Solving the Protein Threading Problem in Parallel

Nicola Yanev
University of Sofia

5,J. Bouchier str.1126 Sofia, Bulgaria

choby@math.bas.bg

Abstract

We propose a network flow formulation for pro-
tein threading and show its equivalence with the short-
est path problem on a graph with a very particu-
lar structure. The underying Mixed Integer Program-
ming (MIP) model proves to be very appropriate for

Rumen Andonov
IRISA, Campus de Beaulieu
35042 Rennes Cedex, France
randonov@irisa.fr

gy. Let the core contain a set of itemsS;, calledseg-

ments each of length;. This set must balignedto a

sequencd. of N characters from some finite alphabet.

Lett; be the position i, whereS; starts. An alignment
is called afeasible threadingf:

i.t; >t;—1 +1;_ foralli;

ii. the lengthg; (calledgap or loop) of uncovered

the protein threading problem-huge real-life instances characters, i. eg; = t; —t;—1 — l;—1 is bounded, say
have been solved in a reasonable time by using only ag{*" < g; < g**®.

Mixed Integer Optimizer instead of a special-purpose

The formal model of the protein threading problem

branch&bound algorithm. The properties of the MIP accepted by us in this paper is very close to the one given
model allow decomposition of the main problem on a in [1, 2]. For given integer&/, m andl;,s = 1,... ,m,
large number of subproblems (tasks). We show in this letus defines = N +1—3>""" [;. Letthe set of couples

paper that a branch&bound alike algorithm can be effi-
ciently applied to solving in parallel these tasks, which
leads to a significant reduction in the total running

time. Computational experiments with huge problem in-

stances are presented.

1. Introduction

The protein threadingproblem is an extremely im-
portant challenge in computational biology [2, 6, 9, 10].

R C {(i,5) | 0 < i < j < m} and the reals;;,i =
1L,...,m,j=1,...,n,andc;j, (i,j) € R,1 <k <
[< n, be given. The goal is to minimize

m
D ikt Y ik 1)
i=1 (i,j)ER

subjectto:1 <ty <n;t; > ti1+li—1,i =2,...,m;

b+l SN+ Lk =t ki =t — (6 + 11 —
1),i =2,...,m;andt;,i = 1,...,m, are integers. In
this definitionn corresponds to the "degree of freedom"
(the number of relative positions) for each segméhis

The problem consists of testing whether or not a tar- associated with the set of pairwise interactions between

get sequencqueryis likely to fold into a 3D template
structurecoreby searching for anlignmentwhich min-
imizes a suitablecore functionlt is important, because
the biological function of proteins is determined by their

the segments; the coefficierts;; score for a placement
of S; at thek!" relative position and of; at thel'" one;
c;; score the placement of thé" segments at thg"
relative position.

three-dimensional shape, and their shape is determined Finding a really fast algorithm for solving this opti-

by their linear sequence.
We give a more formal presentation of the problem
by simultaneously introducing a preexisting terminolo-

*The work of N. Yanev has been partially supported by the
GenoGRID project (ACI GRID, Ministére de la Recherche) and was
performed during a visit to the SYMBIOSE project, IRISA, Rennes

tOn leave from LAMIH/ROI, University of Valenciennes, France,
Rumen.Andonov@univ-valenciennes.fr, corresponding author.

mization problem it is still considered as a challenge.
The problem has been proven to be NP-complete in [4]
and to be MAX-SNP-hard (which means that it can-
not be approximated to arbitrary accuracy in polynomial
time) in [1]. The main inspiration for us to start work-

ing over this subject is the results announced in [2, 3]
describing a branch-and-bound algorithm (b&b) which
is successful for a large set of real-life (biological) ex-

amples. We were aware of the fact that the real-life in- creation of a common benchmark, in order to be able to
stances may be more tractable than randomly generatedompare different algorithmic approaches.

