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[1] The GRACE satellite mission is mapping the Earth’s
gravity field at monthly intervals. The solutions can be used
to determine monthly changes in the distribution of water on
land and in the ocean. Most GRACE studies to-date have
focussed on producing maps of mass variability, with little
discussion of the errors in those maps. Error estimates,
though, are necessary if GRACE is to be used as a
diagnostic tool for assessing and improving hydrology and
ocean models. Furthermore, only with error estimates can it
be decided whether some feature of the data is real, and how
accurately that feature is determined by GRACE. Here, we
describe a method of constructing error estimates for
GRACE mass values. The errors depend on latitude and
smoothing radius. Once the errors are adjusted for these
factors, we find they are normally-distributed. This allows
us to assign confidence levels to GRACE mass estimates.
Citation: Wahr, J., S. Swenson, and I. Velicogna (2006),

Accuracy of GRACE mass estimates, Geophys. Res. Lett., 33,

L06401, doi:10.1029/2005GL025305.

1. Introduction

[2] GRACE (Gravity Recovery and Climate Experi-
ment), managed jointly by NASA and DLR, was launched
in March, 2002 [Tapley et al., 2004]. As of January, 2006,
22 monthly gravity field solutions had been released to
users. Solutions consist of spherical harmonic (Stokes)
coefficients, Clm and Slm, complete to degree and order
(l and m) 120. GRACE does not recover l = 1 terms, and
the C20 coefficients show anomalously large variability.
We do not include those terms in this analysis.
[3] Time variations in the gravity field can be used to

determine changes in the Earth’s mass distribution. At the
temporal and spatial scales of GRACE, the gravity signal
mostly reflects mass variations within the atmosphere,
oceans, and water stored on land. GRACE has no vertical
resolution. It is not possible to tell whether a mass
variation inferred for some region on land is caused by
changes in water on the surface, in water below ground, or
in atmospheric mass above the region. Users must employ
independent means to separate those contributions.
[4] Suppose the goal is to use GRACE mass variations to

assess a regional water storage model. The GRACE results
would be interpreted as estimates of total water storage
variability. The errors in those estimates fall into two
categories: (i) those due to errors in the monthly GRACE
gravity field solutions; (ii) those due to changes in the true
monthly mass averages caused by things other than conti-

nental water storage. Measurement and processing errors
contribute to (i). Contributions to (ii) could include gravity
signals caused, for example, by unmodeled mass variations
in the Earth’s interior.
[5] The atmosphere contributes to both categories. The

GRACE Project uses ECMWF meteorological fields to
remove atmospheric effects from the raw data before
constructing gravity fields. But there are errors in the
ECMWF fields. The atmospheric mass signal during a
month can be decomposed into the average for that month,
plus variability about the monthly average. An error in the
ECMWF monthly average would contribute to (ii). Errors
in the variability during the month do not cause errors in
the true monthly signal. But they can alias into the
GRACE monthly fields in a way that depends on the
GRACE ground track during that month. These aliasing
errors fall into category (i). We use a similar method to
classify contributions from errors in the tidal and non-tidal
ocean models used to reduce oceanic effects prior to
constructing gravity fields.
[6] In principle, category (ii) errors can be reduced by

GRACE users once better monthly averaged atmospheric
or oceanic results become available. Category (i) errors
(measurement, processing, and aliasing errors) can not be
reduced without re-generating the gravity field solutions.
Our goal is to estimate the sum of all category (i) errors.
[7] Error estimates for remote sensing missions often

rely on ground truth validation. This is a prerequisite for
obtaining meaningful error estimates for missions where
the observed variables (e.g., brightness temperatures) are
related to the quantities of interest (e.g., surface character-
istics) through a set of initially uncalibrated parameters.
[8] It is difficult, at present, to use ground truth to

validate GRACE mass estimates. It is not clear there is
any place where monthly variations of vertically integrated
mass, averaged over the area of a GRACE footprint
(probably at least 106 km2 given the present GRACE
accuracy levels), are monitored well enough. Fortunately,
the physics that relates the GRACE observables (orbital
motion) to the end products (mass anomalies) is well
known, following from Newton’s law of gravity and the
second law of motion. This reduces the need for validation,
and makes it feasible to construct error estimates using only
the GRACE fields. Our method is an extension of that
described by Wahr et al. [2004].

