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Abstract

Algorithm development for finding quasiperiodic regions in sequences is at
the core of many problems arising in biological sequence analysis. We solve an
important problem in this area. Let A be an alphabet of size n and A denote
the set of sequences of length [ over A. Given a sequence S = sys5---51 € Al
a positive integer p is called a period of S if s; = s;4p, for 1 < i <l —p. S
is called p-periodic if it has a minimum period p. Let Q;(p) denote the set of
p-periodic sequences in A'. A natural measure of “nearness to p-periodicity”
for S is the average Hamming distance to the nearest p-periodic sequence:
D(S) = mingeqpyD(S,T). I T is a sequence € (p) such that D(S,T) =
D(S), then T is called a nearest p-periodic sequence of S and S is called p-
quasiperiodic associated with the score D(S). This paper develops an efficient
algorithm for finding a nearest p-periodic sequence of S by means of its modulo-
p incidence matrix. Let o = (eq,--+,a,) and 8 = (¢+1,---,¢+1,¢,---,9q),

—T’,_/ 7_,7)
where | = oy + ag + - -+ + «, is a partition of [ and ¢ is the quotient and r
is the remainder when [ is divided by p. This paper shows that there exists
a sequence in A’ whose modulo-p incidence matrix has row sum vector « and
column sum vector 3.
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1 Introduction

The search for weak-repeated and quasiperiodic segments in sequences is an important
problem in molecular biology. Actually, one of the most striking features of DNA and
protein is the extent to which quasi-periodic segments occur in the genome. This is
especially true of eukaryotes (higher-order organisms whose DNA is enclosed in a cell
nucleus). For example, most of the human Y chromosome consists of quasi-periodic
segments, and overall families of reiterated sequences account for about one third of
the human genome ([2]).

It a general methodology in computational molecular biology to find biological
function from some specific segments of a sequence ([2-9]), especially from those
quasiperiodic segments. For example, we have presented a census of the internal
quasi-periodic regions in all known proteins and drawn general conclusions about the
role of quasi-periodicity in evolution of proteins. Motivated by biological sequence
analysis, we in this paper investigate quasiperiodicity of sequences in combinatorial
and algorithmic aspects.

In section 2, we mathematically define quasiperiodicity and the modulo incidence
matrix of a sequence by means of the average Hamming distance to the nearest peri-
odic sequence. Then we develop an efficient algorithm for finding a nearest periodic
sequence of a sequence. In section 3, we give the number of M-equivalence class
of a sequence and explore the relationship between a sequence in A’ and the mod-
ulo incidence matrix associated with a partition of [. In particular, we present a
characterization of the modulo incidence matrix of a periodic sequence.

2 Quasi-periodicity

Let A = {ay,az, -,a,} denote an alphabet in which a; is called the letter of type
i (1 <@ < n). Symbolic sequences are characterized by A and (usually) by a finite
length {. One-dimensional strings play an important role in various fields, such as
informatics, dynamical systems, biology, communication theory, linguistics, and psy-
chology. Particularly, the digital information that underlies genetics, biochemistry,
cell biology, and development can be represented by a simple string on a 4-letter al-
phabet (4 nucleotides: A, C, G, T) or a 20-letter alphabet (20 amino acids: A, C,
D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y).

We denote by A' the set of all sequences of length [ over A. For a sequence
S = 81555, € Al we denote by S[i..j] the (contiguous) segment of S which starts
at position ¢ and ends at position j in S. A positive integer p (p < [) is called a
(perfect) period of S if s; = s;4,, for all ¢ with 1 <7 <[ —p. S holds p-periodicity or is
called p-periodic if it has a minimum period p. As a simple example, ACTACTACTACTAC
is 3-periodic.

