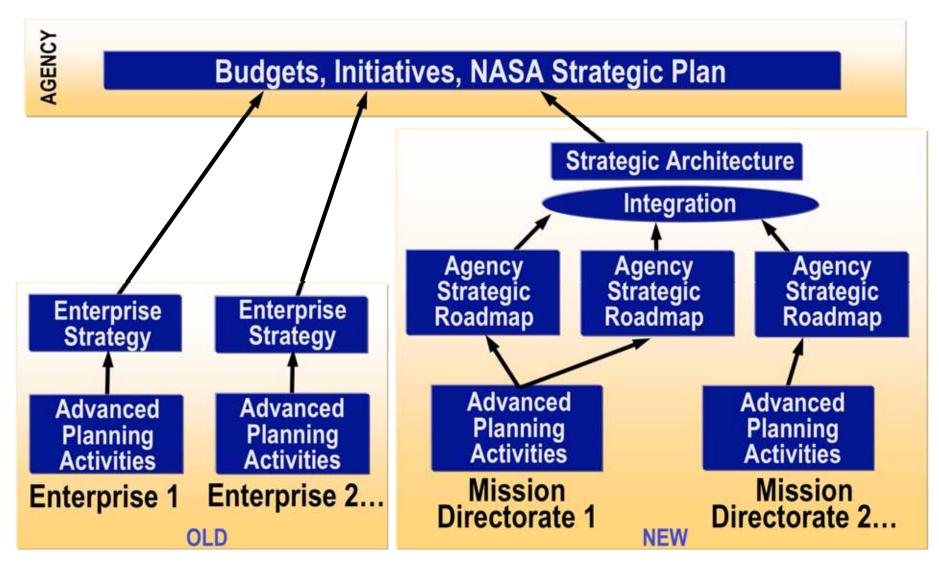


NASA Strategic Planning The Roadmapping Process

Bernard D. Seery Director, Advanced Planning and Integration Office

AIAA Space Exploration Conference February 1, 2005



Strategic Planning to Achieve the Vision for Space Exploration

- NASA is adopting a single unifying construct, linking implementation activities (programs, projects, R&D) to strategic planning objectives
- Process will help align and focus and clarify decision making at all levels

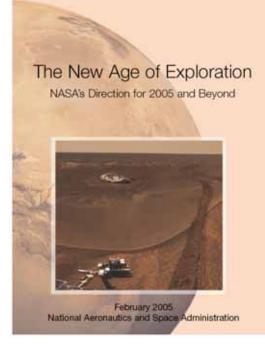
The Vision for Space Exploration

The fundamental goal of this vision is to advance U.S. scientific, security, and economic interest through a robust space exploration program

- robotic program to explore the solar system and beyond
 Extend human presence across the solar system
 - Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations;

Implement a sustained and affordable human and

- Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and
- Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.
- Study the Earth system from space and develop new space-based and related capabilities for this purpose


A RENEWED

SPIRIT OF DISCOVERY

The President's Vision for U.S. Space Exploration

PRESIDENT GEORGE W. BUSH JANUARY 2004

Vision for Space Exploration Key Presidential Direction

- 1. Return the Shuttle.....
- 2. Use Shuttle to ...
- 3. Retire the Shuttle ...
- 4. Focus ISS research ...
- 5. Meet foreign commitments
- 6. Undertake lunar exploration ...
- 7. Series of robotic missions to Moon ...
- 8. Expedition to lunar surface as early
- 9. Use lunar activities to further science, ...
- **10.** Conduct robotic exploration of Mars
- 11. Conduct robotic exploration
- 12. Conduct advanced telescope searches
- 13. Demonstrate power, propulsion,
- 14. Conduct human expeditions to Mars ...
- 15. Develop a new Crew Exploration Vehicle...
- 16. Separate cargo from crew as soon as ...
- **17.** Pursue international participation
- 18. Pursue commercial opportunity

Achieving the NASA Objectives

- Develop roadmaps as strategies to guide achievement of the Strategic Objectives
 - Foundation for mission/program architectures
 - Emphasize national/community input, with NASA guidance
 - Involve industry, academia, other government agencies
 - Enlist the aid of the National Academies of Science, Engineering and Institute of Medicine through reviews by the National Research Council

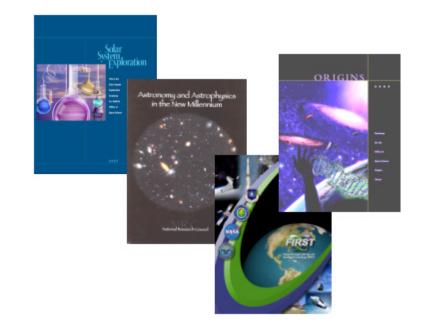
Strategic Roadmap: A coordinated and comprehensive longitudinal strategy, with key achievements, options, and decision points identified, that provides a foundation for NASA's long-term priorities and investments