2. Gravity Field Errors

[9] The construction of mass error estimates is a 2-step
process. First, and discussed in this section, we derive
Stokes coefficient uncertainties. Second, those uncertainties
are used to estimate mass errors.
[10] The GRACE data release includes estimates of

‘‘calibrated errors’’ in the Stokes coefficients: diagonal
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elements of the covariance matrix, rescaled by the Project to
match certain characteristics of the fields. These error
estimates are meant to represent all category (i) errors in
the gravity field solutions.
[11] We independently assess the calibrated errors by

fitting and removing a constant and an annual cycle from
the 22 monthly values of each GRACE Stokes coeffi-
cient. We assume the residuals are due entirely to
category (i) gravity field errors. This overestimates those
errors, since some of the non-annual variability is surely
real. Conversely, if the GRACE errors include systematic
annual components our removal of the annual cycle
would cause an underestimate of the error. At present
the errors are believed to be largely free of annual
components (S. Bettadpur, personal communication). We
find the RMS of the 22 residuals for each Stokes
coefficient, and compare with the calibrated errors. Be-
fore comparison, we multiply our RMS values by 1.05,
to compensate for the fact that when a constant and
annual cycle are removed from 22 random numbers with
the GRACE temporal spacing, the average RMS is
reduced by 5% (deduced by fitting to simulated random
numbers).
[12] Results are shown in Figure 1a for degrees l � 25

(C20 not included). The plus signs are our RMS values,
and the solid lines are the calibrated errors. The general
agreement is good, except for degrees l � 5 where the
calibrated errors are too large. This is evident in Figure 1b,
which shows degree amplitudes (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

C2
lm þ S2lm

� �q
) of both our

residual values (orange) and the calibrated errors (blue).

[13] To obtain our best estimate of the Stokes coefficient
errors, we retain the m-dependence of the calibrated errors,
but multiply all m-dependent values of the same degree by a
degree-dependent scaling factor. The factor is chosen so the
degree amplitudes of the results are in good agreement with
the degree amplitudes of our RMS values. We could use a
scaling factor that gives exact agreement at every degree, so
that the degree amplitudes of the scaled calibrated errors
agreed with every variation of the orange line in Figure 1b.
But it is possible that much of that variability is a conse-
quence of sampling the underlying error distribution func-
tion with just 22 points. Instead, we choose the scaling
factor so the scaled degree amplitudes agree with a
smoothed version of the orange line, shown as the purple
line in Figure 1b. This smoothed version is equal to a
constant times the error degree amplitudes of the baseline
performance target [Jet Propulsion Laboratory, 2001]. The
constant is determined by fitting the baseline degree ampli-
tudes to the orange line.

3. Relating Mass and Gravity Field Errors

[14] Let Clm
i and Slm

i be the GRACE Stokes coefficients
for monthly field i (i = 1, .., N, where N = 22), after
removing the long-term average. Let si be a GRACE mass
estimate obtained from those coefficients; si could be a
Gaussian-smoothed mass anomaly about a point (equation
(30) ofWahr et al. [1998]), or an optimized regional average
(equation (2) of Swenson et al. [2003]), etc. si is linearly
related to the Stokes coefficients as:

si ¼
X
l;m

Fm
l C

i
lm þ Gm

l S
i
lm

� �
ð1Þ

where Fl
m and Gl

m are time-independent coefficients
defining the averaging kernel.
[15] Let dsi, dClm

i , and dSlm
i represent errors in the mass

values and in the Stokes coefficients. Then

dsi ¼
X
l;m

Fm
l dC

i
lm þ Gm

l dS
i
lm

� �
ð2Þ

The RMS of the mass errors is:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ds2i
N

vuut ¼
" X

l;m;p;q
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The quantities within the square brackets are elements of the
covariance matrix.
[16] The GRACE Project provided us with a covariance

matrix for a single month (August, 2003). We find that
the inclusion of off-diagonal elements (i.e., where (p, q) 6¼
(l, m)) has little impact on D. If we ignore those elements,