Now we turn to investigating quasiperiodicity of sequences which has a special
importance in sequence analysis. Let ©;(p) denote the set of all p-periodic sequences



in A'. Given a sequence S € A', a natural measure of “nearness to p-periodicity”
for S is a distance to the nearest p-periodic sequence. The simplest distance is the
average Hamming distance, i.e., the proportion of differences calculated simply by
counting the number of residue differences divided by the length of the sequence.
Hence, for two sequences S and T in A, the average Hamming distance between S

and 7T is
k

77
where k is the number of characters that differ. If 7' is a sequence € ;(p) such that
D(S) =: minyeq,uD(S,U) = D(S,T),

D(S,T) =

then p is called a quasi-period of S with respect with 7" and T'[l..p] is called a p-
quasiperiodic unit of S. In addition, T' is called a nearest p-periodic sequence of S
and D(S) is called the score corresponding to T'. For example, the DNA sequence
S = ACACTACCACAC has both a quasi-period 2 and a quasi-period 5. AC, ACACT, and
ACACC are quasi-periodic units of S and the score corresponding to each of them is
0.25. Obviously, S has a perfect period 8.

The score corresponding to the nearest p-periodic sequence reflects the quasiness
of p. In fact, the smaller is the corresponding score, the stronger is the quasi-period.
Particularly, if the corresponding score is equal to zero, then the quasi-period coincides
with the perfect period in the proper sense.

Let v be a real number between 0 and 1. If there exists a sequence R € Q,(p) such
that D(S[e..i +r — 1], R) < v, then S[i..i +r — 1] is called a p-quasiperiodic segment
of S associated with the score v. For example, S[6..11] =ACCACA is 3-quasiperiodic
segment of S =ACACTACCACAC. In this case, the sequence in Qg(3), corresponding to
the segment S[6..11] associated with the score %, is either R = ACCACC or R = ACAACA.

We focus on algorithm design for finding a nearest p-periodic sequence of a se-
quence. First, we define a function 6 on A x A as

1 ifi=,
o) ={ § e

otherwise.

For a sequence S = s155- -+ s; € Al, we define an n x p matrix M = (M4 )nxp in which
m;; = Z (S((li, Sk).
7=k (mod p)

The matrix M = (m;;)nx, is called the modulo-p incidence matriz of S.
Let us look at a DNA sequence: S = ACAGCTGACGTAG. In this case, A =
{4,C,G,T}. For p =5, the modulo-5 incidence matrix is M = (m;;)axs as follows:

12 3 4 5
A/1 1 2 0 0
ci0 1 0 1 1
Gfo 1 1 1 1] ()
T\2 0 0 0 O



The modulo-p incidence matrix of a sequence completely reflects complexity and
symmetry of the corresponding sequence. It is a comprehensive “data structure”
to represent the sequences in A! and provides us with a conceptual framework for
constructing a nearest p-periodic sequence of a sequence.

The algorithm to find the best matching p-periodic sequence of S is described
below:

Algorithm 1. Given a sequence S € Al and a positive integer p < [, find a nearest
p-periodic sequence T' of 5.
Step 1. Create the modulo-p incidence matrix of S: M = (m;j)nxp-

Step 2. Find the maximum value p; of elements in the jth column of M and pick up
a character, say a;; in A, corresponding to the maximum value (j = 1,---,p).

Step 3. Make a p-quasiperiodic unit of S: U = a;,a;, - - - a;,.

D

Step 4. Produce a nearest p-periodic sequence T' of S:
r=u---UW,
N——

q

where W is the prefix of U of length r, ¢ is the quotient and r is the remainder when
[ is divided by p.

Theorem 1. Algorithm 1 can be executed in O(l + np) time.

Proof. Step 1 takes O(!) time, step 2 takes O(np) time, step 3 takes O(p) time, and
step 4 takes O(q+r) time. Thus, the time complexity of the algorithm is O(l + np).

The following theorem gives the number of the nearest p-periodic sequences of a
sequence of length /.

Theorem 2. Let M = (m;;)nxp be the modulo-p incidence matriz of S € A and p;
denote the maximum of elements in the jth column vector of M :
i =maz{m;;: 1 <i<n}|.

