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Abstract—Secondary structures of ribonucleic acid (RNA)
molecules play important roles in many biological processes
including gene expression and regulation. Experimental ob-
servations and computing limitations suggest that we can
approach the secondary structure prediction problem for long
RNA sequences by segmenting them into shorter chunks,
predicting the secondary structures of each chunk individually
using existing prediction programs, and then assembling the
results to give the structure of the original sequence. The
selection of cutting points is a crucial component of the seg-
menting step. Noting that stem-loops and pseudoknots always
contain an inversion, i.e., a stretch of nucleotides followed
closely by its inverse complementary sequence, we developed
two cutting methods for segmenting long RNA sequences
based on inversion excursions: the centered and optimized
method. Each step of searching for inversions, chunking, and
predictions can be performed in parallel. In this paper we
use a MapReduce framework, i.e., Hadoop, to extensively
explore meaningful inversion stem lengths and gap sizes for
the segmentation and identify correlations between chunking
methods and prediction accuracy. We show that for a set of
long RNA sequences in the RFAM database, whose secondary
structures are known to contain pseudoknots, our approach
predicts secondary structures more accurately than methods
that do not segment the sequence, when the latter predictions
are possible computationally. We also show that, as sequences
exceed certain lengths, some programs cannot computationally
predict pseudoknots while our chunking methods can. Overall,
our predicted structures still retain the accuracy level of
the original prediction programs when compared with known
experimental secondary structure.

Keywords-Pseudoknots, RNA segmentation, Hadoop, Perfor-
mance analysis, Prediction accuracy.

I. INTRODUCTION

RNA is made up of four types of nucleotide bases, i.e.,

adenine (A), cytosine (C), guanine (G), and uracil (U) and

play important roles in many biological processes including

gene expression and regulation. Many viral genomes are also

made up of RNA. Secondary structural elements in RNA are

crucial to their functionality and can be separated into stem-

loops and pseudoknots (see Figure 1). In both elements, it is

well known that an adenine binds with a uracil and a cytosine

binds with a guanine. Any stem-loop or pseudoknot contains

an inversion, which is a string of nucleotides followed

(a) Stem-loop (b) Pseudoknot

Figure 1. Two basic elements in RNA secondary structures.

closely by its inverse complementary sequence. Figure 2

shows an example of an inversion, with the 6-nucleotide

string “ACCGCA” followed by its inverse complementary

sequence “UGCGGU” after a gap of 3 nucleotides.

Figure 2. Inversion with stem length 6 and gap size 3.

Most secondary structure prediction algorithms are based

on the minimization of a free energy (MFE) function and

the search for a thermodynamically most stable structure

starts from the whole RNA sequence. The search for a

structure with global minimal free energy may be memory

and time demanding, especially for long sequences and for

pseudoknot predictions. At the same time, minimal energy

configurations may not be most favorable for carrying out

the biological functions of RNA, which often require the

RNA to react and bind with other molecules (e.g., RNA

binding proteins). Our current work suggests that local

structures formed by pairings among nucleotides in close

proximity and based on local minimal free energies, rather

than the global minimal free energy, may correlate better

with the real molecular structure of long RNA sequences.

This hypothesis has yet to be supported by more detailed
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experimental evidence. However, if proven correct, it will

open the door to a new generation of programs based on seg-

menting long RNA sequences into shorter chunks, predicting

the secondary structures of each chunk individually, and then

assembling the prediction results to give the structure of the

original sequence.

The selection of cutting points in the original RNA

sequence is a crucial component of the segmenting step.

We propose to approach the problem by searching for

and by cutting around inversion excursions. We consider

two alternative cutting methods, the centered and optimized

methods. Both methods identify regions in the sequence

with high concentrations of inversions and avoid cutting into

these regions. In the centered method, the longest spanning

inversion clusters are centered in the chunks, while in the op-

timized method, the number of bases covered by inversions

is maximized. The prediction of secondary structures for

different chunks can be performed in parallel, thus benefiting

from parallel computing systems and paradigms. In this

paper we use a MapReduce framework, i.e., Hadoop, to

extensively explore meaningful combinations of stem length

and gap size for the predictions and identify correlations

between sequence chunking and prediction accuracy. For

each combination, we evaluate the capability of the centered

and optimized methods to retain the secondary structure pre-

diction accuracy using several existing prediction algorithms.

We compare the accuracy values with a naı̈ve chunking

method that does not use knowledge on inversions and

with the predictions of the same algorithms when using the

whole sequences (no chunking is used). Our datasets are

restricted to the experimentally found secondary structures

including pseudoknots. Here we use a dataset of 12 non-

homologous RNA sequences with known structures available

in the RFAM database.

The rest of this paper is organized as follows: Section

2 presents relevant background and related work. Section

3 discusses our cutting methods. Section 4 shows the ac-

curacy retention capabilities of the cutting methods for the

pknotsRG algorithm, leading to the conclusion in Section

5 that predictions obtained with these cutting methods can

outperform those obtained on the whole RNA sequence

without segmentation.

