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ABSTRACT

Quantizing real-valued templates into binary strings is a fun-
damental step in biometric compression and template protec-
tion. In this paper, we introduce the area under the FRR curve
optimize bit allocation (AUF-OBA) principle. Given the bit
error probability, AUF-OBA assigns the numbers of quanti-
zation bits to every feature, in such way that the analytical
area under the false rejection rate (FRR) curve for a Ham-
ming distance classifier (HDC) is minimized. Experiments
on the FRGC face database yield good performances.

1. INTRODUCTION

Binary biometric representations are used in data compres-
sion and template protection [1]. For the recognition pur-
pose, the binary strings should achieve low false acceptance
rate (FAR) and false rejection rate (FRR). Additionally, in
order to maximize the attacker’s efforts in guessing the tar-
get template, the bits should be statistically independent and
identically distributed (i.i.d.).

The straightforward way to extract binary strings is by
quantizing and coding the real-valued biometric templates:
Firstly, independent features are extracted from the raw mea-
surements. Afterwards, features are quantized individually.
The final binary string is then the concatenation of the bits
from every feature. To obtain i.i.d. bits, some equal-
probability quantizers have been introduced [2], [3], [4]. Fur-
thermore, independent of the quantizer design, a detection
rate optimized bit allocation (DROBA) principle [5] was pro-
posed to assign the number of quantization bits, based on the
density distribution of every feature, so that the analytical
overall detection rate of the binary string is maximized.

Often, binary strings are compared by a Hamming dis-
tance classifier (HDC) that makes decision on the Hamming
distances between two strings. Thus, theoretically DROBA
only provides the optimal solution at zero Hamming distance
threshold, and the performances at the operational range are
not optimized. In this paper, we first give the analytical
performances of the HDC, based on the features’ bit er-
ror probability. Furthermore, we propose an area under the
FRR curve optimized bit allocation (AUF-OBA) principle
that minimizes the area under the FRR curve for the HDC.

In Section 2 we demonstrate the performance of a Ham-
ming distance classifier, given the features’ bit error proba-
bility. In Section 3 we present the AUF-OBA principle. In
Section 4, we give some experimental results of AUF-OBA
on the FRGC (version 1) face database and conclusions are
drawn in Section 5.

2. HAMMING DISTANCE CLASSIFIER (HDC)

In this section, we demonstrate that the analytical FAR and
FRR performances of a HDC is predictable, once the bit error
probabilities of both the genuine user and the imposters are
known.

We begin by defining the bit error probability for the bi-
nary strings. Suppose a sequence of L bits are extracted from
D independent real-valued features, ∑D

i=1 bi = L, where the
ith feature is extracted into bi bits.

During the enrollment, let sg,i denote the bi bits gener-
ated by the genuine user for the ith feature. The entire L-bit
string for the genuine user sg is then the concatenation of the
bits extracted from every single feature, i.e. sg = sg,1 . . .sg,D.
Similarly, during the verification, let s′g,i and s′i,i be the bits
generated by the genuine user and the imposters, respec-
tively, for the ith feature, and s′g and s′i be their corresponding
entire L-bit string. We know that during the verification, due
to the inter- and intra-class variation, the genuine user might
not extract the same string as the enrollment template, i.e.
s′g,i 6= sg,i. Contrarily, the imposter might end up with the
same string as that of the genuine user in the enrollment, i.e.
s′i,i = sg,i. For these reasons, we can compute the bit error
probabilities for s′g and s′i as compared to sg. Therefore, for
the ith feature, we define:

Pg,i(ki;bi)
def= P{dH(sg,i,s′g,i) = ki} , (1)

Pi,i(ki;bi)
def= P{dH(sg,i,s′i,i) = ki},ki ∈ 0, . . . ,bi , (2)

where dH computes the Hamming distance between two in-
put bit strings. Hence Pg,i and Pi,i represent – for the genuine
user and the imposters, respectively – the probability of hav-
ing ki bits error among the bi bits extracted for the ith feature
during the verification, as compared to the genuine enroll-
ment bit string.

