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The Bulletin of the EATCS

Dear colleagues,

As usual, the June issue of the Bulletin
will be available just before ICALP, the
flagship conference of the EATCS, which
hosts the annual meeting of the council of
our association and its general assembly.
I hope that many of you will be at ICALP
2014, which has a mouth-watering scientific
programme and an exciting collection of
cultural and social events to boot. Thore
Husfeldt and his team at the IT University
in Copenhagen are working very hard on the
final details of the organization of the
41st ICALP, which I am sure will be truly
memorable.

Apart from the invited and contributed
talks, ICALP 2014 will feature the
presentation of the EATCS Award 2014 to
Gordon Plotkin, of the Presburger Award
2014 to David Woodruff and of the Godel
Prize 2014 to Ronald Fagin, Amnon Lotem,
and Moni Naor. Moreover, during the
conference, we will honour the first group
of EATCS Fellows, consisting of

e Susanne Albers (Technische Universitdt
Miinchen, Germany) for “her
contributions to the design and
analysis of algorithms, especially
online algorithms, approximation
algorithms, algorithmic game theory and
algorithm engineering”;

e Giorgio Ausiello (Universitd di Roma La
Sapienza, Italy) for “the impact of his
scientific work in the field of
algorithms and computational complexity
and for his service to the scientific
community”;
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the late Wilfried Brauer (Technische
Universitdt Miinchen, Germany) for
“outstanding contributions to the
foundation and organization of the
European TCS community”;

Herbert Edelsbrunner (Institute of
Science and Technology Austria and Duke
University, USA) for “his tremendous
impact on the field of computational
geometry”;

Mike Fellows (Charles Darwin
University, Australia) for “his role in
founding the field of parameterized
complexity theory, which has become a
major subfield of research in
theoretical computer science, and for
being a leader in computer science
education”;

Yuri Gurevich (Microsoft Research, USA)
for “his development of abstract state
machines and for outstanding
contributions to algebra, logic, game
theory, complexity theory and software
engineering”;

Monika Henzinger (University of Vienna,
Austria) for “being one of the pioneers
of web algorithms, algorithms that deal
with problems of the world wide web”;

Jean-Eric Pin (LIAFA, CNRS and
University Paris Diderot, France) for
“outstanding contributions to the
algebraic theory of automata and
languages in connection with logic,
topology, and combinatorics and service
to the European TCS community”;

Paul Spirakis (University of Liverpool,
UK, and University of Patras, Greece)

4
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for “seminal papers on Random Graphs
and Population Protocols, Algorithmic
Game Theory, as well as Robust Parallel
Distributed Computing”; and

Wolfgang Thomas (RWTH Aachen
University, Germany) for “foundational
contributions to the development of
automata theory as a framework for
modelling, analyzing, verifying and
synthesizing information processing
systems.”
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I thank the members of the award and fellow
committees for their work in the selection
of this stellar set of award recipients and
fellows. It will be a great honour to
celebrate the work of these colleagues
during ICALP 2014.

The number of submissions for ICALP 2014
was a record 484 (319 for Track A, 106 for
Track B and 59 for Track C). The number of
submissions for Track A also set a new
record for that track. The PCs for the
three tracks, which were chaired by Elias
Koutsoupias (Track A), Javier Esparza
(Track B) and Pierre Fraigniaud (Track C),
did a sterling job in the selection of the
contributed papers for the conference and
in the selection of the best papers and
best student papers.

The invited talks and the talks by the
award recipients at ICALP 2014 will be
recorded and will be streamed live during
the conference. For the first time, the
general assembly of the EATCS will also be
streamed live on the net and there will be
a live Twitter feed, which will enable our
members who are unable to attend the
conference to take an active part in the
event. I look forward to seeing the result
of this experiment, which I do believe is
worth trying for the sake of inclusiveness
and openness.

Since the February issue of the Bulletin
was published, our community has lost
Georgy Maximovich Adelson-Velsky
(1922-2014)), Alberto Bertoni (1946-2014),
Wilfried Brauer (1937-2014) and Robert
McNaughton. Adelson-Velsky is best known
for being the co-inventor of the AVL tree,



The Bulletin of the EATCS

which was the first known balanced binary
search tree data structure, in 1962.
Bertoni was one of the fathers of
theoretical computer science in Italy, a
member of the council of the EATCS and one
of the early founders, and former
president, of the Italian Chapter of the
EATCS. Brauer was one of the former
presidents of the EATCS and one of the
first authors in the emerging field of
theoretical computer science in the 1960s
and early 1970s. McNaughton was a pioneer
and master of the field of automata and
formal language theory. The community will
miss them.

Apart from ICALP, the EATCS is involved in
many initiatives and uses its (limited,
alas) financial resources to support young
researchers and meritorious activities in
Theoretical Computer Science. By way of
example, I remind you that the EATCS Young
Researcher School Series, will kick off
this year with a school on Automata, Logic
and Games organized by Tony Kucera.
Moreover, soon after ICALP 2014, we will
issue the first call for nominations for
the EATCS Distinguished Dissertation
Awards, which will be presented to two
outstanding doctoral theses in theoretical
computer science starting from 2015.
Finally, the EATCS Council has decided to
provide some modest financial support to
the Conference on Computational Complexity
(CCC), which, after an open discussion
involving the members of the CCC community,
recently decided to leave IEEE and to
become an independent event.

The above-mentioned activities are just a
sample of the increasingly many ones in
which the EATCS is involved. In addition,
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we are also strengthening our ties with
other sister organizations (such as the
European Association for Computer Science
Logic and the recently established ACM’s
Special Interest Group on Logic and
Computation). In particular, we are
working on stipulating reciprocity
agreements with those organizations and on
the establishment of new joint prizes.

As usual, let me remind you that you are
always most welcome to send me your
comments, criticisms and suggestions for
improving the impact of the EATCS on the
theoretical-computer-science community at
president@eatcs.org.

I hope that you will appreciate the steps
that the council of the EATCS has taken on
several fronts, even though there is still
much more that we could do if we had
suitable resources. I am truly grateful to
our institutional sponsors and to our
members for their support over the years.
If you are not already a member, I hope
that you will join the EATCS and encourage
your colleagues and students to do so. The
EATCS membership fee is low and, by
becoming a member, you will contribute to
the activities of our organization and will
support the development of theoretical
computer science, broadly construed.

I look forward to seeing many of you in
Copenhagen for ICALP 2014 and to discussing
ways of improving the impact of the EATCS
within the theoretical-computer-science
community at the general assembly.

Luca Aceto, Reykjavik, Iceland
June 2014




Dear Reader,

I have just finished with my travel
arrangements to Copenhagen for ICALP 2014.
As you know, ICALP 2015 will be held in
Kyoto, my city. Of course I know pretty
well what ICALP meetings look like in
general, but even so the trip this time has
a bit of special meaning to me in the sense
that I need to remind myself what is
important to make the meeting more
attractive and more comfortable.

You will meet several articles/reports
related to EATCS/ICALP in the next October
issue. So, this June issue may tend to be
quiet (June is a rainy season and in fact
quiet in Japan). Well, true. But this is
even better to read technical stuff
peacefully: We have five columns including
two new ones: The Algorithmics Column by
Gerhard Woeginger and The Concurrency
Column by Nobuko Yoshida. Our community
includes a lot of different disciplines and
it is not very easy to write professional
surveys so as to be accessible from all
people. One easy answer to this problem is
just to include relatively many surveys on
different topics. Thus this issue is nice,
which I am sure will allow you to spend a
nice time in the next weekend.

Another specific point I would like to make
is the "Book Introduction by the Authors"
section. This issue includes the
contribution by Stasys Jukna about his book
"Boolean Function Complexity." If you are
interested in circuit complexity, you
definitely cannot miss this nice article (I
have a small concern that some of you even
feel that you already know all about the
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contents and do not have to buy one...) I
should strongly like to make this section
regular and one of the features of our
Bulletin. I need your help; looking
forward to receiving your suggestions
and/or information on books for this
section.

See you in Copenhagen very soon!

Kazuo Iwama, Kyoto
June 2014
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Wilfried Brauer (1937—2014) in memoriam

Personal recollections

At the end of February this year we received the sad tidings of the
passing of Wilfried Brauer. Although not quite unexpected, the tidings still
left us with a feeling of sorrow and longing. We had lost a close friend, a
remarkable scientist and an influential administrator. Wilfried was one of
the early pioneers of theoretical computer science in Europe. He was active
in the founding stages of EATCS and the IFIP working group TC-1, and
made significant contributions also to the working group TC-3. Through
his activities as EATCS President, IFTP Vice President and the Chairman
of the Gesellschaft fiir Informatik, as well as through his scientific work and
that of his students, Wilfried Brauer made a lasting contribution to the
theoretical computer science community. This is visible also in his many
decorations, such as honorary doctorates from the University of Hamburg
and the Freie Universitdt Berlin, Werner Heisenberg Medal and IFIP Isaac
L. Auerbach Award.

However, the purpose of this writing is not to dwell on such formal mat-
ters. We would rather want to bring forward happenings and recollections
from the forty years we had the privilege of knowing Wilfried and working
with him.

Wilfried could handle difficult matters in a smooth and balanced way. As
far as we remember, he never lost his temper. Another very characteristic
feature of Wilfried was that age seemed to have no influence on his outer
appearance. He was still in the new millennium the same joking boyish
Wilfried we got to know in the early 70’s.

Wilfried belonged to the early small European community working in
theoretical computer science. We got to know Wilfried and his wife Ute at
Oberwolfach meetings in the early 70’s. Wilfried seemed to know everybody
well and was interested in new emerging fields of study. Lindenmayer sys-
tems constituted such a field. Working in L systems, we got invitations to
Hamburg. During such visits we also enjoyed hospitality in Brauers’ home
at Gustav Leo Strasse.

Most of our meetings with Wilfried were connected to the work with
Springer—Verlag. The book series EATCS Monographs in Theoretical Com-

11
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puter Science was launched at ICALP in Antwerp in 1983. The representa-
tives of Springer—Verlag were then Gerhard Rossbach and Ingeborg Mayer.
Rossbach was replaced by Hans Wossner at the end of the 80’s.

Wilfried, the two of us and the two representatives of Springer-Verlag met
a couple of times yearly, usually at ICALP conferences and in Grzegorz’s
home in Bilthoven. Most of the time Ute accompanied Wilfried. Then
Grzegorz’s wife Maja and Ute had a special “ladies’ program”.

The Bilthoven meetings gradually developed a specific format allowing
ample time for work. Discussions continued during the Dutch breakfast by
Grzegorz and lunch with Maja’s “monograph soup” as the main course. Our
meetings often culminated with a magic show of Grzegorz. Wilfried joined
the enthusiasm of the audience.

Wilfried’s experience and personal connections were invaluable for the
success of our book series. Especially in delicate matters he was able to
provide us with important information by contacting appropriate referees.

Wilfried did not attend the last Bilthoven meeting in 2007. We sent him
a picture of owls with the text Bilthoven owls miss the other wise owl.

Wilfried and Ute became our close family friends. For instance, they
wrote a paper about the jeep problem with the subtitle How to bring a
birthday present to Salosauna. The present, a small teddy bear, became
the most precious toy for Arto’s granddaughter and was named Wilfried.
Wilfried and the bear Wilfried appeared together at the ICALP in Vienna
in 1992, as seen from photos in the EATCS Bulletin. The bear Wilfried is
still in good shape.

Wilfried was a great fan of classical music and attended concerts and
opera performances with Ute. If there was an interesting performance in
another country, the distance constituted no obstacle for them. Wilfried
explained that it is often difficult for him to get rid of thoughts concerning
work. During the overture of an opera he might still think about phone calls
he has to make. But then everything else vanishes, and he is in the world of
the opera. It was a superb present for Arto when Wilfried hosted his visit
to the Bayreuth Festival in 2005.

Our dear friend Wilfried, we miss you. We miss your wise advice and
your relaxing dinners where fish dishes had to be excluded. We miss our
discussions about professional, as well as other matters. Sit tibi terra levis.

Bilthoven and Turku, March 2014

Grzegorz Rozenberg Arto Salomaa

12



OBITUARY

ALBERTO BERTONI
(1946-2014)

Alberto Bertoni passed away on February 10, 2014, after a long struggle with
a cancer that resisted surgery and therapy. This is a tremendous loss for his wife
Luciana, for his friends and colleagues, and for the community of theoretical com-
puter science in which he played a prominent role.

Alberto was born in Barlassina, Italy, the 17" of July, 1946. He obtained the
degree in Physics, cum laude, at the University of Milan, 22" July, 1970. He
was Assistant Professor in Cybernetics at the Department of Physics, University
of Milan, from 1976 to 1980. In 1981 he obtained a position as full professor in
Computer Science and, after a short period at the University of Cosenza, he came
back to Milan and was one of the founders of the Department of Information
Sciences of the University of Milan and one of the organizers and first professors
of the degree in Information Sciences, a degree that did not exist before in Milan.

13
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In the booming decade from 1980 to 1990 the number of students rapidly in-
creased to about 5000, and Alberto passionately devoted much of his energies to
an intense and varied teaching activity. In 35 years he taught courses that covered
many aspects of algorithms and theoretical computer science, but also of com-
binatorics and discrete mathematics. These course ranged from first or second
year classes on Algebra, Algorithms and Data Structures, Analysis and Design of
Algorithms, Formal Languages and Compilers, to more advanced courses on Sig-
nal Processing, Neural Networks, Computability, to very specialized courses on
research related topics in the areas of Structural Complexity Theory, Algorithms
and Combinatorics, Signal Processing, Combinatorial Optimization, Game The-
ory for the PhD students in Computer Science.

His lectures were always well prepared and fascinating, and he was able to
captivate the students attention even when explaining very complex topics.

He was advisor of more than 200 laurea theses in the degrees of Computer Sci-
ence, Mathematics, Physics and more than 20 PhD theses in Computer Science,
Mathematics and Engineering.

To his disciples and advisees Alberto taught not only the notions, the methods
and the technicalities of the different topics of theoretical computer science, but
above all the love for pure research itself.

In fact, Alberto was a very gifted researcher, guided by his curiosity and en-
thusiasm, with a rare capability of identifying interesting research problems, for-
malizing them, and finding solutions.

His research activity covered an impressive range in the area of Theoretical
Computer Science: in computability and complexity, probabilistic and quantum
machines, formal languages, computational learning, theoretical aspects of neural
networks and genetic models. This research is documented by more than 120 pa-
pers in international journals and conference proceedings. In particular, in com-
plexity theory he solved open problems on probabilistic automata and studied
problems of simulation among computational models (for instance he proved that
the enumeration problems in the class #-PSPACE can be solved by arithmetic
RAMs with a polynomial number of operations) and the classification of counting
and ranking problems. Furthermore, he studied the minimum amount of resources
such as space, head inversions and non determinism degree needed to recognize
non regular languages in some models of Turing Machines. Similar techniques
were applied to picture languages, showing that the class of unary tiling recogniz-
able picture languages is characterized by languages accepted by Turing machines
with bounds on space and head inversions.

An important example of his ability to apply deep mathematical concepts to
problems arising in computer science is his proposal to use the theory of free
partially commutative monoids to model concurrent processes. This idea linked
the theory of trace languages to the more general context of formal languages, to

14
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which Alberto and his research group contributed many results on membership
problems and on characterization of classes of trace languages.

In the area of random generation and counting algorithms, he designed a linear
algorithm for random generation of words in regular languages with fixed number
of occurrences of the symbols, and also gave results on asymptotic estimation of
the number of words in regular languages with fixed number of occurrences of
the symbols, with applications to pattern statistics. More recently, he introduced
new models of quantum automata, and compared them with stochastic automata,
exploring the advantages of using quantum devices in computation over prob-
abilistic models. Furthermore, he gave significant contributions to the area of
bioinformatics, designing and experimenting supervised and unsupervised learn-
ing algorithms based on random projections with application to biomolecular data
clustering.