II. BACKGROUND AND RELATED WORK

A. RNA secondary structure predictions

The 3D structure of an RNA molecule is often the key to

its function. Because of the instability of RNA molecules,

experimental determination of their precise 3D structures

is a rather costly process. Useful information about the

molecule can be gained from knowing its secondary struc-

ture [1]. As noted above, all RNA secondary elements can

be classified into stem-loops and pseudoknots (see Figure 1).

Both secondary structure elements have been implicated in

important biological processes like gene expression and gene

regulation [2]. Development of mathematical models and

computational prediction algorithms for stem-loop structures

began in the early 1980‘s [3], [4], [5]. Pseudoknots, because

of the extra base-pairings involved, must be represented by

more complex models and data structures which require

large amounts of memory and computing time to obtain

the optimal and suboptimal structures with minimal free

energies [6], [7]. To overcome the tremendous demand on

computing resources that pseudoknot prediction poses, alter-

native algorithms have been proposed that restrict the types

of predicted pseudoknots. Yet, most programs available to

date for pseudoknot structure prediction can only process

sequences of limited lengths on the order of several hundred

nucleotides. Thus, these programs cannot be applied directly

to long RNA molecules such as the genomic RNA in viruses,

which may be thousands of bases in length.

In our previous work, we proposed to approach this

problem using three steps: (1) cut a long RNA sequence into

shorter non-overlapping chunks; (2) predict the secondary

structures of each chunk individually by distributing them

to different processors on a Condor grid and (3) assemble

the prediction results to give the structure of the original

sequence [8]. In our past effort we performed an exhaustive

search for all the possible ways to cut a sequence. In the

current study, we move away from the exhaustive search and

apply cutting methods using statistical information on inver-

sions. Our new approach outperforms our previous work in

terms of computing efficiency and confirms the capability of

appropriate sequence segmentation methods to retain RNA

secondary structure prediction accuracy. Preliminary results

were recently shown in a poster [9] and are here extended.

B. MapReduce and Hadoop

The MapReduce (MR) paradigm is a parallel program-

ming model that facilitates the processing of large distributed

datasets. It was originally proposed by Google to index and

annotate data on the Internet [10]. In this paradigm, the

programmer specifies two functions: map and reduce. The

map function takes as input a key and value pair, and outputs

a list of intermediate key and value pairs which may be

different from the input. The reduce function takes as input a

key and values pair, and outputs a list of values. Note that the

input values to reduce is the list of all the values associated

with the same key. MR is appealing to scientific problems

because of the simplicity of programming, the automatic

load balancing and failure recovery, and the scalability. It has

been widely adapted for many bioinformatics applications,

e.g., Hong et al. designed a RNA-Seq analysis tool for the

estimation of gene expression levels and genomic variant

calling [11]; and Langmead et al. designed a next-generation

sequencing tool based on MR Hadoop [12]. To the best

of our knowledge, this work is the first one to adapt MR

into secondary structure predictions of long RNA sequences.

Preliminary work on the reasoning behind adapting RNA
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secondary structure predictions to the MR paradigm can be

found at [13].

III. METHODOLOGY

A. Inversions in RNA sequences

Given a long RNA sequence, we identify regions with

high concentrations of inversions by using an adapted ver-

sion of the “Palindrome” program in the EMBOSS pack-

age [14], which is a free open-source software analysis

package. Two main reasons for adapting the EMBOSS palin-

drome program are the fact that the program works correctly

on DNA but not RNA sequences and, in future work, we

will allow for G-U pairing—a feature that is not available

in the EMBOSS Palindrome program. Our adapted program

called InversFinder, is written in Java and is available for

download at http://rnavlab.utep.edu. InversFinder requires a

text file containing the RNA sequence in FASTA format as

input. The minimum stem length L and maximum gap size

G of the inversion are parameters specified by the user.

B. Inversion excursion plot for RNA sequences

Our cutting methods rely on a general excursion approach

first formulated in [15], which has already been applied

to a variety of sequence analysis problems but not to

RNA secondary structure predictions. In many bioinfor-

matics applications, the problem calls for identifying high

concentration regions of a certain property in the nucleotide

bases of biomolecular sequences. For example, replication

origins in viral genomes have been predicted by looking

for regions that are unusually rich in the nucleotides A

and T in DNA sequences [16]. In this paper, we follow

the same approach for RNA sequences, but our focus is

whether or not the nucleotide base is found inside an

inversion. We refer to the excursions generated by this

property as “inversion excursions”. The excursion method

requires assigning to each nucleotide a positive score if it

is a part of an inversion (including the two stems and the

gap between them), and a negative score if it does not. We

go through the entire nucleotide sequence accumulating the

scores to form inversion excursions.

Figure 3. Inversion with stem length 6 and gap size 3.