Regarding a total of D features, we define:

φg(k;{bi}) def= P{dH(sg,s′g) = k} , (3)

φi(k;{bi}) def= P{dH(sg,s′i) = k},k ∈ 0, . . . ,L , (4)

where φg(k) and φi(k) represent – for the genuine user and
the imposters, respectively – the probability of having k bits
error among the entire L bits extracted during the verifica-
tion, as compared to the enrollment bit string. Assume that
the features are statistically independent, thus their bit errors
are also independent. Therefore, the error probability of the
whole feature sets equals to the convolution of their individ-
ual probabilities. Thus φg and φi can be computed from the
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convolution of Pg,i and Pi,i:

φg(k;{bi}) = (Pg,1 ∗Pg,2 ∗ . . .∗Pg,D)(k;{bi}) , (5)
φi(k;{bi}) = (Pi,1 ∗Pi,2 ∗ . . .∗Pi,D)(k;{bi}) . (6)

Expressions in (5) and (6) are defined as the bit error
probability models of the binary string for the genuine user
and the imposters. Based on these, we can further compute
the analytical FAR and FRR performances of the HDC. Thus,
the FAR (α(t;{bi}) at the Hamming distance threshold t is:

α(t;{bi}) def= P{dH(sg,s′i)≤ t} ,

=
t

∑
k=0

φi(k;{bi}) , i = 1, . . . ,D . (7)

Similarly, the FRR (β (t;{bi}) at the Hamming distance
threshold t is:

β (t;{bi}) def= P{dH(sg,s′g) > t} ,

=
L

∑
k=t+1

φg(k;{bi}) , i = 1, . . . ,D .(8)

3. AREA UNDER FRR CURVE OPTIMIZED BIT
ALLOCATION (AUF-OBA)

3.1 Problem Formulation
The optimization problem is defined for every genuine user.
Suppose we need to extract L bits from D independent real-
valued features. For every single feature, a background prob-
ability density function (PDF) and a genuine user PDF – in-
dicating the feature density of the imposters and the genuine
user respectively – are known. Moreover, a quantizer is em-
ployed to quantize the ith feature into bi bits, i = 1, . . . ,D,
bi ∈ {0, . . . ,bmax}. From (7) and (8) we observe that the FAR
and FRR performances of the strings depend on the bits as-
signment {bi}. Therefore, the goal of the bit extraction is
to determine {bi}, so that the verification performance in (7)
and (8) is optimal.

Furthermore, to obtain i.i.d imposter bits, an equal-
probability quantizer is required for the quantization of every
feature. We know that an equal-probability quantizer gives
equally 2−bi probability mass for every interval. Thus, for
the ith feature, when assigned with 2bi code words, the ki-bit
error probability Pi,i(ki;bi) for the imposters becomes:

Pi,i(ki;bi) = 2−bi

(
bi
ki

)
. (9)

Subject to ∑D
i=1 bi = L, the FAR in (7) becomes:

α(t;{bi}) =
t

∑
k=0

φi(k;{bi}) ,

= 2−L
t

∑
k=0

(
L
k

)
. (10)

Expression (10) suggests that when quantized by an equal-
probability quantizer, the FAR only depends on the string
length L and becomes independent of the bits assignment

{bi}. Therefore, to optimize the FAR and FRR perfor-
mances, we propose to minimize the area under the FRR
curve. The optimization problem is then formulated as:

{b∗i } = arg min
∑D

i=1 bi=L
AFRR ,

= arg min
∑D

i=1 bi=L

L

∑
t=0

β (t;{bi}) , (11)

3.2 AUF-OBA Solution
We first reformulate β (t;{bi}) in (8) into the following ex-
pression:

β (t;{bi}) =
L

∑
k=t+1

φg(k;{bi}) ,

=
L

∑
k=0

u(k− (t +1))φg(k;{bi}) , (12)

with

u(k) def=
{

1, k ≥ 0 ,
0, k < 0 .