instances. Nevertheless, a branch-and-bound algorithm

solving a non-linear integer programming problem over o Network flow formulation

the search space of size upl®’! feasible threadings by
using relaxation of non-evident quality is reason enough
for asking questions like: i) how intrinsically hard is the
problem on real biological instances (especially for so
called self threading)?; ii) could it be improved (either

by improving bounds or by creating another mathemati- . . , g o

cal pro_gramming model)?. In addition we may also an- %%j '725 _{(11) I;jte;;;tcit}ogs.l'I;Chlilr;d:c?s:thf S:; (r)T:ér;dnl_ces
swer; iii) can we use the power of parallel computers . hat th ’“ij’“ =" f1h 7 local oy
in order to speed up the computation?; iv) is it neces- ing that the left segmen, of the non-local pairi, , ji)

sary to write special purpose code or could some exist- Isaﬁ::ce:iraeitpzsslittli?)mm agiémarlght. Skeg]':]e_rj% Ofct:f
ing solvers be used? The answers to these questions arg P b . yeli k), o
responds to the possible placements ofifiesegment

given in the subsequent sections. . . th .
The main contributions of this paper are as follows relatively to the end ofi — 1)** segment. By adding

) T two extra vertices Sand T and acs (1,k)),k = 1,n
e Protein threading is formulated as a network flow and((m, k),T),k = 1,n, one could easily check 1 to

model and has proved to be equivalent to the short-1 correspondence of the previously defined threadings
est path problem (SPP) on a graph with a particular i the (S, ') paths in G. The conditioh> k prevents
structure. All previous results use algorithms like - yeriapping of any two consecutive segments and if the
branch-and-bound algorithm [2, 3], or divide-and- path passes through vertic@is— 1, k), (i,) thenl — k
conquer [6], but to the best of our knowledge, such g the sjze of the gap;. We introduce also variables

a mathematical programming approach has beenn-zo,. . « g andz, for e € Ei"?. Now we can model the

Let G(V,E) be a digraph with vertex se¥’ =
{(i,k) | i = 1,m; k = 1,n} and arc setf =
{6, k), +1,0)) | ¢ = 1,m—1; I > k}, and
let NL = {(i1, 1), .-, (it, jt)} be the set of non-local

ever proposed for this problem before. problem in the following way:

e Three MIP models are proposed, analyzed and _
compared to each either, and with the popular Lath- D ceme+ Y ceze = min (2)
rop_Smith’s (b&b) algorithm [3]. In all cases the e€lE ecEind
MIP formulation outperforms significantly the pop-)
ular (b&b) algorithm. such that.

e The MIP polytope posseses an extremely useful Z Te — Z z.=0 V(i,k)eV (3)
property: in all but very few cases the solution is e€l(4,k) e€l~1(i,k)
given by solving the LP relaxed problem. In the
rare exceptions the integer solution is easily found Z zo =1 ()
by the standard CPLEX heuristic (i.e. also in a ceI(S)

polynomial time).

e A divide and conquer strategy is proposed for the Y < Z 2o, Ve = (ix, 1, jr, f) € Find (5)
formulated SPP problem. This strategy leads to a - < T
significant reduction of the computation time.

e Several parallel schemes have been implemented . . ind

. . . . e < € Ve = 2] l7 ¢ E 6
and analysed in order to improve their efficiency. - Z Te, Ve = (in 1, ji, f) € ©)
Extensive computational experiments have been
performed for huge problem instances.

eeF(ik ,l)

e€l' =1 (ji,f)

Tet Z Te — 2. <1 Vece E™ (7
This paper is based on results described in details in .cr, . €T~ 1 (ji,f)

a previous research report [11]. At the time of its pub-

lication, we were aware of no any other MIP approach _ .

for the protein threading problem. We are pleased to Zzi’“”’“f =1 V0 jr) € NL ®)

observe that recentlty, another research team presented

similar approach [13]. Since analytical comparison is

very difficult, it will be worthwhile to work toward a

=l

z — binary,z > 0 (9)