To facilitate the analysis, we use a parsing program to

convert an RNA sequence into a binary sequence with the

same length. If a nucleotide base is included in an inversion

identified by the InversFinder program, it is given a value

of “1”; if not, it is assigned a value of “0”, as illustrated in

Figure 3. Each “1” in the binary sequence is given a score of

1, and each “0” a negative score of s which is determined as

follows. We consider the binary sequence as a realization of

a sequence of independent and identically distributed (i.i.d.)

random variables, X1, X2, ..., Xn, where n is the length of

the RNA sequence (i.e., number of bases). These random

variables take values either 1 or s. Let p = Pr(Xi = 1)
and q = 1− p = Pr(Xi = s). The parameter p is naturally

estimated by the percentage of bases contained in one or

more inversions in the RNA sequence, i.e., the percentage

of “1”s of the binary sequence. We require that the expected

score per base μ = p + qs to be negative. As done in [16]

and other applications, the value of s can be conveniently

selected by giving μ a value of −0.5, and then determining

the value of s according to Equation 1.

s =

⌊
μ− p

q

⌋
(1)

The excursion score Ei at position i of the sequence is

defined recursively as in Equations 2 and 3.

E0 = 0 (2)

Ei = max(Ei−1 +Xi, 0) for 1 ≤ i ≤ n (3)

An excursion starts at a point i where Ei is zero, continues

with a number of rising and falling stretches of positive

values, and ends at j > i where j is the next position

with Ej = 0. The score then stays at zero until it becomes

positive again as the begin of the next excursion. Plotting

the excursion scores along the nucleotide positions of the

RNA sequence offers an effective visualization of how

inversion concentrations vary along the sequence. This plot

can serve as a guide for choosing the cut-points for the

segmentation process. Figure 4 shows an example of an

excursion plot. Rising stretches in the plot indicates the

presence of inversions.

Figure 4. An excursion plot with peaks, peak bottoms, and peak lengths.

After generating the excursion plot, we identify the po-

sitions, called peaks, where the excursion scores are local

maxima. Then, the bottom of each peak (the last position

with zero excursion score right before the peak) is located.

After that, the length of the peak (the location difference

between a peak and its peak bottom) is calculated. Note

that since we require chunk lengths to be smaller than a

prescribed maximum c, peak lengths greater than c have

to be flagged and analyzed separately. Figure 4 also shows

examples of peaks, peak bottoms, and peak lengths. To be

used with the centered and optimized cutting methods, the

peaks are sorted in decreasing order based on their excursion

scores.
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C. Methods for sequence segmentation

1) Centered cutting method: The centered method cuts

the sequence by identifying inversions and building the

chunks around them. Our objective is to segment the RNA

sequence in such a way to avoid losing structure information

as much as possible by centering the longest spanning

inversion clusters in the chunks. After peaks are identified,

they are sorted in decreasing order of their excursion values.

The peak with the highest excursion value is considered first.

Then the second highest peak is considered and so on. The

algorithm stops either when all the peaks are exhausted or

when all the inversion regions of the sequence (i.e., all “1”s

in the binary sequence) have been included in the chunks,

whichever occurs first. Overlapping chunks are adjusted so

that any nucleotide base is captured by only one chunk, with

priority given to the peak with a higher excursion score.

For each of the selected peak, the positions of the in-

versions or peak length positions are centered within the

max chunk-length of c bases where c is defined by the user.

We start at the bottom of this peak and follow the excursion

until it returns to 0 the very next time and locate the position

of the very last peak before the excursion returns to 0. We

take the sequence segment between the peak bottom and the

position of the very last peak and place the sequence segment

in the center of the chunk as illustrated in Figure 5. Suppose

this centered segment contains x nucleotide bases. If (c−x)
is even, then the resulting chunk will have (c− x)/2 bases

on each side of the centered segment. If (c−x) is odd, then

we will adjust the lengths on each side to the integers below

and above (c− x)/2, allowing one side (chosen at random)

to have one more nucleotide base than the other.

Figure 5. Centered cutting method where x = peak length.

As an example, we applied the method to an RNA

sequence RF00209 A from RFAM database with sequence

length 379 bases. As shown in Figure 6, the sequence

is segmented into six chunks using the centered cutting

method. These six segments cover the entire sequence. La-

bels 1 through 6 in Figure 6 represent the six segments with

decreasing order of peak excursion scores. After the peak

scores are sorted, the peak with the highest excursion score

is considered first. In this example, we use the maximum

chunk-length c = 100. The highest peak is found at position

297 with peak bottom at 257. As there are other inversions

after the highest scoring peak, we follow the entire excursion

to the end at position 356. Locating the last peak in this

excursion at 343, we center the sequence segment from 257

to 343 to produce the chunk covering the 100 positions

from 250 to 349. After this, the second highest scoring

peak at position 54 is considered and the above procedure

is repeated. This time, the peak bottom is at position 19 and

the last peak before the end of this excursion is at position

70. Centering the segment consisting of positions 19 − 70
in a chunk of 100 would require 24 positions on each side,

extending the chunk beyond the beginning of the sequence.

We therefore adjust the chunk to start at position 1 instead.

Note that during the segmentation process, we might get a

chunk that overlaps with previously established chunks. In

those cases, we have to reconcile the situation by reducing

one of the chunk lengths. For example, after establishing

the first two chunks (labeled 1 and 2 in Figure 6), the next

highest peak to be processed is at position 114, with peak

bottom at position 89. Centering this peak will produce a

chunk from positions 52 to 151, overlapping with chunk

2. We resolve such conflicts by giving priority to the chunk

with the higher number of bases within completely contained

inversions. With this rule, we give priority to chunk 2, and

reduce chunk 3 to positions 101−151. The process continues

for the remaining chunks 4, 5, and 6.