Moreover, let r; denote the number of those elements in the jth column vector of M
achieving the mazimum p;:

ri = |{ilmy = p;, 1 < i < n}.

Then there are [T_, r; nearest p-periodic sequences of S corresponding to the distance

1 -1 .
IZM]'
J=1



Proof. Let I; = {i|m;; = pj,1 <1 < n}. We can arbitrarily choose an element i;
from I; for each 7 with 1 < ¢ < p. There are totally byb; - - - b, choices for constructing
p-quasiperiodic units of 5. This means that we can make b;b; - - - b, nearest p-periodic
sequences of S. The number of characters that identify between S and each of the

P
nearest p-periodic sequencesis ) u;. Hence, The average Hamming distance between
i=1

S and each of the nearest p-periodic sequences is 1 — %

P
i
J=1

By Theorem 2, we immediately have the following:

Corollary 3. Let S be a sequence in A' and m; denote the jth column vector of
M. Then the following three statements are equivalent:
(1) S is p-periodic,

() ¥ ui=1

(3) m; = p;ey for some k (1 < j < p), where e, denotes the k-th n-dimensional
unit column vector.

As an example, let us go back to the sequence S = ACAGCTGACGTAG. With a simple
calculation, we obtain p; = myy = 2,4y = mys = Moy =may = L, uz = myz = 2, 4y =
maq = m3q = 1, and g5 = mgs = mgs = 1. Thus, we have a;, = T; a;, = A, C, or G;
a;, = A; a;,, = Cor G; a;, = Cor G. There are 12 nearest p-periodic sequences of S:

TAACCTAACCTAA, TAACGTAACGTAA, TAAGCTAAGCTAA, TAAGGTAAGGTAA,
TCACCTCACCTCA, TCACGTCACGTCA, TCAGCTCAGCTCA, TCAGGTCAGGTCA,
TGACCTGACCTGA, TGACGTGACGTGA, TGAGCTGAGCTGA, TGAGGTGAGGTGA.

The number of the matching letters between the original sequence S and the near-
est p-periodic sequences is 7, which is simply calculated as the sum of the maximum
value in each column. The average Hamming distance between S and the nearest
p-periodic sequences is 6/13.

3 Modulo-p incidence matrices

For S € A!, we denote by o; the frequencies of occurrences of a; in S for 1 < i < n.

Obviously, a; + ag+ - - -+, = [. The vector a = (ay, - -+, @) is called the frequency

vector of S. Let 8 =(¢+1,---,¢+1,q,---,q), where ¢ is the quotient and r is the
N —

r p—r
remainder when [ is divided by p. Then the modulo-p incidence matrix M = (m;;)nxyp
of S has row sum vector a and column sum vector 3:

P
g mi; = a1t =1,---,n;
=1



- g+1 for1 <j<r,
Zmi]' = { f <
= q orr<jsp.

For the sequence S = ACAGCTGACGTAG, we have the frequency vector a = (4, 3,4, 2)
as well as 8 = (3,3,3,2,2). Its modulo-5 incidence matrix in (1) has row sum vector
a = (4,3,4,2) and column sum vector 3 = (3,3,3,2,2).

The set of sequences with the modulo-p incidence matrix M = (m;;)nx, is called
M -equivalence class, denoted by S(M). For any sequence S € S(M), there are g + 1
characters at positions j, p+7,- -, and gp+j: my; of type 1, my; of type 2, - - -, and m,,;
of typen (j = 1,2,---,r). The number of arrangements of these ¢ + 1 characters is
(mu?:li,lmm)' Similarly, there are ¢ characters at positions j,p+7,---, and (¢—1)p+k:
may, of type 1, may of type 2, -+, and my,;, of typen (k =r+1,---,p). The number of

q
1ks s Mnpk

arrangements of these g characters is (m ) Therefore, the number of sequences

in S(M) is given by

r q_l_l Y4 ( q )
S(M)| = ' 2
| ( ) H (m1j7 IR mn]) k:U—I—l T)’le7 ceey Mauk ( )

For the matrix M = (m;;)axs in (1), the size of S(M) is:

3 3 3 2 2 _ 916
1,0,0,2,/\1,1,1,0,/12,0,1,0,/\0,1,1,0,/\0,1,1,0,/ =~

A partition of a positive integer [ is a representation
l=ar+ay+-+ ag. (3)

The numbers ay,- -, o, are the parts of the partition. Hence (3) is a partition of [
into n parts.