The Italian and European community of theoretical computer science owe
much to Alberto also for his promotional and organizing activity.

He was co-promoter of the Italian Chapter of the European Association of
Theoretical Computer Science (ICh-EATCS) and first President of the Chapter
for 6 years. He was for 6 years the Italian member in the Council of the European
Association of Theoretical Computer Science.

He contributed to the birth of the Italian Society for Neural Networks (SIREN),
and was member of its Scientific Council. He was member of the Academic Sen-
ate for the revision of the Statute of the University of Milan. He was member
of Scientific Committee of the Institute for Applied Mathematics and Informatics
of the CNR (IAMI-CNR), and member IFIP TC1. He was the Director of the
PhD school in Computer Science, Milano-Torino, for 4 years and President of the
Council of the degree in Computer Science, University of Milan, for 6 years.

He was the Director of the Department of Information Sciences, University of
Milan, for 6 years (2003-09). He was member of the programme committee of
several International Conferences (CAAP, STACS, AdPeNets, DLT, MFCS, SOF-
SEM, ...), and of the Editorial Board of Theoretical Informatics and Applications.

Those who had the fortune to study and work with Alberto will always remember
his strong personality, his honesty, his warm friendship, his scientific generos-
ity, his clarity and originality, and also his passion for the mountains which he
transmitted to many of his students and collaborators.

Giancarlo Mauri and Nicoletta Sabadini
June 2014
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Tue COMPLEXITY OF
VALUED CONSTRAINT SATISFACTION

Peter Jeavons™ Andrei Krokhin' Stanislav Zivny*

Abstract

We survey recent results on the broad family of problems that can be
cast as valued constraint satisfaction problems. We discuss general methods
for analysing the complexity of such problems, give examples of tractable
cases, and identify general features of the complexity landscape.

1 Introduction

Computational problems from many different areas involve finding an assignment
of values to a set of variables, where that assignment must satisfy some spec-
ified feasibility conditions and optimise some specified objective function. In
many such problems the objective function can be represented as a sum of func-
tions, each of which depends on some subset of the variables. Examples include:
Gibbs energy minimisation, Markov Random Fields (MRF), Conditional Ran-
dom Fields (CRF), Min-Sum Problems, Minimum Cost Homomorphism, Con-
straint Optimisation Problems (COP) and Valued Constraint Satisfaction Prob-
lems (VCSP) [6, 23, 68, 85, 87, 89].

We focus in this article on a generic framework for such problems that cap-
tures their general form. Bringing all such problems into a common framework
draws attention to common aspects that they all share, and allows a very general
algebraic approach for analysing their complexity to be developed. The primary
motivation for this line of research is to understand the general picture of complex-
ity within this general framework, rather than to develop specialised techniques
for specific applications. We will give an overview of this algebraic approach, and
the results that have been obtained by using it.

*Department of Computer Science, University of Oxford, Peter. Jeavons@cs.ox.ac.uk
School of Engineering and Computing Sciences, University of Durham, Andrei .Krokhin@
durham.ac.uk  (Andrei Krokhin is supported by the UK EPSRC grant EP/H000666/1)
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The generic framework we use is the valued constraint satisfaction problem
(VCSP), defined formally as follows. Throughout the paper, let D be a fixed finite
set and let Q = Q U {oo} denote the set of rational numbers with (positive) infinity.

Definition 1. We denote the set of all functions ¢ : D" — Q by (I)(g’) and let
Dp =, <I)(l’)"). We will often call the functions in @, cost functions over D.

Let V = {x1,...,x,} be a set of variables. A valued constraint over V is an
expression of the form ¢(x) where x € V" and ¢ € (I)([')”). The number m is called
the arity of the constraint, the function ¢ is called the constraint function, and the
tuple x the scope of the constraint.

We will call the elements of D labels (for variables), and say that the cost
functions in ®p take values.

Definition 2. An instance of the valued constraint satisfaction problem (VCSP)
is specified by a finite set V = {x, ..., x,} of variables, a finite set D of labels, and
an objective function ®@ expressed as follows:

q
Ox, o X) = ) i) ()
i=1

where each ¢;(x;), 1 < i < g, is a valued constraint over V. Each constraint can
appear multiple times in @.

The goal is to find an assignment of labels to the variables (or labelling) that
minimises .

Note that the value of the function @ for any assignment of labels to the vari-
ables in V is given by the sum of the values taken by the constraints; this value
will sometimes be called the cost of the assignment. An infinite value for any
constraint indicates an infeasible assignment.

If the constraint functions in some VCSP instance are finite-valued, i.e., take
only finite values, then every assignment is feasible, and the problem is to identify
an assignment with minimum possible cost (i.e., we need to deal only with the
optimisation issue). On the other hand, if each constraint function in an instance
takes only two values: one finite value (possibly specific to the constraint) and oo,
then all feasible assignments are equally good, and so the only question is whether
any such assignment exists (i.e., we need to deal only with the feasibility issue).
If we have neither of the above cases then we need to deal with both feasibility
and optimisation.

In Section 2 we give examples to show that many standard combinatorial op-
timisation problems can be conveniently expressed in the VCSP framework. In
Section 3 we define certain algebraic properties of the constraints that can be used
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to identify many tractable cases. Section 4 describes the basics of a recently de-
veloped general algebraic theory for analysing the complexity of different forms
of valued constraints. In Section 5 we use this algebraic theory to identify sev-
eral tractable and intractable cases, and in Section 6 we discuss approximation.
In Section 7 we discuss the oracle model for representing the objective function.
Finally, Section 8 gives a brief summary and identifies some open problems.

2 Problems and frameworks captured by the VCSP

In this section we will give examples of specific problems and previously studied
frameworks that can be expressed as VCSPs with restricted forms of constraints.

Definition 3. Any set I' C @, is called a valued constraint language over D, or
simply a language. We will denote by VCSP(I') the class of all VCSP instances
in which the constraint functions are all contained in I'.

Valued constraint languages may be infinite, but it will be convenient to fol-
low [11, 17] and define the complexity of a valued constraint language in terms of
its finite subsets. We assume throughout that P#NP.

Definition 4. A valued constraint language I is called tractable if VCSP(I”) can
be solved (to optimality) in polynomial time for every finite subset " C ', and I’
is called intractable if VCSP(I") is NP-hard for some finite [” C T'.

One advantage of defining tractability in terms of finite subsets is that the
tractability of a valued constraint language is independent of whether the cost
functions are represented explicitly (say, via full tables of values, or via tables for
the finite-valued parts) or implicitly (via oracles).

Example 5 (NAE-SAT). Let D = {0, 1} and let I'nge be the language that contains
just the single ternary cost function ¢nae : D* — Q defined by

o ifx=y=z

0 otherwise

Pnae(X, y,2) E {

The problem VCSP(I'y5¢) is exactly the Not-All-Equal Satisfiability problem, also
known as the 3-Uniform Hypergraph 2-Colourability problem. This problem is
NP-hard [33], so I'n4e is intractable.

Example 6 (Max-k-Cut). Let I'yor be the language that contains just the single
binary cost function ¢y, : D? — Q defined by

1 ifx=y

def
X, = .
Oxor(X,Y) {0 ifx %y
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The problem VCSP(I'y,,) corresponds to the problem of minimising the number
of monochrome edges in a k-colouring (where k = |D|) of the graph G formed
by the scopes of the constraints. This problem is known as the Maximum k-Cut
problem (or simply Max-Cut when |D| = 2), and is NP-hard [33].

Hence, for any choice of D, the language 'y, is intractable.

Example 7 (Potts model). Let I'poys be the language that Eontains all unary cost
functions and the single binary cost function ¢poys: D* — Q defined by

df [ O ifx=y
¢Potts(x,)’) - {1 lf.x;ty .

The problem VCSP(I'poys) corresponds to finding the minimum energy state of
the Potts model from statistical mechanics (with external field) [72]. This model
is also used as the basis for a standard Markov Random Field approach to a wide
variety of problems in machine vision [6]. For |[D| = 2, the function @pgys is
submodular (see Example 18) and we will show that this implies that I'pyys is
tractable. For |D| > 2, I'poys is intractable as it includes, as a special case, the
multiway cut problem, which is NP-hard [27].

Example 8 ((s, 1)-Min-Cut). Let G = (V, E) be a directed weighted graph such
that for every (u,v) € E there is a weight w(u,v) € Qo and let 5,7 € V be
distinguished source and target nodes. Recall that an (s, 7)-cut C is a subset of
vertices V such that s € C but r ¢ C. The weight, or the size, of an (s, f)-cut C
is defined as ', ,)eguecvec W, v). The (s, £)-Min-Cut problem consists in finding
a minimum-weight (s, f)-cut in G. We can formulate the search for a minimum-
weight (s, 7)-cut in G as a VCSP instance as follows.
Let D = {0, 1}. For any label d € D and cost ¢ € @, we define

(x) gt |0 ifx=d
X = .
Ta ¢ ifx#d

For any weight w € Q, we define

¢gut(x’ )’) =

dgf [w ifx=0andy=1
0  otherwise '

We denote by I’y the set {ng, 77} U {¢g, | w € Qso}. A minimum-weight
(s, f)-cut in a graph G with set of nodes V = {xy,..., x,,} corresponds to the set of
variables assigned the label O in a minimal cost assignment to the VCSP instance
defined by

def o co w(X;,X )
IEIE A ORGP )

(xi,xj)EE
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The unary constraints ensure that the source and target nodes must be assigned
the labels O and 1, respectively, in any minimal cost assignment.

Furthermore, it is an easy exercise to show that any instance of VCSP(I'¢;;) on
n variables can be solved in O(n®) time by a reduction to (s, #)-Min-Cut and then
using the standard algorithm [35]. Hence I is tractable.

Example 9 (Minimum Vertex Cover). The Minimum Vertex Cover problem asks
for a minimum size set W of vertices in a given graph G = (V, E) such that each
edge in E has at least one endpoint in W. This problem is NP-hard [33].

Let D = {0, 1}. We define

def |oo ifx=y=0
xX,y) = i .
buo(%:3) {0 otherwise

We denote by T the language {¢yc, 75}, where i} is the function defined in
Example 8 that imposes unit cost for any variable assigned the label 1. A mini-
mum vertex cover in a graph G with set of vertices V = {x,..., x,} corresponds

to the set of vertices assigned the label 1 in some minimum cost assignment to the
VCSP(I'y¢) instance defined by

Q0 S D+ D Bl X)),

xi€V (xi,x;)EE

The binary constraints ensure that in any minimal cost assignment at least one
endpoint of each edge belongs to the vertex cover.

Furthermore, it is easy to convert any instance of VCSP(I'y;) to an equivalent
instance of Minimum Vertex Cover by repeatedly assigning the label 1 to all vari-
ables which do not appear in the scope of any unary constraints and removing
these variables and all constraints involving them. Hence Iy, is intractable.

We will now show how several broad frameworks previously studied in the
literature can be expressed as special cases of the VCSP with restricted languages.
We will discuss algorithms and complexity classifications for them in Section 5.

Example 10 (CSP). The standard constraint satisfaction problem (CSP) over any
fixed set of possible labels D can be seen as the special case of the VCSP where all
cost functions take only the values 0 or oo, representing allowed (satisfying) and
disallowed tuples, respectively. Such constraints and cost functions are sometimes
called crisp. In other words, the CSP can be seen as VCSP(I'yisp), Where I'gyigp 1S
the language consisting of all cost functions on some fixed set D with range {0, co}.
Note that the CSP can also be cast as the homomorphism problem for relational
structures [29] (cf. Example 11).
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Since the CSP includes many known NP-hard problems, such as NAE-SAT
(Example 5) and Graph-3-Colouring, the language I'igp is clearly intractable.
However, many tractable subsets of I'isp have been identified [77, 52, 29, 11,
7,12, 49, 3, 4], mostly through an algebraic approach whose extension we dis-
cuss in Section 4. There are many surveys on the complexity of the CSP, see the
books [25, 26], and also [14, 42].

Feder and Vardi conjectured that the CSP exhibits a dichotomy: that is, ev-
ery finite language I' C T'ssp is either tractable or intractable [29], thus exclud-
ing problems of intermediate complexity, as given by Ladner’s Theorem (assum-
ing P#NP) [66]. The Algebraic Dichotomy conjecture, which we state formally
and discuss in Section 5, specifies the precise boundary between tractable and
intractable crisp languages [11].

Example 11 (Graph Homomorphism). Given two digraphs G = (V(G), E(G)) and
H = (V(H),E(H)), a mapping f : V(G) — V(H) is a homomorphism from G to
H if f preserves edges, that is, (4, v) € E(G) implies (f(u), f(v)) € E(H).

The problem whether an input digraph G admits a homomorphism to a fixed
digraph H is also known as the H-Colouring problem and has been actively stud-
ied in graph theory [41, 42].

For any graph H, let D = V(H) and let I'y; be the language that contains just
the single binary cost function ¢ : D* — Q defined by

0 if(x,y) e E(H)
oo otherwise ’

def

¢H(x’y) = {

For any digraph H, the problem VCSP(I'y), which is a special case of the CSP
(Example 10), corresponds to the H-colouring problem, where the input graph G
is given by the scopes of the constraints. If we add all unary crisp functions to I'y
then the resulting VCSP is known as List H-Colouring [41, 42].

It is known that both the Feder-Vardi conjecture and the Algebraic Dichotomy
conjecture are equivalent to their restrictions to the H-colouring problem [13, 29].

Example 12 (Max-CSP). An instance of the (weighted) maximum constraint sat-
isfaction problem (Max-CSP) is an instance of the CSP where the goal is to max-
imise the (weighted) number of satisfied constraints.

When seeking the optimal solution, maximising the number of satisfied con-
straints is the same as minimising the number of unsatisfied constraints. Hence
for any instance ® of the Max-CSP, we can define a corresponding VCSP instance
@’ in which each constraint ¢ of @ is associated with a constraint over the same
scope in @ which assigns cost O to tuples allowed by ¢, and cost 1 to tuples disal-
lowed by c. It follows that Max-CSP is equivalent to VCSP(I'yiax), where I'yax is
the language consisting of cost functions whose values are restricted to zero and
one.
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For D = {0, 1}, the complexity of all subsets of I'yax has been completely
classified in [58]. Initial results for languages over arbitrary finite sets appeared
in [15]. A complete complexity classification will be discussed in Section 5.

Example 13 (Min-Cost-Hom). Let I'yy4r, consist of all unary cost functions and
let I'me = I'crisp U Tunary (Where T'gigp is defined in Example 10). Problems of the
form VCSP(I') with I" C I',¢c have been studied under the name of the Minimum-
Cost Homomorphism problem (or Min-Cost-Hom) [39, 43, 81, 80, 85, 86]. Note
that the first three of these papers assume that I'ynay € I', while the last three do
not. In [39, 43] I' is assumed to be of the form {¢y} U I'ynary, Where ¢y is a binary
crisp cost function, as in Example 11.

In any instance of VCSP(I',¢), the crisp constraints specify the CSP part, i.e.,
the feasibility aspect of the problem, while the unary constraints specify the opti-
misation aspect. More precisely, the unary constraints specify the costs of assign-
ing labels to individual variables. Complexity classifications for special cases of
Min-Cost-Hom will be discussed in Section 5.

Example 14 (Min-Ones). An instance of the Boolean Minimum Ones (Min-Ones)
problem is an instance of the CSP over D = {0, 1} where the goal is to satisfy
all constraints and minimise the number of variables assigned the label 1. Such
instances correspond to Min-Cost-Hom instances over {0, 1} in which all unary
constraints are of the form 7, as defined in Example 8 (which impose a unit cost
for any variables assigned the label 1). A classification of the complexity of all
subsets of this language was obtained in [25].

