example

(Figure 1). Given a tree, assume a single MSA partition

comprising 5 sites that has to be split among 2 cores, and
contains some SRs (highlighted by colored boxes). In Figure 1

we depict the required PLF calculations in terms of so-called

Conditional Likelihood Vector (CLV) updates—involving a

substantial amount of floating point operations—per core with

and without SRs, respectively.

Our goal is thus to devise a data distribution algorithm that

yields a ’good’ trade-off between minimizing repeat loss and

load balance in terms of floating point operations per core to,

in turn, reduce overall parallel PLF execution times.

We initially outline our current ad hoc randomized data

distribution algorithm (RDDA [4]) and then formally state the

problem. Given a MSA, and a partitioning scheme, RDDA

initially computes the fraction of expected SR-induced com-

putational savings for each partition over a set of random trees.

We have empirically assessed that using random trees is suf-

ficient to account for the variance of topology-dependent SR-

induced savings. RDDA then simply distributes the partitions

according to these fractions using the algorithm from [5]. As

RDDA is unaware of repeat loss, that is, sites that share a

large proportion of repeats can be assigned to different cores.
Hence, the obtained data distribution can become sub-optimal.

To the best of our knowledge, the RDDA algorithm and our

previous exploratory work [7] constitutes the only related work

on this problem.

For the remainder of this paper, we will assume that (i) we

are given a fixed phylogenetic tree and (ii) that we only have

one MSA partition (i.e., p := 1) whose sites we need divide
into two or more blocks in order to assign them to two or

more cores, since the coarse-grain distribution (i.e., assigning

entire MSA partitions to cores) is already handled well by

RDDA. To now formally state our problem, we introduce some
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definitions.

Let S be a set of n MSA sites and c the given number
of cores. By Ac(S) we denote the set of all possible sites-
to-cores assignments to c cores (i.e., all possible partitions of
S into c blocks). An element Z ∈ Ac(S) then represents a
specific sites-to-cores assignment where |Z| = c.

Let flops(ζ) be the number of accumulated floating point
operations required to compute the per-site likelihoods of

all sites ζ assigned to a core for one specific sites-to-cores
assignment Z in Ac(S). Note that it is straight-forward to
exactly compute flops(ζ) by calculating the SRs of the sites
in ζ, without having to carry out the actual compute-intensive
likelihood calculations.

Given these definitions, we can now state the simple prob-

lem of splitting just one (p := 1) MSA partition among c cores.
Find the sites-to-cores assignment Z ∈ Ac(S) that minimizes:

f(Z) = max
ζ∈Z

flops(ζ).

III. JUDICIOUS HYPERGRAPH PARTITIONING

A. Preliminaries

An unweighted, undirected hypergraph H = (V,E) is
defined as a set of n vertices V and a set ofm hyperedges/nets

E, where each net e is a subset of the vertex set V (i.e.,

e ⊆ V ). The vertices of a net are called pins. A vertex v
is incident to a net e if v ∈ e. I(v) denotes the set of all
incident nets of v. The degree of a vertex v is d(v) := |I(v)|.
With Δ, we denote the maximum degree of a hypergraph.

The size |e| of a net e is the number of its pins. A k-way
partition of a hypergraph H is a partition of its vertex set into

k blocks Π = {V1, . . . , Vk} such that
⋃k

i=1 Vi = V , Vi �= ∅ for
1 ≤ i ≤ k, and Vi∩Vj = ∅ for i �= j. Given a k-way partition
Π, the number of pins of a net e in block Vi is defined as

Φ(e, Vi) := |{v ∈ Vi | v ∈ e}|. Net e is connected to block
Vi if Φ(e, Vi) > 0.

Judicious hypergraph partitioning (JDP) strives to find

a k-way partition Π of a hypergraph H that minimizes

the maximum number of nets a block is connected to.

In other words, judicious partitioning attempts to mini-

mize max(L(V1), . . . , L(Vk)), where L(Vi) := |{e ∈
E | Φ(e, Vi) > 0}| is the load of a block Vi. The problem

is known to be NP-hard [8] and has mainly been studied in

the context of extremal combinatorics [9]–[11]. To the best

of our knowledge, Tan et al. [3] were the first to investigate
algorithmic aspects of the problem.

