
 
 
 
 
 
 
 
 
 
 
 

Abstract 
 

 A large number of bioinformatics analysis tools 
available today are processor intensive. Keeping in mind 
that the amount of biological data to be analyzed is 
growing steadily, and these tools are not easily 
deployable on Beowulf clusters, we propose BioFilter. 
BioFilter is a software implementation of an architecture 
that provides a framework for the deployment of these 
tools on a cluster thereby providing large performance 
increases. Another facet of bioinformatics analysis is that 
the tools, in general, are not used in isolation, but are 
used collaboratively during an analysis. Our architecture 
provides a way to create pipelines of different analysis 
tools chained together in a cluster environment, passing 
the output from one analysis tool as the input to another 
analysis tool. 
 
 
1. Introduction 
  

Informatics based biological research is dependent on 
many computational software tools that differ depending 
on the research areas, i.e. genome sequencing, genome 
annotation, structure prediction, etc. However, the basic 
idea is that each software tool transforms data from one 
form to another. That data is then analyzed for vital 
information or passed along as input to the next 
computational tool. Consider a genome analysis team that 
sets up analysis pipelines to annotate a genome. A typical 
analysis pipeline might include a gene prediction tool like 
Glimmer [1,2] to predict the genes in the genome DNA 
sequence and a tRNA prediction tool like tRNAscan [3] 
to predict tRNA genes. Similarity searches on these genes 
could involve BLAST [4] and the output used as is or 
passed to other parsing tools for taxonomic analysis. The 
gene sequences from the gene prediction tool could serve 
as input to secondary structure prediction tools like Psort 
[5], and Coils [6], be analyzed for complexity using Seg 
[7,8], or used with protein domain search tools like 
Prodom [9], Blocks [10,11] and Prosite [12]. The 
underlying point is that genome analysis involves a lot of 
data  streaming  between  tools  which  if  done   manually  

 
 
 
 
 
 
 
 
 
 
 
 

would be a waste of time for the annotator and would 
waste disk space when storing intermediate data. Finally, 
in a research environment, the structure of the analysis 
pipeline is not fixed but is dynamic due to the very nature 
of scientific inquiry.  

The architecture we describe has two advantages: i) 
the pipeline allows one to automate and reconfigure 
workflows easily; ii) the parallel aspect provides for 
performance acceleration. Performance acceleration 
might be improved more than what we have achieved 
when methodology like MPI is used. However, such 
methodologies do introduce unnecessary complexity. 
Tradeoffs are required to efficiently address complexity 
and performance. Furthermore, the ease with which a new 
tool can be introduced into the architecture played an 
important role in our decisions.    

The BioFilter architecture addresses the aspect of 
dynamic analysis pipelines and automatic data streaming 
by using the Pipes and Filters architecture pattern [13, 
14]. The basic idea of the Pipes and Filters pattern is 
"Objects that have compatible interfaces but perform 
different transformations and computations on data 
streams can be dynamically connected to perform 
arbitrary operations" [13]. The tools in the analysis 
pipeline are modeled as objects in the Pipes and Filters 
pattern. This enables the user to create dynamic pipelines 
with automated data streaming.  

Parallelization of CPU intensive bioinformatics tools 
can be achieved by splitting the input data set and running 
these tools as multiple services on the Beowulf cluster. 
BioFilter achieves parallelization by using the Broker 
architectural pattern [14] to structure and coordinate 
services.  To implement this architecture we use the 
Client-Dispatcher-Server [14] pattern during the design 
stage. The server runs the computational tool and since 
there are multiple servers running on different nodes, each 
computational tool is duplicated. The client manages 
splitting of the input data set and plays the role of an 
object with a compatible interface in the Pipes and Filters 
pattern. The dispatcher acts as an intermediate layer 
between the Client and the Server providing location 
transparency by means of a name service, and hides the 
details of the connection between clients and servers.  
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Thus the BioFilter architecture turns the cluster into a data 
flow computer, based on the concept of data-driven 
computation   as   defined   in   [18].   Each    pipeline    is 
analogous to a data flow graph, with each cluster 
processor corresponding to a node in this graph. Every 
node carries out some operation based on availability of 
data. The specific operation carried out by each node and 
the routing of data between nodes is all part of the 
software implementation of the architecture. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The BioFilter architecture is unique in that it does not 