(13)

Therefore the area under the FRR curve becomes:

AFRR =
L

∑
t=0

β (t;{bi}) ,

=
L

∑
t=0

L

∑
k=0

[
u(k− (t +1))φg(k;{bi})

]
,

=
L

∑
k=0

[
φg(k;{bi})

L

∑
t=0

u(k− (t +1))
]

,

=
L

∑
k=0

kφg(k;{bi}) ,

= E [k;{bi}] . (14)

Hence, AFRR equals to the expected value of the number of
bit errors E [k;{bi}]. Furthermore, we know that the k-bit er-
ror of a L-bit binary string come from D real-valued features.
Thus with ki (i = 1, . . . ,D) bits error per feature. Further-
more, we have that the expected value of a sum equals the
sum of the expected values. Therefore,

AFRR = E [k;{bi}] ,

=
D

∑
i=1

E [ki;bi] , (15)

where E [ki;bi] is defined as the expected value of the number
of errors for the ith feature:

E [ki;bi] =
bi

∑
ki=0

kiPg,i(ki;bi) . (16)

Let Gi(bi) be a gain factor:

Gi(bi) =−E [ki;bi] =−
bi

∑
ki=0

kiPg,i(ki;bi) , (17)
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we can now formulate AUF-OBA principle in (11) into:

{b∗i } = arg min
∑D

i=1 bi=L

D

∑
i=1

E [ki;bi] ,

= arg max
∑D

i=1 bi=L

D

∑
i=1

Gi(bi) . (18)

This optimization can be solved by a common dynamic
programming approach that is also used in DROBA [5], see
Appendix A. The computational complexity is about O(D2×
b2

max).

3.3 The genuine user ki-bit error probability
Computing the gain factor Gi in (17) relies on the genuine
user ki-bit error probability Pg,i(ki;bi), as defined in (1).
Given the real-valued genuine user PDF pg,i as well as a
quantizer, we can compute Pg,i(ki;bi) as:

Pg,i(ki;bi)
def= P{dH(sg,i,s′g,i) = ki} ,

=
∫

Q(ki;bi)
pg,i(v)dv , (19)

where Q(ki;bi) indicates the quantization intervals with ki-
bit error as compared to the genuine code sg,i. An example
of these intervals based on Gray code is illustrated in Fig. 1.

Figure 1: An example of computing Pg,i(ki;bi) for the ith fea-
ture, assigned with bi = 2 bits Gray code. The genuine user
PDF pg,i (black curve); Q(0;2) with the genuine code ’11’
(grey); Q(1;2) with 1-bit error (blue); and Q(2;2) with 2-bit
error (white).

4. EXPERIMENTS

4.1 Experimental setup
We tested the AUF-OBA principle on the FRGC(version 1)
[6] face database. A standard landmark based registration
method, i.e. eyes, nose and mouth, was used to align the im-
ages. Afterwards, a measurement of 8762 gray pixel values
were extracted. We made two subsets: FRGCH and FRGCL.
Set FRGCH contains 275 users with various numbers of high
quality images (n from 4 to 36), taken under controlled con-
ditions. Set FRGCL contains 198 users with low quality im-
ages (n from 4 to 16), taken under uncontrolled conditions.

We randomly selected different users for training and testing
and repeated our experiment with 5 partitionings. With, in
total, n samples per user, the division of the data is stated in
Table 1.

Table 1: Data division (number of users× number of samples
per user) and the number of trials for FRGCH and FRGCL.