JDP differs significantly from the classical k-way hyper-
graph partitioning problem (HGP). While JDP is solely con-
cerned with minimizing the maximum number of nets a block

is connected to, the goal of HGP is to partition the vertex set

into k disjoint blocks of bounded size (at most 1 + ε times
the average block size) while minimizing an objective function

such as cut-net (i.e., the weight of all nets that connect more

than two blocks) or connectivity (which additionally takes into

account the actual number of blocks connected by a cut net).

Because of this difference, we do not use existing HGP tools

such as hMetis [12] and KaHyPar [13], which are geared

towards computing vertex-balanced partitions with small cuts.

B. Connection between Judicious Partitioning and the Phylo-
genetic Data Distribution Problem

The input of the phylogenetic data distribution problem is

one MSA partition with n sites si, a binary tree topology
specifying the order of PLF calculations (and hence, the SRs),

and a given number of cores c. Two MSA sites si and sj are
repeats of one another at an inner node q of the phylogenetic
tree, if the partial sites si|q and sj |q induced by the subtree
rooted at q are exactly identical (e.g., the colored boxes in
Figure 1 are such partial sites). By partial site, we denote

those nucleotides of a MSA site that are contained in a subtree

rooted at q. If two partial MSA sites si|q and sj |q are repeats
of one another we say that they belong to to the same repeats
class. Thus, each partial site will be in exactly one repeats
class at every inner node of the phylogenetic tree. Note that

if a site does not repeat any other site at an inner node, it is

assigned to a separate repeats class of size 1. At the root of our
example phylogeny in Figure 1, core 1 has two repeat classes
(sites {1}, {2, 5}) and core 2 also has two repeat classes
(sites {3}, {4}). The number flops(ζ) of accumulated floating
point operations required to compute the per-site likelihoods

of all sites ζ assigned to a core is directly proportional to the
accumulated number of repeats classes over all inner nodes

of the given phylogenetic tree. For instance, the number of

accumulated repeats classes for core 1 in our example is
1 + 2 + 2.
We can now use a hypergraph H = (V,E) to formulate

our data distribution problem: Each site si corresponds to a
vertex vi ∈ V and each repeats class r = {s·, . . . , s·} induced
by an inner node of the phylogenetic tree corresponds to a

hyperedge e ∈ E of size |r| containing the corresponding
vertices e = {v·, . . . , v·}. Thus, the number of vertices in the
hypergraph is equal to the number of sites of the MSA and

the number of hyperedges corresponds to the total number of

repeats classes induced by all inner nodes of the entire tree

topology. An example is shown in Figure 2. Since each inner

node of a phylogenetic tree incurs computations for all MSA

sites, each site is in exactly one repeat class for each inner
node of the phylogeny. Therefore, each inner node incurs one

hyperedge for each MSA site and the degree of each vertex vi
equals the number of repeats classes the corresponding site si
belongs to. By construction, the degree of every vertex v ∈ V
is equal to the number of inner nodes of the phylogeny, that

is, d(v) = Δ, ∀v ∈ V .
The site-to-cores assignment Z ∈ Ac that minimizes

maxζ∈Z flops(ζ) for a given number of cores c therefore cor-
responds to a judicious k-way partition of the corresponding
hypergraph H into k = c blocks.

A note on terminology: In phylogenetic inference, a

partition of a MSA corresponds to a subset of sites (e.g.,

corresponding to individual genes), whereas in graph and

hypergraph partitioning literature the term partition is used

in the mathematical sense, that is, a partition is a grouping of
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Fig. 2. Example of a partitioned MSA and the corresponding partition Π =
{V1, V2} of the hypergraph H . Nets of size 1 have been omitted for clarity.

the vertex set into non-empty, pairwise-disjoint subsets called

blocks. In the following, we therefore explicitly use the term

MSA partition to refer to a subset of sites of a MSA.

