
Solving the Protein Threading Problem in Parallel

Nicola Yanev�

University of Sofia
5,J. Bouchier str.1126 Sofia, Bulgaria

choby@math.bas.bg

Rumen Andonovy

IRISA, Campus de Beaulieu
35042 Rennes Cedex, France

randonov@irisa.fr

Abstract

We propose a network flow formulation for pro-
tein threading and show its equivalence with the short-
est path problem on a graph with a very particu-
lar structure. The underying Mixed Integer Program-
ming (MIP) model proves to be very appropriate for
the protein threading problem–huge real-life instances
have been solved in a reasonable time by using only a
Mixed Integer Optimizer instead of a special-purpose
branch&bound algorithm. The properties of the MIP
model allow decomposition of the main problem on a
large number of subproblems (tasks). We show in this
paper that a branch&bound alike algorithm can be effi-
ciently applied to solving in parallel these tasks, which
leads to a significant reduction in the total running
time. Computational experiments with huge problem in-
stances are presented.

1. Introduction

The protein threadingproblem is an extremely im-
portant challenge in computational biology [2, 6, 9, 10].
The problem consists of testing whether or not a tar-
get sequencequery is likely to fold into a 3D template
structurecoreby searching for analignmentwhich min-
imizes a suitablescore function. It is important, because
the biological function of proteins is determined by their
three-dimensional shape, and their shape is determined
by their linear sequence.

We give a more formal presentation of the problem
by simultaneously introducing a preexisting terminolo-

�The work of N. Yanev has been partially supported by the
GenoGRID project (ACI GRID, Ministère de la Recherche) and was
performed during a visit to the SYMBIOSE project, IRISA, Rennes

yOn leave from LAMIH/ROI, University of Valenciennes, France,
Rumen.Andonov@univ-valenciennes.fr, corresponding author.

gy. Let the core contain a set ofm itemsSi, calledseg-
ments, each of lengthli. This set must bealigned to a
sequenceL of N characters from some finite alphabet.
Let ti be the position inL whereSi starts. An alignment
is called afeasible threadingif:

i. ti � ti�1 + li�1 for all i;
ii. the lengthgi (called gap or loop) of uncovered

characters, i. e.gi = ti � ti�1 � li�1 is bounded, say
gmin
i � gi � gmax

i :

The formal model of the protein threading problem
accepted by us in this paper is very close to the one given
in [1, 2]. For given integersN;m andli; i = 1; : : : ;m,
let us definen = N+1�

Pm
i=1 li. Let the set of couples

R � f(i; j) j 0 < i < j � mg and the realscij ; i =
1; : : : ;m; j = 1; : : : ; n, andcikjl ; (i; j) 2 R; 1 � k �
l � n, be given. The goal is to minimize

mX
i=1

ciki +
X

(i;j)2R

cikijkj (1)

subject to:1 � t1 � n; ti � ti�1+ li�1; i = 2; : : : ;m;
tm + lm � N + 1; k1 = t1; ki = ti � (ti�1 + li�1 �
1); i = 2; : : : ;m; andti; i = 1; : : : ;m; are integers. In
this definitionn corresponds to the "degree of freedom"
(the number of relative positions) for each segment;R is
associated with the set of pairwise interactions between
the segments; the coefficientscikjl score for a placement
of Si at thekth relative position and ofSj at thelth one;
cij score the placement of theith segments at thejth

relative position.
Finding a really fast algorithm for solving this opti-

mization problem it is still considered as a challenge.
The problem has been proven to be NP-complete in [4]
and to be MAX-SNP-hard (which means that it can-
not be approximated to arbitrary accuracy in polynomial
time) in [1]. The main inspiration for us to start work-
ing over this subject is the results announced in [2, 3]
describing a branch-and-bound algorithm (b&b) which
is successful for a large set of real-life (biological) ex-

amples. We were aware of the fact that the real-life in-
stances may be more tractable than randomly generated
instances. Nevertheless, a branch-and-bound algorithm
solving a non-linear integer programming problem over
the search space of size up to1031 feasible threadings by
using relaxation of non-evident quality is reason enough
for asking questions like: i) how intrinsically hard is the
problem on real biological instances (especially for so
called self threading)?; ii) could it be improved (either
by improving bounds or by creating another mathemati-
cal programming model)?. In addition we may also an-
swer; iii) can we use the power of parallel computers
in order to speed up the computation?; iv) is it neces-
sary to write special purpose code or could some exist-
ing solvers be used? The answers to these questions are
given in the subsequent sections.