Figure 1. Compares Stokes coefficients obtained from all
22 GRACE fields, after removing a constant and an annual
cycle, with the average of the 22 calibrated error fields.
Results converted to mm of geoid by multiplying by the
Earth’s radius. (a) Compares RMS values of the GRACE
residual coefficients (plus signs) with the calibrated errors
(solid lines). The vertical dotted lines delineate values of the
degree l, and the order m increases from left to right within
those lines. (b) Compares degree amplitudes of the
calibrated errors, the GRACE residuals, and a smoothed
version of the GRACE residuals computed by scaling the
baseline errors.
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equivalent to ignoring correlations between different
Stokes coefficients, (3) reduces to

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
l;m

F2
lm

XN
i¼1

dCi2

lm

N

" #
þ G2

lm

XN
i¼1

dSi
2

lm

N

" # !vuut ð4Þ

4. Mass Errors

[17] We estimate mass errors by using our Stokes
coefficient errors (section 2) in place of the quantities
inside the square brackets in (4). Figure 2 shows the
resulting mass errors (l = 1 and C20 omitted), expressed
in mm of water thickness, when Fl

m and Gl
m represent

Gaussian averages with a 750-km smoothing radius. The
errors are nearly longitude-independent, and are smaller
near the poles (8 mm) than at low latitudes (25–27 mm),
due presumably to denser ground track coverage near the
poles. The global, area-weighted mean is 21 mm.
[18] The errors vary from one month to another. To

estimate the errors for an individual month we follow the
section 2 procedure for finding Stokes coefficient errors,
except we scale the calibrated errors to match the (smoothed)
degree amplitudes of the residuals for that month only. Our
error estimate for the Gaussian averages for each month
has the spatial dependence shown in Figure 2, but a
different overall amplitude. Figure 3 (circles) shows the
global, area-weighted mean of the results for each month.
[19] The mass errors vary with the size of the region.

Figure 3 (solid line) shows the global, area-weighted mean
of Gaussian averages, averaged over all 22 months, as a
function of smoothing radius. The errors decrease as the
radius increases, falling from 38 mm at 500 km to 15 mm at
1000 km.
[20] Figures 2 and 3 show errors for Gaussian-averages

of mass. Errors for specially constructed regional mass
averages can be computed as described above, except using
Fl
m and Gl

m coefficients appropriate for those averaging
kernels.

5. Confidence Levels

[21] RMS values, such as those shown in Figures 2 and 3,
are of practical value only if they can be used to assign
confidence levels. That requires knowledge of the underly-
ing error probability distribution. To find that distribution
for 750-km Gaussian-averages, we use the residual Stokes

coefficients in (1) to find mass values at every point in a
2� � 2� grid for each of the 22 months. As before, we
assume each of these values is solely a consequence of
gravity field errors. A histogram of values for all grid
points and all 22 times should then reveal the probability
distribution function. To construct this histogram, we
divide each mass value by the expected error at its location
and time: i.e., by the Figure 2 results, scaled to account for
the monthly differences shown in Figure 3. This is
necessary when combining values, since the results above
demonstrate that the errors have significant latitude and (to
a lesser extent) time dependence. We weight each grid
point by its area-average when counting its contribution to
the histogram, to equalize contributions from high- and
low-latitudes.
[22] Figure 4 shows the histogram, along with a normal

distribution with the same variance. The agreement is
encouraging. For a normal distribution, 68.3% of all values
lie within one RMS of the mean (95.4% lie within two
RMS). This suggests that for 750-km Gaussian-averaged
mass estimates, we can be 68.3% sure that the errors at any
location and any time are smaller than the RMS values
shown in Figure 2, scaled to account for the Figure 3
monthly differences.

Figure 3. Global means of uncertainties in Gaussian-
smoothed mass estimates; for individual GRACE fields and
750-km smoothing (circles, x-axis scale at the top); and as a
function of smoothing radius, averaged over all 22 months
(solid line, x-axis scale at the bottom).