C. The Judicious Partitioning Algorithm of Tan et al. [3]

The algorithm is based on the insight that the objective

score, that is, the cost of a k-way partition Π of a hypergraph
H can be bounded both, from below, and from above. The

lower bound is obtained by observing that the maximum load

L(Vi) of a block Vi cannot be smaller than the maximum

degree Δ. This is because the maximum-degree vertex has to
be assigned to one of the blocks. An upper bound for L(Vi)
is given by the number of hyperedges |E|.
The algorithm does not directly partition the hypergraph

into k blocks while minimizing the maximum load. Instead,

it repeatedly computes partitions of increasing cost Δ+ d for
0 ≤ d ≤ |E| −Δ without restricting the number of blocks a

priori. Once the number of blocks k′ of a computed partition
is ≤ k, the algorithm stops and returns the current partition.

Otherwise (i.e., if k′ � k), the algorithm uses the current

solution as input for the next round/iteration. Thus, it increases

the cost in each round to find a partition into fewer blocks.

To compute a partition with a solution cost of Δ + d the
algorithm relies on solving a minimum set cover problem.

In the first pass of the algorithm (i.e., d = 0) the set cover
problem is constructed as follows: The universe U is defined
to be the set of vertices. Each vertex v is implicitly represented
via its incident nets I(v), that is, vertex vi is encoded as
I(vi). Let T = {t1, t2, . . . , t( m

Δ+d)
} be the set that contains

all combinations for choosing Δ + d out of m hyperedges.

The collection S of sets that cover U is then defined as

S = {S1,S2, . . .}, where Sj = {I(v) | I(v) ⊆ tj , v ∈ V }.
Then, the standard greedy algorithm (i.e., in each round,

choose the set that contains the largest number of uncovered

elements) is used to find a sub-collection S∗ of S that covers
U . In later rounds of the algorithm, U is replaced by the current
solution S∗. In each iteration, S∗ thus induces a partition of
the elements in U , which in turn corresponds to a partition of
the vertex set of the hypergraph. We provide the corresponding

pseudo code in Algorithm 1. An example is shown in Figure 3.

Algorithm 1: Judicious Partitioning Algorithm of Tan et al. [3]
Input: Hypergraph H = (V,E) with n nodes, m hyperedges

Input: number of blocks k
Output: k-way partition Π of H , solution cost Δ+ d
U := {I(v1), . . . , I(vn)} // incidence encoding of vertices
for d := 0; d ≤ m−Δ; ++d do // increasing cost
T := all

(
m

Δ+d

)
comb. to select Δ+ d out of m nets

S = {S1,S2, . . .}, with Sj = {I(v) | I(v) ⊆ tj , v ∈ V }
S∗ := GreedySetCover(U ,S)
if |S∗| > k then

U := S∗

else
Π := partition induced by S∗

return (Π,Δ+ d)

First iteration: Δ + d = 2� k′ = 4:

V1={v1, v2}
V4={v3}

V3={v6}
V2={v4, v5}

v1
v2
v3
v4
v5
v6

1100
1010
1001
0110
0101
0011

n1
n2
n3
n4

Second iteration: Δ + d = 3� k′ = 2:

1000
1010
1001
0100
0101
0011

n1
n2
n3
n4

1110
1101
1011
0111

n1
n2
n3
n4

1010
1001
0101
0011

n1
n2
n3
n4

V1={v1, v2, v3, v6}
V2={v4, v5}

{v1, v2}
{v3}

{v6}
{v4, v5}

v1 v2

v3 v4v5v6

Input Hypergraph

v1 v2

v3

v4v5

v6

Initial Set Cover Problem

U
v1
v2
v3
v4
v5
v6

1000
1010
1001
0100
0101
0011

1100
1010
1001
0110
0101
0011

{v1, v4}
{v1, v2}
{v1, v3}
{v4}
{v4, v5}
{v6}

S
n1
n2
n3
n4

n1
n2
n3
n4

T

V1 V4

V3 V2

v1 v2
v3

v4v5v6

V1 V2

Fig. 3. Modified example from Tan et al. [3]: A hypergraph with 6 vertices
and 4 nets is partitioned into k = 2 blocks using their algorithm. The final
partition has a cost of Δ+ d = 3. Note that sets Sj are represented as edges
in the bipartite graph.