The main contributions of this paper are as follows

� Protein threading is formulated as a network flow
model and has proved to be equivalent to the short-
est path problem (SPP) on a graph with a particular
structure. All previous results use algorithms like
branch-and-bound algorithm [2, 3], or divide-and-
conquer [6], but to the best of our knowledge, such
a mathematical programming approach has been n-
ever proposed for this problem before.

� Three MIP models are proposed, analyzed and
compared to each either, and with the popular Lath-
rop_Smith’s (b&b) algorithm [3]. In all cases the
MIP formulation outperforms significantly the pop-
ular (b&b) algorithm.

� The MIP polytope posseses an extremely useful
property: in all but very few cases the solution is
given by solving the LP relaxed problem. In the
rare exceptions the integer solution is easily found
by the standard CPLEX heuristic (i.e. also in a
polynomial time).

� A divide and conquer strategy is proposed for the
formulated SPP problem. This strategy leads to a
significant reduction of the computation time.

� Several parallel schemes have been implemented
and analysed in order to improve their efficiency.
Extensive computational experiments have been
performed for huge problem instances.

This paper is based on results described in details in
a previous research report [11]. At the time of its pub-
lication, we were aware of no any other MIP approach
for the protein threading problem. We are pleased to
observe that recentlty, another research team presented
similar approach [13]. Since analytical comparison is
very difficult, it will be worthwhile to work toward a

creation of a common benchmark, in order to be able to
compare different algorithmic approaches.

2. Network flow formulation

Let G(V;E) be a digraph with vertex setV =
f(i; k) j i = 1;m; k = 1; ng and arc setE =
f((i; k); (i + 1; l)) j i = 1;m � 1; l � kg, and
let NL = f(i1; j1); :::; (it; jt)g be the set of non-local
(is < js�1) interactions. This induces the set of indices
Eind = f(ikljkf) jf � l; k = 1; t; l = 1; ng mean-
ing that the left segmentik of the non-local pair (ik;; jk)
is placed at positionl and the right segmentjk of the
same pair at positionf . Each layer(i; k); k = 1; n cor-
responds to the possible placements of theith segment
relatively to the end of(i � 1)th segment. By adding
two extra vertices S and T and arcs(S; (1; k)); k = 1; n
and((m; k); T); k = 1; n, one could easily check 1 to
1 correspondence of the previously defined threadings
with the(S; T) paths in G. The conditionl � k prevents
overlapping of any two consecutive segments and if the
path passes through vertices(i � 1; k); (i; l) thenl � k

is the size of the gapgi. We introduce also variablesxe
for e 2 E andze for e 2 Eind. Now we can model the
problem in the following way:X

e2E

cexe +
X

e2Eind

ceze) min (2)

such that:X
e2�(i;k)

xe �
X

e2��1(i;k)

xe = 0 8(i; k) 2 V (3)

X
e2�(S)

xe = 1 (4)

zc �
X

e2�(ik;l)

xe; 8c = (ik; l; jk; f) 2 Eind (5)

zc �
X

e2��1(jk;f)

xe; 8c = (ik; l; jk; f) 2 Eind (6)

X
e2�(ik;l)

xe+
X

e2��1(jk;f)

xe � zc � 1 8c 2 Eind (7)

X
f�l

zikljkf = 1 8(ik; jk) 2 NL (8)

z � binary; x � 0 (9)