Figure 6. Chunks obtained using the centered method.

2) Optimized cutting method: In the optimized method,

cutting points are decided by choosing a segment containing

the peak in an optimal position that yields the highest

inversion scores for the segment; the score is defined as the

total number of nucleotide bases contained in the inversions

that are entirely within the chunk. For example, consider a

peak with peak length spanning the nucleotide bases between

i and j and then all the chunks of size c covering this

peak. That is, all segments with length c starting between

positions j − (c − 1) and i + (c − 1) are considered (see

Figure 7). The chunk with the maximum inversion score is

then selected. Beginning with the highest peak, the above

process is repeated until either all the peaks are utilized

or all the inversion regions of the sequence are contained

in the established chunks, whichever occurs first. When

chunks overlap, the cut points are adjusted in a similar way

to that principle described for the centered method. The

optimized method ensures that peak length positions are
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included within a chunk, but not necessarily in the center

of the chunk.

Figure 7. Chunks by optimized method with peak spanning positions i-j.

As an example, we applied the optimized method to

the same RF00209 A RNA sequence file from the RFAM

database, as shown in Figure 8. The optimized method

produced only 5 chunks covering all except the first 18

positions of the sequence. It can be seen from Figure 8 that

Figure 8. Chunks obtained using the optimized method.

cuts into those sequence segments with rising excursions

scores preceding the peaks are avoided by this method.

Also, the chunks produced by the optimized method cover

only 96.3% of the sequence, leaving out those parts of the

sequence where no inversions are found. Therefore, wasting

of computing resources is minimal in the optimized method.

3) Regular cutting method: The regular cutting method is

the most convenient method of segmentation and is used as

a reference method in this paper. This method simply cuts

the nucleotide sequence regularly into chunks of a specified

maximum chunk-length c until the sequence is exhausted.

For example, with c = 100, the sequence RF00209 A from

the RFAM database with 379 bases will be cut into four

chunks made up of nucleotide positions 1− 100, 101−200,

201 − 300, and 301 − 379. This method can easily lose

important structure information.

D. Structure prediction and assembly

We cut an RNA sequence into chunks and predict each

chunk in parallel before merging the predictions into the

complete secondary structure. The overall workflow consists

of the parallel chunking and prediction, the reconstruction

of the secondary structure, and a possible comparison with

experimental results or secondary structure predictions ob-

tained from the sequence used as a whole. This workflow

naturally fit into the MR paradigm, for which each map

function cuts the sequence in chunks and performs the

prediction on one or multiple chunks using existing pre-

diction algorithms and their associated programs. Here we

use four popular secondary-structure prediction programs

with pseudoknot prediction capabilities, i.e., pknotsRG [17],

PKNOTS [6], HotKnots [18], and NUPACK [19]. As these

widely used programs have sequence length limits of up

to a few hundred bases only, chunking approaches will

be useful when the programs are applied to analyze large

RNA molecules. The partial predictions of the chunks are

assembled into the whole secondary structure predictions

by concatenating the predicted structures (reduce function).

Note that two consecutive chunks do not overlap in our

current work and thus the reduce function glues the chunk

predictions together. Multiple reductions glue together the

chunks resulting from the same sequence and using a given

stem length, gap length, and prediction algorithm. More

specifically, if we define this approach in a MR language,

the input to each map function is a < k1, v1 > value pair,

in which k1 is a sequence identifier, and v1 is the chunking

approach (e.g., stem length, gap length, and prediction

algorithm). Each map function outputs the list of < k2, v2 >
pairs as intermediate output to reduce. The k2 is the id

of the whole secondary structure to which the predicted

chunk belongs, and v2 is the predicted secondary structure

of the chunk. All the values associated with the same key,

i.e., < k2, list(v2) >, are passed to a reduce function that

reconstructs the whole secondary structure of the sequence

using all the v2 (predicted chunk structures) associated with

the same k2.

E. Assessment of segmentation methods

In order to assess whether the experimental secondary

structure can be predicted accurately after sequence seg-

mentation and to what degree, we use three metrics: (1)

accuracy chunking (AC) is the accuracy of the predicted

structure assembled from the chunks when compared with

the experimental secondary structure; (2) accuracy whole

(AW) is the accuracy of the predicted structure obtained

from the whole sequence when compared with the experi-

mental secondary structure; and (3) accuracy retention (AR)

is the ratio between AC and AW. Ideally we would like

to use AR to capture the capability of the segmentation

method to outperform the prediction accuracy using the

sequence as a whole. However, several codes predicting

pseudoknots cannot process whole sequences with more than

200 nucleotides due to memory limitations. Thus, for these

sequences AW is not available and we rely on AC only to

assess the accuracy retention.

AC and AW are given by the percentage agreement of the
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predicted structure with the known real structure calculated

as:
100 ∗ [a+ 2 ∗ b]

n
(4)

where a and b respectively represents the number of unpaired

bases and the number of base pairs in common between the

predicted and real structures, and n is the length of the RNA

sequence.