Into this model,I'(z) is the set of arcs outgoing from its own core) instances. When we run CPLEX on the
vertexz and'~!(z) is the set of in-going arcs. Con- MIP models generated according to (2)-(9) on a large
straints (3), (4) are network flow representation of the subset of these instances the results are alwtgsLP
paths fromS to T' (see fig.1), constraints (5) and (6) relaxation attains its minimum at a feasible (0,1) vertex,
force the path to pass through the pair of vertices ac- hence optimalThis property is so pertinent to the model
tivated by SOS (Special Ordered Set) constraints (8), that one could use it for defining the self-threading sub-
constraints (7) are for tightening the LP-relaxation. This class. The relaxed problem usedLi8 model [2, 3] is
model was built under the presumption to enumerate thebased on minimizing of a functiofi(z) which is inferi-
smaller search space of variablethan ofz, that will be or to the objective functiorf (z) over the set of feasible

the case if we switch the integer requirements froto threadings. For such a relaxation, an optimal solution

z variables (this need some minor changes in the mod-to the relaxed problem is optimal for the original one if
el). From the well known properties of the network flow f(z*) = f(z*). For theLS model this could be taken as
polytope one can see that for each fixation @friables the self-threading subclass defining property and this is
to 0, 1 the respective vertices of the underlying polytope the reason for the effectiveness of th algorithm on

in (x, z)—space havé0, 1) = coordinates. To conclude the instances of this subclass. What is important to add
we need to say how the arcs weightsare related to here is that all these properties are score depended and
the scores from the introduction. Each weight is a sum they could be lost once the scoring scheme changed. For
of three numbers: one for the tail of the arc (segment- all instances reported below the objective function coef-
to-position cost), second for the gap cost between seg-ficients are generated by using FROSbBI{l Recogni-
ments(if any) and the third is for the local interactions (if tion Oriented Search Topsoftware [7, 8].

any). If the leading and/or trailing gaps are scored then

these numbers are prescribed t(_) the out-going/in-goingy Further improvements of the MIP model

arcs from/to the vertices on the first/last layer. From the
graph in fig.1 we could have more geometrical insight
for the problem of optimal aligning of some sequence
with a core of five segments, each one with three pos-
sible placements depicted as columns. The path given
in thick lines has a length 5 but taking into accountthe ... " . ’
pairwise interactions (in this case (1,1,3,2), (3,2,5,2) - ffication of the mode! (2)._(8.) is done:

the path passes through the vertices (1,1),(3,2), (5,2) we Let L(NL) = {is|(is,js) € NL}, R(NL) =

must add the costs for passing through these vertices ({ZSK]S’“) € NL}.

In order to improve the LP-bounds and the CPLEX
branching strategy by imposing branching on the SOS
constraints instead of on a single variable (but at the
expense of adding extra constraints) the following mod-

c1132 + €3252) t0 5 and to obtain the actual length 14 i =S poy 2l =1,...,n;

of the path (threading). Thus if we have given weight- { ’ A R (10)
s to all arcs and a table of the costs for the designated Vi€ L(NL) (i,j) € NL
non-local pairwise interactions the optimization prob-

lem will convert to finding a path fron§ to 7' with Y = 2 p Zigisl=1,...,m; (11)
minimal updated length. From this figure we can also Vi€ R(NL) (j,i) € NL

stressz- to- z relation: once the: variables are fixed

(z1132 = 1, 23952 = 1, all other are zero because of n

(8)) to find whichz will be fixed to 1 is equivalent to Zy” =1 VYie R(NL) UL(NL) (12)

find the shortest from among the paths passing through =1
(1,1), (3,2), (5,2).
y—binary and allz variables included into these def-
initions change from binary to continuous. The role
of the newly introduced constraints is twofold: i) (10)-
(12) are tighter than (8) thus improving LP-bounds and
could be used for much more flexible branching strate-
In [2, 3] a branch&bound algorithm (later referred to gy through explicitly introducing them in the SOS sec-
asLS) is given together with the demonstration of its tion of the model to be solved by CPLEX ; ii) the num-
effectiveness on a wide range of instances. A list of im- ber of the (0,1) variables is drastically reduced because
pressive computational results is given on a reach set ofthe z variables, covered by the defining constraints, are
s.c. self-threading (the protein sequence is aligned withforced to be integer in consequence of the unimodularity