Into this model,�(x) is the set of arcs outgoing from
vertexx and��1(x) is the set of in-going arcs. Con-
straints (3), (4) are network flow representation of the
paths fromS to T (see fig.1), constraints (5) and (6)
force the path to pass through the pair of vertices ac-
tivated by SOS (Special Ordered Set) constraints (8),
constraints (7) are for tightening the LP-relaxation. This
model was built under the presumption to enumerate the
smaller search space of variablesz than ofx, that will be
the case if we switch the integer requirements fromz to
x variables (this need some minor changes in the mod-
el). From the well known properties of the network flow
polytope one can see that for each fixation ofz variables
to 0; 1 the respective vertices of the underlying polytope
in (x; z)�space have(0; 1) x coordinates. To conclude
we need to say how the arcs weightsce are related to
the scores from the introduction. Each weight is a sum
of three numbers: one for the tail of the arc (segment-
to-position cost), second for the gap cost between seg-
ments(if any) and the third is for the local interactions (if
any). If the leading and/or trailing gaps are scored then
these numbers are prescribed to the out-going/in-going
arcs from/to the vertices on the first/last layer. From the
graph in fig.1 we could have more geometrical insight
for the problem of optimal aligning of some sequence
with a core of five segments, each one with three pos-
sible placements depicted as columns. The path given
in thick lines has a length 5 but taking into account the
pairwise interactions (in this case (1,1,3,2), (3,2,5,2) -
the path passes through the vertices (1,1),(3,2), (5,2) we
must add the costs for passing through these vertices (
c1132 + c3252) to 5 and to obtain the actual length 14
of the path (threading). Thus if we have given weight-
s to all arcs and a table of the costs for the designated
non-local pairwise interactions the optimization prob-
lem will convert to finding a path fromS to T with
minimal updated length. From this figure we can also
stressz- to- x relation: once thez variables are fixed
(z1132 = 1; z3252 = 1, all other are zero because of
(8)) to find whichx will be fixed to 1 is equivalent to
find the shortest from among the paths passing through
(1,1), (3,2), (5,2).

3. The self-threading case

In [2, 3] a branch&bound algorithm (later referred to
as LS) is given together with the demonstration of its
effectiveness on a wide range of instances. A list of im-
pressive computational results is given on a reach set of
s.c. self-threading (the protein sequence is aligned with

its own core) instances. When we run CPLEX on the
MIP models generated according to (2)-(9) on a large
subset of these instances the results are always:the LP
relaxation attains its minimum at a feasible (0,1) vertex,
hence optimal. This property is so pertinent to the model
that one could use it for defining the self-threading sub-
class. The relaxed problem used inLS model [2, 3] is
based on minimizing of a functionf(x) which is inferi-
or to the objective functionf(x) over the set of feasible
threadings. For such a relaxation, an optimal solutionx�

to the relaxed problem is optimal for the original one if
f(x�) = f(x�). For theLS model this could be taken as
the self-threading subclass defining property and this is
the reason for the effectiveness of theLS algorithm on
the instances of this subclass. What is important to add
here is that all these properties are score depended and
they could be lost once the scoring scheme changed. For
all instances reported below the objective function coef-
ficients are generated by using FROST (Fold Recogni-
tion Oriented Search Tool) software [7, 8].

4. Further improvements of the MIP model

In order to improve the LP-bounds and the CPLEX
branching strategy by imposing branching on the SOS
constraints instead of on a single variable (but at the
expense of adding extra constraints) the following mod-
ification of the model (2)-(8) is done:

Let L(NL) = fisj(is; js) 2 NLg, R(NL) =
fisj(js; is) 2 NL }.(

yil =
P

f�l ziljf ; l = 1; : : : ; n;

8i 2 L(NL) (i; j) 2 NL
(10)

(
yil =

P
f�l zjfil; l = 1; : : : ; n;

8i 2 R(NL) (j; i) 2 NL
(11)

nX
l=1

yil = 1 8i 2 R(NL)
[

L(NL) (12)

y�binary and allz variables included into these def-
initions change from binary to continuous. The role
of the newly introduced constraints is twofold: i) (10)-
(12) are tighter than (8) thus improving LP-bounds and
could be used for much more flexible branching strate-
gy through explicitly introducing them in the SOS sec-
tion of the model to be solved by CPLEX ; ii) the num-
ber of the (0,1) variables is drastically reduced because
thez variables, covered by the defining constraints, are
forced to be integer in consequence of the unimodularity