Example 15 (Min-Sol). The Minimum Solution problem (Min-Sol) [53, 54] is a
generalisation of Min-Ones from Example 14 to larger sets of labels where the
only allowed unary cost function is a particular finite-valued injective function.
Thus, this problem is also a subproblem of Min-Cost-Hom. Known complexity
classifications for Min-Sol problems will be discussed in Section 5.

3 Polymorphisms and weighted polymorphisms

To develop general tools to classify the complexity of different valued constraint
languages, we will now define certain algebraic properties of cost functions.
A function f : D* — Dis called a k-ary operation on D. The k-ary projections,

defined for all 1 < i < k, are the operations egk) such that egk)(x], ..., Xx) = x;. For
any tuples xy,...,Xx € D", we denote by f(Xy,...,Xx) the tuple in D™ obtained
by applying f to Xy, ..., Xx componentwise.

Any valued constraint language I" defined on D can be associated with a set of
operations on D, known as the polymorphisms of I, and defined as follows.
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Definition 16 (Polymorphism). Let ¢ : D" — @ be a cost function and let
Feas(¢) = {x € D™ | ¢(x) is finite} be the feasibility relation of ¢. We say that an
operation f : D*¥ — D is a polymorphism of ¢ if, for any x,X,, ..., X € Feas(¢)
we have that f(x;, X, ...,Xx) € Feas(¢).

For any valued constraint language I' over a set D, we denote by Pol(I") the
set of all operations on D which are polymorphisms of all ¢ € I'. We denote by
Pol®(I") the k-ary operations in Pol(I).

Note that the projections are polymorphisms of all valued constraint languages.

For {0, co}-valued cost functions (relations) this notion of polymorphism cor-
responds precisely to the standard notion of polymorphism for relations [5, 52].
This notion of polymorphism has played a key role in the analysis of complexity
for the CSP [52, 11]. However, for the analysis of the VCSP we need a more
flexible notion that assigns weights to a collection of polymorphisms.

Definition 17 (Weighted Polymorphism). Let ¢ : D" — Q be a cost function and
let C € Pol®(¢) be a collection of k-ary polymorphisms. A function w : C — Q
is called a k-ary weighted polymorphism of ¢ on C if it satisfies the following
conditions:

b Z_feC w(f) =0;
o if w(f) < 0, then f is a projection;

e for any xy, X, ..., Xx € Feas(¢)

D w(Hp(fx,. . %0) < 0. 2)

feC

We define supp(w) = {f | w(f) > 0) to be the positive support of w.

Remark. The definition of a weighted polymorphism can be re-stated in proba-
bilistic terms, as follows. Consider Inequality (2) and assume that it is non-trivial,
i.e., not all weights w(f) are equal to 0. Let ¢ be the smallest (negative) weight
w(f) that appears there. Add Y5, |c| - p(e”(x1,..., %)) = 35, Iel - ¢(x;) to both
sides of Inequality (2). Note that all weights of operations on the left-hand side
are now non-negative. Normalise by dividing both sides by |c| - k and view the
(new) weights of operations on the left-hand side as a probability distribution u
over a subset of Pol®(¢). We can then re-write Inequality (2) as follows:

Erpulo(f(X, ..., X)) < avglop(xy), .. ., d(Xi)} 3

Thus, one can identify (non-trivial) k-ary weighted polymorphisms of ¢ with prob-
ability distributions u over subsets of Pol®(¢) satisfying Inequality (3) for all
X1, ..., Xk € Feas(¢).
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This is illustrated in Figure 1, which should be read from left to right. Let
C={fi,...,f,} € Pol®() and let u be a probability distribution on C. Starting

with the m-tuples xq, ..., Xk, we first apply operations fi,..., f, to these tuples
componentwise, thus obtaining the m-tuples xi,...,x;. Inequality 3 amounts to
comparing the average of the values of ¢ applied to the tuples xy, ..., Xx, which
corresponds to projections, with the weighted sum of the values of ¢ applied to
the tuples x}, .. ., X;,, which is the expected value of ¢(f (X1, ..., Xk)) as f is drawn
from p.
X1 xi[1] xi[2] ... xq[m] ¢(x1) .
X2 x[1] x2[2] ... xa[m] o O(X2) |1
5 5 = % Zl 9(x:)
Xk x[1] xk[2] ... xx[m] #(Xk)
) v
x; = fik,.ox0) xp[1] xq[2] ... xp[m] P(x))
X = L&n.nx) 0 1] x502] L Xm0 e(x) | & )
: . = TR Priflgx)
. . : p} H
X, = fulx1,....,x0)  x,[1] x([2] ... x[[m] #(x,)

Figure 1: Probabilistic definition of a weighted polymorphism.

If w is a weighted polymorphism of ¢, then we say that ¢ admits w as a
weighted polymorphism. We say that a language I" admits a weighted polymor-
phism w if w is a weighted polymorphism of every cost function ¢ € I'.

Weighted polymorphisms were introduced in [19] and have allowed a general
algebraic theory of complexity for valued constraints to be developed, as we will
describe in Section 4.

Certain special kinds of weighted polymorphisms were introduced in earlier
papers, but have now been subsumed by the more general theory described here.
For example, the notion of a fractional polymorphism was introduced in [16].
For finite-valued functions, this notion coincides with the notion of a weighted
polymorphism.

A more restricted form of weighted polymorphism was introduced earlier
in [17] and is known as a multimorphism. This is essentially a k-ary weighted
polymorphism where the values of w(f) are all integers, and the values of w(f)
for projection operations are all equal to —1. Using the probabilistic view, this
means that the probability of each operation in a k-ary weighted polymorphism is
of the form £/k where £ € Z.
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One can specify a k-ary multimorphism as a k-tuple f = (fi,..., fi) of k-ary
operations f; on D, where each operation f for which w(f) is positive appears

w(f) times, and then the definition simplifies as follows: for all x;,...,xx € D",
k k
Do) £ )P “)
i=1 i=1

Weighted polymorphisms (including the special cases of fractional polymor-
phisms and multimorphisms) have proved to be a valuable tool for identifying
tractable valued constraint languages, as we will illustrate in this Section.

Example 18 (Submodularity). For any finite set V, a rational-valued function &
defined on subsets of V is called a set function. A set function 4 is called submod-
ular if for all subsets S and T of V,

S NT)+hS UT) < WS)+ h(T). 5)

Submodular functions are a key concept in operational research and combinatorial
optimisation (see, e.g. [30, 78, 84] for extensive information about them). They
are often considered to be a discrete analogue of convex functions. Examples
of submodular functions include cuts in graphs, matroid rank functions, and en-
tropy functions. There are combinatorial algorithms for minimising submodular
functions in polynomial time (see [78, 30], and also [51]).

If we set D = {0, 1}, then any set function & on V can be associated with
a (|Vl]-ary) cost function ¢ defined on the characteristic vectors of subsets of V.
The union and intersection operations on subsets correspond to the Min and Max
operations on the associated characteristic vectors. Hence / is submodular if and
only if the associated cost function ¢ satisfies the following inequality:

¢(Min(x;,X2)) + p(Max(Xy, X2)) — ¢(X1) — ¢(x2) < 0.
But this means that ¢ admits the 2-ary weighted polymorphism wy,;, defined by:

o [ 1 iffete. )
Wan(f) = +1 if f € {Min, Max}
0 otherwise.

This is equivalent to saying that ¢ admits (Min, Max) as a multimorphism.

Example 19 (Generalised Submodularity). Let D be a finite lattice, i.e., a par-
tially ordered set, where each pair of elements {a, b} has a least upper bound,
V(a,b), and a greatest lower bound, A(a,b). We denote by I's, the set of all
cost functions over D that admit (V, A) as a multimorphism. Using a polynomial-
time strongly combinatorial algorithm for minimising submodular functions, it
was shown in [17] that Iy, is tractable when D is a totally ordered lattice (i.e., a
chain). More general lattices will be discussed in Section 5 and Section 7.
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Example 20 (Max). We denote by I'a the set of all cost functions (over some
fixed finite totally ordered set D) that admit (Max, Max) as a multimorphism,
where Max : D> — D is the binary operation returning the larger of its two
arguments. Note that [, includes all monotonic decreasing finite-valued cost
functions, as well as some non-monotonic crisp cost functions [17]. It was shown
in [17] that I'h4 is tractable.

Example 21 (Min). We denote by I'yn the set of all cost functions (over some
fixed finite totally ordered set D) that admit (Min, Min) as a multimorphism,
where Min : D> — D is the binary operation returning the smaller of its two
arguments. The tractability of I'y,, was established in [17].

Example 22 (Bisubmodularity). For a given finite set V, bisubmodular functions
are functions defined on pairs of disjoint subsets of V with a requirement similar
to Inequality 5 (see [30, 71] for the precise definition). Examples of bisubmodular
functions include rank functions of delta-matroids [30].

A property equivalent to bisubmodularity can be defined on cost functions on
the set D = {0, 1,2}. We define two binary operations Min, and Max, as follows:

0 ifO0£xx#y#0
Min(x,y) otherwise

Mino(x,y) & { ;
0 if0£x#y#0

def
Maxo(x,y) = { Max(x,y) otherwise

We denote by I'yis the set of finite-valued cost functions that admit (Miny, Max,)
as a multimorphism. The language I'yis can be shown to be tractable using the
results of [71] (see also [30]).

The definitions of Miny and Max still make sense when D = {0,1,2...,k},
k > 3. In that case, functions on D that admit (Mingy, Max,) as a multimorphism
are called k-submodular; they were introduced in [46].

Example 23 (Skew Bisubmodularity). Let D = {0, 1,2}. Recall the definition of
operations Miny and Max, from Example 22. We define

1 fO0xx#y+#0

def
Max,(x,y) = {Max(x,y) otherwise

A function ¢: D" — @ is called a-bisubmodular [48], for some real 0 < a < 1,
if ¢ admits the weighted polymorphism w defined by w(Miny) = 1, w(Maxg) =
@, w(Max;) = (1 - a), and w(e!’) = w(e’) = —1. Note that 1-bisubmodular
functions are (ordinary) bisubmodular functions as defined in Example 22. It is
shown in [48] that each distinct value of « is associated with a distinct class of
a-bisubmodular functions. The tractability of a@-bisubmodular valued constraint
languages will be discussed in Section 5.
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Example 24 ((Symmetric) Tournament Pair). A binary operation f : D> — D is
called a tournament operation if (i) f is commutative, i.e., f(x,y) = f(y, x) for
all x,y € D; and (ii) f is conservative, i.e., f(x,y) € {x,y} for all x,y € D. The
dual of a tournament operation is the unique tournament operation g satisfying
x#y= gy # fx,y).

A tournament pair is a pair (f, g), where both f and g are tournament opera-
tions. A tournament pair (f, g) is called symmetric if g is the dual of f.

Let I' be an arbitrary language that admits a symmetric tournament pair as a
multimorphism. It was shown in [18], by a reduction to the minimisation problem
for submodular functions (cf. Example 19), that any such I' is tractable. It is
shown in [62] that any finite-valued language that admits a symmetric tournament
pair multimorphism also admits the submodularity multimorphism with respect to
some totally ordered lattice on D (cf. Example 19).

Now let I" be an arbitrary language that admits any tournament pair as a multi-
morphism. It was shown in [18], by a reduction to the symmetric tournament pair
case, that any such I' is also tractable.

Example 25 (1-Defect). Let b and ¢ be two distinct elements of D and let (D; <)
be a partial order which relates all pairs of elements except for b and c. We call
{f,g), where f,g : D* — D are two binary operations, a I-defect if f and g are
both commutative and satisfy the following conditions:

o If {x,y} # {b,c}, then f(x,y) = Min(x, y) and g(x,y) = Max(x, y).

o If {x,y} = {b, ¢}, then {f(x, y), g(x, y)} N {x,y} = 0, and f(x,y) < g(x, ).

The tractability of languages that admit a 1-defect multimorphism was shown
in [57], and was used in the classification of the Max-CSP over a four-element set
(see Section 5).

Example 26 (Majority). A ternary operation f : D® — D is called a majority
operation if f(x,x,y) = f(x,y,x) = f(y,x,x) = xforall x,y € D.

Let f = (fi, f>, f3) be a triple of ternary operations such that fi, f> and f; are
all majority operations. Let ¢ : D" — Qbean m-ary cost function that admits f as
a multimorphism. By Inequality (4), for all X,y € D™, 3¢(x) < ¢(X) + ¢(X) + ¢(y)
and 3¢(y) < ¢(y) + ¢(y) + ¢(x). Therefore, if both ¢(x) and ¢(y) are finite, then
we have ¢(x) < ¢(y) and ¢(y) < ¢(x), and hence ¢(x) = ¢(y). In other words, the
range of ¢ is {c, oo}, for some finite ¢ € Q.

Let I'yjty be the set of all cost functions that admit as a multimorphism some
triple £ = (fi, f>, f5) of arbitrary ternary majority operations. The tractability of
I'vjty was shown in [17].
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Example 27 (Minority). A ternary operation f : D® — D is called a minority
operation if f(x,x,y) = f(x,y,x) = f(y,x,x) = y for all x,y € D. Let I'yny be
the set of cost functions that admit as a multimorphism some triple f = (f}, f>, f3)
of arbitrary ternary minority operations. A similar argument to the one in Exam-
ple 26 shows that the cost functions in I'yny have range {c, oo}, for some finite
cE @ The tractability of I'yiny was shown in [17].

Example 28 (MIN). Let f = (fi, f>, f3) be three ternary operations such that f;
and f, are majority operations, and f; is a minority operation. Let I'yyy be the set
of cost functions that admit f as a multimorphism. The tractability of Iyyy was
shown in [63], generalising an earlier tractability result for a specific f of this form
from [17].

Other tractable valued constraint languages defined by weighted polymor-
phisms include the so-called L*-convex languages [30], as well as the weakly
and strongly tree-submodular languages defined in [60]. Hirai [45] recently intro-
duced a framework of submodular functions on modular semilattices (defined by a
type of weighted polymorphism) that generalises many examples given above, in-
cluding standard submodularity, k-submodularity, skew bisubmodularity, and tree
submodularity. See [45] for the natural, but somewhat technical, definition of this
very general framework.

4 A general algebraic theory of complexity

We have seen in the previous section that many tractable cases of the VCSP can
be defined by having a particular weighted polymorphism. The algebraic theory
developed in [19] establishes that, in fact, every tractable valued constraint lan-
guage can be exactly characterised by its weighted polymorphisms. This extends
(parts of) the algebraic theory previously developed for the CSP [10, 11, 52] that
has led to significant advances in understanding the landscape of complexity for
the CSP over the last 10 years (e.g., [2, 3,4, 7, 8, 9, 12, 49, 67]). In this section,
we will give a brief overview of the main results of this new algebraic theory for
the VCSP. We refer the reader to [19] for full details and proofs.

We first recall some basic terminology from universal algebra [5, 79]. We
denote by Op the set of all finitary operations on D and by Og) the k-ary oper-
ations in Op. Let f € O(l/;) and gy,....8 € Og). The superposition of f and
g1, .., 8 18 the f-ary operation f[gi,...,g:] such that f[gy,...,gl(x1,...,x7) =
VACSTCI TR /) RS YT 7)) B

Aset F C Op is called a clone of operations if it contains all the projections on
D and is closed under superposition. It is easy to verify that the set of operations
Pol(T') is a clone. Clones are actively studied in universal algebra; for example,
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all (countably many) clones on D = {0, 1} are known, but the situation is known
to be much more complicated for larger sets D (see, e.g., [5, 79]).