Thirteen strategic roadmaps translate to eighteen NASA strategic objectives

Movie Market Implementation of the Strategy

Develop capabilities to implement the strategies

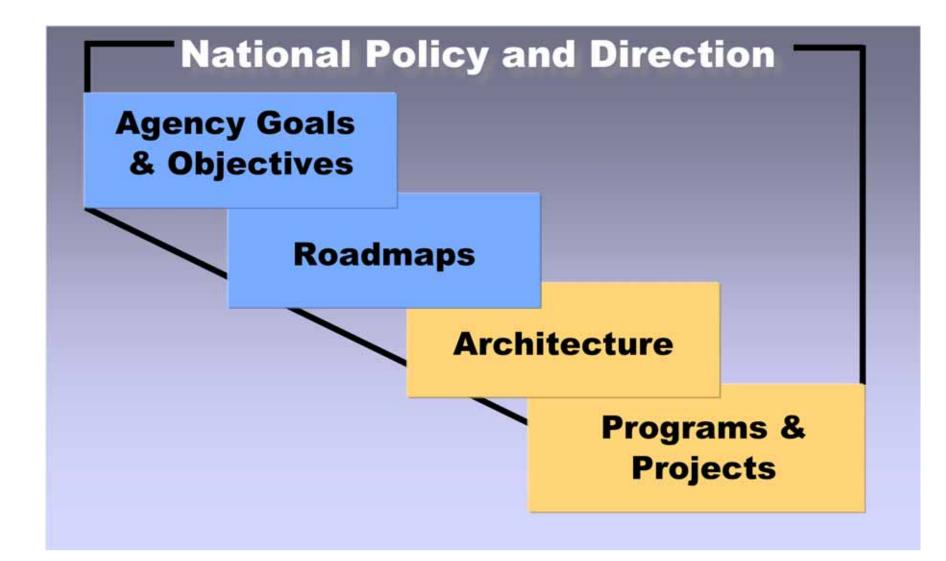
- Assess the state of the art
- Engage broad community in the effort to project capability needs forward
- As recommended in the report of the President's Commission (Aldridge Report) "Successful development of identified enabling technologies will


be critical to attainment of objectives within reasonable schedules and affordable costs."

Capability Roadmap: A description of the developments (including alternate paths and options) required to achieve the capability

Fifteen roadmaps based on Aldridge Commission recommendations and tied to strategic roadmaps

- Broad scientific and exploration objectives, priorities
- Possible pathways or decision points
- Timeline
- Critical sequences and path
- Qualitative risk assessments
- ROM phased cost plan
- Interdependencies
- Capabilities, facilities and infrastructure needs
- Implementation approaches
- High-level mission pipeline


- Objective is to obtain a National perspective
- Balanced roadmap committee membership: NASA, industry, academia and other government.
 - External co-chairs are nationally recognized leaders
 - NASA co-chairs are typically Associate Administrator or Center Director level
- Request for Information released in Federal Register announcing public capability roadmaps workshop and requesting strategic and capability white paper submissions
 - 475 Capability and 348 Strategic White Papers
- Selected white paper authors and other experts asked to brief roadmap committees
- More than 500 attended Public Capability Workshop, November 30, 2004

Milestone	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Committee Charters*													
Committees Formed*													
Initial Meetings*; Integration Begins													
Mid-Term Reviews													
Synthesis Workshop 1							$\boldsymbol{\wedge}$						
Submit NRC Reviews									\land				
Synthesis Workshop 2										\land			
NRC Review Complete											\triangle		
Integrated Strategic Architecture Complete													

* Phased – different milestones for different committees

BACK-UP

Capability	Responsible Mission Directorate
High -energy power and propulsion	Exploration
In-space transportation	Exploration
Advanced telescopes and observatories	Science
Communication and n avigation	Space Ops
Robotic access to planetary surfaces	Science
Human planetary landing systems	Exploration
Human health and support systems	Exploration
Human exploration systems and mobility	Exploration
Autonomous systems and robotics	Science
Transformational spaceport/range technologies	Space Ops
Scientific instruments and sensors	Science
In situ resource utilization	Exploration
Advanced modeling, simulation, analysis	Science
Systems engineering cost/risk analysis	Exploration
Nanotechnology	Science

- 1. Robotic and human lunar expeditions
- 2. Sustained, long-term robotic and human exploration of Mars
- 3. Sustained program of solar system exploration
- 4. Advanced telescope searches for Earth-like planets and habitable environments
- 5. Develop an exploration transportation system
- 6. Complete assembly of the International Space Station and focus utilization
- 7. Safely transition from Space Shuttle to new exploration-focused launch systems*
- 8. Explore the origin, evolution, structure, and destiny of the Universe
- 9. Determine how living Earth system is affected by internal dynamics, and understand implications for life
- 10. Explore Sun-Earth system to understand effects on Earth and implications for human exploration
- 11. Transform air transportation and enable the next generation of atmospheric vehicles
- 12. Educate students and public, and expand national technical skills and capabilities
- 13. Comprehensive national plan for utilization of nuclear systems