S T

 7 1 3 1

3

4

1

4

2

1

7
8

5

1

4

1

3

2
8

1

3

2

10

8

2

1

2

1 2 3 4 5

(1 1) (3 2) 2 (3 1) (5 2) 4

(1 1) (3 3) 7 (3 1) (5 3) 2

(1 2) (3 2) 3 (3 2) (5 2) 7

(1 2) (3 3) 8 (3 2) (5 3) 5

(1 3) (3 3) 5 (3 3) (5 3) 2

 (1 3) (3 5)

NON−LOCAL COSTS

(1 1) (3 1) 4 (3 1) (5 1) 1

opt = f ((1,1) (2,1) (3,2) (4,2) (5,2)) = 14.0

Figure 1. Graph corresponding to the network flow formulation of the problem. f(x) is a function
computing the exact cost of the path x.

of the corresponding matrix. Although, methodological-
ly this model (denoted here byM2) is very important for
our approach its main drawback is the size of the prob-
lems created (see [11]). For instance, when aligning the
protein 1COY_0 with the core 1GAL_0 (a problem of
size 36 segments and 81 positions) we observe that the
corresponding MIP problem has 741 264 rows 360 945
columns and 54 145 231 nonzero elements. This is, of
course, prohibitively large for practical use and appeal
for splitting techniques (see section 6) which help for
significant reduction of the MIP problem size and also
of the solution time. One could feel that what impacts
mainly on the size of the optimization problem (besides
m;n) is the two level control adopted:x variables are
controlled byz variables which are controlled byy vari-
ables. How to overcome this deficiency of the model is
described in the next section.

5. The main result

Now we introduce binary variablesyij ; i 2 L(NL)[
R(NL) j = 1; :::; n to prevent the flow passing through
vertex (i; j) when yij = 0 or direct through it when
yij = 1. This could be modeled in an obvious way to
obtain the following network-flow alike problem (M*):

m�1X
i=1

cixi +
X
i2NL

cizi) min (13)

subject to

Aizi � Iyi = 0 i 2 L(NL) [R(NL) (14)

Bixi � Iyi = 0 i 2 L(NL) [R(NL) (15)

Fx = l (16)

Ey = 1 (17)

yij 2 f0; 1g (18)

whereAi are node-arc incidence matrix for the nodes
(i; 1); ::(i; n) and thez-arcs out-going/in-going from/to
these nodes,Bi are node-arc incidence matrices for the
same nodes but for thex�arcs,F is the node -arc inci-
dence matrix for the digraphG, thus (16) are the clas-
sical network flow constraints,l is zero vector except
for the firstn components equal to y1j and finally (17)
which are SOS constraints on (0,1) variablesy. All ma-
trices are absolutely unimodular and the problem is of
block angular form withy as the only binding variables.

Starting tests with this model on various biological
examples, surprisingly theLP solution happened to be
integer, i.e. path/threading defining, for a large set of in-
stances. Table 2 contains results obtained when aligning
the biggest queries in FROST data base. What is seen
is that even for polytopes of at least1039vertices, the
objective function of the relaxed problem of (13)-(18),
counting more than million variables, attains its mini-
mum at a threading defining vertex. Very few instances
(in fact only four till now) have been found where the
solution of the LP relaxed problem is not integer. As
we see from table 3, for all these cases CPLEX succeeds
to find the integer solution in a short time after solving
the LP relaxed problem–and this happens prior to the
branching phase and using local search heuristic only.
Moreover, the LP relaxation/integer solution gap is so

small (see table 3) that the LP objective function value
could perfectly guess the closest core in a single query-
to-multiple cores mode. One could see a lot of similari-
ties with the classical incapacitated plant-location prob-
lem, where the generating of difficult instances requires
special efforts.

We therefore observe that when the set of query-to-
core instances is restricted to real ones and the score
function is as in [7, 8] then an algorithm exists which can
solve each such problem instance in polynomial time.