For each F C Op we define Clone(F) to be the smallest clone containing F.
For any clone C, we use C® to denote the k-ary operations in C.

Now we consider the effect of extending a valued constraint language I' € ®,
to a possibly larger valued constraint language. We first define and study a notion
of expressibility for valued constraint languages. This notion has played a key role
in the analysis of complexity for the CSP and VCSP [11, 52, 17, 89].

Definition 29. We say that an m-ary cost function ¢ is expressible over a con-
straint language I if there exists a instance ® € VCSP(I') with variables V =
{x1,...s X0, Y15 - - - » Ym}, such that

¢()7]’--~,)’m) = I;IIir} (D(-xla-'-’-xnvyla"-’ym)'

X[ yees "

Definition 30. A valued constraint language I' C @), is called a weighted rela-
tional clone if it is closed under expressibility, scaling by non-negative rational
constants, and addition of rational constants. We define wRelClone(I') to be the
smallest weighted relational clone containing I'.

Theorem 31 ([19]). A valued constraint language T is tractable if wRelClone(I")
is tractable and intractable if wRelClone(I') is intractable.

Example 32. By Theorem 31, and Examples 5 and 6, in order to show that I" is
an intractable language it is sufficient to show that ¢z Or ¢yo is in WRelClone(I).
We discuss general reasons for intractability of constraint languages in Section 5.

We now develop tools that will allow an alternative characterisation of any
weighted relational clone.

Definition 33. We define a k-ary weighting of a clone C to be a function w :
C® — Q such that w(f) < 0 only if f is a projection and

D w()=0.

fec®

We denote by W the set of all possible weightings of C and by WY the set of
k-ary weightings of C.

Since a weighting is simply a rational-valued function satisfying certain linear
inequalities it can be scaled by any non-negative rational to obtain a new weight-
ing. Similarly, any two weightings of the same clone of the same arity can be
added to obtain a new weighting of that clone.

The notion of superposition can also be extended to weightings in a natural
way, by forming a superposition with each argument of the weighting, as follows.
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Definition 34. For any clone C, any w € W and any g1,8,,...,8 € C?, we
define the superposition of w and g,..., g, to be the function w[g,...,g] :
CY — Q defined by

olg,- &) £ DT W), (©6)
fec®
flgtsmgil=f

It follows immediately from the definition of superposition that the sum of the
weights in any superposition w[gy, . . ., g«] is equal to the sum of the weights in w,
which is zero, by Definition 33. However, it is not always the case that an arbitrary
superposition satisfies the other condition in Definition 33, that negative weights

are only assigned to projections. Hence we make the following definition:

Definition 35. If the result of a superposition is a valid weighting, then that su-
perposition will be called a proper superposition.

Definition 36. A weighted clone, W, is a non-empty set of weightings of some
fixed clone C which is closed under non-negative scaling, addition of weightings
of equal arity, and proper superposition with operations from C. The clone C is
called the support of W.

Example 37. For any clone, C, the set W containing all possible weightings of
C is a weighted clone with support C.

Example 38. For any clone, C, the set Wg containing all zero-valued weightings
of C is a weighted clone with support C. W contains exactly one weighting of
each possible arity, which assigns the value 0 to all operations in C of that arity.

Weighted clones were introduced only very recently and not much is known
about them (in comparison with ordinary clones). Some initial study of weighted
clones can be found in [19, 24].

Given a cost function ¢, some weightings will satisfy the conditions of Defi-
nition 17, and hence be weighted polymorphisms of ¢.

Definition 39. For any I' € ®p, we denote by wPol(I') the set of all weightings
of Pol(I') which are weighted polymorphisms of all cost functions ¢ € T'.

To define a mapping in the other direction, we need to consider the union
of the sets W, over all clones C on some fixed set D, which will be denoted
Wp. If we have a set W € Wp which may contain weightings of different clones
over D, then we can extend each of these weightings with zeros, as necessary,
so that they are weightings of the same clone C, where C is the smallest clone
containing all the clones that are supports of weightings in W. For any set W C
Wp, we define wClone(W) to be the smallest weighted clone containing this set
of extended weightings obtained from W.
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Figure 2: Galois connection between ®, and Wp,.

Definition 40. For any W € W), we denote by Imp(W) the set of all cost functions
in ®; which admit all weightings w € W as weighted polymorphisms .

It follows immediately from the definition of a Galois connection [5] that, for
any set D, the mappings wPol and Imp form a Galois connection between Wp,
and @, as illustrated in Figure 2. A characterisation of this Galois connection for
finite sets D is given by the following theorem from [19]:

Theorem 41 (Galois Connection for Valued Constraint Languages [19]).

1. For any finite D, and any finite I' C ®p, Imp(wPol(I')) = wRelClone(I').
2. For any finite D and any finite W C Wp, wPol(Imp(W)) = wClone(W).

The name Imp is chosen to suggest that such cost functions are improved by weightings in W.
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It follows that to identify all tractable valued constraint languages on a finite
set D it is sufficient to study the possible weighted clones on D. This provides a
new approach to the identification of tractable cases, which we hope will prove to
be as successful as the algebraic approach has been in the study of the CSP.

The Galois connection described in Theorem 41 can be used to derive neces-
sary conditions for tractability. It is shown in [19] that every tractable valued con-
straint language must have a weighted polymorphism that assigns positive weight
to certain specific kinds of operations.

The algebraic theory of the CSP extends beyond clones to finite algebras and
varieties of algebras (see [10, 11, 67], see also the surveys in [26]). This extension
explains why the complexity of a (crisp) language is determined by the identi-
ties satisfied by its polymorphisms, which is why we usually define the relevant
operations by identities. This extension was instrumental in obtaining most state-
of-the-art results in this area (e.g. [2, 3,4, 7, 8,9, 12,49, 67]). An initial study of
a similar extension of the algebraic theory for the VCSP can be found in [73].

A valued constraint language I is called a core if every unary weighted poly-
morphism w of I" has the property that every operation f € supp(w) is surjective.
Intuitively, a valued constraint language I" defined on D is a core if no label x € D
can be removed without losing solutions. In other words, for every a € D there
is an instance ®, € VCSP(I') such that a appears in every optimal solution to
@, [48]. Furthermore, a language I is called a rigid core if Pol(l)(F) contains only
the unary projection e(ll). In this case, all operations in Pol(I') must be idempotent,
i.e., satisfy the identity f(x,...,x) = x.

Generalising the arguments used for the CSP [11] and finite-valued languages
[48, 83], one can show that the search for tractable valued constraint languages
can be restricted to languages that are rigid cores, see [73]. This technical re-
striction has very important implications because the structural theory of finite
algebras works much better for idempotent operations (and idempotent algebras
and varieties), see, e.g. [2, 3,4, 7, 8, 12,49, 67, 69]

5 Algorithms and complexity classifications

A curious feature of research into the tractability of constraint languages is that
all languages known to be tractable have been shown tractable by using very few
algorithmic techniques.

Despite many tractability results concerning crisp languages (i.e., the CSP),
only two algorithmic techniques seem to be sufficient, and the applicability of
each of them individually has been characterised by specific algebraic conditions.
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The first technique is based on enforcing local consistency, which is a natural
algorithm for dealing with (crisp) constraints. Roughly, this algorithm, for a given
CSP instance, starts by adding a new constraint for each subset of variables of
bounded size, the new constraints initially allowing all tuples. Then the algorithm
repeatedly discards (i.e., disallows) tuples of labels in the new constraints that
are inconsistent with at least one constraint in the instance. Eventually, either all
assignments are discarded or else local consistency is established; this procedure
takes polynomial time for any fixed D and any fixed bound on the size of subsets.
The former case implies no feasible assignments. One says that a CSP is solved by
local consistency if the latter case implies the existence of a feasible assignment.
The power of local consistency (i.e., a precise characterisation of crisp languages
that give rise to VCSP instances solvable by some form of local consistency) has
recently been established [4, 8]. A k-ary (k > 2) idempotent operation f : D — D
is called a weak near-unanimity operation if, for all x,y € D,

fO,x,x,...,x) = f(x,y,x,x,...,x) = f(x,x,...,X,Y).

Theorem 42 (Bounded Width [4, 8]). Let I" be a crisp language that is a rigid
core. VCSP) is solvable by local consistency if and only if Pol(I') contains
weak near-unanimity operations of all but finitely many arities.

Remark. One of many equivalent forms of the Algebraic Dichotomy conjecture [11]
mentioned in Example 10 is the following: A crisp language I that is a rigid core
is tractable if and only if Pol(I') contains a weak near-unanimity operation. Crisp
rigid cores I that do not satisfy this condition are known to be NP-complete [11].
This reformulation of the conjecture follows from [69] via [10] (see also [3]).

The second standard algorithmic technique for the CSP is based on the prop-
erty of having a polynomial-sized representation (a generating set) for the solu-
tion set of any instance [9, 49]. Roughly, the algorithm works by starting from
the empty set and adding constraints in an instance one by one while maintain-
ing (in polynomial time) a small enough representation of the current solution set
(of feasible assignments). At the end (i.e., after all constraints have been added),
either this representation is non-empty and contains a solution to the instance or
else there is no solution. In a way, this technique is a generalisation of Gaussian
elimination. This algorithm is often called “few subpowers” because it is related
to a certain algebraic property to do with the number of of subalgebras in powers
of an algebra. The power of this algorithm was established in [49]. A k-ary (k > 3)
operation f : D¥ — D is called an edge operation if, for all x,y € D,

fOY, %%, ...,%) = fOL, X9, X, X, ..., X) =X

and

JO,x, %9, %,...,%) = f(,x,x,x,,X,...,x) = f(x,...,x,y) = X.
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Theorem 43 (Few Subpowers [49]). Let I be a crisp language. Then VCSP(I) is
solvable by the few subpowers algorithm if Pol(I') contains an edge operation.

The converse to this theorem is true in the following sense: the absence of edge
operations from Pol(I") implies that the presence of small enough representations
is not guaranteed, see [49] for details. Interestingly, the few subpowers algorithm
makes use of the actual edge operations in its work (in contrast with bounded
width, where the weak near-unanimity operations only guarantee correctness).

It is natural to try to extend the conditions characterising the applicability of
these two algorithms to the VCSP, and to investigate whether valued constraint
languages satisfying these algebraic conditions are also tractable. However, so far
this approach is largely unexplored. Some forms of local consistency techniques
have been generalised to the VCSP [20], but their power is not fully understood.

For the general VCSP another algorithm, based on linear programming, has
been the most thoroughly investigated. Every VCSP instance has a natural linear
programming relaxation called the basic LP relaxation (BLP). For an instance @
defined by ®(x) = Z;’:I ¢:(x;), with set of variables V, the associated LP instance
BLP(®) is defined as follows:

. q
BLP(®) = min DU dils) i (7a)
i=1 sjeD¥i
s.t. Z iy =p@), 1<i<q xex,acD (b
sieD¥i | si(x)=a
D@ =1, xev (7¢)
aeD

/li,si = O’ 1<i< q, ¢i(si) = (7d)

We minimise over the variables y,(a), where x € V and @ € D, and 4,5, where
1 <i < gands; € D%, that take on real values in the interval [0, 1]. These
variables can be seen as probability distributions on D and D¥, respectively. The
marginalization constraints (7b) impose that y, is the marginal of A;4, for each
constraint and each variable x in the scope of that constraint. Note that terms
in (7a) corresponding to (7d) are assumed to be equal to 0.

We remark that an LP relaxation of the VCSP, similar or closely related to (7),
has been proposed independently by many authors; we refer the reader to [62] and
the references therein.

Given a VCSP instance @, we say that BLP solves ® if the optimal value of
BLP(®) is equal to the optimal value of ®. Moreover, we say that BLP solves
a valued constraint language I" if BLP solves every instance ® € VCSP('). It
is shown in [62] that in all cases where BLP solves I', a standard self-reduction
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technique can be used to obtain an assignment that minimises any ® in VCSP(I')
in polynomial time. Hence if BLP solves I, then I is tractable.

The power of BLP for valued constraint languages was fully characterised
in [82]. To state this result, we first introduce some further terminology about op-
erations. A k-ary operation f : D¥ — D is called symmetric if for every permuta-
tionmon {1,...,k}, f(xi,...,x) = fOys - - - Xry)- A weighted polymorphism
w is called symmetric if supp(w) is non-empty and contains symmetric operations
only. Finally, we say that an operation f is generated from a set of operations
F C Op if f € Clone(F).

Theorem 44 (Power of BLP for Arbitrary Languages [82]). Let I be a valued
constraint language. Then the following are equivalent:

1. BLP solvesT;
2. Forevery k > 2, I admits a k-ary symmetric weighted polymorphism;

3. Forevery k > 2, I admits a weighted polymorphism (not necessarily k-ary)
wy, such that supp(wy) generates a symmetric k-ary operation.

It is unknown whether the conditions in Theorem 44 are decidable. Never-
theless, condition (3) has turned out to be very useful for proving the tractability
of many valued constraint languages. A binary operation f : D> — D is called
a semilattice operation if f is associative, commutative, and idempotent. Since
any semilattice operation trivially generates symmetric operations of all arities,
Theorem 44 shows that any valued constraint language with a binary weighted
polymorphism whose positive support includes a semilattice operation is solv-
able using the BLP. This immediately implies that all of the following cases are
solvable using the BLP, and hence tractable: languages with a (generalised) sub-
modular multimorphism (Example 19), a bisubmodular multimorphism (Exam-
ple 22), a symmetric tournament pair multimorphism (Example 24), or a skew
bisubmodular weighted polymorphism (Example 23), or the weighted polymor-
phisms describing submodularity on modular semilattices [45]. Moreover, a not
very difficult argument can be used to show that languages with a 1-defect multi-
morphism (Example 25) also satisfy condition (3) of Theorem 44 [82], and thus
are tractable.

For valued constraint languages where the cost functions take only finite val-
ues, this result has been strengthened even further [82, 61], see also [62].

Theorem 45 (Power of BLP for Finite-Valued Languages [82, 61]). Let I" be
a valued constraint language where every cost function takes only finite values.
Then the following are equivalent:

1. BLP solves T';
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2. Forevery k > 2, I admits a k-ary symmetric weighted polymorphism;
3. For some k > 2, T admits a k-ary symmetric weighted polymorphism;
4. T admits a binary symmetric weighted polymorphism;

5. T admits a weighted polymorphism w such that supp(w) generates a sym-
metric operation.

We mentioned above that the tractability of constraint languages seems to
come from very few techniques. Interestingly, the hardness of constraint lan-
guages also seems to come from very few specific hard problems! Recall the
functions @nae and ¢y on {0, 1}, from Examples 5 and 6, corresponding to the
NP-hard problems NAE-SAT and Max-Cut.

The hardness of VCSP({¢nae}) generalises in an obvious way to any prob-
lem VCSP({¢}) over any set D, where ¢ is defined as follows: choose a subset
X € D with [X] > 1 and a surjective function 7 : X — {0, 1}, and let ¢(x,y,2) =
Bnae(h(x), h(y), h(z)) if (x,y,2) € X> and ¢(x,y,z) = oo otherwise. Call such func-
tions NAE-like. By Theorem 31, every language I" such that wRelClone (I') con-
tains a NAE-like function is intractable. Moreover, every crisp core language I
known to be NP-complete satisfies this condition [11]. In other words, the ability
to express ¢nge is the only known reason for a crisp core language to be NP-hard,
and the only reason for this if the Algebraic Dichotomy conjecture holds.

Now let ¢ be a binary cost function over D such that, for some distincta, b € D,
argmin(¢) = {(a,b), (b,a)} and ¢(a, a), p(b, b) are both finite. The hardness of
VCSP({¢yor}) on {0, 1} generalises in an obvious way to VCSP({¢}) for such func-
tions ¢ (see [48, 83]). Call such a function XOR-like. By Theorem 31, every I
such that wRelClone (I') contains a XOR-like function is intractable. Moreover,
the converse is known to be true, that is, for every NP-hard finite-valued core lan-
guage I', wRelClone (I') contains a XOR-like function [48, 83] (see Theorem 46).