attempt to take the existing tools and alter their algorithms 
for parallel execution. This type of approach is tool-
specific and can be slow in terms of development time. 
Therefore, attempting to modify the tools is not feasible 
as the number of tools to parallelize increases. 
Parallelization in BioFilter is achieved by duplication of 
computational tools allowing easy and seamless 
integration of many bioinformatics tools into a cluster 
environment. Since the original computational tools 
remain unaltered after being plugged into the BioFilter 
architecture, the output of the tool is the same as if it were 
run on a workstation in its original form. The BioFilter 
architecture is in no way constrained by the cluster 
hardware configuration, the kind of operating system or 
the queuing system running on the cluster. Our 
implementation utilizes the forking capability of UNIX 
system, the PERL programming language, and a Beowulf 
cluster with shared disk resources.  
 
2. Architectural and Design patterns 

 
Architectural patterns, as used by us, specify the 

system-wide structural properties of an application and 
have an impact on the architecture of its subsystems. They 
provide a set of predefined subsystems, specify their 

responsibilities and include rules and guidelines for 
organizing   the   relationships between them   [14].  The 
dominant architectural patterns for BioFilter are the Pipes 
and Filters pattern and the Broker pattern. Pipes and Filter 
pattern provides a structure for systems that process a 
stream of data. Each processing step is encapsulated in a 
filter component with data being passed through pipes 
between adjacent filters.  Recombination of these filters 
facilitates building families  of  related  systems.  Because  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

bioinformatics analysis involves processing data streams,  
this pattern was a natural choice. The Broker pattern is 
used to structure distributed software systems with 
decoupled components that interact by remote service 
invocations. Since our architecture aims to provide 
bioinformatics tools as services on the cluster, this pattern 
was also a natural choice. 

Design patterns, as used by us, are medium-scale 
patterns that are smaller in scope than architectural 
patterns. A design pattern provides a scheme for refining 
the subsystems or components of a software system, or 
the relationships between them. It describes a commonly 
recurring structure of component communication that 
solves a general design problem within a particular 
context [14].  At the design level, our architecture utilizes 
the Pull Pipeline variant [14] of the Pipes and Filter 
architectural pattern and relies heavily on the Filter design 
pattern [13]. It also relies on the Client-Dispatcher-Server 
pattern [14] to implement the broker architecture. 
 
3. Architecture 
 

In genome analysis, input data sets can be thousands 
of sequences (DNA or amino acid) obtained either from 
an external source or as results from one of the tools in 
the pipeline. Tools generally process one element from 

 
Fig 1. Class diagram of the BioFilter architecture  



the input data set at a time. For example PFAM [15] takes 
one query sequence from the input set of query sequences 
and searches it against a database of Hidden Markov 
models. The search result is independent of the results of 
other query sequences. This allows for splitting the input 
data set into mutually exclusive sets that individual 
servers can process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Many bioinformatics tools search a query against a 
flat file database, BLAST is one of these tools. Attempts 
to increase the performance of these tools could split the 
database and distribute it on several nodes on the cluster. 
The reason for doing this is that if the database size is 
smaller, then it is more likely to fit into main memory 
avoiding disk access, and therefore the search is faster. 

However, this requires sending the same input element to 
many nodes. Synchronization issues, such as building the 
result for each input element by accumulating results from 
different nodes, affect tool performance, development 
time and cost. 

Our approach to the database search relies on having a 
single monolithic database and process one input element  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

at a time with a clear distinction between them (partial 
results don�t have to be merged). We split the input data 
set into individual elements, and each of these elements 
goes to a different node for processing. The single 
monolithic database is present on a shared disk that is 
visible to each node. The alternative strategy of having 
the whole database on each node�s local disk was 

 
Fig. 2. Sequence diagram depicting the runtime behavior of the BioFilter architecture 



examined but there was no significant performance 
improvement. However the local database could improve 
performance where the shared disk access is slow due to 
network bandwidth limitations. 

There is another synchronization issue with the 
collection of results. When there is a one-to-one 
relationship between the input and output, the results 
should be collected and returned in the same order  as  the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

input is received. This does not slow down the process by 
a large degree as long as the deviation on the mean 
processing time for any individual job is small. In the case 
of genome analysis, we find this to be true the vast 
majority of the time, particularly if we pre-sort the input 
by the size of each input element. This is because the 
processing time for these tools is proportional to the input 
size. The results are collected from the nodes in the order 
in which individual jobs were launched and then passed to 
the next processing step in the pipeline or presented to the 
user if it is the last processing stage. 