We show in this way that only by using the M* mod-
el and the non-special purpose LP solver of CPLEX one
could solve in an affordable time all practical problems
in the context of protein threading. (The problems with
non-feasible LP solution could be driven to LP feasi-
bility by using an ad-hoc procedure instead of standard
CPLEX heuristics, but this will be worthwhile to imple-
ment only if such "bad" instances persist).

Some hints for further improvement of the effective-
ness of the approach is discussed in section 6. As for the
minimalilty of polytope describing constraints, we must
note that each attempt of aggregation, say in (14), spoils
the feasibility of the LP solution.

6. Split and conquer

Let us recall here that by the very definition of (13)-
(17) model, one can partition (split) it to smaller sub-
problems by imposing constraints on the paths in the
graphG in the following way. Letk be some segment
and(k; j) j = 1; :::n are the vertices in thekth layer.
Then by partitioning the set {1; 2; :::; n} into r intervals,
we could split the problem intor subproblems of small-
er sizes and theith one is defined over the paths inG
which pass through the vertices in theith interval on-
ly. Thus if this interval is(p; q) then for the segments
l on the left(right) ofk only the vertices(l; s) : s � q

((l; s) : s � p) should be taken into account. The best
choice fork is d0:5me and if the goal is to split the prob-
lem into subproblems of approximately equal size then
the intervals should be of equal length. One could target
splitting on the criterium - almost equal number of paths,
but because of simplicity of the implementation we used
the first approach. Now, if the split is done one can start
solving the subproblems in some order by passing the
best objective function value found as a cutoff for the
subsequent subproblems. Thus, by having the chance
to start with the subproblem which contains the optimal
path, all other subproblems will be aborted by the LP
solver at the moment when the dual objective reaches
the cutoff value. The effect of this strategy is demon-

strated in table 4 on instances which are worthwhile to
split. One good choice for the problems to start with is
based on the observation that for the biological instances
the optimal path passes “near” the middle vertex in the
middle layer (this area is a crossroad of maximal number
of paths). The estimate of this nearness could be given
as a parameter for sequential or as well for parallel im-
plementation of such splitting approach.

7. Parallelization

The splitting strategy from the previous section sug-
gests the following “naive” parallelization. Ther sub-
problems can be considered as tasks which need to be
spread overp processors. The solution of the original
problem is the minimum of all solutions so computed.
To obtain an efficient code we also need to implement
the “learning” effect – the best objective function val-
ue is passed as cutoff from the previous to the subse-
quent subproblems. The parallel algorithm we propose
is based oncentralized dynamic load balancing: tasks
are handed out from a centralized location (pool) in a
dynamic way. The work pool is managed by a “master”
which gives workon demandto idle “slaves” and also
passes them the best objective value found from the pre-
vious tasks. Each slave applies (M*) model to solve the
corresponding subproblem. Note that the dynamic load
balancing is the only reasonable one in the context of
irregular tasks where the amount of work is not known
prior to execution.

In our first parallel algorithm the tasks were atomic
i.e. without communication during task execution. This
implementation was, however, frequently slower than
the sequential splitting strategy. In order to explain this
phenomenon let us enumerate the following important
properties we observed.

� The subproblems have a tendency to lose the “nice”
property of the original problem and frequently the
LP relaxation yields a non-integer solution. Such
subproblems become “hard” problems.

� The lower bounds for these hard subproblems are
such that the corresponding nodes in the b&b tree
can be pruned by the value dominance condition.

� In the big majority of instances (in fact we found
only one exception to this rule), the global solution
has been obtained in an “easy” subproblem (i.e.
when the LP relaxation was integer).

Taking this into account, we can better understand
the observed behavior. There is a high probability in a

parallel implementation that a hard problem with a weak
bound is among the first tasks to be computed. When
the tasks are atomic, there is no learning for these first
tasks before their end, and the hardest one can seriously
slow down the global optimization process. The load
balance is very bad. Often the “unlucky” processor (the
one starting with a hard subproblem) resolves only one
task. The global time is in fact determined by the slowest
process.

