
Par-eXpress: A Tool for Analysis of Sequencing
Experiments With Ambiguous Assignment of

Fragments in Parallel

Mucahid Kutlu
Dept. of Computer Science & Eng.

Qatar University

Doha, Qatar

Email: mucahidkutlu@qu.edu.qa

Gagan Agrawal
Dept. of Computer Science & Eng.

Ohio State University

Columbus, OH, 43210

Email: agrawal@cse.ohio-state.edu

James S. Blachly
Comprehensive Cancer Center

Ohio State University

Columbus, OH, 43210

Email: james.blachly@osumc.edu

Abstract—With new high-throughput and low-cost sequenc-
ing technologies, an increasing amount of genetic data is
becoming available to researchers. While the analysis of this
vast amount of data has great potential for future scientific
advances, it becomes imperative to exploit parallelism in order
to process this data efficiently.

In this paper, we address probabilistic assignment of
ambiguously mapped fragments. This is a very significant,
but time consuming, process for downstream analysis of
genomic data. We develop a distributed-memory parallel
version of a popular probabilistic fragment assignment tool,
eXpress. In our experiments, we show that our approach
achieves significant speedups over eXpress without decreasing
its accuracy. The speedup we achieve increases as the number
of iterations and/or data size increases.

I. INTRODUCTION

With recent developments in sequencing technologies,

genomic data can be obtained at a much faster rate and at a

lower cost. The researchers are able to access vast amount

of genomic data through various projects. A noteworthy

example of such efforts is the 1000 Genomes Project1,

which run between 2008-2015 and collected genomic data

of 2,504 individuals over 26 populations. The project

produced more than 300TB of data, which brings huge

computational challenges in its further analysis.

A typical modern sequencing experiment, involves four

main steps: 1) Dividing genetic materials (e.g., DNA or

cDNAs) into fragments, 2) Processing with sequencing

machines to transfer the data into digital world, 3) Re-

constructing the genome by aligning fragments or mapping

them to a reference genome/sequences. 4) Downstream

analysis of the resultant data. Due to limited amount of

unique parts in reference sequences, exact locations of

some fragments may not be identified, causing ambiguously

assigned fragments. This ambiguity makes downstream

analysis of the data harder in RNA-Seq, ChiP-seq and

metagenomics experiments.

1www.1000genomes.org

A popular approach to solve this problem is proba-

bilistic assignment of fragments to their potential target

sequences by using the Expectation-Maximization (EM)

algorithm [12], [5], [14], [11]. eXpress [12] is one of

the most popular EM-based tools for ambiguous fragment

assignment. eXpress employs a shared memory paralleliza-

tion in which a thread is dedicated to load the fragments

into memory, another thread is dedicated to learn auxiliary
parameters and other threads are assigned for applying

the EM algorithm. eXpress has several advantages over

previous approaches [12]. First, it is more efficient than

RSEM [5] and Cufflinks [14]. Second, it achieves a con-

stant memory consumption while RSEM’s and Cufflinks’s

memory requirements increase as the number of fragments

increases. In terms of accuracy, eXpress outperforms others

with small number of fragments (≤20M as reported in

[12]), and is more robust than RSEM and Cufflinks at low

depth. RSEM slightly outperforms eXpress when number

of fragments is more than 20M.

Even eXpress has several advantages, it is still time

consuming to process large-scale genomic data, due to

its limited parallelization. The available eXpress imple-

mentation employs only shared memory parallelization and

maximum 3 threads can be used effectively. In addition, in

order to keep memory consumption constant, it reads the

fragments from the disk at each iteration, which can be very

costly as the number of iterations increases. Therefore, a

distributed-memory parallel version of eXpress algorithm

is required to process large-scale genomic data efficiently.

A noteworthy study about distributed-memory paral-

lelization of eXpress algorithm is eXpress-D [11], which

employs Spark [16] to solve the problem of re-loading the

data at each iteration. However, eXpress-D cannot process

genomic data that contains insertions or deletions (i.e.

indels). Due to this major drawback of eXpress-D, it cannot

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.169

303

be used in genomic research areas that deal with indels (e.g.

cancer research).