D. Towards an Efficient Implementation

The algorithm might already require O(mΔ) time for the
first round, as S can contain all

(
m
Δ

)
combinations. This is

computationally infeasible, even for small hypergraphs.

a) Exploiting Instance-specific Features.: However, we
can exploit the fact that, by construction of our specific

instance, all vertices have the same degree, that is, ∀v ∈ V :
d(v) = Δ. Thus, all elements in U are represented by exactly
the same number of hyperedges. Therefore, it is possible to

omit the first round (d = 0) of the algorithm as it will only

group vertices u and v that have the exact same incidence
structure (i.e., I(u) = I(v)). Instead, we perform one pass

over the elements of U and remove all duplicate entries (i.e.,
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vertices with the same incidence structure).

In all subsequent iterations, the representations of elements

in U and S will only differ in one additional hyperedge. Thus,
it is possible to generate all elements in S by combining all
pairs of elements in U . Hence, generating the initial collection
of sets S only requires O(Δn2) time, as we can compute the
union of all pairs of elements in U and keep exactly those

where |Sj | = |Uj | + 1. Since the greedy set cover algorithm
always chooses the next set Si such that it contains the largest
number of uncovered elements, it is not necessary to compute
all elements Si with |Si| = 1 a priori. Instead, these elements
can be generated on-the-fly when the greedy algorithm has

no elements with |Si| ≥ 2 left to process and has not found
a solution that covers U . This approach substantially reduces
the overall memory consumption, since generating S naı̈vely
would lead to O(nm) Si elements with |Si| = 1, while our
approach generates at most n such elements.

b) Improving Convergence Behavior.: Henceforth, we

denote such elements in S that are generated on-the-fly and
only cover one element u ∈ U as filler elements. When
the greedy algorithm has no elements |Si| ≥ 2 left and
therefore adds a filler element to the solution S∗, the block of
the hypergraph partition corresponding to this filler element

does not change. It will contain the same vertices as in the

previous iteration, since filler elements only cover a single

element of U . While this is not a problem in theory, it can

substantially affect the convergence speed of the algorithm

and hence overall running time. This is because with a large

fraction of filler elements, the current number of blocks k′

converges only slowly to k, since many blocks will remain
stable during subsequent iterations. Furthermore, this behavior

can deteriorate solution quality, since more iterations will be

required for merging two blocks and the solution cost (i.e.,

Δ+d) increases with each iteration. By employing the greedy
set cover algorithm, the judicious partitioning algorithm of

Tan et al. [3] chooses an arbitrary filler element out of all
combinations of Δ + d nets that constitute a superset of u.
Since the chosen filler set Sj will be included in S∗ and
thus becomes a new element of U in the next iteration, some
choices of Sj may be more difficult to cover using Δ+ d+1
nets than others. In the worst case, the element will again only

be covered by another filler element with Δ+ d+ 1 nets.
To alleviate this issue, we deploy the following strategy

when choosing a filler element for a yet uncovered element

u ∈ U : We first compute the symmetric set difference between
u and all other elements u′ ∈ U . We then choose the filler
element Sj such that the difference to the closest element u′

decreases. This increases the chance that both, u, and u′ can be
covered using a non-filler S element in subsequent iterations.
We will provide additional details on this in the paragraph

after next.

c) Representing U and S Sets.: Both, the elements of
U , and the sets of S comprise elements that are represented
by hyperedges of the hypergraph. While Tan et al. [3] do
not explicitly discuss how set elements are represented, their

example (an enhanced version of which is shown in Figure 3)

already hints at a potential implementation: each element can

be represented as a m-bit bitvector, where a set bit at the ith
position denotes that hyperedge i is part of the set element.
Thus, set unions and intersections become bit-wise and and or
operations, respectively. However, ifm is large andΔ is small,

these bitvectors become large and sparse and waste space as

well as time. We therefore use a dedicated sparse bitvector

representation where each element is explicitly represented by

a set of hyperedge IDs. Evidently, there is a time and memory

trade-off between the sparse and the bit-wise set operations

and representations.