Training Enrollment Verification Partitioning
FRGCH 210×n 65×3n/4 65×n/4 5
FRGCL 150×n 48×2n/3 48×n/3 5

In the training step, we first applied a combined
PCA/LDA method [7] on a training set. The obtained trans-
formation was then applied to both the enrollment and verifi-
cation sets. We assume that the measurements have Gaussian
density, thus after the PCA/LDA, the extracted D features are
statistically independent. In the enrollment step, we applied
the AUF-OBA for every target user. We set bmax = 3. The
gain factor Gi was computed from the fixed quantizer [2], [3],
[4]. Additionally, the background PDF and the genuine user
PDF were modeled as Gaussian density, e.g. pb = N(v,0,1),
pg = N(v,µ,σ), respectively. The AUF-OBA outputs the bit
assignment {b∗i }, based on which the features were quantized
and coded with a Gray code. In the verification step, the fea-
tures of the query user were quantized and coded according
to the {b∗i } of the claimed identity, resulting in a query binary
string. Finally the query binary string was compared with the
target binary string by using a HDC.

4.2 Experimental results

We evaluated the performances of the binary strings with
L = 31, 63 and 127, extracted from various numbers of
features D. The FAR/FRR performances for FRGCH and
FRGCL are shown in Fig. 2 and Fig. 3, where the FAR is
plotted in log scale. Since the HDC is evaluated at integer
Hamming distance threshold, the FAR/FRR performances
are discrete. Figure 2 suggests that for the high quality
data FRGCH, given L, when the number of features D in-
creases, the overall FAR/FRR performance improves and be-
comes stable. This result proves that AUF-OBA can effec-
tively extract distinctive bits when the feature dimensionality
is high. Contrarily, Fig. 3 suggests that for the low quality
data FRGCL, given L, when the number of features D in-
creases, the overall FAR/FRR performance improves. How-
ever, when D À L, as seen with L = 31 and 63 in Fig. 3(a),
3(b), the performance starts to deteriorate. The reason is that
at a high dimensionality after PCA/LDA transformation, the
features of the low quality data become less reliable, and the
error probabilities built on such features are not accurate.

To further investigate the performances at the operational
points, i.e. FAR ≈ 10−4, we picked the D-L settings with
the best performances around such operational points. The
FAR/FRR performances for FRGCH and FRGCL are listed in
Table 2 and Table 3. Results show that the FRR performances
at FAR≈ 10−4 are good regarding a compression or template
protection system. Additionally, A lower FRR is achieved
when the binary string length L is larger, e.g. L = 127.

To compare the performances of AUF-OBA with
DROBA, in Fig. 4 we illustrated their performances at the
same D-L settings. Results show that AUF-OBA is slightly
better than DROBA.

52



10
−4

10
−3

10
−2

10
−1

0

0.05

0.1

0.15

0.2

0.25

FRGC
H
, AUF−OBA, L=31

FAR

F
R

R

 

 

D=50
D=80
D=100
D=120
D=150
D=180
D=200

(a)

10
−4

10
−3

10
−2

10
−1

0

0.05

0.1

0.15

0.2

0.25

FRGC
H
, AUF−OBA, L=63

FAR

F
R

R

 

 

D=50
D=80
D=100
D=120
D=150
D=180
D=200

(b)

10
−4

10
−3

10
−2

10
−1

0

0.05

0.1

0.15

0.2

0.25

FRGC
H
, AUF−OBA, L=127

FAR

F
R

R

 

 

D=50
D=80
D=100
D=120
D=150
D=180
D=200

(c)

Figure 2: The FAR/FRR performances for FRGCH extracted
under AUF-OBA principle, from various numbers of features
D, at (a) L = 31; (b) L = 63 and (c) L = 127.

Table 2: The FAR/FRR performances for FRGCH.
FRGCH FRR FAR FRR FAR FRR FAR

(%) (%) (%)
D=100, L=31 6.5 0.01 2.3 0.2 0.7 1.8
D=200, L=63 5.7 0.01 1.7 0.1 0 1.7
D=200, L=127 4.7 0.01 1.8 0.1 0 1.4
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Figure 3: The FAR/FRR performances for FRGCL extracted
under AUF-OBA principle, from various numbers of features
D, at (a) L = 31; (b) L = 63 and (c) L = 127.