In fact, most languages (not necessarily crisp or finite-valued) known to be NP-
hard are known to satisfy the condition that wRelClone (I') contains a function that
is NAE-like or XOR-like. It is an open question whether there exist intractable
languages I that do not satisfy this condition. Some NP-hard languages, e.g. those
from [81], are not known to satisfy it.

We now focus on complexity classifications. For crisp languages (i.e. pure fea-
sibility problems), complexity classifications have been established for languages
over two-element sets [77] and three-element sets [7] and for languages contain-
ing all unary relations [12, 2]. For finite-valued languages (i.e. pure optimisation
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problems), it has been shown that BLP solves all tractable cases [83].

Theorem 46 (Classification of Finite-Valued Languages [83]). Let I be a finite-
valued constraint language that is a core. Either 1" has a binary symmetric weighted
polymorphism (and hence is solvable by BLP), or else wRelClone(I') contains a
XOR-like function, and hence I is intractable.

Theorem 46 generalises several previous classification results for finite-valued
languages. Tractability in these earlier results was often characterised by (more)
specific binary symmetric weighted polymorphisms:

e A core {0, 1}-valued language2 over a two-element set [58, 25], or over a
three-element set [55], or including all unary {0, 1}-valued functions [28]
is tractable if it is submodular on a chain (cf. Examples 18 and 19), and
intractable otherwise.

e A core {0, 1}-valued language over a four-element set [57] is tractable if it is
submodular on some lattice (cf. Example 19) or 1-defect (cf. Example 25)
and intractable otherwise.

e A core finite-valued language over a two-element set [17] is tractable if it is
submodular (cf. Example 18) and intractable otherwise.

e A core finite-valued language over a three-element set [48] is intractable if
it is submodular on a chain (cf. Example 19) or skew bisubmodular (cf.
Example 23) and intractable otherwise.

o A finite-valued language containing all {0, 1}-valued unary cost functions [63]
is tractable if it is submodular on a chain (cf. Example 24) and intractable
otherwise.

Theorem 46 also implies a classification of the so-called Min-0-Ext problems [45].

For languages where the cost functions can take infinite values, no general
complexity classification is known. In fact, even the special case of {0, co}-valued
languages is a challenging open problem over sets with four or more elements as
it corresponds to the complexity classification of the CSP (cf. Example 10). For
the general VCSP, unlike the CSP, there is not even a well-established conjecture.

Nevertheless, some interesting and nontrivial partial results are known. For ex-
ample, a complete complexity classification for valued constraint languages over
a two-element set was established in [17]. Note that on a two-element set there is
precisely one majority operation, as defined in Example 26, which we will denote
by Mjrty, and precisely one minority operation, as defined in Example 27, which
we will denote by Mnrty. There are also precisely two constant operations, which
will be denoted Consty and Const;.

2{0, 1}-valued languages correspond to Max-CSPs, cf. Example 12.
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Theorem 47 (Classification of Boolean Languages [17]). A valued constraint
language T on D = {0, 1} is tractable if it admits at least one of the following
eight multimorphisms. Otherwise wRelClone (I') contains ¢nae 0or ¢yor and I is
intractable.

{Consty)

(Const;)

(Min, Min),

(Max, Max),

(Min, Max),

(Mjrty, Mjrty, Mjrty),
(Mnrty, Mnrty, Mnrty),
(Mjrty, Mjrty, Mnrty).

O NS A W~

Let us compare Theorem 47 with a classification of crisp Boolean languages, orig-
inally established by Schaefer in [77] and restated here using polymorphisms (see,
e.g. [14]): A crisp constraint language on D = {0, 1} is tractable if it admits one
of the following six polymorphisms: Consty, Const;, Min, Max, Mjrty, Mnrty;
otherwise it is intractable. These six tractable cases are covered by cases (1-4),
(6), and (7) in Theorem 47. The six cases correspond to sets of Boolean relations
that are 0-valid, or 1-valid, or expressible by Horn clauses, dual Horn clauses,
2-clauses, or linear equations over the field with 2 elements, respectively.

The hardness part of Theorem 47 can be rederived using the algebraic theory
described in Section 4; see [24, 19] for details. We remark that if we restrict
to core Boolean valued constraint languages, the first two cases in Theorem 47
disappear as those languages are not cores (and in fact are solvable trivially).

Another general complexity classification result concerns languages that con-
tain all {0, 1}-valued unary cost functions. Note that a weighted polymorphism w
is called conservative if f(xi,...,x;) € {x1,...,x} for all f € supp(w).

Theorem 48 (Classification of Conservative Languages [63]). Let " be a valued
constraint language on a set D such that I contains all {0, 1}-valued unary cost
functions on D. Then either I admits a conservative binary multimorphism (fi, f>)
and a conservative ternary multimorphism ( f. 5.5 > and there is a family M of
2-element subsets of D, such that:

o for every {a,b} € M, {f1, f>) restricted to {a, b} is a symmetric tournament
pair (see Example 24), and

e for every {a,b} ¢ M, <f]’,f2’,f3’> restricted to {a, b} is an MJN multimor-
phism (see Example 28),

in which case I is tractable, or else T is intractable.
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The algorithm for solving the tractable case identified in Theorem 48 first
enforces local consistency (see the discussion of bounded width at the beginning
of this section). After this preprocessing step, any instance admits a symmetric
tournament pair multimorphism [63] and is thus solvable using BLP.

We now briefly describe the partial classification results so far obtained for the
Min-Cost-Hom and Min-Sol problems discussed in Examples 13 and 15 respec-
tively. Recall that a Min-Cost-Hom problem corresponds to VCSP(I') for some
language I' containing only crisp cost functions and unary cost functions. Min-
Sol problems are Min-Cost-Hom problems where the only unary cost function in
I' is a specific injective and finite-valued cost function.

The complexity classification for Min-Cost-Hom for languages containing all
unary cost functions was established in [81]. The tractable case can be reduced,
after a preprocessing step using local consistency techniques, to a certain problem
on perfect graphs known to be solvable in polynomial time using linear program-
ming [38]. For the special case of digraphs (i.e., when the only non-unary cost
function allowed is a single binary crisp cost function), a complexity classifica-
tion was obtained in [43].

The classification of Min-Cost-Hom for languages containing all unary crisp
cost functions was initially studied in [80] and fully established in [85].

Finally, using the techniques from Section 4 and from [83], a very recent result
has established the computational complexity of Min-Cost-Hom for all languages
over a three-element set [86]. The only tractable cases either admit a weighted
polymorphism with a semilattice operation in its positive support or a certain type
of tournament pair. The former case is tractable using BLP by Theorem 44 and
the latter case is tractable using a reduction to the result in [81] discussed above.

The classification of Min-Sol problems was established in [56] for maximal
languages over a four-element set and for homogenenous languages. The classifi-
cation of Min-Sol has recently also been obtained for all languages over a three-
element set [85]. Using the notion of cores and the algebraic techniques from
Section 4 and from [82, 83], three tractable cases have been identified: bisub-
modular languages (Example 22), generalised min-closed languages (generalis-
ing Example 21), and generalised weak-tournament pair languages (generalising
Example 24); the first two are solvable using BLP, by Theorem 44, while the last
is solvable by a method similar to the tractable case from [81] discussed above.

Adapting the main result of [13] on CSPs, Powell and Krokhin have recently
shown [74] that for every problem VCSP(I'), where I is finite, there is a polynomial-
time equivalent Min-Cost-Hom problem, VCSP(I"), where I"” contains only a sin-
gle crisp binary function and a single finite-valued unary function. Moreover, the
equivalence also preserves (in both directions) many useful weighted polymor-
phisms of I', such as symmetric and weak near-unanimity polymorphisms [4].
Thus, in order to classify the computational complexity of any valued constraint
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language it suffices to classify Min-Cost-Hom problems of this restricted form.
This mirrors a similar reduction from the general CSP to the binary case which
was first established in [29].

6 Approximation

Since many forms of valued constraint satisfaction problem are NP-hard, it is
natural to study approximation algorithms for these problems, and their limits.
Recall that a polynomial-time algorithm for an optimisation problem IT is called
an r-approximation algorithm if, for each instance / of II, the algorithm returns a
solution S for I whose measure m(S') satisfies the inequality

(m(S) OPT(S))<
OPT(S) m(S) )= "

The bound r is called the approximation ratio of the algorithm. Note that in gen-
eral r can be a function of the size of /.

There has been major progress in the last 20 years in designing approximation
algorithms and understanding the (in)approximability of combinatorial optimisa-
tion problems. The former direction was boosted by the application of techniques
based on semidefinite programming (SDP) [34] whilst the latter was powered to a
large extent by the theory of probabilistically checkable proofs, or PCPs, see [1].
A notable early source of inapproximability results is [40], where it is shown that
certain problems (such as Max-3-Sat) can be approximated within a (problem-
specific) constant r, but, unless P=NP, not within r — € for any € > 0. There is now
a large body of such optimal inapproximability results, including those for Min-
imum Vertex Cover and Max Cut, whose validity depends on the Unique Games
Conjecture, or UGC (see survey [59]). This conjecture states that, for any € > 0,
there is a large enough integer k = k(¢) such that it is NP-hard to distinguish two
types of systems of linear equations of the form x;+x; = g;; (mod k): those where
at least a (1 — €)-fraction of the equations can be satisfied and those where any as-
signment satisfies at most an e-fraction of the equations. Despite the fact that the
UGC has been used as a basis for many results, it is still open and the approxima-
tion community seems to be evenly divided as to which way it will eventually be
resolved.

Semidefinite programming is an extension of linear programming where the
variables are vectors in a high-dimensional space and the constraints, as well as
the objective function, are linear in the inner products of these vectors. Any VCSP
instance has a basic semidefinite programming relaxation similar to the BLP re-
laxation defined in Section 5. A breakthrough result of Raghavendra [75, 76]
shows how to use the basic SDP relaxation to design, for any given finite and
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finite-valued language I', an approximation algorithm for VCSP(I') that achieves
some constant approximation ratio; moreover, this ratio cannot be improved un-
less the UGC is false. This ratio is not explicit, but there is an algorithm that can
compute it with any given accuracy in doubly exponential time. It is interesting
that this (conditionally) optimal ratio is related to a parameter of some objects
similar to weighted polymorphisms. For more details, consult Raghavendra’s pa-
per and thesis [75, 76]; note that the (finite-valued) VCSP is referred to there as
the generalized CSP or GCSP.

The class of all optimisation problems having a (polynomial-time) constant-
factor approximation algorithm is denoted by APX. From the approximation point
of view, the best type of algorithm is a PTAS (polynomial-time approximation
scheme) which is actually a series of algorithms A, € > 0, such that A, gives
a (1 + e)-approximation and runs in time that is polynomial in the size of the
instance (but not necessarily in 1/€). One way to rule out the existence of a PTAS
for a specific optimisation problem II (unless P=NP) is to show that this problem
is APX-hard, i.e., that every problem in APX has an approximation-preserving
reduction to II.

The classification results from Section 5 distinguish between (exact) polyno-
mial solvability and NP-hardness. Some of these results can be strengthened to
become dichotomies between polynomial solvability and APX-hardness For ex-
ample, as discussed in Example 12, Max-CSP is equivalent to VCSP(I'yiax) where
I'vwiax consists of all cost functions taking only the values 0 and 1. For approxi-
mation results it is convenient to replace these with values with —1 and O respec-
tively. Then the intractable cases of VCSP(I') with I' C I'yjax can be shown to be
APX-hard (in fact, APX-complete, as each Max-CSP problem with a finite lan-
guage belongs to APX) when I' contains all unary {—1, 0}-valued functions [28]
and when |D| = 3 [55].

There are only a few results concerning the approximability of VCSP(I') for
languages I" containing cost functions that can take infinite values. For example,
it is shown in [44] that the problem VCSP({¢y} U I“fmary), a special case of Min-
Cost-Hom (see Example 13) where H = (V, E) is an undirected graph without
loops and I'{,, contains all unary functions with non-negative values, is not ap-
proximable within any factor if the List H-Colouring problem (cf. Example 11) is
NP-complete and it has a |V|-approximation algorithm otherwise. As another ex-
ample, the APX-hardness of some Min-Sol problems (Example 15) is established
in [53].
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7 The oracle model

In this paper we have assumed that the objective function in our problem is repre-
sented as a sum of functions each defined on some subset of the variables. There
is a rich tradition in combinatorial optimisation of studying problems where the
objective function is represented instead by a value-giving oracle. In this model a
problem is tractable if it can be solved in polynomial time using only polynomially
many queries to the oracle (where the polynomial is in the number of variables).
Note that any query to the oracle can be simulated in linear time in the VCSP
model. Hence, a tractability result (for a class of functions) in the oracle model
automatically transfers to the VCSP model, while hardness results automatically
transfer in the opposite direction.

One class of functions that has received particular attention in the oracle model
is the class of submodular functions (cf. Example 18). There are several known al-
gorithms for minimising a (finite-valued) submodular function using only a poly-
nomial number of calls to a value-giving oracle (see [50, 51, 78]).

However, for some submodular valued constraint languages I', VCSP(I') can
be solved much more efficiently than by using these general approaches. For
example, the language I'qy; defined in Example 8 can be solved in cubic time
using the Min-Cut-based algorithm described in Example 8. A similar efficient
approach can be used for all languages that are expressible over I';;. However, it
was shown in [88, 90] that not all submodular functions are expressible over I'qy,
so this approach cannot be directly extended to solve arbitrary submodular VCSP
instances. It is currently an open question whether the minimisation problem for
submodular functions defined by sums of bounded arity submodular functions in
the VCSP model is easier than general submodular function minimisation in the
oracle model.

Other classes of finite-valued functions that can be efficiently minimised in
the oracle model include bisubmodular and a-bisubmodular functions (Exam-
ples 22 and 23) [31, 71, 32, 47], functions with a 1-defect multimorphism (Ex-
ample 25) [57], and functions that are submodular on certain lattices (Exam-
ple 19) [64, 65]. The complexity of submodular function minimisation in the
oracle model over arbitrary non-distributive lattices is still unknown (in the VCSP
model, all such language are tractable, by Theorem 44).

The following general problem was mentioned in [48, 57, 82]: which weighted
polymorphisms w are sufficient to guarantee an efficient minimization algorithm,
in the value-oracle model, for valued constraint languages I' with w € wPol(I')?
Natural candidates for which the question is open include the k-submodularity
multimorphism for k > 3 from Example 22 and submodularity multimorphisms
on many lattices from Example 19.
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8 Conclusions and future directions

We have shown that the valued constraint satisfaction problem is a powerful gen-
eral framework that can be used to express many standard combinatorial optimisa-
tion problems. The general problem is NP-hard, but there are many special cases
that have been shown to be tractable. In particular, by considering restrictions on
the cost functions we allow in problem instances, we have identified a range of
different sets of cost functions that ensure tractability.

These restricted sets of cost functions are referred to as valued constraint lan-
guages, and we have described in Section 4 the very general algebraic techniques
now being developed to classify the complexity of these languages.

This classification is still far from complete. In fact, even in the special case of
the CSP (Example 10), where all cost functions take only the values 0 or oo, there
is still no complete classification of complexity for the corresponding constraint
languages. This problem has been studied for many years, beginning with the
seminal work of Feder and Vardi who conjectured that any such language will be
either tractable or NP-complete [29]. This conjecture is still unresolved. However,
the Algebraic Dichotomy conjecture [11] specifies the boundary between tractable
and intractable languages, and it has been proved in many important cases. Natu-
rally, it is desirable to develop the algebraic theory of VCSPs to the point where
one could make a credible algebraic dichotomy conjecture for the VCSP, in order
to have a specific target to aim at.