The two alternative representations need to support the

following operations: (i) Compute the symmetric set difference

between two sets, (ii) given two sets a and b, add an element
from the relative complement a\b to b (supporting our strategy
for handling filler elements as discussed above), and (iii)

merge two sets in order to create new S elements from two

U elements. In the dense bitvector representation (i) can be

implemented by computing a XOR on the two bitvectors. The
size of the set difference then corresponds to the number

of set bits in the result (which can be efficiently counted

using popcount instructions), (ii) amounts to simple bit-

wise operations, and (iii) corresponds to a bit-wise OR. In the
sparse representation, (i) is implemented using a merge-based

symmetric set difference, (ii) simply scans both sets and adds

the corresponding element to the set, while (iii) amounts to

a merge-based set-union operation. Note that for the sparse

representations these operations require the sets to be sorted.

While the running times of all operations are constant for

the dense representation, running times of the sparse repre-

sentation slowly increase with growing set sizes in successive

iterations of the algorithm. Given that we typically have to

analyze large and comparatively sparse input instances, this

performance degradation is offset by the acceleration of the

initial iterations that are the most time consuming. In our ex-

periments, the sparse representation performed better than the

dense representation if set elements contained < 0.1% of the

total elements. Also, the sparse representation outperformed

the dense representation overall.

d) Putting Things together and Parallelization.: In Al-
gorithm 2 we provide the pseudo code for HyperPhylo. We

generate the set S by iterating over all pairwise combinations
of elements in U , checking whether the union of the two
elements creates a valid S element (i.e., |u1 ∪ u2| = |u1|+1),
and adding the new element to S if the condition is fulfilled.
Furthermore, we calculate the minimal distances between

elements of U and store a potential filler element for each

element u ∈ U in a map dmin. Since there are no data
dependencies between these operations, they can be performed

in parallel for all pairs (u1, u2) ∈ U .
We then compute S∗ by first executing the greedy set cover

algorithm sequentially until no more elements of S can be used
to cover U . In this case, we have to resort to filler elements in
order to cover the remaining U elements. Filler elements are
created by adding an element xi from the relative complement

of d min[u] and u to the element u. Again, this can be done
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Algorithm 2: HyperPhylo Judicious Partitioning
Input: Hypergraph H = (V,E) with n nodes, m hyperedges

Input: number of blocks k
Output: k-way partition Π of H , solution cost Δ+ d
U := {I(v1), . . . , I(vn)} // incidence encoding of vertices
for d := 0; d ≤ m−Δ; ++d do // increasing cost
S := ∅
dmin = [ ] // map ui → uj

parallel for {{u1, u2} | u1, u2 ∈ U} do // compute S
d := |u1�u2| // symmetric set difference
if d = 2 then
Si := {u1 ∪ u2} // new S element
S := S ∪ Si

else // maintain distances to determine filler elements
if |dmin[u1]| < d then dmin[u1] := u2

if |dmin[u2]| < d then dmin[u2] := u1

S∗ := ∅
while S∗ �= U do // sequential greedy set cover

// S ′ contains largest # of uncovered elements
S ′ := argmaxSi∈S(Si \ S∗)
if S ′ �= ∅ then // S ′ = ∅� filler elements needed
S∗ := S∗ ∪ S ′

S := S \ S ′

else break
parallel for {u | u ∈ U ∧u �∈ S∗} do // uncovered elems.

x := {dmin[u] \ u}
// adding one xi ∈ x to u creates filler element for u
u := u ∪ {xi | xi ∈ x}
S∗ = S∗ ∪ u

if |S∗| > k then U := S∗

else
Π := partition induced by S∗

return (Π,Δ+ d)

in parallel for all yet uncovered elements of U .
e) Implementation Details.: Our dense set representation

exploits x86 vector instructions through appropriate bit-vector

starting address alignments in the memory allocation. There-

fore, all loops that iterate over consecutive 64-bit blocks are

vectorized automatically by the compiler.

In the greedy set cover algorithm, we need to repeatedly

check if the entire set U is already covered by S∗. Instead of
assessing if both sets, that is, the already covered elements of

U and U , are identical, it suffices to compare the corresponding
set sizes.

The parallel for sections in Algorithm 2 are parallelized

using OpenMP. As already mentioned, both parallel sections

exhibit multiple possible execution paths resulting in a data-

dependent running time performance. Therefore, we use the

OpenMP dynamic workload scheduler to attain improved load

balance.

