CHAPTER 3

PERFORMANCE

The launch performance given in this chapter is based on the following assumptions:

- Taking into account the relevant range safety limitations and ground tracking requirements;
- Mass of the payload adapter and the separation system are included in LV mass;
- Standard fairing (3.35 m in diameter, 8.368 m in length) is adopted;
- At fairing jettisoning, the aerodynamic heating being less than 1135 W/m^2 ;
- The total impulse of CTS Solid Rocket Motor can be adjusted according to different mission requirements.
- Orbital altitude values given with respect to a mean radius of equator of 6378.140 km.

The two-stage LM-2C is mainly used for conducting LEO (h < 500 km) missions and the LM-2C/CTS for circular LEO ($h \ge 500 \text{ km}$) and SSO missions. LM-2C takes JSLC as its main launch site, and it can also be launched from XSLC and TSLC. In this Chapter, the launch capabilities of LM-2C launching from JSLC and XSLC are introduced. The launch capabilities vary with different orbital altitudes and inclinations.

3.1 LM-2C Mission Descriptions

3.1.1 Flight Sequence

The typical flight sequence of LM-2C is shown in Table 3-1 and Figure 3-1.

Events	Two-stage LM-2C	LM-2C/CTS
	Flight Time (s)	Flight Time (s)
Liftoff	0.000	0.000
Pitch Over	10.000	10.000
Stage-1 Shutdown	120.270	120.270
Stage-1/Stage-2 Separation	121.770	121.770
Fairing Jettisoning	231.670	231.670

Table 3-1 LM-2C Flight Sequence

Stage-2 Main Engine Shutdown	305.770	301.184
Stage-2 Vernier Engine Shutdown	566.234	613.333
Stage-2/CTS Separation	/	616.333
CTS Solid Rocket Motor Ignition	/	2888.347
Beginning of Terminal Velocity	/	2928.347
Adjustment		
SC/LV Separation	569.234	3013.347
CTS Deorbit	/	3213.347

CHAPTER 3

LM-2C USER'S MANUAL

3.1.2 LM-2C/CTS Characteristic Parameters

The characteristic parameters of typical LM-2C/CTS trajectory are shown in **Table 3-2**. The flight acceleration, velocity, Mach numbers and altitude vs. time are shown in **Figure 3-2a&b**.

Event	Relative	Flight	Ground	Ballistic	SC	SC
	Velocity	Altitude	Distance	Inclination	projection	projection
	(m/s)	(km)	(km)	(°)	Latitude (°)	Longitude(°)
Liftoff	0.2	1.452	0	90	38.661	111.608
Stage-1 Shutdown	2035.853	47.052	61.755	22.765	38.106	111.633
Stage-1/Stage-2	2043.777	48.257	64.549	22.403	38.081	111.635
Separation						
Fairing Jettisoning	3698.167	117.618	352.768	4.263	35.490	111.729
Stage-2 Main Engine	6379.424	146.895	679.624	-2.540	32.551	111.813
Shutdown						
Stage-2 Vernier Engine	7917.684	181.142	2825.723	-25.629	13.252	112.076
Shutdown						
Stage-2/CTS Separation	7918.657	181.104	2848.800	-25.829	13.045	112.077
CTS SRM Ignition	7402.700	637.804	18860.013	-173.727	-44.220	-80.123
Terminal Velocity	7512.356	639.455	18971.228	-177.295	-41.780	-80.001
Adjustment Ending						
SC/LV Separation	7520.725	637.611	18983.402	177.366	-36.557	-79.808

Figure 3-2a LM-2C/CTS Flight Acceleration and Flight Velocity vs. Flight Time

Figure 3-2b LM-2C/CTS Flight Altitude and Mach Numbers vs. Flight Time

3.2 Launch Capacities

3.2.1 Basic Information on Launch Sites

• Jiuquan Satellite Launch Center (JSLC)

Two-stage LM-2C and LM-2C/CTS conduct LEO and SSO missions from Jiuquan Satellite Launch Center (JSLC), which is located in Gansu Province, China. The geographic coordinates are listed as follows:

Latitude:	40.96°N
Longitude:	100 .29°E
Elevation:	1072m

• Xichang Satellite Launch Center (XSLC)

Two-stage LM-2C and LM-2C/CTS conduct LEO missions from Xichang Satellite Launch Center (XSLC), which is located in Sichuan Province, China. The geographic coordinates are listed as follows:

Latitude:	28.2°N
Longitude:	102.02°E
Elevation:	1826m

3.2.2 Two-stage LM-2C Mission Performance

The launch capacity of Two-stage LM-2C for typical LEO mission (h=200km, i=63°) is 3366kg. The different LEO launch capabilities vs. different inclinations and apogee altitudes are shown in **Figure 3-3a,b,c&d**.