The static structure of the system is depicted using the 
UML class diagram (Figure.1). The classes represent an 
implementation that is based almost exclusively on the 
Filter design pattern and the Client-Dispatcher-Server 
design pattern. The runtime behavior of the system can be 
divided into three distinct phases. These phases are 
summarized using a blast filter and a blast parser filter in 
Figure 2 and examined in more detail in Figures 3-5.  
These phases are: i) initialization of the dispatcher and 
servers, ii) transformation of the original record by 
pulling it through a series of filters, and iii) shut-down of 
the dispatcher and servers. 

In the initialization phase (Figure 2, Steps 1-7 and 
Figure 3), the parent process (running on a front-end  

node) forks off a single child process to run as the 
dispatcher. It then creates a new concrete source object 
that acts as the data source to the pipeline, in this case a 
FastaRecordsFile. Next, the required number of blast 
servers and blast parser servers to carry out the job are 
instantiated on backend nodes through the queuing system 
(in our case OpenPBS) as new processes. One of the first 
things a server does is to register with the dispatcher. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the transformation phase (Figure 2, Step 8-18 and 

Figure 4), the parent instantiates the BlastFilter and the 
BlastParserFilter and sets the appropriate parameters on 
each filter. Filters are instantiated and remain active in the 
parent process. The filters pass work off to their 
respective servers that were launched in the initiation 
phase. A filter remembers how many servers it is 
interacting with in order to manage the number of records 
being transformed at any give time. The parent chains the 
filters together by providing a reference, for example, the 
BlastParserFilter is given a reference to a BlastFilter, thus 
chaining the two filters together. The getRecord method is 
called on the last filter in the pipeline, which in this 
example is the BlastParserFilter, and it returns a new 
BlastSummaryRecord. Figure 4 shows that the 
BlastSummaryRecord is the final product of a data stream 
being transformed by multiple filters and not just the 
BlastParserFilter. 

The final phase represents a smooth shutdown of the 
system (Figure 5). In this phase, we shut down the 
dispatcher, which in turn shuts down the servers 
registered with it. Shutdown is initiated from the parent 
and occurs after all the input records have been processed. 

Crash recovery is critical for distributed systems like 
BioFilter, where servers are distributed on different nodes 

 
Fig. 3. Sequence diagram depicting creation of new servers



and all of them are communicating with the dispatcher or 
the client filter on the parent node. Since the 
communication between these components is based on the 
TCP/IP socket framework, one of the components could 
go down and the interacting component would block for 
data on a socket causing the application to hang. A 
specific example is a pipeline with a single BlastFilter and 
20 BlastServers, in which the filter takes 20 sequences at 
a time and sends them to the servers for processing and 
then blocks for results from these servers. If one of the 
nodes running a server goes down, the filter could block 
for results from that server forever. Timed sockets 
provide a reasonable   solution   to   this   problem. In   the    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

socket communication part of the system, the time that the 
component blocks for results is predetermined. This time 
limit may be variable for different components and for 
different communication combinations between 
components. In the filter implementations, the time limit 
is a settable parameter. As an example, a BlastFilter may 
block for 5 minutes for result of a data transformation on 
a backend server and then time out, however the same 
BlastFilter when communicating with the dispatcher may 
only block for 30 seconds and then time out. The 
variation in blocking time related to data transformation is 
dependent on computational intensity of the job 
submitted. The job is resubmitted to a backend server if 
the timeout occurs.  

The input to output relationship gives rise to three 
kinds of Filter variants in the system:  i) simple filters 
model a one-to-one relationship between input and output,  
ii) split filters model a one-to-many relationship between 
input and output, and iii) join filters model a many-to-one 
relationship between input and output. 

Simple filters have a one-to-one mapping between 
input and output data. Fasta2TblFilter is an example of 
simple filter, which takes in a single FastaRecord and 
produces a single record in a tabulated format. Another 
example of a simple filter is a TranslationFilter, which 
takes in a single FastaRecord containing a nucleotide 
sequence and produces  a  single  FastaRecord  containing  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the translated protein sequence. 
Split filters transform a single input data object into 

multiple output data objects, with an internal queue to 
hold the split results, providing a one to many mapping 
between input and output data. GlimmerFilter is an 
example of split filter that takes as input a single 
FastaRecord containing a nucleotide sequence (a 
chromosome or a microbial genome) and produces zero or 
more FastaRecords representing the genes contained in 
the input sequence.  Another example of the split filter is 
an OrfFilter that takes a FastaRecord containing a single 
nucleotide sequence and produces zero or more 
FastaRecords representing the open reading frames of the 
input sequence. 