A large AC value (i.e., close to 1) for a predicted structure

means that the chunk-based predicted structure is similar to

the experimental structure; a large AR value (greater than 1)

means that the chunk-based prediction is more accurate than

that obtained by predicting the secondary structure with the

sequence as a whole; a large AW values (AW close to 1)

means that the structure predicted as a whole is similar to

the experimental structure. Various statistical tests provided

by the R package [20] are applied in the accuracy analysis

for the different cutting methods.

IV. RESULTS AND DISCUSSION

A. Test set-up

We ran the MR framework on a cluster composed of 8

dual quad-core compute nodes (64 cores), each with two

Intel Xeon 2.50 GHz quad-core processors and a high-

speed DDR Infiniband interconnect for application and I/O

traffic. Our implementation is based on Hadoop 0.20.2. We

used four well-known prediction codes that are able to

capture pseudoknots, i.e., pknotsRG [17], HotKnots [18],

PKNOTS [6], and NUPACK [19]. As we will see in the fol-

lowing discussion, for the longer sequences (length > 200),

some prediction codes (i.e., NUPACK, PKNOTS) cannot

predict the whole sequence because of resource require-

ments. In such cases, our chunk-based approach is the only

approach available. We used a dataset of 12 sequences in

RFAM database [21], each containing a pseudoknot and for

which we know their secondary structures experimentally.

The lengths of the sequences range from 79 to 451 bases.

Note that there are not large datasets of experimentally de-

termined RNA secondary structures including pseudoknots,

and to the best of our knowledge the one used in this paper

is one of the few available to the public for free.

For the regular cutting method, we used a fixed chunk

length of 60 bases for each RNA sequence. Note that the

length 60 is the proper tradeoff for our dataset between being

too short, which may result in more information lost, and

being too long, which may cause many sequences be cut

into one single chunk. We have checked the effect of max

chunk-length on MAR by increasing the max chunk-length

from 60-150 in 10 nucleotide base increments. With the

centered and optimized cutting methods, the chunks obtained

depended on the value of inversion parameters minimum

stem length L and maximum gap size G: each chunk is not

longer than 60 bases. We also allowed a range of L values

from 3 to 8, and of G values from 3 to 8, resulting in a total

of 36 (L, G) pairs. The values are selected because they are

scientifically meaningful. Note that for some (L, G) pairs no

inversion may be found; for these cases the cutting methods

did not apply and we assigned them an AR value of 0.

B. Accuracy

There are five important questions that we want to an-

swer when measuring the accuracy of our chunk-based

approach on sequences with pseudoknot structures. First,

we want to evaluate to what extent the chunk-based pre-

diction approaches capture the secondary structures within

the experimentally observed structures. Second, we want

to identify whether predictions based on chunking produce

more or less accurate results compared to the predictions

using the whole sequence. Third, we want to understand

whether the accuracy of chunk-based predictions correlates

with the length of the whole sequence. Fourth, we want to

understand whether the accuracy of chunk-based predictions

correlates with the L, G parameter values. Fifth, we want to

quantify the extent to which the inversion based chunking

methods—centered (C) and optimized (O)—outperform the

naı̈ve chunking method—regular (R)—and which chunking

strategy (C or O) is better.

To answer the first and second questions, in Table I, we

present the maximum AC (MAC), maximum AW (MAW),

and maximum AR (MAR) for each sequence, using pknot-

sRG as the prediction code, and using maximum chunk-

length 60 (for method R, C, and O) with varying L, G
values for methods C and O (both range from 3 to 8).

A larger AC value means that the chunk-based predicted

structure is more similar to the experimentally observed

structure(e.g., an AC value 0.7 means that the predicted

structure overlaps with the real structure in 70% of the

nucleotide bases, hence it captures most of the stem-loop

and pseudoknot structures); similarly, a larger AW value

means that the predicted structure using the whole sequence

is more similar to the experimentally observed one. An AR

value larger than 1 means that the chunk-based predicted

structure is more similar to the actual experimental structure

than the secondary structure predicted by using the whole

sequence. From Table I, we observe that in 9 out of 12

sequences (75%), at least one of the chunk-based predictions

produces more or equally accurate results compared with the

prediction using the whole sequence when using prediction

code pknotsRG. Table II shows the same information but

using HotKnots as the prediction code. In this case, the

chunk-based predictions outperform the prediction using

the whole sequences in 11 out of 12 sequences (92%).

In Table III, we show the result for using PKNOTS as

the prediction code. In all 6 sequences (100%), the chunk-

based predictions produce more or equally accurate results

comparing with the prediction using the whole sequence.

And from Table IV we can see that the number is 6

out of 7 (86%) for prediction code NUPACK. From the
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comprehensive results we obtain using different prediction

codes, we observe that the chunk-based predictions tend to

yield better accuracy than predictions obtained by using the

whole sequence.

Table I
MAC/MAW/MAR FOR EACH SEQUENCE USING PKNOTSRG.