3. The self-threading case

NON-LOCAL COSTS

2 (13) (35)
T (11) 31| 4 @) G 1
1 -5 (11) 32| 2 (31) (52) |4
(11) 33)| 7 (31) (53) |2
(12) 32)| 3 (32 (52) |7
4 (12) 33) (32 53) |5
(13) 33)| 3 (33) 53) |2

Figure 1. Graph corresponding to the network flow formulation of the problem.

computing the exact cost of the path .

of the corresponding matrix. Although, methodological-
ly this model (denoted here 2) is very important for
our approach its main drawback is the size of the prob-
lems created (see [11]). For instance, when aligning the
protein 1COY_0 with the core 1GAL_O (a problem of

opt=f((1,1) (2,1) (3,2) (4.2) (5,2)) = 14.0

f(z)isafunction

size 36 segments and 81 positions) we observe that the

corresponding MIP problem has 741 264 rows 360 945
columns and 54 145 231 nonzero elements. This is, of
course, prohibitively large for practical use and appeal
for splitting techniques (see section 6) which help for
significant reduction of the MIP problem size and also
of the solution time. One could feel that what impacts
mainly on the size of the optimization problem (besides
m,n) is the two level control adopted: variables are
controlled byz variables which are controlled hyvari-
ables. How to overcome this deficiency of the model is
described in the next section.

5. The main result

Now we introduce binary variables;, i € L(NL)U
R(NL) j =1,...,n to prevent the flow passing through
vertex (¢,) wheny;; = 0 or direct through it when
yi; = 1. This could be modeled in an obvious way to
obtain the following network-flow alike probleni*):

m—1
Z ciT; + Z c;iz; = min (13)
i=1 iENL
subject to
Aizi —Iy; =0 i€ L(NL)UR(NL) (14)

Biz; —Iy; =0 i€ L(NL)UR(NL) (15)
Fz =1 (16)

Ey=1 17)

yij € {0,1} (18)

where A; are node-arc incidence matrix for the nodes
(i,1),..(¢,n) and thez-arcs out-going/in-going from/to
these nodesB; are node-arc incidence matrices for the
same nodes but for the—arcs, F is the node -arc inci-
dence matrix for the digrap8¥, thus (16) are the clas-
sical network flow constraintd, is zero vector except
for the firstn components equal to,y and finally (17)
which are SOS constraints on (0,1) variakje®\ll ma-
trices are absolutely unimodular and the problem is of
block angular form withy as the only binding variables.
Starting tests with this model on various biological
examples, surprisingly theP solution happened to be
integer, i.e. path/threading defining, for a large set of in-
stances. Table 2 contains results obtained when aligning
the biggest queries in FROST data base. What is seen
is that even for polytopes of at leash°vertices, the
objective function of the relaxed problem of (13)-(18),
counting more than million variables, attains its mini-
mum at a threading defining vertex. Very few instances
(in fact only four till now) have been found where the
solution of the LP relaxed problem is not integer. As
we see from table 3, for all these cases CPLEX succeeds
to find the integer solution in a short time after solving
the LP relaxed problem—and this happens prior to the
branching phase and using local search heuristic only.
Moreover, the LP relaxation/integer solution gap is so

small (see table 3) that the LP objective function value strated in table 4 on instances which are worthwhile to
could perfectly guess the closest core in a single query-split. One good choice for the problems to start with is
to-multiple cores mode. One could see a lot of similari- based on the observation that for the biological instances
ties with the classical incapacitated plant-location prob- the optimal path passes “near” the middle vertex in the
lem, where the generating of difficult instances requires middle layer (this area is a crossroad of maximal number
special efforts. of paths). The estimate of this nearness could be given
We therefore observe that when the set of query-to- as a parameter for sequential or as well for parallel im-
core instances is restricted to real ones and the scoreplementation of such splitting approach.
functionis asin [7, 8] then an algorithm exists which can
solve each s_uch problem instance in p_olynomial time. 7 parallelization
We show in this way that only by using the M* mod-
el and the non-special purpose LP solver of CPLEX one
could solve in an affordable time all practical problems
in the context of protein threading. (The problems with
non-feasible LP solution could be driven to LP feasi-
bility by using an ad-hoc procedure instead of standard
CPLEX heuristics, but this will be worthwhile to imple-