Figure 4. Histogram of all 750-km, Gaussian-smoothed
mass residuals at each time and at every grid point in a 2� �
2� grid. The residuals have been normalized by dividing by
the estimated error at that latitude and time; and each grid
point contributes to the histogram in proportion to its area.
Also shown is the probability distribution of a normal
distribution with the same variance.

Figure 2. Our estimated uncertainties in the GRACE mass
estimates, in mm of water thickness, for 750-km Gaussian
averages and averaged over all 22 months. Obtained by
propagating the Stokes coefficient errors through (4).
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[23] This conclusion needs qualification. Figure 5 shows
RMS values of the 750-km Gaussian mass residuals deter-
mined from the 22 monthly values at each location, with
each month weighted to offset the monthly-dependence
shown in Figure 3. If the errors at every location were
normally-distributed with the RMS shown in Figure 2,
then Figure 5 and Figure 2 would look similar. But there is
too much longitudinal variability in Figure 5, even recog-
nizing that RMS values computed from just 22 samples of
a normal distribution will not yield the exact RMS of the
underlying distribution. Models (not shown) indicate that
some of the variability, such as in South America and the
Indian subcontinent, as well as much of the increased
RMS at high northern latitudes, are caused by real non-
annual signals. But even over the ocean, where the true mass
signals are likely to be smaller than over land, there is
significant longitudinal variability. Figure 6 shows a histo-
gram of the Figure 5 RMS values at all grid points,
normalized by dividing by the RMS values shown in
Figure 2 and contributing to the histogram in proportion to
the grid point area. The histogram is compared with the
expected distribution of RMS values if each data point
consisted of 22 values taken from a normal distribution with
the same variance. Results are shown for the entire Earth and
for the oceans alone. Although the agreement is reasonably
good, there is clearly a larger spread in the GRACE RMS
values than expected for a normal distribution. The fact
that the GRACE RMS distribution looks similar in the
global and ocean-only cases, suggests the presence of real
hydrology signals is not causing the non-normal shape.
[24] Our interpretation is that during these 22 months

the errors at some locations had more variability than at
other locations; more than expected given the natural
variability of sets of 22 numbers taken from a normal
distribution. The implication is that the RMS estimates
shown in Figure 2, which are used to normalize the
values used in the histogram, are an imperfect represen-
tation of the true errors. This could be due to incorrect
m-dependence of the calibrated errors, which we scaled
and used in (4) to find the mass errors. Or it could be that
the effects of off-diagonal elements in the covariance
matrix are larger than we deduce from the August, 2003
covariance matrix (section 3).

6. Discussion

[25] We have argued that the errors in Gaussian-
smoothed mass estimates are normally distributed. Although
we have shown figures only for 750-km radii, results for

other radii are similar. The implication is that when a
Gaussian-averaged mass value is computed for one of the
GRACE fields, the user can be 68.3% confident the true
mass value lies within one RMS of the computed value,
where one RMS for that location and month can be found
from Figures 2 and 3 for a 750-km radius, and can be
computed for other radii as described in this paper (and as
summarized in Figure 3). We believe these error estimates
are conservative, since they are constructed assuming all
non-annual components of the data are caused by errors.
Confidence levels for other types of averaging kernels can
be found by repeating the steps described in this paper
using different Fl

m’s and Gl
m’s in (4). Whatever the

averaging kernel, the monthly RMS estimates can be used
when fitting annual, secular, etc terms to the monthly mass
values, to construct 68.3% confidence limits on those
terms as well.
[26] The RMS values do not include all the position-

dependent complexities of the true errors. As a result,
locations where the errors exceed our 68.3% confident
levels tend to be grouped together, as do locations where
the errors are much smaller than that level. One might be
tempted to use the RMS values shown in Figure 5, instead
of the errors shown in Figure 2, to construct confidence
levels. But this is not correct either, since many of the
prominent features shown in Figure 5 are real geophysical
signals. Until more is known about the true m-dependence
of the Stokes coefficient errors and the correlations between
errors in different Stokes coefficients, the RMS values
shown in Figure 2 provide relatively simple and realistic
error bars for the fields released to-date. Our method of
estimating those error bars should remain useful in the
future as the fields improve. Though it may be that terms
besides an annual cycle will eventually also have to be
removed, to avoid overestimating the errors.
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