In this work, we develop Par-eXpress, which is a

distributed-memory parallel version of eXpress software.

Par-eXpress does not put any restriction on input data. In

order to preserve the accuracy, we use the original shared-

memory parallelization of eXpress in the first iteration,

which has a different processing structure than the other

iterations. Actual distributed-memory parallelization begins

after the first iteration. We distribute the data among the

processes such that only a small portion of the processes

need to synchronize at each iteration and share their up-

dated parameters. The rest of the processes can continue

their execution independently. Each process works on the

same assigned data chunk in each iteration. Therefore,

processes can keep their assigned data chunks in their mem-

ories, and expensive memory loading is avoided. Once all

processes finish their tasks, the partial results are combined

to form the final output.

In our experiments, we show that Par-eXpress is able to

achieve significant speedup over eXpress without decreas-

ing its accuracy. In addition, we show that the speedup

achieved over eXpress increases as the data size and/or the

number of iterations increases.

The rest of the paper is organized as follows. Section II

explains algorithm of eXpress in detail and discusses its

performance from several aspects. Section III discusses

possible parallelization techniques for eXpress and presents

our proposed approach. Section IV reports the experimental

results to evaluate the performance of Par-eXpress. Sec-

tion V presents related work and Section VI concludes the

paper.

II. eXpress SOFTWARE

In this section, we present the algorithm underlying

eXpress software (Section II-A) and discuss its performance

(Section II-B).

A. Algorithm

eXpress [12] is a DNA/RNA sequence quantification

tool, which performs probabilistic assignment of ambigu-

ously mapped fragments by using the EM algorithm.

Briefly, in the expectation step, the assignment probabilities

are calculated based on current estimates of abundance pa-

rameters. Subsequently, the parameter estimates are updated

in the maximization step. The parameters employed for this

process include sequence bias, fragment length distribution,

target abundances, and error transition probabilities. It

should be noted that the convergence of the EM algorithm

is not guaranteed when all these parameters are updated

at each iteration [10]. Therefore, auxiliary parameters (i.e.

fragment lengths and sequencing errors) are fixed at a

certain point in order to guarantee convergence.

eXpress employs two types of iterations in its EM

algorithm, namely online and batch iterations. In online

iterations, parameters are updated after processing each

fragment, while, in batch iterations, parameters are updated

at the end of each iteration. As it is shown in [10], the

best accuracy is achieved when the first iteration is online

and the rests are batch. Once probabilistic assignment of

fragments finishes, eXpress outputs parameter estimates

and target abundances sorted by bundles2.

Because we are focusing on parallelization, our discus-

sion is centered on data processing structure of eXpress,

and not the accuracy related algorithmic details. For the

latter, please see original publications [10], [12].

eXpress takes two inputs, which are the target sequences

(in Fasta format) and the aligned fragments (in SAM/BAM

format). It employs a limited shared memory parallelization

method by using 3 types of threads: 1) data-loading thread
reads the fragments from disk and detects hits between

target sequences and fragments 2) data-processing thread
applies EM algorithm to learn the target abundance pa-

rameters, and 3) auxiliary-parameter-updater thread asyn-

chronously updates the auxiliary parameters. Only one data-

loading and one auxiliary-parameter-updater thread can be

employed while multiple data-processing threads can be

used.