For finite-valued languages, the complexity classification is complete, see
Theorem 46. One could ask, however, whether the tractability condition can be
made tighter by being more specific about which binary symmetric weighted poly-
morphisms need to be present there. For |D| = 2, 3, tight descriptions are given
in [17, 48].

The algebraic theory of the VCSP presented in Section 4 is based on the new
notion of a weighted clone. Very little is known about weighted clones, and this
direction is wide open for purely algebraic investigation. Some specific open
problems include the (possible) description of weighted clones for D = {0, 1},
the identification of minimal weighted clones, and the investigation of classes of
weighted clones supported by a given ordinary clone.

Further developing the algebraic theory of the VCSP using algebras and va-
rieties [73] is a very promising direction of research because this theory works
with a more general notion of expressibility. Possible algebraic dichotomy results
from this theory would state that either a language expresses, in this more gen-
eral way, a given function (usually with undesirable algorithmic properties of the
corresponding VCSP) or else it has a “nice” weighted polymorphism. Such re-
sults [11, 67] have been fundamental to the success of the algebraic approach to
complexity for the CSP.
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It is natural to investigate how the operations that play a role in the algebraic
theory for the CSP can be adapted to the VCSP setting. Examples of such con-
ditions that we discussed earlier are weak near-unanimity and edge operations;
there are several others. What can be said about valued constraint languages with
weighted polymorphisms whose positive support includes such operations?

As we discussed in Section 5, only three algorithmic techniques seem to be
sufficient to solve tractable crisp and finite-valued VCSPs (Bounded Width, Few
Subpowers, and Basic LP relaxation). There also seem to be essentially only two
seeds of hardness that cause intractability (NAE-like and XOR-like functions).
Are there tractable general-valued VCSPs that require different techniques? Are
there intractable general-valued VCSPs that can express neither NAE-like nor
XOR-like functions?

The notion of weighted polymorphism works well for studying the exact solv-
ability of the VCSP. It would be natural to explore its applicability to approxima-
bility questions for the VCSP and to oracle-tractability for classes of functions, as
we discussed in Sections 6 and 7.

In this survey we have focused on the complexity of valued constraint satis-
faction problems with restricted constraint languages. It is also possible to ensure
tractability by restricting the structure of the constraint scopes - so-called struc-
tural restrictions [36, 37, 70]. Combining structural restrictions with language
restrictions leads to so-called hybrid restrictions, and these provide a promising
source of new tractable cases [21, 22] which has so far been very little explored.
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A fundamental technique in the design of parameterized algorithms is kernel-
ization: Given a problem instance I with parameter k, the basic idea is to
try and preprocess the instance I of length n by applying efficient “reduction
rules” in order to simplify it and reduce it to a kernel instance of the same
problem that is of size a polynomial in k. A brute-force/exponential-time al-
gorithm can then be used to solve the kernel instance. Smaller kernels often
lead to faster algorithms. How small, as a function of k, can kernels be made?
There is a nice hardness theory, based on the complexity theoretic assumption
coNP ¢ NP/poly, which can be used to prove lower bounds for kernel size.

Kernelization is a flourishing area of parameterized complexity with many
recent results (both upper and lower bounds). Stefan Kratsch shares with
us some of the latest developments in the field. His very readable survey
article, with illustrative examples, invites the non-expert to this exciting area of
complexity theory.
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Abstract

Kernelization is a formalization of efficient preprocessing, aimed mainly
at combinatorially hard problems. Empirically, preprocessing is highly suc-
cessful in practice, e.g., in state-of-the-art SAT and ILP solvers. The notion
of kernelization from parameterized complexity makes it possible to rigor-
ously prove upper and lower bounds on, e.g., the maximum output size of
a preprocessing in terms of one or more problem-specific parameters. This
avoids the often-raised issue that we should not expect an efficient algorithm
that provably shrinks every instance of any NP-hard problem.

In this survey, we give a general introduction to the area of kernelization
and then discuss some recent developments. After the introductory material
we attempt a reasonably self-contained update and introduction on the fol-
lowing topics: (1) Lower bounds for kernelization, taking into account the
recent progress on the anp-conjecture. (2) The use of matroids and repre-
sentative sets for kernelization. (3) Turing kernelization, i.e., understanding
preprocessing that adaptively or non-adaptively creates a large number of
small outputs.

1 Introduction

Kernelization is a theoretical formalization of efficient preprocessing for (NP-)
hard problems. By efficient preprocessing we mean any polynomial-time algo-
rithm that given a problem instance outputs an equivalent instance that is, if pos-
sible, simpler than the initial one. Mainly, we are interested in data reduction
where the obtained instance is as small as possible (but we will avoid the term
data reduction for its name clash with reductions). Empirically, preprocessing is

“Supported by the Emmy Noether-program of the German Research Foundation (DFG), KR
4286/1.
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very successful in practice, e.g., within the well-known ILP solver CPLEX, which
motivates a mathematically rigorous study.

Before giving formal definitions and further background, let us begin with a
simple and well-known example. Consider the VErTEX COoVER problem where we
are given as input a graph G = (V,E) and a value k € N and we need to deter-
mine whether there exists a set S of at most k vertices such that every edge is
incident with at least one vertex in §. Due to the NP-hardness of the problem
we do not expect that every instance can be efficiently reduced in size. Indeed,
any polynomial-time algorithm that guarantees a size reduction of at least one bit
for all instances of VERTEX CoveRr could be iterated to also solve VERTEX COVER
in polynomial time, implying P = NP. Despite this obstacle to efficient prepro-
cessing there are simple reduction rules that can be seen to yield a provable size
bound; how does that fit together?

Rule 1. Delete any isolated vertex v of G, i.e., return (G — v, k). Correctness: We
never need v in any solution since it covers no edges.

Rule 2. If a vertex v has degree greater than k in G then we (are forced to) select
the vertex for the solution, which is expressed by returning (G —v, k—1). Correct-
ness: Not selecting v would require selecting the neighborhood N(v) of v which is
of size greater than our budget k.

Rule 3. If Rule 2 does not apply and the graph G has more than k* edges then
answer No. Correctness: Covering more than k> edges with at most k vertices
would require at least one vertex of degree greater than k.

It is not hard to see that all three rules can be applied in polynomial time and
that when no rule is applicable we have an equivalent instance with a graph that
has at most k* edges and 2k” vertices; this instance can be encoded in O(k* log k)
bits. (By more sophisticated arguments this can be improved to at most 2k vertices
and O(k?) total size [15].)

We see that by relating the output guarantee of our preprocessing to the value
k, we avoided the issue of not being able to shrink every instance. Intuitively,
the solution size & in a vertex cover instance is a good measure of its complexity,
since it is not hard to find, e.g., a O(2%nm) time branching algorithm for it; if
k is constant or at least k € O(logn) then this runtime is even polynomial in the
input size. Similarly, our simple preprocessing has showed us that a comparatively
small value of k implies that the size of our instance can be reduced. If, otherwise,
k is large (compared to n) then the bound of n < 2k*> does not guarantee any
simplification, which is consistent with the observed obstacle to general efficient
size reductions.

Generally, the field of parameterized complexity studies the influence of so-
called parameters, like k for VERTEX COVER, on problem complexity. We will
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adopt the naming convention of including the parameter choice into the problem
name, e.g., VERTEX Cover(k) stands for VERTEX Cover with parameter k and VEr-
TEX CovER(A) stands for parameterization by maximum degree. A kernelization
for a parameterized problem can then be simply formalized as any efficient algo-
rithm that gives an equivalent instance of size (and parameter value) bounded by
a function in the input parameter (see Section 3 for formal definitions). It should
come as no surprise that the achievable output guarantees depend greatly on the
choice of parameter.

2 A brief history and overview of kernelization

The use of reduction rules to simplify problems is often traced back to the work
of Quine [66] from 1952 on simplifying truth functions, e.g., by unit-clause prop-
agation and elimination of pure literals. It was recognized early that efficient
reduction rules are not only empirically useful but could also be used to improve
theoretical performance guarantees of exhaustive search algorithms by ensuring
structural restrictions (like degree-bounds); see, e.g., [68]. The study of provable
performance guarantees for preprocessing by reduction rules (or any other means)
regarding the achievable output size, rather than achievable structure, took much
longer to develop.

Kernelization originated as one of many techniques in the toolbox of param-
eterized complexity (see [24, 25]) and is a successful theoretical formalization of
efficient preprocessing with provable performance guarantees. In its early stages
kernelization was mostly about coming up with clever reduction rules and com-
bining them with combinatorial arguments to prove that exhaustively reduced in-
stances (to which no more rule could be applied) have size bounded by some func-
tion in the initial parameter value. A 2007 survey of Guo and Niedermeier [40]
nowadays provides a nice overview on these “early days of kernelization”! and in
particular asked to develop techniques for kernelization lower bounds. Two other
influential works from that time are the linear kernel for PLANAR DoMINATING SET
by Alber et al. [3] and a programmatic paper of Estivill-Castro et al. [29] that
amongst others was perhaps the first to explicitly ask for Turing kernelizations.

The field of kernelization matured, in a sense, when in 2008 Bodlaender et
al. [9] came up with a framework for ruling out polynomial sized kernels for
many parameterized problems, and, shortly afterwards, this was followed by the
first paper on meta kernelization by Bodlaender et al. [10] that gave general ker-
nelization results for a wealth of problems on planar and bounded genus graphs
(see also the 2009 survey of Bodlaender [7]). Since then, the field of kernelization

The field of kernelization is still in its twenties.
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has been growing rapidly and many new techniques for upper and lower bounds
were invented in short succession, apart, of course, from a wealth of results for
concrete problems. The survey of Lokshtanov et al. [58] on the occasion of Mike
Fellows’ 60th birthday in 2012 (see also [8]) gives an excellent account of these
developments.

In the present survey we want to focus mainly on recent developments that
have taken place since 2012, but also provide a fair introduction for readers new
to the field. To this end, the core part of the survey singles out three topics and at-
tempts a (as far as possible) self-contained and detailed presentation. Concretely,
we will discuss the use of matroids and representative sets for kernelization (based
on [56, 57]), and review the current knowledge about Turing kernelization (moti-
vated by recent progress [69, 49]). Furthermore, since the lower bound framework
initiated by Bodlaender et al. [9] holds a central place in kernelization, we explain
one complete set of tools for proving such lower bounds. This is, of course, also
motivated by the breakthrough work of Drucker [26] that (among other results)
settled the so-called anp-distillation conjecture.? But, first things first, let us begin
by giving an overview of all the interesting things that could not be fitted into this
survey for the sake of length and focus.?

Overview. The “bread and butter”, so to speak, in the kernelization business
lies in studying a given parameterized problem, deriving efficient reduction rules
for it, and analyzing the obtained rules, that is, analyzing the structure and size
of reduced instances. Unfortunately, such rules are of course problem dependent
and there does not appear to be the single general recipe for them. That said, two
frequently used approaches are the following: (1) Begin with an approximation of
the desired object or a dual structure. If this is sufficiently large then the instance
is trivially YEs or trivially No. If not then there must be large parts that do not
contribute to the solution (or do not incur any cost), or that are obstructed by a
small set of objects/vertices/etc. Often, a careful analysis can devise “high-degree
rules” (as for the simple example of VErRTEX Cover(k)) that resolve or simplify
these cases. (2) Another frequently used tool is the Sunflower Lemma of Erdés
and Rado [28], particularly for covering or packing objects or sets of bounded
size. Effectively, the Sunflower Lemma states that a sufficiently large family of
bounded size objects either involves a large packing (giving trivial YEs for packing
and trivial ~o for covering) or it contains a so-called sunflower formed by objects
that are pairwise obstructing in the same way; often, we can safely delete on of
these obstructing objects (and repeat).

%Very recently, Dell [20] announced a simpler proof for the anp-distillation conjecture.
3Conveniently, and not entirely by chance, these topics are covered in detail by Lokshtanov et
al. [58].
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To get a more detailed understanding of reduction rule based kernelization
results it is probably best to read some of them in detail; see, e.g., [S0, 11, 52].

Above-guarantee parameterization. Many maximization problems have the
property that, perhaps after some simple reduction rules, the optimum value OPT
for an instance x is at least (l - |x[. This entails that, if |x| > ck then the question
whether OPT > k is trivially vEs, and otherwise we have |x| < ck; this is a (trivial)
kernelization for the problem. As an example, consider the Max Cut(k) problem
where given a graph G = (V, E) and k € N we ask whether there is a bipartition
of the vertex set such that at least k edges have endpoints on both sides. It is well
known that OPT equals at least half the number m of the edges. Thus, m > 2k
gives an immediate YEs and m < 2k gives a linear kernelization (after discarding
isolated vertices). More generally, if we know that OPT € Q(|x|™) then we get a
trivial kernelization to size O(k°).

Motivated by these trivial kernelizations and the fact that the parameter needs
to be large to have a nontrivial instance, Mahajan and Raman [61] initiated the
study of problems parameterized above lower bounds. For example, they con-
sidered the Max Cut(k — %) problem asking whether there is a cut with at least
k = % + k' edges, parameterized by k' = k — %, and showed that this problem
remains fixed-parameter tractable. Gutin et al. [43] (and follow-up work of Alon
et al. [4]) made an important contribution to this direction by introducing the use
of the probabilistic method. At high level, they prove that a random solution will
exceed the lower bound by at least k with nonzero probability, provided that the
instance is sufficiently large compared to k; again (though no longer trivial) this
yields either a direct YEs or the instance is sufficiently small. Among the further
results in this direction let us point out Crowston et al. [17, 16] who obtain further
kernelization results.

Meta kernelization. The term meta kernelization refers to a series of (pos-
itive) kernelization results that apply to a large variety of graph problems when
the input graphs are restricted to (in most cases) sparse graph classes such as pla-
nar, bounded genus, or H-minor-free graphs [10, 32, 36, 37, 51, 38]. “Meta”
here means that the results apply assuming that the problem in question fulfills an
appropriate set of technical but rather general properties, obviating the need for
any problem-specific reduction rules. A key necessity (but far from sufficient) is,
thus, that the problem in question can be formalized in some general language,
e.g., monadic second order logic. The first result of this type was obtained by
Bodlaender et al. [10], namely linear and polynomial kernelizations for a wealth
of problems when restricted to planar or bounded genus graphs. Important pre-
decessors of this work are the linear kernelization for DomMNATING SET in planar
graphs by Alber et al. [3] and a more general planar kernelization result, still us-
ing problem-specific rules, by Guo and Niedermeier [41].

Most meta kernelization results are based on the following intuition: The cen-
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tral notion is that of a protrusion, which refers to a subgraph (of the input graph)
that is structurally simple and has a limited interaction with the rest of the graph.
More concretely, a protrusion has a constant size boundary of vertices that are ad-
jacent to the rest of the graph. Furthermore, it has bounded treewidth, which, for
the considered problems, implies that we have an efficient dynamic programming
routine to solve the problem on the protrusion subgraph (or any other graph of
bounded treewidth). The outcome of this dynamic programming is a set of par-
tial solutions relative to the boundary vertices alone. Intuitively, if the problem in
question has a bounded number of partial solutions relative to any constant-size
boundary, then many protrusions must give rise to the same partial solutions; this
is, roughly, captured by the notion of the problem being finite integer index. Thus,
if we can manage to compute a smaller protrusion with the same partial solutions
then this can replace the original protrusion, shrinking the overall instance size.
Thus, modulo a significant amount of technical heavy lifting (which we omit),
this yields a protrusion replacement rule that can be used to replace large pro-
trusions by smaller ones. Apart from this well-behaved interaction with dynamic
programming it is required that YEs- or No-instances of the problem in question
admit a small set of vertices whose deletion leaves a graph of bounded treewidth.
(This holds trivially, for example, for VERTEX Cover(k) or for the FEEDBACK VERTEX
SET(k) problem of deleting at most k vertices to obtain a forest.) This can be com-
bined with the topological properties of the input graph class under consideration
to prove that the graph can be decomposed into a small number of protrusions, the
so-called protrusion decomposition.