Roadmap	Chairs (HQ Directorate, Center)	External chair
Robotic and Human Lunar Exploration	Adm. (Ret.) Craig Steidle (HQ/ESMD) and William Readdy (HQ/SOMD)	Gen. (Ret.) Tom Stafford
	Gen. (Ret.) Jefferson Howell (JSC)	
Robotic and Human Exploration of Mars	Al Diaz (HQ/SMD) Dr. Charles Elachi (JPL)	Tom Young (Lockheed Martin, Ret.)
Solar System Exploration	Orlando Figueroa (HQ/SMD) Scott Hubbard (ARC)	Dr. Jonathan Lunine (Uni. of Arizona)
Search for Earth- Like Planets	Dr. Ghassem Asrar (HQ/SMD) Dr. Charles Beichman (JPL)	Dr. Adam Burrows (Uni. of Arizona)

Strategic Roadmaps (page 2 of 3)

Roadmap	Chairs (HQ Directorate, Center)	External chair		
Earth Science and Applications from Space	Orlando Figueroa (HQ/SMD) Dr. Diane Evans (JPL)	Dr. Charles Kennel (UCSD/Scripps)		
Exploration Transportation System	Adm. (Ret.) Craig Steidle (HQ/ESMD) Jim Kennedy (KSC)	Gen. (Ret.) Charles Bolden		
International Space Station	Mark Uhran (HQ/SOMD) Bob Cabana (JSC)	Adm. (Ret.) Tom Betterton		
Space Shuttle	Deferred	Deferred		
Universe Exploration	Dr. Anne Kinney (HQ/SMD) Dr. Nick White (GSFC)	Dr. Kathy Flanagan (MIT)		

Roadmap	Chairs (HQ Directorate, Center)	External Chair
Sun-Solar System Connection	Al Diaz (HQ/SMD) Dr. Franco Einaudi (GSFC)	Dr. Timothy Killeen (NCAR)
Aeronautical Technologies	Terry Hertz (HQ/ARMD)	James Jamieson (Boeing)
Education	Dr. Adena Loston (HQ/Office of Education) Dr. Julian Earls (GRC)	Dr. France Cordova (Uni. of Cal., Riverside)
Nuclear Systems	Adm. (Ret.) Craig Steidle (HQ/ESMD) Chris Scolese (GSFC)	Dr. John Ahearne (Duke Uni.)

* Leverages off Integrated Space Operations Summit, (ISOS) process until Return To Flight (RTF)

Capability	NASA chair	External chair		
High-Energy Power and Propulsion	Joe Nainiger (GRC)	Dr. Tom Hughes (Penn State Uni.)		
In-Space Transportation	Paul McConnaughey (MSFC)	Col. Joe Boyle (US Air Force SMC)		
Advanced Telescopes and Observatories	Lee Feinberg (GSFC)	Dr. Howard MacEwen (SRS Technologies)		
Communication and Navigation	Bob Spearing (HQ/SOMD)	Michael Regan (DoD)		
Robotic Access to Planetary Surfaces	Mark Adler (JPL)	Dr. Robert Braun (Georgia Tech)		
Human Planetary Landing Systems	Robert Manning (JPL)	Dr. Harrison Schmitt		
Human Health and Support Systems	Dennis Grounds (JSC)	Al Boehm (Ret, Hamilton- Sundstrand)		
Human Exploration Systems and Mobility	Chris Culbert (JSC)	Dr. Jeff Taylor (Uni. of Hawaii)		

Capability Roadmaps (page 2 of 2)

Capability	NASA chair	External chair
Autonomous Systems and Robotics	Dr. Steve Zornetzer (ARC)	Doug Gage (Ret. DARPA)
Transformational Spaceport/Range	Karen Poniatowski (HQ/SOMD)	Gen. (Ret.) Jimmy Morrell Col. Dennis Hilley (OSD)
Scientific Instruments/Sensors	Rich Barney (GSFC)	Dr. Maria Zuber (MIT)
In Situ Resource Utilization	Jerry Sanders (JSC)	Dr. Mike Duke (Colorado School of Mines)
Advanced Modeling, Simulation, Analysis	Dr. Erik Antonsson (JPL)	Dr. Tamas Gombosi (Uni. Of Michigan)
Systems Engineering Cost/Risk Analysis	Steve Cavanaugh (LaRC)	Dr. Alan Wilhite (Georgia Institute of Technology)
Nanotechnology	Dr. Murray Hirschbein (HQ/ARMD) and Dr. Minoo Dastoor (HQ/ESMD)	Dr. Dimitris Lagoudas (Texas A&M)