 
 Fig. 4. Sequence diagram depicting transformation of data 



Join Filters do the opposite of Split Filters. They 
collect all the input data objects and then transform them 
producing a single output data object. These filters 
provide a many to one mapping between input and output 
data. The BuildImmFilter (representing part of the 
GLIMMER software) is an example of join filter that 
takes in one or more FastaRecords in the tabulated format 
and produces a single Interpolative Markov model that 
can be used to predict genes. 

In any dynamic real-world pipeline, there can be any 
possible combination of the above three variants as 
demonstrated in a gene prediction pipeline. In a gene 
prediction pipeline the concrete source is a 
FastaRecordsFile holding a single genome FastaRecord. 
This is input to the OrfFilter (split) that identifies open 
reading frames (ORF) in the genome and produces many 
Fasta formatted ORFRecords. Each of these ORFRecords 
is then passed to a Fasta2Tblfilter (simple), which just re-
formats the ORFRecord into a tab-delimited format. All 
these tab-delimited formatted ORFs become input to the 
BuildImmFilter (join), which produces a single model 
file. This model file and the original genome FastaRecord 
from the concrete source are then fed to a GlimmerFilter 
(split) that produces nucleotide sequence records of the 
predicted genes in the genome.  These records are then 
passed to a TranslationFilter (simple), which produces 
FastaRecords containing the corresponding amino acid 
sequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the present time, the architecture includes the 

OpenPBS queuing system on the cluster 
(http://www.openpbs.org). The design is flexible enough 
to incorporate new queuing systems and the 
implementation does not exclude the use of processors 
outside the cluster. The architecture supports interaction 
and job submission to servers on any remote machine, not 
necessarily one of the cluster nodes, and the 
implementation includes this functionality. This type of 
integration with nodes outside the cluster is possible since 
the communication is socket based and only requires that 

the server be ready to accept jobs. This flexibility has 
been useful in situations where the tool software is OS or 
hardware dependent and cannot be supported by the 
existing cluster hardware architecture or OS.  

 
4. Performance results 
  
4.1. System specifications 
 

The Beowulf cluster has 240 nodes running Linux, 
each node with a single Pentium III, 1200 MHz processor, 
a 20 GB local disk space and memory ranging from 1GB-
2GB. The nodes share a disk via the Netapps disk server 
(http://www.netapps.com). The network capacity of the 
channel from the node to the switch is 100 Mbps and of 
the channel from the switch to the Netapps is a 1 Gbps. 

 
4.2. Benchmark tests 
 

Benchmark tests were conducted on the cluster 
described above. A few of these tests are presented next. 
Many of our tests were examined using a calculation 
called speed-up ratio. The speed-up ratio for x nodes 
equals the job execution time on the initial number of 
nodes divided by the job execution time on x nodes.  
For example. 
Initial no. of nodes = 1; Job runtime on 1 node = 50 secs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
No. of nodes  = 6;  Job runtime on 6 nodes = 10 secs. 
Speed-up Ratio (6 nodes)      = 50/10  = 5. 

Using 1000 identical bacterial protein sequences as 
queries against the NR database, the number of BLAST 
servers was varied from 1 to 50. As expected, the average 
time per BLAST search decreases as the number of nodes 
increase (Figure 6). Also, as the number of nodes 
increases the speed-up ratio increases (Figure 6). Also to 
determine that our architecture scales well as the input 
data size increases, we repeated the above test with 10000 
sequences. The results for this test were almost identical 

 
Fig. 5: Sequence diagram depicting shutdown of the system 



to the one shown in Figure 6 thus proving that our 
architecture is data scalable. 