Seq. Len. MAC MAW MAR
R C O R C O

RF00507 B 79 0.58 0.58 0.58 0.47 1.24 1.24 1.24
RF00233 B 84 0.68 0.68 0.7 0.68 1 1 1.04
RF00094 A 89 0.2 0.21 0.21 0.57 0.35 0.37 0.37

RF00499 A 103 0.7 0.7 0.7 0.7 1 1 1
RF00140 B 112 0.45 0.43 0.42 0.45 1 0.96 0.94
RF00259 A 169 0.33 0.24 0.39 0.34 0.97 0.71 1.14
RF00458 A 202 0.5 0.48 0.51 0.41 1.23 1.17 1.25
RF00261 B 221 0.19 0.46 0.49 0.2 0.93 2.27 2.4
RF00216 A 302 0.5 0.58 0.62 0.23 2.19 2.54 2.7
RF00010 A 312 0.59 0.56 0.6 0.63 0.94 0.89 0.96
RF00061 B 323 0.42 0.49 0.46 0.3 1.39 1.6 1.52
RF00024 A 451 0.3 0.45 0.56 0.6 0.51 0.75 0.94

Table II
MAC/MAW/MAR FOR EACH SEQUENCE USING HOTKNOTS.

Seq. Len. MAC MAW MAR
R C O R C O

RF00507 B 79 0.63 0.63 0.63 0.47 1.35 1.35 1.35
RF00233 B 84 0.69 0.69 0.71 0.69 1 1 1.03
RF00094 A 89 0.2 0.44 0.69 0.37 0.55 1.18 1.85
RF00499 A 103 0.77 0.77 0.77 0.77 1 1 1
RF00140 B 112 0.46 0.45 0.47 0.46 1 0.96 1.02
RF00259 A 169 0.31 0.22 0.37 0.35 0.87 0.63 1.03
RF00458 A 202 0.45 0.54 0.46 0.47 0.95 1.16 0.97
RF00261 B 221 0.25 0.46 0.52 0.35 0.71 1.32 1.49
RF00216 A 302 0.47 0.52 0.63 0.41 1.14 1.26 1.51
RF00010 A 312 0.62 0.59 0.6 0.61 1.01 0.97 0.98
RF00061 B 323 0.37 0.48 0.48 0.49 0.76 0.99 0.99
RF00024 A 451 0.29 0.44 0.56 0.48 0.61 0.93 1.17

Table III
MAC/MAW/MAR FOR EACH SEQUENCE USING PKNOTS.

Seq. Len. MAC MAW MAR
R C O R C O

RF00507 B 79 0.19 0.19 0.19 0.19 1.00 1.00 1.00
RF00233 B 84 0.37 0.37 0.38 0.37 1.00 1.00 1.03
RF00094 A 89 0.19 0.24 0.22 0.16 1.21 1.50 1.43
RF00499 A 103 0.26 0.26 0.26 0.22 1.23 1.23 1.23
RF00140 B 112 0.29 0.30 0.50 0.34 0.87 0.89 1.47
RF00259 A 169 0.22 0.27 0.28 0.20 1.12 1.39 1.42
RF00458 A 202 0.21 0.31 0.32 - - - -
RF00261 B 221 0.20 0.25 0.24 - - - -
RF00216 A 302 0.31 0.42 0.43 - - - -
RF00010 A 312 0.22 0.32 0.33 - - - -
RF00061 B 323 0.29 0.41 0.39 - - - -
RF00024 A 451 0.26 0.45 0.49 - - - -

To answer the third question, i.e., whether the accuracy

of chunk-based predictions correlates with the length of the

whole sequence, we draw a scatter plot of the MAC values

versus sequence lengths using a different symbol for each

Table IV
MAC/MAW/MAR FOR EACH SEQUENCE USING NUPACK.

Seq. Len. MAC MAW MAR
R C O R C O

RF00507 B 79 0.32 0.32 0.32 0.2 1.56 1.56 1.56
RF00233 B 84 0.69 0.69 0.71 0.69 1 1 1.03

RF00094 A 89 0.25 0.54 0.47 0.22 1.1 2.4 2.1
RF00499 A 103 0.74 0.74 0.74 0.74 1 1 1
RF00140 B 112 0.44 0.42 0.46 0.44 1 0.96 1.04
RF00259 A 169 0.27 0.24 0.23 0.3 0.9 0.82 0.78
RF00458 A 202 0.45 0.39 0.44 0.43 1.03 0.91 1.01
RF00261 B 221 0.14 0.35 0.34 - - - -
RF00216 A 302 0.52 0.63 0.64 - - - -
RF00010 A 312 0.54 0.53 0.6 - - - -
RF00061 B 323 0.33 0.43 0.45 - - - -
RF00024 A 451 0.28 0.44 0.48 - - - -

prediction code (Figure 9). To quantify the correlation be-

tween MAC and sequence length, we computed the Pearson

coefficient and the p-values for each prediction code for

all the sequences, and the correlation is found not to be

statistically significant: r2 = 0.08009, p-value = 0.3488 for

pknotsRG; r2 = 0.11492, p-value = 0.2572 for HotKnots;

r2 = 0.005476, p-value = 0.8101 for PKNOTS; and r2 =

0.05429, p-value = 0.4436 for NUPACK. The results are

consistent across prediction codes. This indicates that there

is no statistically significant dependence of the MAC values

on sequence length. Thus, we do not expect decline in

prediction accuracy when we increase the sequence length.
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Figure 9. Scatter plot of MAC vs. sequence length for 4 prediction codes.