The shared-memory data structures we use from the Intel®

Threading Building Blocks library [14] are listed in Table I.

TABLE I
INTEL® TBB DATA STRUCTURES USED IN OUR IMPLEMENTATION.

Data Structure TBB Implementation
U tbb:concurrent_unordered_set
S tbb::concurrent_unordered_set
S∗ tbb::concurrent_vector
dmin tbb::concurrent_unordered_map

IV. EXPERIMENTAL RESULTS

HyperPhylo is written in C++ and was compiled using

CLANG v.6.0.0 with the -O3 flag. We also used OpenMP
3.1 [15] as well as the Intel® Threading Building Blocks

library version 2017.0 [14] for shared-memory parallelism.

A. Hardware

We performed computational experiments on 3 distinct

hardware platforms. Platform A has four 8-core Intel® Xeon®

E5-4640 (Sandy Bridge) processors running at 2.4 GHz and
512 GB main memory. Platform B consists of two 16-core
Intel® Xeon® E5-2683v4 (Broadwell) processors (2.1 GHz)
and has 512 GB main memory. Platform C contains a 32-core
AMD EPYC™ 7551P processor (2.0 GHz) and has 256 GB
main memory. All platforms run Ubuntu 18.04.1 LTS.

B. Verification

To increase our confidence that the implementation is cor-

rect, we verified its results on a small test case for which

we explicitly computed the expected result using pen and

paper. We also integrated an, as large as possible as well

as reasonable, number of assertions into the code. Finally,

we verified that all results represented a valid sites-to-cores

mapping, that is, that each site of the input MSA is indeed

assigned to exactly one core.

C. Instances (MSAs)

For our experiments we use a total of four MSAs containing

empirical sequence data from previous collaborative studies

with biologists. The three smaller MSAs [16] comprise 59,
128, and 404 sequences, respectively. We will henceforth refer
to these as D59, D128, and D404. D59 has 7 MSA partitions
and 6 951 sites in total, D128 has 34 MSA partitions and

29 198 sites, and D404 has 11 MSA partitions and 13 158

sites. From each of these four data sets, we extract both

the smallest (referred to using suffix -s in Table II) and the
largest (suffix -l) MSA partition. Furthermore, we use one

substantially larger MSA, taken from the one thousand insect

transcriptome evolution project [17], which we refer to as

supermatrix. From this data set, which contains 50 MSA
partitions and 413 459 sites in total, we selected four MSA

partitions comprising 11 756, 20 753, 31 854, and 170 859

sites, respectively, with the last MSA partition being the largest

in the entire supermatrix data set.
For each instance, we generated corresponding random

trees and subsequently transformed them into hypergraphs

as described in Section III-B. Note that each hypergraph

corresponds to only one MSA partition of the respective
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TABLE II
PROPERTIES OF THE HYPERGRAPHS GENERATED FROM OUR DATA SETS.
D59-S REPRESENTS THE SMALLEST MSA PARTITION OF DATA SET D59,
D59-L THE LARGEST ETC. SM-P1 IS MSA PARTITION 1 IN THE supermatrix
DATA SET. THE NUMBER OF SITES OF AN INSTANCE IS EQUAL TO THE

NUMBER OF VERTICES OF THE CORRESPONDING HYPERGRAPH.

Instance Vertices Hyperedges Pins Δ
D59-s 160 671 9 120 57
D404-s 588 2 525 236 376 402
D128-s 204 1 170 25 704 126
D59-l 2 183 10 205 124 431 57
D404-l 2 161 40 648 868 722 402
D128-l 2 933 23 618 369 558 126
sm-p24 11 756 99 713 1 669 352 142
sm-p12 20 753 163 514 2 946 926 142
sm-p3 31 854 185 662 4 523 268 142
sm-p1 170 859 196 836 24 261 978 142

TABLE III
PROPERTIES OF THE HYPERGRAPHS (DERIVED FROM THE supermatrix
DATA SET) USED IN WEAK AND STRONG SCALING EXPERIMENTS.