We also carried out tests to demonstrate that the 
architecture is flexible enough to provide a performance 
speed-up for many bioinformatics tools and is not 
restricted to only speeding up BLAST. Three hundred 
identical bacterial protein sequences were used as input to 
the various tools like Blocks, Hmmpfam, and Prosite that 
had been plugged into the BioFilter architecture. For 
tRNAscan, the input was single record that represented 
182,950 bases of a larger genome sequence. Performance 
gains for each of these tools were measured and are 
presented in Table 1 and 2. The other bioinformatics tools 
that have been deployed in our architecture to date and 
have realized similar performance gains are PSI-Blast, 
Prodom, Psort, Primer3 [16], and Phd [17]. Finally, 
speed-up is not the only reason that a tool is integrated 
into BioFilter. An example is the Glimmer program. This 
program runs sufficiently fast that speed-up is not an 
issue. This program and others like Coils and Seg have 
been included in the BioFilter architecture for the purpose 
of constructing pipelines that consist of many tools. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Data in Table 1 and Table 2 show that for tools that 

are computationally light the speed-up ratio stops 
increasing and sometimes starts to decrease as the number 
of servers increase. This is because the total time to 
initialize and run the servers via the queuing system, 
distribute the data to be processed and collect the results 
is comparable to the time taken to actually process the 
data. In the tests we did, the speed-up ratio stops 
increasing at around 10-15 nodes for computationally 
light tools like Prosite, tRNAScan and Block whereas for 
computationally intensive tools like Blast and Hmmpfam 
it stops increasing around 40-50 nodes. However, if we 
were to use a tool that was more computationally 
intensive, then the number of nodes at which speed-up 
gain stops should be higher.  

 
5. Future work 

The process of incorporating a new tool into the 
architecture is straightforward. All the user has to do is 
write four derived classes; namely the ToolRecord, 
ToolRecordsFile, ToolFilter and ToolServer. Most of the 
functionality is part of the base classes that these four 
classes will extend. This makes the functionality of the 
derived classes lightweight and hence easy to program. 
After the initial design was laid out, it took us 3-4 man-
hours for incorporating a new tool. 

The process of incorporating a new tool does require a 
programmer with knowledge of Perl. We understand that 
a biologist/scientist might be interested more in the 
analysis of results than in writing these programs and we 
think that a GUI and/or a XML based language can 
reduce the step of writing code. Future work could focus 
on eliminating the step of writing code. 

 
6. Conclusion 
 

In this paper we have presented an architecture, that 
provides an environment for easy deployment of  tools  on  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the Beowulf cluster, that are embarrassingly parallel and 
whose input data set can be easily partitioned. The 
performance gain is two-fold, a development time 
performance gain is achieved since the plugging of a new 
stand-alone tool into BioFilter is very easy, and a runtime 
performance gain is achieved by parallel execution. The 
architecture is efficient yet simple due to synergy between 
simple and well-documented software patterns. It is also 
flexible in that it is independent of the cluster queuing 
system and has the capability to interact with nodes 
outside the cluster. The usage of Pipes and Filters pattern 
eliminates intermediate files, provides filter reuse and 
allows rapid prototyping of pipelines by filter 
recombination. The use of Client-Dispatcher-Server 
pattern provides server redundancy; location and 
migration transparency;  reconfiguration  of   servers  and  
 

 
Fig. 6: Searching the NR database using BLAST (Time taken and Speed-up ratio) 



Table 1: Time taken for various tools versus the 
number of processors used (NT : Not Tested) 
 Hmmpfam Blocks tRNAScan

  
Prosite 

1 70924.97 4951.31 4191.27 1781.8 
2 35551.28 2511.64 2120.17 1174.2 
3 23734.37 1705.08 1442.82 805.40 
4 17808.74 1307.40 1088.65 627.70 
5 14505.87 1067.18 913.23 497.31 
7 10267.57 796.24 687.70 391.10 
10 7193.54 580.45 517.60 330.17 
13 5763.63 493.28 408.84 250.74 
16 4594.60 418.43 338.73 214.49 
20 3707.27 429.14 298.26 248.93 
30 2537.61 NT  NT NT 
40 2079.87 NT NT NT 
50 1886.69 NT NT NT 
 
fault tolerance. However, our architecture has problematic 
issues like difficult pipeline disaster recovery and error 
handling and high dependency on the interface of  the 
dispatcher. In addition,  the setup of pipelines can only be 
done by writing programs or scripts which use the 
existing classes in BioFilter. The solutions to these issues 
could be perceived as future work as could be the building 
of a GUI that allows construction of pipelines by non-
programmers using simple drag-and-drop techniques. 
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