Unlike the (L, G) parameters which can be freely chosen

by the user, the maximum chunk-length c in the cutting

method is limited by the particular secondary structure

prediction program. Just to explore the possible effect of

c on MAR for the cutting method, we run our program

with c ranging from 60 to 150 bases; by increasing c by

10 bases each time, we obtain a total of 540 combinations

per sequence. Table V represents the count of sequences with

highest MAR over all chunk-length combinations for each

sequence. The table shows that the average MAR values stay

approximately constant as c increases from 60-130 and start

increasing as c increases from 130-150.
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Table V
AVERAGE MAR FOR EACH MAX CHUNK-LENGTH.

Average MAR
Max chunk-length R C O

60 0.84 1.06 1.09
70 0.89 1.07 1.07
80 0.84 1.05 1.05
90 0.79 1.05 1.03

100 0.93 1.45 1.42
110 0.91 1.05 1.06
120 0.93 1.06 1.08
130 0.83 1.07 1.05

140 0.91 1.13 1.12
150 0.97 1.18 1.17

To answer the fourth question, i.e., whether the accuracy

of chunk-based predictions correlates with L and G, we

present the number of sequences that give MAC with respect

to the (L, G) value pairs. For the centered and optimized

chunking method, there are 36 combinations of (L, G) value

pairs (both range from 3 to 8). For each sequence, the MAC

for each method is generated by one or more (L, G) value

pairs. We present the number of MAC achieved by each (L,

G) value pair in Figure 10. Some (L, G) combinations are

missing from the figure since no sequence achieved MAC

using any chunking method C or O by any prediction code.

Our result shows that the value of the (L, G) parameter pair

at which MAR is attained varies from sequence to sequence,

with different segmentation methods and maximum chunk-

length. In making predictions for sequences with unknown

secondary structure, we have to come up with a particular

appropriate (L, G) combination for that particular sequence,

prediction algorithm, and max chunk-length. We expect that

the length and composition of the sequence, as well as

any knowledge of the biological characteristics of the RNA,

will help us determine criteria by which suitable (L, G)

parameters can be chosen. We observe that, in general, the

L parameter values 3, 4, and 5 and G parameter values 3,

7, and 8 tend to give the best accuracy.
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Figure 10. Number of sequences with MAC at (L,G) pairs.

To answer the fifth question, i.e, to quantify to what extent

the inversion based chunking methods (C and O) outperform

the naı̈ve chunking method (R) and which chunking strategy

(C or O) is better, we count the number of sequences where

each chunking method gives the highest MAC. For those

sequences in which multiple methods produce the highest

MAC, the count is split equally among the methods. These

counts are shown in Table VI, showing that the optimized

method produces the highest MAC in 62% of our data

sequences, followed by the centered (24%) and regular

(14%) methods. These results suggest that the centered and

optimized methods attain higher MAC than a naı̈ve segmen-

tation approach and that the optimized method outperforms

the centered method.

To quantify whether there are significant differences

among the cutting methods, we performed Friedman

tests [22] on the chunking methods. The Friedman test is

a non-parametric ANOVA test for repeated measures. This

test requires ranking the MAC among the three methods

for each data sequence and obtaining the rank sum for

each method over the entire dataset. Methods sharing the

same MAC are assigned an equal averaged rank. The rank

sums for the four prediction codes are shown in Table VII.

Table VIII shows the p-values obtained in the Friedman test

for different chunking methods using each prediction code.

The first column shows the p-values obtained in the tests

that compare the R, C, and O methods; the second column

for the C and R methods; the third column for the O and R

methods; and the last column for the C and O methods. With

significance level 0.05, we observe that for prediction codes

pknotsRG, HotKnots, and PKNOTS, there are significant

differences among the three methods (i.e., p-value≤ 0.05);

while for prediction code NUPACK, there are no significant

differences among the three chunking methods (i.e., p-value

< 0.05). To further understand which two methods are

significantly different, we report the p-values for the tests

that compare C and R methods, O and R methods, and C

and O methods in columns 3 - 5. As we can see, there is no

significant difference between the centered and regular meth-

ods except when using the PKNOTS prediction code; there

is a significant difference between the optimized and regular

methods except when using the NUPACK prediction code;

and there is no significant difference between the centered

and optimized methods except when using the HotKnots

prediction code. Even though the dataset size is modest

due to the fact that there are not many RNA molecules

including pseudoknots whose secondary structures we know

experimentally, our tests still show the clear trend that the

optimized chunking method performs significantly better

than the regular method. It also shows that there is no

significant difference between the centered and optimized

methods for the majority of the prediction codes. To quantify

which prediction program works better with our chunking

approaches than others, we performed similar Friedman

tests on the various prediction programs used. However, we

observed no statistically significant difference among them,

hence it is not reported here.
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Figure 11. Profile of execution time for sequential, MR (MR) method and accuracy using highest MAR.