The pseudo-code of eXpress tool is given as Algorithm 1

(as a serial execution for simplification). First, all target

sequences are loaded into the memory (Line 1). Bundle set

B is initialized to keep necessary info about bundles. Next,

EM algorithm starts for a fixed number of iterations (Lines

3-21). For each fragment F loaded from the disk (Line 6),

the set of target sequences that F can be mapped to (SF),

is detected (Line 7). Fragment F is further processed if

SF is not empty (Line 8). Otherwise, it is discarded and

next fragment is read. The first iteration of EM algorithm

is a special one, as mentioned. In this iteration, a bundle

for the fragment F and its mapped target sequences is

generated and merged with previously generated bundles,

if possible. If there is no bundle that can be merged with,

then it is added to the bundle set B (Line 10). Also,

again only in the first iteration, the auxiliary parameters

are learned. If thresholdstart number of fragments are

processed, auxiliary-parameter-updater thread is started

(Lines 11-12). This thread stops getting new fragments (i.e.
updating auxiliary parameters) when thresholdstop number

2A bundle is the transitive closure of all transcripts/target sequences
sharing a mapped fragment. Bundles have presumable biological meaning
since shared sequence suggests, but does not prove, shared homology,
shared motif, and others. A sample bundle generation is illustrated in
Figure 1.

304

Algorithm 1 eXpress Algorithm

Require: Target Sequence File (TSF), Alignment File

(AF), number of iterations (M)

1: S ← load(TSF) � Load target sequences

2: B = ∅ � Initialize set of bundles

3: i = 0
4: while i < M do
5: N = 0
6: for each Fragment F in AF do
7: SF ← find hits(S, F)
8: if SF �= ∅ then
9: if i = 0 then

10: create or merge bundles(F, SF , B)
11: if N > thresholdStart then
12: Start auxiliary-parameter-thread

13: else if N < thresholdStop then
14: Stop auxiliary-parameter-thread

15: N = N + 1

16: Calculate assignment probabilities

17: if OnlineIteration then
18: Update parameters

19: if BatchIteration then
20: Update parameters

21: i = i+ 1

22: Output results

of fragments are processed (Lines 13-14). The default

values of thresholdstart and thresholdstop are 1M and

5M, respectively. Assignment probabilities are calculated

by the data-processing threads (i.e. expectation-step) (Line

16). If the type of the iteration is online, the parameters

are updated after processing each fragment (Lines 17-18).

But if it is a batch iteration, the parameters are updated at

the end of the iteration (i.e. after processing all fragments)

(Lines 19-20). The results are reported at the end of EM

algorithm (Line 22).

B. Performance Analysis

Now we discuss its performance according to following

three criteria.

1) Memory Requirement: The target sequences are

kept in the memory throughout the execution. However,

each fragment is removed from the memory whenever it is

processed. Thus, the memory allocation during the execu-

tion does not change and we can process any number of

fragments with the same amount of memory consumption.

In other words, eXpress software has constant memory

requirement.

2) I/O Operations: Since the data is re-read at each

iteration, I/O operations become one of the main bottle-

necks limiting the performance. In addition, employing

only one data-loading thread may not be suitable to run

(a) Matching Fragments and Target Sequences

(b) Bundles

Fig. 1. Bundle Generation

multiple data-processing threads. In other words, fragments

can be processed much faster than they are loaded into

the memory. Therefore, data-processing threads can stay

idle for long time periods due to lack of fragments in the

memory.

3) Parallel Scalability: eXpress has shared-memory

parallelization and can employ multiple data-processing

threads. However, due to lock operations and employing

a single data-loading thread, it is not scalable at all. In

order to analyze its parallel scalability empirically, we run

eXpress with 2, 4, 8 and 16 threads, separately (one of them

is data-loading thread). The dataset size was set to 4.6GB

and the number of iterations was set to 2. The execution

lasted 40 minutes in all cases. In other words, increasing

number of data-processing threads is not increasing the

performance of eXpress.

III. PROPOSED APPROACH

A. Data Distribution

Now, we explore candidate distributed memory paral-

lelization approaches for the algorithm of eXpress, and then

discuss trade-offs among them. We can distribute target

sequences and fragments across processes to parallelize

the execution. There are 2 straightforward approaches to

distribute the data:

1) Distributing only target sequences: In this method,

305

each process processes all fragments and a fraction of

target sequences. This approach will have huge memory

requirements if we keep all fragments in the memory.