Theorem 4. Letl = a1+ as+---+a, be a partition of [. Let o = (ay,- -+, ;) and
B=(q+1,---,9+1,q,---,q), where q is the quotient and r is the remainder when [
r p—r

is divided by p. Then there exists a sequence in A' whose modulo-p incidence matriz

has row sum vector a and column sum vector (3.

Proof. According to (2), it is enough to prove that there exists an n x p nonnegative
integral matrix with row sum vector a and column sum vector 3. We use the network
flow approach to proving the theorem. The basics of network flow theory can be found
in [1].

Matrices with row sum vector o and column sum vector 3 can be considered as
maximum integral flows in the following network. The nodes consist of a source s, a
sink ¢, and ay,aq, -, ay,, by,bs,- -, b,. There is an arc from s to a; with capacity «;



for + = 1,2,---,n. There is an arc from b; to ¢ with capacity 3; for j = 1,2,---,p,

where
6'_ Q‘I'l fOI’lSjST,
I qg forr<j<p.
Finally, there are arcs from a; to b; with capacity §; for ¢« = 1,2,---,n and j =

1,2,---,p. Let f;; be the flow from a; to b; and let F' = (f;;). We immediately
deduce that the arc from s to a; is saturated and thus o; units of flow leave a;. Hence
fi+fiz+- -+ fin = i and so the ith row sum of F'is o;. We deduce that F' = (f;;) has
row sum vector a and column sum vector 3. Conversely, from a matrix F' = (f;;) with
row sum vector o and column sum vector 3 we can construct an integral maximum
flow of size [ = a; + a3 + -+ - + a,,. Thus there exists a matrix with row sum vector
a and column sum vector (3 if and only if the network has a maximum flow of size [.
We are using the well-known result that one can find a maximum integral flow in a
network with integral capacities.

An arbitrary cut in the network is formed from a set X of nodes with s € X and
t € X (where the bar refers to the complement of the set). The cut is the set of
arcs whose tail is in X and whose head is in X. let our arbitrary set X consist of s
with a subset of the nodes in {ay,as, -, a,} indexed by I and a subset of the nodes
in {by,by,---,b,} indexed by J. The cut would consist of the arcs (s,a;) for 7 € I,
(a;,b;) for i € 1,5 € J and (b;,t) for j € J. The capacity of a cut is the sum of the
capacities of the arcs in the cut. The max flow-min cut theorem ensures ([1]) that
there exists a matrix with row sum vector a and column sum vector 3 if and only if
no cut has capacity less than [:

a4+ 84+ Y. B>, (4)

iel jed ielged

for all index sets I C {1,2,---,n}, J C{1,2,---,p}.

It is easy to know that the inequality always holds. Thus, there exists a matrix
with row sum vector o and column sum vector (3.

Combining Corollary 3 and Theorem 4, we obtain a characterization of modulo-p
incidence matrix of a p-periodic sequence in A'.

Corollary 5. Let o = (ag,---,a,) and 8= (g+1,---,9g+ 1,q9,---,q), where | =
r p—r

ar + az + -+ + «, is a partition of | and q is the quotient and r is the remainder

when [ is divided by p. Then there exists a p-periodic sequence in A whose modulo-p

incidence matriz has row sum vector a and column sum vector 3 if and only if each
a; can be expressed a linear integral combination of ¢+ 1 and q:

ai=XN(g+ 1)+ rKig,i=1,2,--- n.
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