Table VI
COUNT OF SEQUENCES WITH HIGHEST MAC.

Regular Centered Optimized Total

6.6 11.6 29.6 12 × 4 = 48

Table VII
MAC RANK SUMS FOR EACH PREDICTION CODE.

Prediction code Regular Centered Optimized
pknotsRG 19.5 22 30.5
HotKnots 18.5 22 31.5
PKNOTS 14.5 26.5 31
NUPACK 20.5 22.5 29

Table VIII
P-VALUES FOR EACH PREDICTION CODE.

Prediction code C-O-R C-R O-R C-O
pknotsRG 0.0302 0.7389 0.0114 0.0956
HotKnots 0.0085 0.3173 0.0114 0.0196
PKNOTS 0.0006 0.0027 0.0016 0.2059
NUPACK 0.1319 0.7389 0.0578 0.2059

C. Performance

When evaluating the performance of our chunk-based

predictions, we want to answer two important questions.

First, given a sequence of nucleotides, we want to understand

whether the prediction of its secondary structure based on

our segmentation approach (chunk-based) takes more or less

time than the prediction of the whole sequence without

segmentation when using the same prediction code. Second,

we want to understand how the execution time of our

segmentation-based predictions changes with the length of

the sequences. When considering the chunk-based predic-

tions, for each sequence and each prediction code, we run

the prediction with Hadoop using the regular, centered, and

optimized chunking methods with c equal to 60, L ranging

from 3 to 8, and G from 3 to 8. When considering the

prediction of each sequence as a whole (no segmentation),

we use one of the compute nodes on our cluster. Because

of space constraints, in Figure 11 we present the execution

time for both the Hadoop chunk-based predictions and the

sequential predictions using two of the four prediction codes:

(a) HotKnots and (b) NUPACK. In each sub-figure, the x-

axis is the 12 RFAM sequences sorted by length; the y-axis

on the left is the execution time in seconds in logarithmic

scale for both sequential and MR predictions; and the y-axis

on the right is the highest MAR value for each sequence.

Note that a MAR value ≥ 1 means that the predicted

structure obtained by our chunk-based methods is more

similar to the experimentally observed structure than the

predicted structure obtained by using the whole sequence.

Also note that in using the NUPACK program, some long

sequences are missing because it cannot predict the whole

sequence sequentially due to memory limitations. From

Figure 11, we observe that the execution time for chunk-

based predictions is larger than the sequential prediction

when the sequence length is short (less than 150 bases).

When the sequence length grows (> 150 bases), the chunk-

based predictions run significantly faster than the sequential

prediction. Overall we observed that as the length of the

sequence grows, the execution time of the sequential predic-

tion grows exponentially with the length of the sequences

for all the four prediction codes. The time complexity of

the PknotsRG algorithm is O(n4) where n is the number of

nucleotides in the input sequence. However, in the prediction

of RNA secondary structure using a segmentation method

and using Hadoop implementation, we observed that the

execution time for chunk-based predictions does not grow

significantly with the sequence length. This is due to the fact

that our chunking methods cut the whole RNA sequence

into chunks no longer than 60 bases. In other words, as

the length of the whole sequence grows, the chunks still

within 60 bases. The predictions are performed in parallel

across the Hadoop nodes and the distributed file system.

As the sequence is cut into more chunks, the execution

time for chunking (overhead) and prediction would increase.
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Our measurements show how this overhead is not signifi-

cant. In the case of very long RNA sequences (e.g., RNA

viral genomes with thousands of bases), the chunk-based

method is promising for two reasons: it allows us to predict

secondary structures that we would not be able to predict

otherwise, i.e., when considering the sequence as a whole; it

would also allow us to keep under control the total execution

time by controlling the maximum chunk length. Figure 11

also shows the highest MAR for each sequence (the higher

the better). We can observe that, when the sequence length

increases, the accuracy of our chunk-based methods does not

decrease significantly compared with the prediction without

segmentation - i.e., using the whole sequence.

V. CONCLUSION AND FUTURE WORK

In this paper we present two chunking methods, which

are based on inversion excursions, for predicting RNA

secondary structures including pseudoknots. We have as-

sessed the accuracy of our methods with a dataset of RNA

sequences with pseudoknots and four popular prediction

codes (i.e., pknotsRG, HotKnots, PKNOTS, and NUPACK).

Results show that our chunk-based methods outperform the

prediction method using the whole sequence for a dataset of

RNA sequences in 75% of the cases when using pknotsRG,

92% when using HotKnots, 100% when using PKNOTS, and

86% when using NUPACK. The somewhat counter-intuitive

results in this paper suggest that local structures formed

by pairings among nucleotides in close proximity, rather

than the global minimal free energy, may correlate better

with the real molecular structure of long RNA sequences.

This hypothesis is being tested experimentally on genomic

RNA sequences from Nodamura virus (NoV) in co-author

Dr. Johnson’s molecular virology lab.
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