The splitting strategy from the previous section sug-
gests the following “naive” parallelization. Thesub-
problems can be considered as tasks which need to be
spread ovep processors. The solution of the original
problem is the minimum of all solutions so computed.
To obtain an efficient code we also need to implement

ment only if such "bad" instances persist). N N o .
. . . the “learning” effect — the best objective function val-
Some hints for further improvement of the effective- . .
ue is passed as cutoff from the previous to the subse-

ness of the approach is discussed in section 6. As for the Lent subproblems. The parallel alaorithm we propose
minimalilty of polytope describing constraints, we must 9 P ' P 9 prop

. . . _is based orcentralized dynamic load balancingasks
note that each attempt of aggregation, say in (14), spoils ; X .
o ; are handed out from a centralized location (pool) in a
the feasibility of the LP solution.

dynamic way. The work pool is managed by a “master”

which gives workon demando idle “slaves” and also

6. Split and conquer passes them the best objective value found from the pre-

vious tasks. Each slave appli@éd*) model to solve the

Let us recall here that by the very definition of (13)- corresponding subproblem. Note that the dynamic load

(17) model, one can partition (split) it to smaller sub- balancing is the only reasonable one in the context of

problems by imposing constraints on the paths in the irreégular tasks where the amount of work is not known

graph(in the following way. Letk be some segment Prior to execution.

and(k,j) j = 1,..n are the vertices in th&t" layer. In our first parallel algorithm the tasks were atomic

Then by partitioning the setl{ 2, ..., n} into r intervals, i.e. without communication during task execution. This
we could split the problem inte subproblems of small- ~ implementation was, however, frequently slower than
er sizes and th¢" one is defined over the paths @& the sequential splitting strategy. In order to explain this
which pass through the vertices in tifé interval on- ~ Phenomenon let us enumerate the following important
ly. Thus if this interval is(p, ¢) then for the segments ~Properties we observed.

[on the left(right) ofk only the vertices/,s) : s < ¢ e The subproblems have a tendency to lose the “nice”
((Z,s) : s > p) should be taken into account. The best property of the original problem and frequently the

choice fork is [0.5m] and if the goal is to split the prob- LP relaxation yields a non-integer solution. Such

lem into subproblems of approximately equal size then subproblems become “hard” problems.

the intervals should be of equal length. One could target
splitting on the criterium - almost equal number of paths, ~® The lower bounds for these hard subproblems are

but because of simplicity of the implementation we used such that the corresponding nodes in the b&b tree
the first approach. Now, if the split is done one can start can be pruned by the value dominance condition.
solving the subproblems in some order by passing the o | the big majority of instances (in fact we found
best objective function value found as a cutoff for the only one exception to this rule), the global solution
subsequent subproblems. Thus, by having the chance pag peen obtained in an “easy” subproblem (i.e.
to start with the subproblem which contains the optimal when the LP relaxation was integer).

path, all other subproblems will be aborted by the LP
solver at the moment when the dual objective reaches Taking this into account, we can better understand
the cutoff value. The effect of this strategy is demon- the observed behavior. There is a high probability in a