Let us conclude this part by highlighting recent papers on meta kernelization:
Kim et al. [51] recently extended the range of applicable sparse graph classes to
classes excluding any fixed graph H as a topological minor. Gajarsky et al. [36]
extended this even further to the larger classes of graphs of bounded expansion,
locally bounded expansion, and nowhere dense graphs. This, however, comes
at the price that the kernelization bounds are no longer (implicitly) in terms of
vertex-deletion distance to bounded treewidth, but instead by distance to bounded
treedepth (which cannot be avoided [36]). Note also, that, unlike previous work
where a low vertex-deletion distance to bounded treewidth is a consequence of
other problem properties, Gajarsky et al. [36] directly consider the deletion dis-
tance to bounded treedepth as the parameter. Independently, Ganian et al. [37]
also initiated a study of meta kernelization with respect to structural parameters.
Their results apply to problems on general graphs and do not require finite in-
teger index. Very recently, Garnero et al. [38] revisited the meta kernelization
framework and initiated research into making the obtained kernelization results
more explicit. At high level, this is achieved by working more closely on the
intuitive connection between meta kernelization and dynamic programming. For
an overview on earlier meta kernelization results and a more detailed explanation
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thereof we refer to the survey of Lokshtanov et al. [58].

Further new results. Last year, Wahlstrom [70] came up with an intriguing
polynomial compression for the STEINER CycLE(k) problem of finding a cycle (of
unbounded length) through a given set of k terminals in a graph. Crucially, the
result makes use of the Tutte matrix (and randomization) and, while it obtains an
equivalent instance of bounded size, it is not known whether this can be turned
into a polynomial kernelization because the output language is not known to be
in NP (the connection between compressions and kernelizations will be discussed
later).

Fomin et al. [34] proved that DommNaTING SET(k) and CONNECTED DOMINATING
SeT(k) admit linear kernels when restricted to input graphs excluding any fixed
graph H as a topological minor. This continues a sequence of results [44, 65,
59, 63, 33, 34] on kernels for (CoNneEcTED) DominaTING SET(K) in restricted graph
classes. Note that both problems are W[2]-hard on general graphs and thus do not
even admit exponential kernels unless FPT = W[2].

A recent work of Kratsch et al. [54] settled the question of whether the so-
called Point Line Cover(k) problem of covering a point set in the plane by at
most k lines admits an efficient reduction to significantly less than O(k?) points.
(The reader is invited to rediscover a simple reduction to k> points that is in the
spirit of the VErTEX Cover(k) example.) Crucially, the result that no reduction
to O(k*~®) points is possible unless the polynomial hierarchy collapses used the
full generality of Dell and van Melkebeek’s [22] lower bound framework that
applies also to oracle communication protocols. While we will discuss at length
the existing lower bound techniques (see Section 4), a discussion of the latter is
beyond the scope of this survey.

3 Formal definitions

Formally, a parameterized problem is any language Q C X* x N, where X is any
finite alphabet and N denotes the non-negative integers. The second component
k of any instance (x,k) € X* x N is called the parameter. The problem Q is
fixed-parameter tractable (FPT) if there is an algorithm A, a computable function
f: N — N, and a constant ¢ such that A correctly decides (x,k) € Q for all
(x,k) € £* x N in time f(k) - |x|°. We omit in this survey a detailed discussion of
fixed-parameter intractability, e.g., regarding fpt-reductions and the W-hierarchy.
It suffices to know that intractability is typically established by proving W[1]-
or W[2]-hardness;* note that FPT € W[1] € W[2] and it is believed that the
inclusions are strict.

4E.g., CLiqu(k) is W[1]-complete and Hrrring SeT(k) is W[2]-complete.
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A kernelization for a parameterized problem @Q is a polynomial-time algorithm
K that given any instance (x,k) € X* X N returns an instance (x’, k") such that
(x,k) € Qif and only if (x', k") € Q and with |x'|, k" < f(k) for some computable
function f: N — N. The function f is called the size of the kernelization K
and K is a polynomial (linear) kernelization if f(k) is polynomially (linearly)
bounded in k. For simplicity, we allow a kernelization to outright answer YES or
No, understanding that it could instead return any hard-wired YEs- or No-instance of
Q (of constant size). It is known that a parameterized problem is fixed-parameter
tractable if and only if it is decidable and admits a kernelization (see Theorem 1
below).

In the literature there exist two relaxed variants of kernelization: A generalized
kernelization (or bikernel) returns an output instance (x’, k’) that is with respect to
a, possibly different, parameterized problem Q. More general, a compression may
return an instance with respect to any (also unparameterized) language L C X*. All
kernelization lower bound tools in this survey, and almost all lower bounds in the
literature, imply also the same lower bounds for compressions. We will see later
(in Section 4) that lower bounds for compressions are slightly preferable, due to
greater ease of transferring them by appropriate reductions.

Theorem 1. A parameterized problem Q is fixed-parameter tractable if and only
if it is decidable and has a kernelization.

Proof. Assume that we have a kernelization for Q that reduces any instance (x, k)
to an equivalent instance (x’, k") of size at most f(k). We can then apply an ar-
bitrary algorithm for Q (guaranteed by decidability) to solve (x, k") and thereby
also (x,k). If g: N — N bounds the runtime of the assumed algorithm then the
total time investment is |x|°" for the kernelization plus g(f(k)) for the algorithm.
This is bounded by f'(k)|x|°" where f'(k) := g(f(k)), implying fixed-parameter
tractability.

For the converse, assume that we have an algorithm that solves all instances
(x,k) of Q in time f(k)|x|°. Now run this assumed algorithm for |x|°*! steps. If it
finishes then we have the correct YEs or No answer. Otherwise, it did not finish
cause f(k)[x|° > |x*!. This, however, implies |x| < f(k). Thus, either way, in
polynomial time O(|x|*!) we get an equivalent instance of size at most f(k). O

Note that the kernelizations implied by this theorem are not very useful cause
the size bound f(k) is the same f(k) as in the FPT runtime, which is usually
exponential in k. Nevertheless, the existence of exponential kernelizations for
many problems further motivates the question which of them also have polynomial
kernelizations. Conversely, if a problem is W[1]-hard and thus not FPT unless
FPT = W[1] then we also expect no kernelization.
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4 Lower bounds for kernelization

The goal of this section is to explain the basic intuition underlying known tech-
niques for lower bounds for kernelization and to give one complete set of tools for
proving them. To this end, we will formally define so-called cross-compositions
and polynomial parameter transformations as these appear very convenient to use.
Cross-composition is a unifying front end to various insightful tools, and complex-
ity theorists might prefer to directly employ these underlying results of, e.g., Dell
and van Melkebeek [22] and Drucker [26].

At high level, there are two prevalent forms of kernelization lower bounds
known so far: First, and dominantly, for a wealth of problems it has been shown
that they admit no polynomial kernelization unless NP € coNP/poly. Second,
for a smaller list of problems that do have polynomial kernels, it is known that
no kernels of size O(k°~¢) are possible, where k is the parameter and ¢ is some
constant, unless NP C coNP/poly. The assumption that NP ¢ coNP/poly (or,
equivalently, CONP ¢ NP/poly) is clearly stronger than P # NP and NP ¢ coNP
but, since its failure would imply a collapse of the polynomial hierarchy [71, 14],
it is still widely believed.

Intuition for ruling out polynomial kernels. Let us consider the NP-hard
PatH(k) problem where we are given a graph G = (V,E) and k € N with the
question of whether G contains a simple path on at least k vertices. If we com-
bine ¢ instances (G1,k),...,(G;, k) into a single one (G’, k) by letting G’ be the
disjoint union of the graphs G; then, clearly, (G’, k) is vEs if and only if at least
one (G;, k) is YEs. Intuitively, for ¢ large but polynomial in &, a kernelization ap-
plied to (G’, k) would have to determine some graphs G; that are less likely to be
ves and remove the corresponding components from G’. More concretely, if we
assume a kernelization to size k° and take ¢ = k*! then the output of the kernel-
ization applied to G’ has less than one bit per instance (G;, k). On the other hand,
the total input size is polynomial in the largest instance (G;, k) and, hence, we do
not expect that (in general) the time would suffice to solve any of the instances.
More generally, we do not expect an efficient algorithm that for s € N takes
t instances of any NP-hard problem, each of size at most s, and returns a single
instance of size polynomial in s that is YEs if at least one of the inputs is YEs.
Such an algorithm is called an or-distillation in the breakthrough lower bound
framework of Bodlaender et al. [9]; and they conjectured that no NP-hard problem
admits an or-distillation. The conjecture was proved shortly after by Fortnow and
Santhanam [35] modulo the assumption that NP ¢ coNP/poly. The analogous
conjecture for the natural variant called anp-distillation was made as well, but
it remained an open problem for five years until it was settled by an impressive
work of Drucker [26]; amongst a wide range of results on both deterministic and
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probabilistic compression (in fact also for quantum compression) Drucker proved
that the anp-distillation conjecture holds under NP ¢ coNP/poly as well.

The framework of Bodlaender et al. [9] introduced so-called or- and AND-
composition algorithms that, essentially, generalize the above example for Pata(k)
to any efficient mapping (not just disjoint union and not just for graph problems)
that encodes the or or AnND of ¢ instances with parameter value k into a single in-
stance of the same problem with parameter value k' polynomially bounded in k.
Le., given ¢ instances the obtained instance is YEs if and only if at least one respec-
tively all given instances are vEs. Similarly to the example, such a composition
together with a polynomial kernelization gives an or- or AnD-distillation. Since
proving existence of a particular algorithm (the composition) is typically easier
than ruling out an algorithm (the polynomial kernelization) proving compositions
became a very successful way of ruling out polynomial kernels. Curiously, even
before Drucker’s result [26], most lower bounds used or-compositions and only
very few proofs had to rely on the then unproven anp-distillation conjecture.

Cross-composition. 'We will now review an extension to the composition-based
framework that was introduced by Bodlaender at al. [12]. In a so-called or- resp.
AND-cross-composition the input consists of instances of any NP-hard problem,
while the output is an instance of the target parameterized problem for which
we desire a lower bound. Essentially, the parameter of the output instance must
be polynomially bounded in the largest size among input instances, which often
makes the proofs easier. In addition, there is the straightforward notion of a so-
called polynomial equivalence relation that simplifies arguments for why inputs
to a (cross-)composition may be assumed to be fairly similar (e.g., you may have
wondered why we tacitly assumed that all Pata(k) inputs have the same parame-
ter).

Despite these extensions to the composition-based framework [9, 35, 26] the
underlying ideas go through in the same way. Nevertheless, several fairly ad-hoc
tricks needed for compositions are no longer required for cross-compositions and
this front end has seen wide adoption.

Definition 1 (polynomial equivalence relation [12]). An equivalence relation R
on X* is called a polynomial equivalence relation if the following two conditions
hold:

1. There is an algorithm that given two strings x,y € X* takes time polynomial
in |x| +[y| and decides whether x and y belong to the same equivalence class.

2. For any finite set § C X* the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.
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A simple example usage of a polynomial equivalence relation for Paru(k)
instances (G;, k;) would be to declare instances (G;,k;) and (G}, k;) equivalent
if k; = k;. (As a technical remark, if & is given in binary then this would formally
allow an exponential number of equivalence classes. Thus, one usually resorts
to a dummy class containing “ill-posed” or otherwise infeasible inputs. E.g., for
PatH(k) we can make one class for all instances where k exceeds the number of
vertices since these are trivially No.)

Definition 2 (Anp/or-cross-composition [12]). Let L € X* be a language, let R be
a polynomial equivalence relation on ¥, and let Q C X* X N be a parameterized
problem. An or-cross-composition of L into Q (with respect to R) is an algorithm
that, given ¢ instances xi, X2, ..., X, € X* of L belonging to the same equivalence
class of R, takes time polynomial in }'}_, |x;| and outputs an instance (y, k) € Z*xXN
such that:

“PB”: The parameter value k is polynomially bounded in max; |x;| + log¢.

“OR”: The instance (y, k) is Yes for Q if and only if at least one instance x; is YES
for L.

An AND-cross-composition of L into Q (with respect to R) is an algorithm that,
instead, fulfills Properties “PB” and “AND”.

“AND”: The instance (y, k) is ves for Q if and only if all instances x; are YEs
for L.

We say that L or-cross-composes, respectively AND-cross-composes, into Q if a
cross-composition algorithm of the relevant type exists for a suitable relation R.

Note that the use of a polynomial equivalence relation in the definition is,
effectively, optional since R = X* X X* is a valid choice and simply makes all
inputs equivalent. The intended use of polynomial equivalence relations, however,
is to group inputs for a cross-composition such that it need only be applied to
groups of instances that are somewhat similar, thereby simplifying the necessary
constructions and gadgets.

Similar to compositions, any AND- or orR-cross-composition combined with a
polynomial kernelization creates an AND- or or-distillation. Thus, using the results
of Fortnow and Santhanam [35] and Drucker [26] we can use them to rule out
polynomial kernelizations.

Theorem 2 ([12]). If an NP-hard language L AND/OR-cross-composes into the
parameterized problem Q, then Q does not admit a polynomial kernelization or
polynomial compression unless NP C coNP/poly and the polynomial hierarchy
collapses.
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Note that the theorem also rules out polynomial compressions, which relax
polynomial kernelizations by allowing the output to be an instance (a string) with
respect to any language; in the same way this holds also for lower bounds via AND-
and or-compositions. This simplifies transferring lower bounds via appropriate
reductions (as we will see later).

An example for AND-cross-composition. We will now sketch an aNDp-cross-
composition for the EpGe CLiQuE Cover(k) problem. The question about existence
of a polynomial kernelization for Epce CriQue Cover(k) was a frequently posed
open problem (see, e.g., Guo and Niedermeier [40]) until being settled negatively
by Cygan et al. [19].

EbpGe CLIQUE CovERr(k)

Input: A graph G = (V,E) and k € N.

Parameter: k.

Question: Is there a collection of at most k cliques in G such that
each edge is contained in at least one of them?

We give an anD-cross-composition from Epce CLiQuE Cover to EpGe CLIQUE
Cover(k) following in spirit the construction of Cygan et al. [19]. (Note that Ence
CL1QuE CoveR has the same problem definition as EpGe Crique Cover(k), including
the value k € N, except for not specifying k as the parameter.) We begin by
choosing a polynomial equivalence relation. We make one equivalence class for
all instances that are trivially YEs because k exceeds the number of edges. Among
the rest, let any two instances (G;, k;) and (G, k;) be equivalent if G; and G; have
the same number of vertices and furthermore k; = k;. Finally, since we are careful
theoreticians, we devote one class to all inputs that are not valid encodings of a
graph and integer k (and which are thus ~o instances). Of course, in the following
it suffices to discuss the interesting case of inputs that are not trivially YEs or No.

Let ¢ instances from the same (nontrivial) equivalence class be given, e.g.,
(G1,k),...,(Gs, k). Let n be the number of vertices in each graph and, for con-
venience, assume that the vertices of each graph G; are numbered arbitrarily,
say Vl' = {V,"l, ey Vi,n}-

The basic idea is to start with a disjoint union of the graphs and add all edges
between different graphs (i.e., we take the join of the graphs). Then, if all instances
are YES, we may combine the ¢ times k cliques used for the graphs into k cliques
that cover all edges in graphs G;. Concretely, say that for i € {1,...,} the edges
of G; can be covered by cliques C;y,...,Cix. Then for j € {1,...,k} each set
6'1- := |J; C;; induces a clique (using join edges), and together these k cliques
cover all edges inside each graph G;.