# Sites Scaling Vertices Hyperedges Pins Δ
5 000 weak 5 000 57 631 710 000 142
10 000 weak 10 000 100 256 1 420 000 142
20 000 weak 20 000 132 093 2 840 000 142
40 000 weak 40 000 153 489 5 680 000 142
45 000 weak 45 000 158 230 6 390 000 142
50 000 weak/strong 50 000 163 381 7 100 000 142
60 000 weak 60 000 173 496 8 520 000 142
80 000 weak 80 000 192 543 11 360 000 142
85 000 weak 85 000 197 064 12 070 000 142
90 000 weak 90 000 200 072 12 780 000 142
100 000 weak 100 000 208 215 14 200 000 142
120 000 weak 120 000 200 967 17 040 000 142
125 000 weak 125 000 204 300 17 750 000 142
130 000 weak 130 000 207 048 18 460 000 142
140 000 weak 140 000 213 763 19 880 000 142
160 000 weak 160 000 229 558 22 720 000 142

MSA. The basic properties of the hypergraphs are provided

in Table II.

D. Parallel Scalability

To the best of our knowledge, there is no publicly avail-

able implementation of any judicious hypergraph partitioning

algorithm. Therefore, we use the sequential implementation

of HyperPhylo as a baseline for our speedup measurements.

We demonstrate the scalability of our algorithm via the

strong and weak scaling experiments summarized in Figures 4

and 5, respectively. Properties of the hypergraphs used in

these experiments are summarized in Table III. We performed

strong scaling experiments on all three hardware platforms.

For strong scaling, the hypergraph is created by extracting

a subset of 50 000 sites from the supermatrix data set. The
corresponding hypergraph is then partitioned into k = 50
blocks (i.e., to distribute these sites onto c = 50 cores).
The comparison of the dense and sparse representations in

Figure 4 shows that the sparse representation performs better

on all hardware platforms. We also observe that the sparse

representation is more scalable than its dense counterpart as

parallel efficiency of the dense representation drops noticeably

when using more than one socket. Absolute running times for
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Fig. 4. Speedup of HyperPhylo with increasing number of cores. The MSA
instance contains 50 000 sites and the corresponding hypergraph is always
partitioned into k = 50 blocks.

the strong scaling experiments are shown in Table IV. Note

that these times are small compared to the times required for

conducting production level inferences of phylogenetic trees

under maximum likelihood on large clusters or supercomputers

using hundreds or thousands of cores. Overall, when using all

32 cores of our three hardware platforms, the running time
for judicious partitioning decreases by more than an order

of magnitude. We generated data sets such that the number

of sites divided by the number of cores used for computing

the judicious partitioning remained constant at 5000 sites per
core (e.g., 160 000 sites for 32 cores). The corresponding
hypergraphs are always partitioned into k = 160 blocks. We
use this setting because for a parallel PLF computation a

core conducting likelihood calculations needs to be assigned

at least 1 000 alignment sites (i.e., 160 000/1 000 = 160) for

the PLF parallelization to scale. Note that Δ remains the same

for all hypergraphs, as the same tree topology is used for all

instances. The results depicted in Figure 5 show that our algo-

rithm scales well on both platforms with an increasing number

of threads. For small input sizes, the dense representation

outperforms the sparse representation because it uses highly

efficient vectorized bit operations, while the sparse representa-

tion employs element-wise integer comparisons. However, as

the input size increases, the bit-wise encoding becomes less

efficient. Therefore, the sparse representation performs better

in these cases. For 160 000 sites, for example, each U element
and every element of a set Sj ∈ S is encoded using 229 558
bits (all of which are potentially affected by the corresponding

set operations), whereas the sparse representation only uses set

operations on Δ+1 integers (i.e., the corresponding hyperedge
IDs) in the first iteration.

E. Solution Quality

To evaluate the quality of the phylogenetic data distribution

of our HyperPhylo implementation compared to RDDA (the
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Fig. 5. Weak scaling experiment with 5 000 sites per thread. The correspond-
ing hypergraphs are always partitioned into k = 160 blocks.

TABLE IV
ABSOLUTE RUNNING TIMES IN MINUTES FOR STRONG SCALING

EXPERIMENTS ON PLATFORMS A, B, AND C.