parallel implementation that a hard problem with a weak table 1) we write down the best value ever found by
bound is among the first tasks to be computed. Whenb&b. We see from table 1 that M* significantly out-
the tasks are atomic, there is no learning for these firstperforms the b&b algorithm. Table 2 gives results on
tasks before their end, and the hardest one can seriouslynstances never attempted before.
slow down the global optimization process. The load Table 4 illustrates the impact of the split and conquer
balance is very bad. Often the “unlucky” processor (the strategy on the total running time, while table 5 presents
one starting with a hard subproblem) resolves only one experiments from its parallelization. We use MPI com-
task. The global time is in fact determined by the slowest munication library, and the results are obtained on two
process. of the above mentioned machines, each one of four pro-
We succeed in overcoming this weakness by mak- cessors. The gain of the parallelization clearly increases
ing the tasks non-atomic, by using the CPLEX with the problem size and the results are very encour-
call-back-function technique [12]. This technique per- aging for this (relatively early) stage of development of
mits the user to perform some user defined operationsour code. Current open questions are : what are the op-
either at any node of the tree search (in the case of Mixedtimal values for the number of subproblems and for the
Integer Optimizer) or at a fixed number of simplex iter- number of processes. At that moment we use LP format
ations (in the case of LP solvér) The operations we file to instantiate CPLEX problem objects, and therefore
perform are : i) sending to the master the best integerthe input/output operations take, today, a significant part
value locally computed; ii) receiving from the master of the total running time. This part even increases, when
the current global record; iii) using it to update the cut- the number of subproblems augments, and this compli-
off value. This periodical updating of the local record cates the problem decomposition. Using the alternative
with the best global value allows, the parallel processesway offered by CPLEX to populate problem objects will
to evolve much faster simultaneously. The communi- be our next step. With this next version, we plan to per-
cations are more frequent in this version, but since we form a detailed analysis, in order to tune the parameters
deal with huge size instances, the cost of these addi-influencing the program efficiency, such as: i) the num-
tional communications is small compared to the tasks’ ber of simplex iterations between consecutive communi-
granularity. Furthermore, this non-promising tasks can- cation exchanges; ii) the number of generated subprob-
cellation, in due course leads to significant gain in the lems; iii) the number of involved processes.
total time. Such “timely best value exchange” makes
the algorithm robust, in the sense that the optimization
speed is determined by the fastest (most successful) o
all parallel processes.

t9' Conclusions

We have demonstrated, once more, that a marriage of
mathematical programming with parallel programming
theory and algorithms can be a valuable tool for attack-
ing optimization problems now arising in computation-
al biology. We succeed, relying on such achievements,

In tables 1 and 2, we summarize the results con- to linearly model a problem of nonlinear combinatorial
cerning the sequential model. They are obtained by nature, and to efficiently solve a lot of instances with-
running ILOG CPLEX Callable Library on SUNW, out having written a single line of code (different from a
UltraSPARC-II, 400 MHz, CPU computer. The in- model builder). This model reveals an unexpected prop-
stances (scores) are drawn from a redirected output oferty of protein threading problem, when it is consid-
FROST [7, 8] which tries to find the best fit of multiple ered only over biological instances, namely feasibility
queries-to-multiple cores bank. The LS algorithm [3] is of the linear programming solutions. We also propose a
used at a final stage of this complex and time-consumingsplitting strategy, which is very convenient for parallel
procedure. In order to generate interesting (very big) in- implementation. The preliminary results of our paral-
stances we had to limit the time for this b&b code to an |e| code are extremely encouraging - huge problem in-
upper bound, varying between 30min. and 2h. accord- stances have been solved in a very reasonable time.
ing to the instance size. What we mean by interesting
instance is one with more than®! feasible threadings. 1. Acknowledgement
When LS reaches the associated time bound (respective-
ly indicated by the sigm in the b&b “time” column of

8. Computational experiments

We are grateful to Jean-Francois Gibrat and Antoine
Lfixed to 500 iterations for the presented results Matrin for introducing the problem to us, for many help-

query | query core problem size| space B&B M*

name size name | segm.| pos. size score| timeinsec.| score] timein sec.]
2CYP_0| 294 2CYP_O 15 98 | 1.5e+18| -1898.2 105 | -1898.2 18
3GRS_0| 478 | 3GRS_0 30 114 | 6.5e+30| -3809.7 446 | -3809.7 68
1COY_0| 507 | 1COY_O 27 149 | 4.0e+31| -3386.2 1247 | -3386.2 108
3MINAO 491 | 3MINAO 33 116 | 1.1e+33| -3556.2 560 | -3556.2 70
1GAL_O 583 | 1GAL_O 36 157 | 1.3e+39| -4042.2 1875 | -4042.2 117
2CYP_0| 294 | 1THEAO 13 138 | 1.8e+18 -11.4 e 1200 -11.6 606
3MINAO 491 | 3MINBO 33 62 | 2.5e+25 398.4 e 6074 390.1 361
1COY_0| 507 | 1GAL_O 36 81 | 1.3e+30 100.0 e 1800 98.7 460
3MINAO 491 | 4KBPAO 23 189 | 3.2e+30 57.42 e 6469 57.42 3211
3MINBO 522 1GPL_O 23 215 | 5.3e+31 120.4 e 3000 63.5 2794
1GAL_O 583 1YVEIO 31 140 | 9.2e+33 66.19 o 42425 52.76 3827
1GAL_O 583 | 1COY_O0 27 225 | 1.3e+36| -295.60 e 42600 | -296.60 12061