Thus, it cannot be applied for large-scale data analysis.

Another option can be keeping only a single data chunk

in the memory during execution. Then, the data has to

be re-read from the disk at each iteration. In addition,

if a fragment has hits from target sequences assigned to

different processes, those processes need to synchronize

and communicate with each other at each iteration to share

their updated parameters. In the worst case, all processes

may need to communicate with each other.

2) Distributing only fragments: Each process processes

all target sequences and a fraction of fragments. In this

method, we can keep all data in memory, since size of

target sequences are usually much smaller than size of

fragments. In addition, the available memory space can

be increased easily by allocating more nodes. However, if

fragments assigned to different nodes have hits for the same

target sequences, then the corresponding processes need to

communicate with each other at each iteration. That is, the

network traffic and synchronization problems are valid for

this approach, too.

The network traffic and synchronization related costs can

be significant for both distribution methods. In order to

overcome this problem, the fragments and target sequences

of a bundle should be processed by a single process since

bundles do not share any data by definition. Therefore,

dividing the data according to bundles can be a reasonable

approach for parallel processing. However, the content of

each bundle can only be determined after processing all

fragments, i.e., at the end of the first iteration. Another

challenge is balancing the workload among processes. First,

each fragment can have varying number of hits and the

fragments with more hits will take longer time to be pro-

cessed. Second, the size of bundles can vary dramatically.

In order to understand this problem, we conducted a small

experiment. We generated bundles with 10M fragments and

73660 target sequences and counted number of fragments

in each bundle. The statistical results for this experiment

are shown in Table I. We can see that the standard deviation

of the number of fragments in bundles is extremely high.

There is a single bundle, which covers 30% of all fragments

while 58% of bundles has less than 10 fragments. There-

fore, if we do not partition the bundles (i.e. each bundle is

processed by a single process), there will be huge work-

load imbalance among processes.

We propose a bundle-based data distribution method that

decreases the network traffic, but does not eliminate it

totally. In our proposed approach, before distributing the

data among processes, we first find the bundles and total

TABLE I
STATISTICAL VALUES FOR A SAMPLE DATA

Number of Target Sequences 73660
Number of Fragments 10M
Number of Bundles 23582
Average Number of Fragments 425
Standard Deviation of Fragments 19884
Number of Fragments in the Largest Bundle 3042142
Number of Bundles with less than 10 Fragments 13736

number of hits in each bundle in the first iteration. The

parallelization of the first iteration is discussed in Sec-

tion III-B. The bundles having more hits than a threshold

are considered as large bundles that have to be processed by

multiple processes. We set the threshold value to 1.5 times

of average number of hits per process (i.e. N/P where

N is total number of hits and P is number of processes).

For each large bundle, we assign �NB/(N/P)� processes

where NB is the total number hits in the corresponding

bundle. Once all large bundles are assigned, we distribute

the rest of the bundles to the other processes such that each

bundle is processed by only one process. Since bundles can

have varying sizes and number of hits, we distribute these

small bundles to the processes with a greedy approach such

that the total number of hits for each process is balanced

to the extent possible. Figure 2 illustrates how the data is

distributed among processes.

Fig. 2. Sample Data Distribution. The color of fragments and target
sequences represents the process assigned for them. The target sequences
that are processed by multiple processes are colored with multiple colors.

In our proposed approach, the processes that process

small bundles do not need to communicate with each other

and can perform their execution independently. However,

processes assigned to the same large bundle have to syn-

chronize and share their updated results at each iteration.

B. Parallelization of the First Online Iteration

The first iteration is crucial to achieve high accuracy [10]

and has different processing structure than others. In the

306

first iteration, bundles are generated and auxiliary parame-

ters are learned. In addition, parameters are updated after

processing each fragment and the updated parameters are

used in the processing of the next fragment (i.e. online

iteration). Thus, any parallelization attempt in this iteration

will change the parameter estimates and eventually affect

the accuracy. Since the scope of this work is to develop

a distributed-memory parallel version of eXpress software

without reducing its accuracy, we avoid any algorithmic

change that affects the accuracy, even though it restricts

our parallelization capability. Therefore, we use the original

shared-memory parallelization in the first iteration and

leave its distributed-memory parallelization as a future

work. Additionally, we calculate the total number of hits

and detect fragment ids in each bundle in order to calculate

logical data distribution.