Table 3: The FAR/FRR performances for FRGCL.
FRGCL FRR FAR FRR FAR FRR FAR

(%) (%) (%)
D=80, L=31 21 0.02 8 0.2 3 1.6
D=80, L=63 15 0.01 5 0.1 3 1.6
D=149, L=127 12 0.01 6 0.1 3 1.0
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Figure 4: The FAR/FRR performances of AUF-OBA, com-
pared with DROBA, for (a) FRGCH and (b) FRGCL.

5. CONCLUSION

Quantizing real-valued templates into binary strings is a fun-
damental step in biometric compression and template pro-
tection. In this paper, we propose the AUF-OBA principle.
Given the features’ bit error probability, AUF-OBA assigns
the numbers of quantization bits to every feature, in such way
that the analytical area under the FRR curve of a Hamming
distance classifier is minimized. Experiments on the FRGC
face database yield good performances. Theoretically, AUF-
OBA is superior to DROBA and this is proved by the ex-
perimental results. However, the improvements is not very
significant.
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A. DYNAMIC APPROACH

Algorithm 1 A common dynamic programming approach to
solve AUF-OBA principle.

Input:
D ,L ,Gi(bi),bi ∈ {0, . . . ,bmax}, i = 1, . . . ,D ,

Initialize:
j = 0 ,

b0(0) = 0 ,

G(0)(0) = 1 ,
while j 6= D do

j = j +1 ,

b̂′, b̂′′ = argmaxG( j−1)(b′)+G j(b′′) ,
b′ +b′′ = l,
b′ ∈ {0, . . . ,( j−1)×bmax},
b′′ ∈ {0, . . . ,bmax}

l = 0, . . . , j×bmax ,

G( j)(l) = G( j−1)(b̂′)+G j(b̂′′) ,

bi(l) = bi(b̂′), i = 1, . . . , j−1 ,

b j(l) = b̂′′ ,
end while
Output:

{b?
i }= {bi(L)}, i = 1, . . . ,D .

REFERENCES

[1] A.K. Jain, K. Nandakumar, and A. Nagar. Biometric
template security. EURASIP Journal on Advances in Sig-
nal Processing, 8(2), 2008.

[2] P. Tuyls, A.H.M. Akkermans, T.A.M. Kevenaar, G.J.
Schrijen, A.M. Bazen, and R.N.J. Veldhuis. Practical
biometric authentication with template protection. In
Proc. Audio-and Video-Based Biometric Person Authen-
tication (AVBPA 2005), pages 436–446, NY, USA, 2005.

[3] T.A.M. Kevenaar, G.J. Schrijen, M. van der Veen,
A.H.M. Akkermans, and F. Zuo. Face recognition with
renewable and privacy preserving binary templates. In
Proc. IEEE Workshop on Automatic Identification Ad-
vanced Technologies (AutoID 2005), pages 21–26, NY,
USA, 2005.

[4] C. Chen, R.N.J. Veldhuis, T.A.M. Kevenaar, and A.H.M.
Akkermans. Multi-bits biometric string generation
based on the likelihood ratio. In Proc. IEEE Confer-
ence on Biometrics: Theory, Applications and Systems
(BTAS07), 2007.

[5] C. Chen, R.N.J. Veldhuis, T.A.M. Kevenaar, and A.H.M.
Akkermans. Biometric binary string generation with de-
tection rate optimized bit allocation. In Computer Vision
and Pattern Recognition Workshops (CVPR), 2008.

[6] P. J. Phillips, P. J. Flynn, W. T. Scruggs, K. W. Bowyer,
J. Chang, K. Hoffman, J. Marques, J. Min, and W.J.
Worek. Overview of the face recognition grand chal-
lenge. In Proc. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2005),
pages 947–954, MD, USA, 2005.

[7] R.N.J. Veldhuis, A. Bazen, J. Kauffman, and P. Hartel.
Biometric verification based on grip-pattern recognition.
In Proc. SPIE Security, Steganography, and Watermark-
ing of Multimedia Contents VI (SSWMC 2004), volume
5306, pages 634–641, CA, USA, 2004.

54