Table 1. Huge instances: B&B versus M* comparison. Note that even for selfthreading (the first
five instances) M* model is much faster than B&B. The sign ¢ indicates that B&B has finished
because of the time limit — the solution obtained in this case is not proven to be optimal and

can be considered as an approximation.

query | query core size space LP size iter time score
name size name | segm.| pos. size rows | columns in sec.
1GAL_O | 583 1FIEBO 42 29 | 2.8e+19| 6708 53127 9279 32 1023.03
3MINAO | 491 | 3PMGAO | 40 36 | 2.9e+21| 8159 78464 | 13635 80 76.79
3MINAO | 491 | 3MINBO 33 62 | 2.5e+25| 11833 | 191259| 23173 361 390.14
3MINBO 522 | 2MPRAO 20 161 | 1.8e+26| 13477 | 550875| 17764 698 84.53

3MINAO | 491 | 1A0ZAO 35 66 | 1.1e+27| 16575| 282818 | 39775| 1074 405.66

3MINBO | 522 5EAS_O 22 183 | 1.8e+29| 19148 | 896063 | 15586 825 149.77

3MINAO | 491 1BIF_O 25 150 | 1.1e+30| 18815 | 728142| 26980| 1998 81.78
3MINAOQ | 491 1INP_O 21 227 | 1.4e+30| 23085 | 1349881 | 49217 | 8302 7.50
3MINAO | 491 2GPL_O 23 184 | 1.8e+30| 20539 | 957260 | 24506 | 1866 ¢ 98.06
3MINAO | 491 | 4KBPAO 23 189 | 3.2e+30| 29371 | 1494701| 34427| 3131 57.42
3MINBO | 522 1GPL_O 23 215 | 5.3e+31| 24011 | 1305173 | 29351 | 2451 63.55

3MINAO | 491 | 1PBGAO 32 123 | 1.2e+33| 23479 | 743245 47746| 3126 ¢ 90.78

3MINBO | 522 | 2YHX_O 26 218 | 6.6e+34| 28907 | 1604695| 54134 | 8842 | e-11.82

1GAL_O | 583 | 1COY_O 27 225 | 1.3e+36| 36339 | 2065362 | 57045 | 12061 | e -296.60

2CYP_O| 294 | 3GRS_0 30 219 | 4.1e+38| 41477 | 2294957 | 41782 | 3260 -230.44

1GAL_O | 583 | 1AD3A0 31 212 | 1.3e+39| 37195 | 1993288 | 100883 | 26018 76.28

Table 2. Huge instances solved by M*. The sign e marks cases when the LP relaxation is
non-integer.

query core space LP | integer time for | total time
name name size solution | solution | LP relaxation in sec.
3MINAO | 2GPL_0 | 1.8e+30 97.43 98.06 1610 1866
3MINAO | 1PBGAO | 1.2e+33 90.23 90.78 2898 3125
3MINBO | 2YHX_0 | 6.6e+34| -12.43 -11.82 7914 8841
1GAL_O | 1COY_0 | 1.3e+36| -297.47 | -296.60 11087 12060