Algorithm 2 Parallel eXpress Algorithm

1: if Processid = 0 then
2: Perform the threaded online iteration of eXpress

3: Write the learned parameters and fragment ids of

each bundle.

4: Calculate the logical data distribution

5: Notify the processes about data distribution

6: else
7: Receive the bundle ids to be processed

8: Load updated parameters

9: if Processing a large bundle then
10: Load a fraction of the fragments of the assigned

bundle

11: else
12: Load all fragments of the assigned bundles

13: i = 0
14: while i < iteration number do
15: Process loaded fragments

16: if Processing a large bundle then
17: Share the updated parameters with the processes

that process the same bundle

18: i = i+ 1

19: Combine partial results and report the final output

C. Parallel Execution Flow

Now, we explain entire parallel execution. Our proposed

approach is given as Algorithm 2. Since we use original

parallelization of eXpress (3 threads at maximum) in the

first iteration, only Process-0 performs this critical iteration

(Line 2). At the end of the first iteration, the learned

parameters and fragment ids in each bundle are written

to files (Line 3). Based on the number of hits in each

bundle, Process-0 calculates the logical data distribution

(Line 4) and notifies other processes (Line 5). During

this process, other processes perform initialization actions

and wait for results from Process-0. Note that, instead of

writing fragment ids and parameters to files, we can also

send the data directly to the processes. But we noticed

that writing/loading parameters and bundle contents to/from

the disk can be performed very fast3. In addition, by this

approach, we can actually break the execution into two

separate ones. So users can allocate only a single node

for the first iteration and then allocate more nodes for

the following iterations. In pay-as-you-go systems where

users need to pay more as the number of allocated nodes

increases (e.g. cloud computing systems), Par-eXpress’s

separated execution model will be useful to decrease the

costs.

Once the tasks are distributed, all processes load the

fragments of the bundles assigned to them (Lines 9-12).

The processes processing a large bundle load only a fraction

of the assigned bundle’s fragments. For instance, if M pro-

cesses will process a large bundle which has N fragments,

then each process loads only N/M fragments. After loading

fragments into memory, EM algorithm begins and runs for

a certain number of iterations (Lines 13-19). The processes

assigned for the same large bundle share their updated

parameters each other at the end of each iteration (Line

17). Once all iterations are finished, the partial results of the

processes are combined and final output is reported (Line

23).

IV. EXPERIMENTS

In this section, we report results from a series of experi-

ments we conducted to evaluate the accuracy and efficiency

of Par-eXpress against eXpress.

A. Experimental Setup

In our experiments, we used a cluster where each com-

puting node has 8 cores 2.53 GHz Intel (R) Xeon (R)

processor and 12 GB memory. The cluster has Lustre

file system composed of 12x1TB disks across 4 storage

nodes with 24GB memory. In our experiments with Par-

eXpress, we used only one core per node. We used default

parameters for eXpress. We employed the data used in [12].

B. Experimental Results

We now present experiments to evaluate accuracy and

efficiency of Par-eXpress and compare it against eXpress

from several aspects.

In this set of experiments, we run eXpress and Par-

eXpress for 51 iterations (1 online and 50 batch iterations)

with varying data sizes and compared their accuracy and

3For instance, when 10M fragments are processed with 8 processes,
writing and loading the data needed for data distribution (i.e. bundle
contents) takes 32 and 10 seconds, respectively.