Threads Dense Representation Sparse Representation
# A B C A B C
1 1 368 789 629 746 1 112 825
2 704 434 321 379 560 418
4 359 229 199 199 284 246
8 198 131 108 111 146 127
9 281 118 122 97 130 114
10 267 107 112 88 118 103
12 223 90 91 74 98 87
16 174 70 76 58 76 68
17 168 75 71 54 72 63
18 161 71 67 52 68 60
20 148 67 61 48 62 54
24 126 59 55 42 54 46
25 125 58 51 39 51 45
26 122 56 50 38 50 42
28 115 54 47 37 46 40
32 102 50 44 33 42 36

previous ad hoc algorithm), we computed data distributions for

the MSAs described in Section IV-C on random trees gener-

ated with RAxML using both approaches. As solution quality

measure, we use the ratio between f(Z) = maxζ∈Z flops(ζ)
and the lower bound. The lower bound is the value of flops()
for a sequential calculation of the PLF, which is minimal as

no repeats are lost, divided by the number of cores c. Thus, a
quality measure value of 1 indicates that the solution is as good
as the lower bound (i.e., optimal); a value of 2 means that the
solution is two times worse than the lower bound etc. Figure 6

shows the average solution quality over all MSA partitions and

over the number of cores c for RDDA and HyperPhylo. Since
our quality measure is normalized by the lower bound, we use

the geometric mean to appropriately average the ratios over

all instances [18]. Detailed results for the distinct individual,

single MSA partitions are shown in the Appendix.

We observe that on average, HyperPhylo outperforms

RDDA for all core counts. This is because RDDA does not
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Fig. 6. Average solution quality f(Z) = maxζ∈Z flops(ζ) of the RDDA
and HyperPhylo algorithms relative to the lower bound lb.
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take SRs into account when assigning the sites of a single

MSA partition to two or more cores. In other words, the RDDA

data distribution is more coarse grained as it only accounts for

SRs at the MSA partition level.

In Figure 7, we show that the repeat loss (i.e., the number

of SRs that are lost by assigning sites containing those

SRs to distinct cores and which therefore lead to redundant

computations on multiple cores) can be substantially reduced

for data distributions on c = 2 up 8 192 cores (k-way partitions
of the hypergraph). This shows that HyperPhylo computes data

distributions which are better than those of RDDA in terms of

both load balance and repeat loss.

V. CONCLUSION

We have developed HyperPhylo, a highly efficient and

scalable open-source implementation for a specific flavor of

judicious hypergraph partitioning where every vertex has the

same degree. The focus on this specific flavor is motivated by a

real-world phylogenetics problem: optimal data distribution for
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massively parallel likelihood calculations with site repeats. We

describe an algorithm and its efficient implementation for this

specific version of judicious partitioning which we also make

available as open-source code. Then, via weak and strong

scaling experiments, we show that our algorithm exhibits good

parallel efficiency. We also demonstrate that HyperPhylo can

improve data distribution quality by up to 50% compared to

the naı̈ve algorithm. In addition, the repeat loss can be reduced

by up to a factor of 18 compared to the naı̈ve RDDA algorithm
that can not take repeat loss into account.

While we suspect that the optimal phylogenetic data distri-

bution problem under site repeats is NP-hard, we have thus

far, not been able to devise a proof, mainly because of the

unclear restrictions that the structure of the phylogenetic tree

induces on any mapping. Further investigating this represents

an avenue of future work.

In addition, we plan on developing an enhanced version of

HyperPhylo that can dynamically switch between sparse and

dense set representations depending on the current iteration

and data set at hand.

In terms of practical deployment for phylogenetics, we

consider that a hybrid implementation, that is, initially using

the RDDA algorithm for assigning MSA partitions to cores and

subsequently using HyperPhylo to assign sites to cores only

for those MSA partitions that need to be split up among several

cores, might work best. We intend to integrate this into our

RAxML tool for maxmimum likelihood based phylogenetic

inference.
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APPENDIX

DETAILED EXPERIMENTAL RESULTS

Note that for some instances, the number of cores becomes

larger than the number of sites. In this case the assignment

becomes trivial, which is why the quality measure is 1.
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Fig. 8. Per-instance solution quality f(Z) = maxζ∈Z flops(ζ) of the
RDDA and HyperPhylo algorithms relative to the lower bound lb.
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