SC Mass (kg) 3600 A - i=50deg B - i=63deg 3400 C - i=86deg D - SSO 3200 3000 С 2800 2600 2400 2200 2000 1800 200 250 300 350 400 Circular Orbit Altitude (km)

Figure 3-3a Two-stage LM-2C's Capability for Circular Orbit Missions (From JSLC)

Figure 3-3b Two-stage LM-2C's Capability for Elliptical Orbit Missions (From JSLC)

CHAPTER 3

CALT'S PROPRIETARY

Figure 3-3c Two-stage LM-2C's Capability for Elliptical Orbit Missions (From XSLC)

Figure 3-3d LM-2C's Capability for Large Elliptical Orbit Missions

Note: For this kind of mission, LM-2C works as follows: After Two-stage LM-2C reach the parking orbit (a LEO), it will release a solid upper stage and spin it up

according to required direction. Then the upper stage will go into the large elliptical transit orbit by ignition at the pre-determined time. The method is suitable for GTO or Earth escape missions. The solid upper stage for orbit maneuvering can be made according to user's specific requirements.

3.2.3 LM-2C/CTS Mission Performance

The launch capacity of LM-2C/CTS for typical LEO mission (h=500 km, $i=50^{\circ}$) is 3000 kg. The different LEO and SSO launch capabilities vs. different inclinations and apogee altitudes are shown in **Figure 3-4a&b**.

Circular Orbit Altitude (km)

Figure 3-4a LM-2C/CTS's Capability for Circular Orbit Missions (From JSLC)

Figure 3-4b LM-2C/CTS's Capability for Circular Orbit Missions (From XSLC)

3.3 Injection Accuracy

3.3.1 Two-stage LM-2C Injection Accuracy

The injection accuracy is different for the different missions. The injection accuracy for elliptical LEO (hp=200km, ha=400km) mission is shown in **Table 3-3** and **Table 3-4**.

(inp-200kiii, ina-tookiii)				
Symbol	Parameters	Deviation (1σ)		
Δa	Semi-major Axis	1.1 km		
Δe	Eccentricity	0.00022		
Δi	Inclination	0.045 deg.		
$\Delta\Omega$	Right Ascension of Ascending Node	0.055 deg.		
Δω	Perigee Argument	1.67 deg.		

Table 3-3 Injection Accuracy for LEO Mission (hp=200km, ha=400km)

Table 3-4 Covariance Matrix of Injection for LEO Mission(hp=200km, ha=400km)

			/ /		
	a	e	i		
a	1.210	1.154E-4	-8.821E-3	2.202E-2	6.319E-1
e		4.840E-8	-3.086E-6	9.622E-6	1.564E-4
i			2.025E-3	-3.044E-4	7.823E-3
				3.025E-3	2.172E-2
					2.789

3.3.2 LM-2C/CTS Injection Accuracy

The injection accuracy for the circular orbit mission (h=630km) is shown in **Table 3-5**.

Table 3-5 Injection Accuracy for Circular Orbit Mission (h=630km)

Symbol	Parameters	Deviation (1σ)
Δh	Orbital Altitude	6 km
Δi	Inclination	0.05 deg.
ΔΩ	Right Ascension of Ascending Node	0.06 deg.

3.4 Separation Accuracy

3.4.1 Two-stage LM-2C Separation Accuracy

The separation accuracy of Two-stage LM-2C is shown in Table 3-6.

Table 3-6	Two-stage	LM-2C	Separation	Accuracy	(1σ)
-----------	-----------	-------	------------	----------	------

Items	Separation Accuracy
Roll Angular Rates @x	<0.5°/s
Yaw Angular Rates Øy	<1.1°/s
Pitch Angular Rates Oz	<1.1°/s
Pitch	<3.2°
Yaw	<3.2°
Roll	<1.5°

3.4.2 LM-2C/CTS Separation Accuracy

The separation accuracy of LM-2C/CTS is shown in Table 3-7.

Items	Separation Accuracy
Roll Angular Rates Ox	<0.3°/s
Yaw Angular Rates Oby	<0.3°/s
Pitch Angular Rates @z	<0.3°/s
Pitch	<0.6°
Yaw	<0.6°
Roll	<0.6°

3.5 Launch Windows

LM-2C adopts automatic timing ignition, and it can be launched in zero-launch window.