We succeed in overcoming this weakness by mak-
ing the tasks non-atomic, by using the CPLEX
call-back-function technique [12]. This technique per-
mits the user to perform some user defined operations
either at any node of the tree search (in the case of Mixed
Integer Optimizer) or at a fixed number of simplex iter-
ations (in the case of LP solver)1. The operations we
perform are : i) sending to the master the best integer
value locally computed; ii) receiving from the master
the current global record; iii) using it to update the cut-
off value. This periodical updating of the local record
with the best global value allows, the parallel processes
to evolve much faster simultaneously. The communi-
cations are more frequent in this version, but since we
deal with huge size instances, the cost of these addi-
tional communications is small compared to the tasks’
granularity. Furthermore, this non-promising tasks can-
cellation, in due course leads to significant gain in the
total time. Such “timely best value exchange” makes
the algorithm robust, in the sense that the optimization
speed is determined by the fastest (most successful) of
all parallel processes.

8. Computational experiments

In tables 1 and 2, we summarize the results con-
cerning the sequential model. They are obtained by
running ILOG CPLEX Callable Library on SUNW,
UltraSPARC-II, 400 MHz, CPU computer. The in-
stances (scores) are drawn from a redirected output of
FROST [7, 8] which tries to find the best fit of multiple
queries-to-multiple cores bank. The LS algorithm [3] is
used at a final stage of this complex and time-consuming
procedure. In order to generate interesting (very big) in-
stances we had to limit the time for this b&b code to an
upper bound, varying between 30min. and 2h. accord-
ing to the instance size. What we mean by interesting
instance is one with more than1031 feasible threadings.
When LS reaches the associated time bound (respective-
ly indicated by the sign� in the b&b “time” column of

1fixed to 500 iterations for the presented results

table 1) we write down the best value ever found by
b&b. We see from table 1 that M* significantly out-
performs the b&b algorithm. Table 2 gives results on
instances never attempted before.

Table 4 illustrates the impact of the split and conquer
strategy on the total running time, while table 5 presents
experiments from its parallelization. We use MPI com-
munication library, and the results are obtained on two
of the above mentioned machines, each one of four pro-
cessors. The gain of the parallelization clearly increases
with the problem size and the results are very encour-
aging for this (relatively early) stage of development of
our code. Current open questions are : what are the op-
timal values for the number of subproblems and for the
number of processes. At that moment we use LP format
file to instantiate CPLEX problem objects, and therefore
the input/output operations take, today, a significant part
of the total running time. This part even increases, when
the number of subproblems augments, and this compli-
cates the problem decomposition. Using the alternative
way offered by CPLEX to populate problem objects will
be our next step. With this next version, we plan to per-
form a detailed analysis, in order to tune the parameters
influencing the program efficiency, such as: i) the num-
ber of simplex iterations between consecutive communi-
cation exchanges; ii) the number of generated subprob-
lems; iii) the number of involved processes.

9. Conclusions

We have demonstrated, once more, that a marriage of
mathematical programming with parallel programming
theory and algorithms can be a valuable tool for attack-
ing optimization problems now arising in computation-
al biology. We succeed, relying on such achievements,
to linearly model a problem of nonlinear combinatorial
nature, and to efficiently solve a lot of instances with-
out having written a single line of code (different from a
model builder). This model reveals an unexpected prop-
erty of protein threading problem, when it is consid-
ered only over biological instances, namely feasibility
of the linear programming solutions. We also propose a
splitting strategy, which is very convenient for parallel
implementation. The preliminary results of our paral-
lel code are extremely encouraging - huge problem in-
stances have been solved in a very reasonable time.

10. Acknowledgement

We are grateful to Jean-François Gibrat and Antoine
Marin for introducing the problem to us, for many help-

query query core problem size space B&B M*
name size name segm. pos. size score time in sec. score time in sec.