307

5M 10M 20M 30M 40M 50M
0

0.2

0.4

0.6

0.8

1

Number of Fragments

A
cc

ur
ac

y
(S

pe
ar

m
an

 R
an

k)

Express
Par−Express

(a) Accuracy Comparison

5M 10M 20M 30M 40M 50M
0

2

4

6

8

10

12

14
x 10

4

Number of Fragments

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Express
Par−Express

(b) Performance Comparison

Fig. 3. Accuracy comparison of eXpress and Par-eXpress with varying
fragment sizes

efficiency. We allocated 128 cores for Par-eXpress and

varied number of fragments from 5M to 50M. The results

are shown in Figure 3. In order to measure the accuracy,

we calculated Spearman’s Rank correlation against ground-

truth results of the data. From Figure 3(a), we can see

that Par-eXpress’s accuracy results are slightly better than

eXpress’s results. This can be because eXpress’s execution

is not deterministic and small differences in accuracy

are possible. The more important observation is that Par-

eXpress did not cause any reduction in accuracy.

From Figure 3(b), we can see that Par-eXpress achieves

high scalability with respect to dataset size. When dataset

size is increased by 10 times, execution times of eXpress

and Par-eXpress increase by 9.6x and 2.9x, respectively. In

addition, speedup we achieve over eXpress increases from

7.7x to 25.5x. In other words, Par-eXpress becomes more

efficient than eXpress as the dataset size increases. This is

because eXpress reads the data at each iteration while Par-

16 32 64 128
0

1000

2000

3000

4000

5000

6000

7000

Number of Cores

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Distributing by Number of Hits
Distributing by Number of Fragments

Fig. 4. Scalability of Par-eXpress and evaluation of our proposed data
distribution metric. The gray part of the bars represent the execution time
spent for the first iteration.

eXpress reads the data only once, which is after the first

iteration.

In the next set of experiments, we evaluated the parallel

scalability of Par-eXpress by varying number of allocated

cores. We also compared our proposed data distribution

method with a baseline method. In this baseline method,

we used the number of fragments in bundles to estimate

workload and also detect large bundles, instead of the

number of hits. We set the number of iterations to 200 and

the number of fragments to 10M and varied the number of

processes from 16 to 128. The results are shown in Figure 4.

We can see that the number of hits is a better metric

than the number of fragments in order to achieve workload

balance. This is because processing fragments with more

hits takes more time than the ones with fewer hits. The

performance of Par-eXpress (distributing by number of hits)

increases by 2.25x when computing power increases by

8x. There are three reasons that decrease the scalability of

Par-eXpress. 1) The first iteration cannot be parallelized to

preserve the accuracy, as explained in Section III-B. Thus,

its execution time (shown in gray in the Figure) is same for

all cases. In fact, if we ignore the execution time spent for

the first iteration, the scalability of Par-eXpress increases to

3.2x. 2) As the number of processes increases, the overhead

of communication increases since the large bundles will be

shared by more processes. 3) Loading fragments does not

scale well with the number of processes since fragments are

not sorted nor indexed. In order to read a specific fragment,

all previous fragments have to be scanned. For instance, the

process assigned to process the last fragment has to scan

all input data. If we just take account execution time of

processes after loading fragments, the scalability of Par-

eXpress increases to 5.1x.

In order to evaluate the parallel scalability of Par-eXpress

308

from a different perspective, we varied the number of

fragments and the number of processes together. We set

the number of iterations to 200 and increased the number

of fragments from 5M to 40M and the number of processes

from 16 to 128. The results are shown in Figure 5.

When the numbers of fragments and cores increased by

8x, the total execution time and the execution time after

loading fragments increased by 1.7x and 1.2x, respectively.

Considering the execution after the first iteration, as the

data size increases, we can keep the execution time almost

constant by increasing the computation power in the same

order.

Overall, the parallelization after the first iteration has

high parallel scalability. If an index that provides random

access on alignment files (i.e. fragments) is built, the

performance of Par-eXpress will increase even further.