Table 3. Comparing LP relaxation versus integer solution value/time

query core problem size| space (number_of_sub_problems : time)
N° name name | segm.| pos. size
1 2CYP_O | 1THEAO 13 138 | 1.8e+18 (1: 10m 06s) (5: 4m 00s) (3:3m 38s)
2 2BMHAO | 1CEM_O 21 203 | 1.5e+29 (1: 34m 45s) (3:21m 12s) (5:17m 545s)
3 3MINBO 1GPL_O 23 215 | 5.3e+31 (1: 46m 34s) (10 : 29m 30s) (5:22m 03s)
4 2CYP_0 | 3GRS_0 30 219 | 4.1e+38 (1:58m 29s) (9 : 49m 24s) (5:32m 43s)
5 1GAL_O | 1AD3A0 31 212 | 1.3e+39| (1:7h 10m 15s)| (13:3h 10m 53)| (9: 1h 14m 23s)
Table 4. Huge instances: impact of split and conquer strategy in M* model
I N1 (number_of_processus : number_of_sub_problems : time) |
1 (1:3:3m 38s) (6:13:2m 38s)| (4:8:2m 26s) (5:3:2m07s)
2 (1:5:17m 54s) (5:5:12m 20s)| (4:7:12m 10s) | (4:15:11m 38s)
3 (1:5:22m 03s) (4:5:13m20s)| (5:7:12m17s) | (7:9:10m 00s)
4 (1:5:32m 43s) (3:5:32m 15s)| (5:9:34m 14s) | (5:15: 30m 30s)
5 (1:9:1h14m 23s)| (3:9:58m44s)| (5:13:43m 12s)| (7:29: 39m 50s)

Table 5. Splitting strategy parallel implementation. Instances numbers correspond to table 4

ful discussions, and for providing us with the code of
Lathrop&Smith algorithm, as well as all data concerning

the
are

protein structure prediction problem. Special thanks
due to Stefan Balev, who participated actively in the

initial stage of this study.

References

[1]

(2]

3]

[4]

[5]

[6]

T. Akutsu and S. Miyano, On the approximation of
protein threading, Theoretical Computer Science,
210 (1999), 261-275.

R. Lathrop, R. Rogers Jr., J. Bienkowska, B.
Bryant, L. Butorovic, C. Gaitatzes, R. Nambudri-
pad, J. White, T. Smith, Analysis and Algorithms
for Protein Sequence-Structure Alignment, Com-
p Methods in Molecular Biology, chapter 12, pp.
227-283,1998.

R. Lathrop, T. Smith, Global Optimum Threading
with Gapped Alignment and Empirical pair Score
functions, J. Mol. Biol., 255, 641-665, 1996.

R. Lathrop, The protein threading problem with se-
guence amino acid interaction preferences is NP-
complete, Protein Eng. 7, 1059-1068, 1994.

F. Plastria, Formulating logical implications in

(7]

(8]

(9]

[10]

[11]

[12]

A. Marin, J.Pothier, K. Zimmermann, J-F. Gibrat,
Protein structure prediction: bioinfromatic ap-
proach, I. Tsigelny Ed. International University
Line, 2002, chapter “Protein threading statistics:
an attempt to assess the significance of a fold as-
signment to a sequence”

A. Marin, J.Pothier, K. Zimmermann, J-F. Gibrat,
FROST: A Filter Based Recognition Method, to
appear in Proteins: Struct. Funct. Genet., vol. 49,
2002

J.C. Setubal, J. Meidanis, Introduction to com-
putational molecular biology, 1997, International
Thomson Publishing Inc.

T. Lengauer, Computational Biology at the Begin-
ning of the Post-genomic Era, LNCS, Vol. 2000,
“Informatics: 10 Years Back - 10 Years Ahead”, R.
Wilhelm(Ed.), Springler, Berlin 2000, P. 341-355

N. Yanev and R. Andonov, The Protein Threading
Problem is in P?, RR INRIA, No 4577, October
2002 (http:/iwwwinria.fr/rrrt/rr-4577 .html)

ILOG CPLEX
www.ilog.com

7.0 reference manual,

combinatorial optimization, EJOR 140, 338-353, [13] J. Xu, M. Li, G. Lin, D. Kim and Y. Xu, Protein

2002.

XuY., Xu D., Uberbacher E., An Efficient Compu-
tational Method for Globally Optimal Threading,
J. Comp. Biol., V5, Number 3, 1998.

threading by linear programming, PSB, 2003, Jan-
uary, 2003