2CYP_0 294 2CYP_0 15 98 1.5e+18 -1898.2 105 -1898.2 18
3GRS_0 478 3GRS_0 30 114 6.5e+30 -3809.7 446 -3809.7 68
1COY_0 507 1COY_0 27 149 4.0e+31 -3386.2 1247 -3386.2 108
3MINA0 491 3MINA0 33 116 1.1e+33 -3556.2 560 -3556.2 70
1GAL_0 583 1GAL_0 36 157 1.3e+39 -4042.2 1875 -4042.2 117

2CYP_0 294 1THEA0 13 138 1.8e+18 -11.4 � 1200 -11.6 606
3MINA0 491 3MINB0 33 62 2.5e+25 398.4 � 6074 390.1 361
1COY_0 507 1GAL_0 36 81 1.3e+30 100.0 � 1800 98.7 460
3MINA0 491 4KBPA0 23 189 3.2e+30 57.42 � 6469 57.42 3211
3MINB0 522 1GPL_0 23 215 5.3e+31 120.4 � 3000 63.5 2794
1GAL_0 583 1YVEI0 31 140 9.2e+33 66.19 � 42425 52.76 3827
1GAL_0 583 1COY_0 27 225 1.3e+36 -295.60 � 42600 -296.60 12061

Table 1. Huge instances: B&B versus M* comparison. Note that even for selfthreading (the first
five instances) M* model is much faster than B&B. The sign � indicates that B&B has finished
because of the time limit – the solution obtained in this case is not proven to be optimal and
can be considered as an approximation.

query query core size space LP size iter time score
name size name segm. pos. size rows columns in sec.

1GAL_0 583 1FIEB0 42 29 2.8e+19 6708 53127 9279 32 1023.03
3MINA0 491 3PMGA0 40 36 2.9e+21 8159 78464 13635 80 76.79
3MINA0 491 3MINB0 33 62 2.5e+25 11833 191259 23173 361 390.14
3MINB0 522 2MPRA0 20 161 1.8e+26 13477 550875 17764 698 84.53
3MINA0 491 1AOZA0 35 66 1.1e+27 16575 282818 39775 1074 405.66
3MINB0 522 5EAS_0 22 183 1.8e+29 19148 896063 15586 825 149.77
3MINA0 491 1BIF_0 25 150 1.1e+30 18815 728142 26980 1998 81.78
3MINA0 491 1INP_0 21 227 1.4e+30 23085 1349881 49217 8302 7.50
3MINA0 491 2GPL_0 23 184 1.8e+30 20539 957260 24506 1866 � 98.06
3MINA0 491 4KBPA0 23 189 3.2e+30 29371 1494701 34427 3131 57.42
3MINB0 522 1GPL_0 23 215 5.3e+31 24011 1305173 29351 2451 63.55
3MINA0 491 1PBGA0 32 123 1.2e+33 23479 743245 47746 3126 � 90.78
3MINB0 522 2YHX_0 26 218 6.6e+34 28907 1604695 54134 8842 � -11.82
1GAL_0 583 1COY_0 27 225 1.3e+36 36339 2065362 57045 12061 � -296.60
2CYP_0 294 3GRS_0 30 219 4.1e+38 41477 2294957 41782 3260 -230.44
1GAL_0 583 1AD3A0 31 212 1.3e+39 37195 1993288 100883 26018 76.28

Table 2. Huge instances solved by M*. The sign � marks cases when the LP relaxation is
non-integer.

query core space LP integer time for total time
name name size solution solution LP relaxation in sec.

3MINA0 2GPL_0 1.8e+30 97.43 98.06 1610 1866
3MINA0 1PBGA0 1.2e+33 90.23 90.78 2898 3125
3MINB0 2YHX_0 6.6e+34 -12.43 -11.82 7914 8841
1GAL_0 1COY_0 1.3e+36 -297.47 -296.60 11087 12060

Table 3. Comparing LP relaxation versus integer solution value/time

query core problem size space (number_of_sub_problems : time)
N

0 name name segm. pos. size

1 2CYP_0 1THEA0 13 138 1.8e+18 (1 : 10m 06s) (5 : 4m 00s) (3 : 3m 38s)
2 2BMHA0 1CEM_0 21 203 1.5e+29 (1 : 34m 45s) (3 : 21m 12s) (5 : 17m 54s)
3 3MINB0 1GPL_0 23 215 5.3e+31 (1 : 46m 34s) (10 : 29m 30s) (5 : 22m 03s)
4 2CYP_0 3GRS_0 30 219 4.1e+38 (1 : 58m 29s) (9 : 49m 24s) (5 : 32m 43s)
5 1GAL_0 1AD3A0 31 212 1.3e+39 (1 : 7h 10m 15s) (13 : 3h 10m 53) (9 : 1h 14m 23s)