16 − 5M 32 − 10M 64 − 20M 128 − 40M
0

1000

2000

3000

4000

5000

6000

7000

Number of Cores and Fragments

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

First Iteration
Rest of the Iterations

Fig. 5. Performance of Par-eXpress when computation power and data
size are increased together. Upper white part of the bars represents the
execution time spent in the first iteration and lower black part of the bars
represents the execution time for the rest of the execution.

In our final set of experiments, we run eXpress and Par-

eXpress with 5M fragments and varied number of iterations

from 5 to 50. We allocated 128 cores for Par-eXpress. The

results are shown in Figure 6. Par-eXpress’s speedup over

eXpress increases from 1.35x to 7.74x as the number of

iterations increased from 5 to 50. eXpress needs to re-

read data at each iteration and its execution time increases

linearly as the number of iteration increases. On the other

hand, Par-eXpress reads the data only twice (during the

first iteration and also after assigning bundles) and keeps

the data in the memory. Thus, after initial overhead of

Par-eXpress, following iterations can be performed much

faster. Overall, we can claim that Par-eXpress will be much

faster than eXpress for the executions with higher number

of iterations.

V. RELATED WORK

Our work falls in the general area of sequence quantifi-
cation, which has received significant attention. Bayesian

5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

14000

Number of Iterations

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Express
Par−Express

Fig. 6. Efficiency comparison in varying iterations.

inference [6] and Expectation Maximization [5], [7], [13],

[14] are among popular approaches for this problem. Most

of the research aims to develop new algorithms to achieve

higher accuracy. In comparison, our goal is to parallelize

an existing approach without decreasing its accuracy.

Most of the popular quantification tools such as eX-

press, Cufflink [14] and RSEM [5], require alignment of

fragments by an external alignment tool (e.g., Bowtie2 [3],

TopHat2 [2]) before quantification. There are also studies

that do not require this alignment step, and thereby increase

the efficiency, such as kallisto [1], Sailfish [9] and RNA-

Skim [17]. But our work runs on aligned fragments and

supports distributed memory parallelization to increase ef-

ficiency.

There are also a number studies that employ paral-

lelization to increase efficiency. EMSAR [4], RSEM [5],

Salmon [8] and Sailfish [9] support only shared memory

parallelization. eXpress-D [11] employs Spark [15] for the

distributed-memory parallelization of eXpress with slight

changes in the original algorithm. eXpress-D first employs

a shared-memory parallel pre-processing step, in which

fragment hits are detected, input data is re-organized, and

written in Protocol Buffer format in order to decrease mem-

ory requirements of the following steps. Before parallel

processing, the data needs to be uploaded to a distributed

file system, such as Hadoop Distributed File System or

Amazon S3. In parallel execution of eXpress-D, all nodes

synchronize and share their results at each iteration. One

significant limitation of eXpress-D is that fragments with

insertions or deletions cannot be processed. Therefore, it

cannot be used in many genomic research areas such

as cancer. Our work has the following advantages over

eXpress-D. 1) The original input files (in SAM/BAM and

FASTA formats) can be used directly (i.e. No new input

data is generated). 2) We decrease the number of nodes

to be synchronized by distributing data more carefully. 3)

There is no restriction on the content of the input data.

309

That is, fragments with insertions or deletions can also be

processed. 4) eXpress-D requires a distributed file system

and a Spark installation, which are not popular among

bioinformaticians. However, Par-eXpress requires only MPI

library, and can be easily used on a typical batch-request

high performance computing installation, which is available

to many bioinformaticians.

VI. CONCLUSION

Probabilistic assignment of ambiguously mapped frag-

ments is common yet time-consuming procedure for many

sequencing experiments. Therefore, in this work, we de-

veloped a distributed-memory parallel version of eXpress

software. We have discussed different parallelization ap-

proaches for this problem and proposed an approach, which

preserves the accuracy of original eXpress software while

achieving high efficiency. We used multi-threaded execution

of eXpress in the first iteration to learn the parameters

effectively. The actual distributed-memory parallel execu-

tion begins after the first iteration. We proposed a data

distribution method, which decreases the network traffic

and synchronization operations.