Table 4. Huge instances: impact of split and conquer strategy in M* model

N
0 (number_of_processus : number_of_sub_problems : time)

1 (1 : 3 : 3m 38s) (6 : 13 : 2m 38s) (4 : 8 : 2m 26s) (5 : 3 : 2m 07s)
2 (1 : 5 : 17m 54s) (5 : 5 : 12m 20s) (4 : 7 : 12m 10s) (4 : 15 : 11m 38s)
3 (1 : 5 : 22m 03s) (4 : 5 : 13m 20s) (5 : 7 : 12m 17s) (7 : 9 : 10m 00s)
4 (1 : 5 : 32m 43s) (3 : 5 : 32m 15s) (5 : 9 : 34m 14s) (5 : 15 : 30m 30s)
5 (1 : 9 : 1h 14m 23s) (3 : 9 : 58m 44s) (5 : 13 : 43m 12s) (7 : 29 : 39m 50s)

Table 5. Splitting strategy parallel implementation. Instances numbers correspond to table 4
.

ful discussions, and for providing us with the code of
Lathrop&Smith algorithm, as well as all data concerning
the protein structure prediction problem. Special thanks
are due to Stefan Balev, who participated actively in the
initial stage of this study.

References

[1] T. Akutsu and S. Miyano, On the approximation of
protein threading, Theoretical Computer Science,
210 (1999), 261-275.

[2] R. Lathrop, R. Rogers Jr., J. Bienkowska, B.
Bryant, L. Butorovic, C. Gaitatzes, R. Nambudri-
pad, J. White, T. Smith, Analysis and Algorithms
for Protein Sequence-Structure Alignment, Com-
p Methods in Molecular Biology, chapter 12, pp.
227-283, 1998.

[3] R. Lathrop, T. Smith, Global Optimum Threading
with Gapped Alignment and Empirical pair Score
functions, J. Mol. Biol., 255, 641-665, 1996.

[4] R. Lathrop, The protein threading problem with se-
quence amino acid interaction preferences is NP-
complete, Protein Eng. 7, 1059-1068, 1994.

[5] F. Plastria, Formulating logical implications in
combinatorial optimization, EJOR 140, 338-353,
2002.

[6] Xu Y., Xu D., Uberbacher E., An Efficient Compu-
tational Method for Globally Optimal Threading,
J. Comp. Biol., V5, Number 3, 1998.

[7] A. Marin, J.Pothier, K. Zimmermann, J-F. Gibrat,
Protein structure prediction: bioinfromatic ap-
proach, I. Tsigelny Ed. International University
Line, 2002, chapter “Protein threading statistics:
an attempt to assess the significance of a fold as-
signment to a sequence”

[8] A. Marin, J.Pothier, K. Zimmermann, J-F. Gibrat,
FROST: A Filter Based Recognition Method, to
appear in Proteins: Struct. Funct. Genet., vol. 49,
2002

[9] J.C. Setubal, J. Meidanis, Introduction to com-
putational molecular biology, 1997, International
Thomson Publishing Inc.

[10] T. Lengauer, Computational Biology at the Begin-
ning of the Post-genomic Era, LNCS, Vol. 2000,
“Informatics: 10 Years Back - 10 Years Ahead”, R.
Wilhelm(Ed.), Springler, Berlin 2000, P. 341-355

[11] N. Yanev and R. Andonov, The Protein Threading
Problem is in P?, RR INRIA, No 4577, October
2002 (http://www.inria.fr/rrrt/rr-4577.html)

[12] ILOG CPLEX 7.0 reference manual,
www.ilog.com

[13] J. Xu, M. Li, G. Lin, D. Kim and Y. Xu, Protein
threading by linear programming, PSB, 2003, Jan-
uary, 2003