The main observations from our extensive evaluation are

as follows. First, Par-eXpress is able to achieve significant

speedup over eXpress without decreasing its accuracy. Sec-

ond, its performance can increase even further with an index

that provides random access on genomic files. Finally, the

speedup achieved by Par-eXpress increases as the number

of iterations and/or data size increases. Therefore, it can be

used to process large scale genomic data.

Our future work will focus on assigning fragments of

multiple genomic data files in parallel, in order to efficiently

conduct multi-sample experiments.

REFERENCES

[1] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter.
Near-optimal probabilistic rna-seq quantification. Nature biotech-
nology, 34(5):525–527, 2016.

[2] Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan
Kelley, and Steven L Salzberg. Tophat2: accurate alignment of
transcriptomes in the presence of insertions, deletions and gene
fusions. Genome Biol, 14(4):R36, 2013.

[3] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment
with bowtie 2. Nature methods, 9(4):357–359, 2012.

[4] Soohyun Lee, Chae Hwa Seo, Burak Han Alver, Sanghyuk Lee, and
Peter J. Park. Emsar: estimation of transcript abundance from rna-
seq data by mappability-based segmentation and reclustering. BMC
Bioinformatics, 16(1):278, 2015.

[5] Bo Li and Colin N Dewey. Rsem: accurate transcript quantification
from rna-seq data with or without a reference genome. BMC
bioinformatics, 12(1):323, 2011.

[6] Naoki Nariai, Kaname Kojima, Takahiro Mimori, Yukuto Sato,
Yosuke Kawai, Yumi Yamaguchi-Kabata, and Masao Nagasaki.
Tigar2: sensitive and accurate estimation of transcript isoform ex-
pression with longer rna-seq reads. BMC genomics, 15(Suppl 10):S5,
2014.

[7] Marius Nicolae, Serghei Mangul, Ion I Măndoiu, and Alex Ze-
likovsky. Estimation of alternative splicing isoform frequencies from
rna-seq data. Algorithms for molecular biology, 6(1):9, 2011.

[8] Rob Patro, Geet Duggal, and Carl Kingsford. Salmon: accu-
rate, versatile and ultrafast quantification from rna-seq data using
lightweight-alignment. bioRxiv, page 021592, 2015.

[9] Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish en-
ables alignment-free isoform quantification from rna-seq reads using
lightweight algorithms. Nature biotechnology, 32(5):462–464, 2014.

[10] Adam Roberts. Ambiguous fragment assignment for high-throughput
sequencing experiments. University of California, Berkeley, 2013.

[11] Adam Roberts, Harvey Feng, and Lior Pachter. Fragment assignment
in the cloud with express-d. BMC bioinformatics, 14(1):358, 2013.

[12] Adam Roberts and Lior Pachter. Streaming fragment assignment
for real-time analysis of sequencing experiments. Nature methods,
10(1):71–73, 2013.

[13] Hong Sun, Shuang Yang, Liangliang Tun, and Yixue Li. Iaoseq:
inferring abundance of overlapping genes using rna-seq data. BMC
bioinformatics, 16(Suppl 1):S3, 2015.

[14] Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon
Kwan, Marijke J van Baren, Steven L Salzberg, Barbara J Wold, and
Lior Pachter. Transcript assembly and abundance estimation from
rna-seq reveals thousands of new transcripts and switching among
isoforms. Nature Biotechnology, 28(5):511, 2010.

[15] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker,
and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of
the 9th USENIX conference on Networked Systems Design and
Implementation, pages 2–2. USENIX Association, 2012.

[16] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. Spark: cluster computing with working
sets. HotCloud, 10:10–10, 2010.

[17] Zhaojun Zhang and Wei Wang. Rna-skim: a rapid method for rna-seq
quantification at transcript level. Bioinformatics, 30(12):i283–i292,
2014.

310