The caveat, however, is that the combination of the cliques does not neces-
sarily cover all join edges that we introduced between different graphs G;. We

69



BEATCS no 113

handle this situation by increasing the budget and forcing inclusion of additional
O(nlogt) cliques that cover all join edges but do not contain any edge in any
graph G;. If we can ensure this, then the remaining budget of k will allow only
k further cliques, like, e.g., a s a, that must induce a k-clique cover in each
graph G;.

The idea is to add auxiliary vertices that will each be adjacent to exactly one
vertex v;, per graph G;. To ensure that we cover all edges between any graphs G;
and G| the exact choice for each auxiliary vertex depends on the binary expansion
of i and j (using that different numbers differ in at least one position, but avoiding
the use of O(¢), or worse, many extra vertices/cliques).

We introduce auxiliary vertices w,;, for all a,b € {l,...,n} and
p € {1,...,logt}. We connect a vertex w,, to vertex v;, of graph G; if the
pth bit in the binary expansion of i is even, and to v;; otherwise (if the bit is odd).
We call the obtained graph (of G;’s and auxiliary vertices) G’ and let the budget be
k' := k+n?-logt. Since we already excluded instances with k exceeding the num-
ber of edges, which is less than #?, the value k' is indeed polynomially bounded
in the largest input instance plus log z.

Let us briefly check that the obtained instance behaves as intended. Crucially,
the auxiliary vertices form an independent set and none of them is isolated. Thus,
we need to include at least one separate clique for each of them. Clearly, the
closed neighborhood of any w, ,, is a clique since all neighbors are adjacent by
join edges. Thus, a single clique per w, , is necessary and sufficient. For any
join edge from, say, v;, to v;;, we find that both vertices are contained in the
neighborhood of w,, , or wy, ., for all positions p where the binary expansions of
i and j differ (the choice of w,, or w;,,, depends on the respective parities in
position p). At this point, all join edges are covered and all edges inside graphs
G; still need to be covered by the remaining k cliques (which can be combined
over all r graphs). Thus, the instance (G’,k’) correctly encodes the ANp and by
Theorem 2 this rules out polynomial kernels and compressions for EpGe CLIQUE
Cover(k).

Polynomial parameter transformations. Before the framework of Bodlaender
et al. [9] the question for lower bounds for kernelization was frequently posed as
an open problem. It is surprising, in hindsight, that this never led to a reduction-
based study of polynomial kernels akin to the collective evidence created by NP-
complete problems. In contrast, shortly after the framework was published, it was
recognized that compositions are by no means always as easy as for Patn(k) and
may sometimes be outright impossible.

SThis problem was mainly with the original notion of compositions, where source and target
problem needed to be the same.
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It was soon recognized that having a Karp reduction from one parameterized
problem to another with the additional restriction that the output parameter is
polynomially bounded in the input parameter essentially preserves kernelization
properties (we will formalize this in a moment). This was first, implicitly, used by
Binkele-Raible [6], first made formal by Bodlaender et al. [13], and first heavily
used by Dom et al. [23]. We introduce these reductions under the widely adopted
name of polynomial parameter transformations.

Definition 3 (polynomial parameter transformation). Let Q, Q C X* X N be pa-
rameterized problems. A polynomial parameter transformation (PPT) from Q to
@ is a polynomial-time computable mapping 7r: £*XN — T*XN: (x, k) — (x', k")
such that (x, k) € Q if and only if (1, k") € @ and k' < p(k) for all (x, k) € Z* X N,
where p: N — N is some fixed polynomial. If there is such a reduction from Q to
Q@ then we write Q <, Q.

If Q <,,; @ and Q has a polynomial kernelization (or compression) then we
can take any instance (x, k) for Q, compute an equivalent instance (x’, k") of Q
with &’ polynomially bounded in &, and then apply the kernelization/compression
of @. The obtained instance, say (x”, k") of @ is ves if and only if (x, k) is YEs
for Q and its size is polynomially bounded in k. Thus, the combined algorithm
of PPT plus polynomial kernelization/compression constitutes a polynomial com-
pression for Q. This yields the following simple but useful lemma for proving
lower bounds.

Lemma 1. IfQ <,,, Q and Q admits no polynomial compression (possibly mod-
ulo some complexity assumption) then Q' admits no polynomial kernel or com-
pression (under the same assumption).

Note that to combine a PPT from Q to @ and a polynomial kernelization for
Q' into a polynomial kernelization for Q we still need to convert the output, which
is a poly(k)-sized instance for @', into an instance for Q without blowing up size
and parameter more than polynomially. If Q is NP-hard and @ € NP then we
can use the implied Karp reduction from @ to @; a technicality, however, is that
we need NP-hardness of Q for polynomially bounded value of its parameter (or,
equivalently, with parameter value encoded in unary) to ensure that there is a Karp
reduction that also implies a polynomial bound for the parameter (see Bodlaender
et al. [13]).

We will make further use of PPTs in Section 6. Let us anyway copy a nice
example from [58]: In the 2-Pata(k) problem, given (G, k) we need to find two
vertex-disjoint simple paths of length k each. The disjoint union composition
fails, since we might have two input graphs with only one k-path each. There
is, however, a simple PPT from Paru(k) to 2-Patn(k): Given a Pata(k) instance
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(G, k), simply return (G, k) where G’ is obtained from the disjoint union of G and
a k-path. Clearly, G has a k-path if and only if G’ contains two vertex-disjoint
k-paths.

Let us add to the example that there is also a simple or-cross-composition
from Paru(k) to 2-ParH(k), either by disjoint union with two copies of each input
graph or by similarly adding one additional disjoint k-path.

Polynomial lower bounds for kernelization. So far we have discussed how to
rule out polynomial kernels for certain parameterized problems. An insightful
work of Dell and van Melkebeek [22] was the first to open up the possibility of
proving polynomial lower bounds for problems that do admit some polynomial
kernelization. E.g., they showed that d-Hrrting SET(k) admits no kernelization to
size O(k??) for any fixed £ > 0 unless NP C coNP/poly. In fact, their bounds are
more general and apply also to compressions and, interestingly, to a form of oracle
communication protocol. For reasons of space (and focus) we restrict ourselves to
the goal of discussing polynomial lower bounds, but strongly suggest a follow-up
reading of [22].

The key step for getting to polynomial lower bounds was a closer inspec-
tion of Fortnow and Santhanam’s [35] proof of the or-distillation conjecture [22].
This revealed that, roughly speaking, an efficient algorithm that encodes the or of
any ¢ instances for L into an equivalent instance of L’ of length O(tlog r) implies
L € coNP/poly. More concretely, we need such an algorithm that works when
given ¢ := t(n) instances of size at most n each for any value of n, where 7 is any
polynomially bounded function. A similar statement follows for encoding the anD
of ¢ instances of L (see Theorem 4) as one of many consequences of Drucker’s
work [26].

To sketch how this gives polynomial lower bounds let us first see how it works
for ruling out all polynomial kernels. If we have an or-cross-composition of some
L into a parameterized problem that yields parameter k € O(n°) then applying any
polynomial kernelization yields a total size of O(k?) € O(n?). If we apply the
combined algorithm to ¢ = n°? instances then this makes the total size O(n°) C
O(t). Hence, for any assumed polynomial kernelization we can choose : N — N
such that we get “or of ¢ instances into O(¢) bits”, implying L € coNP/poly.

Now, assume instead that we can encode the or of ¢ instances of L of size n
each into one instance with parameter k € O(t'/>n¢). Using any kernelization with
size guarantee O(k*=°) would now give total size O(t'~*'n¢). This again, for an
appropriate function #: N — N, suffices to get “or of ¢ instances into O(¢) bits”
and, hence, L € coNP/poly.

We will next define an extension of AND/OR-cross-composition that allows for
such larger contributions of the number ¢ of instances in the parameter obtained
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by the compositions. Again, this is a front end to very insightful works [22, 26],
and, hopefully, motivates more applications of their results.

Definition 4 (anp/or-cross-composition of bounded cost [12]). An AND/ OrR-crOss-
composition of L into Q (with respect to R) of cost f(t) for t instances is an AND/OR-
cross-composition algorithm as described in Definition 2 that satisfies “CB” in-
stead of “PB”.

“CB”: The parameter k is bounded by O(f(¢) - (max; |x;|)¢), where ¢ is some con-
stant independent of ¢.

The following theorem formalizes the intuition of how the dependence on 7 in
an AND/OR-cross-composition relates to polynomial lower bounds.

Theorem 3 ([12]). Let L C X* be a language, let @ C X* X N be a parameter-
ized problem, and let d, € be positive reals. If L has an AND/OR-cross-composition
into Qwith cost f(t) = t'/4°0) where t denotes the number of instances, and Q has
a polynomial compression into an arbitrary language L' with size bound O(k?~?),
then L € coNP/poly. If, additionally, L is NP-hard, then NP C coNP/poly.

The statement for or-cross-composition was proved in [12] building on [22].
The analogous proof for AND-cross-compositions is given here for the first time.
Modulo swapping of aAND and or and avoiding the use of the oracle communication
protocol this proof is fully analogous to the or-cross-composition case. Crucially,
however, the proof depends on having a proven consequence of encoding the AND
of ¢ instances of any L into O(tlog¢) bits, which follows as a consequence of a
more powerful result of Drucker [26, 27].6

Theorem 4 (Consequence of [27, Theorem 7.1]). Let L, L’ be any languages, let
d > 0, and let t: N — N be polynomially bounded. Suppose that there exists a
polynomial-time mapping that on input of t := t(n) instances xi, ..., X, for L each
of size n computes a single instance x of size at most d - tlogt such that x € L’ if
and only if x; € L for all i. Then L € coNP/poly.

Proof. This follows as an application of the more general [27, Theorem 7.1].
First, we need to swap the role of anp and or by complementation to match [27,
Theorem 7.1]: Assume a mapping that given xi,..., x, returns x with x € L’ if
and only if x; € L for all i. If we consider L and L’ instead then we get x € L’ if
and only x; € L for at least one i. Once we have chosen all other parameters we
can thus apply our mapping as an or for L in [27, Theorem 7.1] which implies
L € NP/poly and L € coNP/poly.

The author is indebted to Andrew Drucker for clarifying how this follows from his work.
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We use the following choices for #;(n), t,(n), 3, and &(n): We have an error-
free mapping and, thus, use error bound &£(n) = 0. We set t1(n) := #(n) and
t(n) :=d - t(n) log t(n). Using the definition of  in [27, Theorem 7.1], this yields
5<1- é(t(n))"’. Since t is polynomially bounded, there are constants a, b such
that #(n) < a - n® for sufficiently large n. Our parameters fulfill the requirement of
1 —2&(n) -5 > ni in [27, Theorem 7.1] for ¢ = bd + 1:

1 1

1
P2 =02 e 2 8 a il 2

for sufficiently large n. O

Now we can explain the proof of Theorem 3. It follows the basic intuition
given earlier and is analogous to the or case in Bodlaender et al. [12].

Proof of Theorem 3 for AND-cross-compositions. Let R denote a polynomial equiv-
alence relation on X* which partitions any set of strings of length at most s into at
most O(s?) equivalence classes. Let f(f) = '/ for some constant d. Let C be
an AND-cross-composition from L into @, which maps ¢ instances of size at most s
and from the same R-equivalence class to an output instance with parameter value
bounded by O(f(¢)s¢). Finally, let K be a polynomial compression for Q into some
language L’ that given an instance with parameter k outputs an equivalent string
(with respect to L) of size bounded by h(k) = O(k*~?).

We define a polynomially bounded function 7 by #(s) := s®*¥¢. By Theo-
rem 4 it suffices to provide an appropriate encoding of the anp of 7 instances of L.

As the target language we will use aNp(L') := {(x1,...,x) | r e NAx,...,x, €
L’}. Fixing s and 7 := t(s), let ¢ instances xi, ..., x; of L each of length at most s
be given.

As a first step, we partition the strings x; according to equivalence under R,
obtaining » < O(s’) groups. Then we apply the anp-cross-composition C to

each group, obtaining r instances (yy, k1), ..., (y,, k). The parameter values k; are
bounded by O(f(r)s“). Now we apply the assumed polynomial compression K to
each instance (y;, k;), obtaining instances zi, ..., z, of the language L’. We return
the instance (z1,...,2,).

Each compressed instance z; has size at most

h(k)) = O((k)*™*) = O((f(1)s)"™®).

Thus we can bound the output size, i.e., the size of (zy,...,z,), as follows:

) (r (f(t)s“)d_g) =0 (sb (ﬁw(l)sc)d_s) -0 (Sb+c(d78)tl—§+o(l)) - 00),
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using that » < O(s”) and the following bound for s+

_ . e _ £_
Sb+c(d £) — sh+Ld .5 ce _ ¢ ce _ ti 5

e
S}

[l

where 6 = %1 > 0. (Note that =91 = O(#), for any § > 0.)

Correctness. It remains to show that the returned instance (zy,...,z,) is in-
deed an encoding of the anD of the instances xi, ..., x;. Assume first that at least
one input instance x; is a No-instance (requiring the output to be No for aAND(L")).
It follows that the corresponding instance (y;, k;) that is created by C from all
instances R-equivalent to x; must be No for Q. Accordingly, the polynomial com-
pression K transforms (y;, k;) to a No-instance z; for the language L’. Hence, the
output instance (z1, .. ., z,) is No for aNp(L").

In the remaining case all input instances xi,...,x; are YES for L. The AnD-
cross-composition C will therefore create r YEs-instances (y;, k;) for Q. These are
converted to r vEs-instances z; for L’. Hence, the returned instance (zi,...,2,) is
ves for aND(L’). Thus, we get a polynomial-time mapping fulfilling the require-
ment of Theorem 4. It follows that L € coNP/poly, as claimed. If L is NP-hard
then NP € coNP/poly. O

To conclude the section on lower bounds for kernelization, let us illustrate a
successful “design-paradigm” for proving polynomial lower bounds that has been
identified through results of Dell and van Melkebeek [22] and Dell and Marx [21].
The idea is to use a source problem that is d-partite in a sense. More strongly,
similar to, for example, problems on bipartite graphs, all the relevant information
needs to be encoded in the adjacency (or other structure) between the partite sets;
the partite sets themselves should be isomorphic over all input instances (here
polynomial equivalence relations can be of help). Thus, one can tightly encode ¢
instances of a bipartite problem by using only V7 copies each of both partite sets
and choosing a different pair for each instance. Let us perhaps make this more
concrete in the following example.

Example of a polynomial lower bound. As an illustration let us sketch an
O(n=*) lower bound for the d-HitTiNng SET(17) problem for any fixed d > 3. We
give an or-cross-composition from Hirring SET restricted to d-partite d-uniform
hypergraphs, which is NP-hard for d > 3 (cf. [42]). In that problem we have a
given partition of the ground set U into d color classes, say U = C; U...UC, with
each hyperedge containing exactly one vertex from each set C;, and the task is to
find k elements of U that intersect all edges (if possible).

Let ¢ instances (U;, F;, k) of HITTING SET on d-partite d-uniform hypergraphs be
given. For simplicity, skipping over padding arguments and choice of polynomial
equivalence relation, assume that the ground set U; of each instance is partitioned
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into d color classes, each containing exactly n vertices. As a first step, rename the
instances fromi € {1,..., 1} toi € {(i1,...,ia) | i; € {1,...,7"/?}; a simple counting
argument shows that this allows an injective renaming.

Now, rather than taking simply the disjoint union of the instances we carefully

identify the color classes of different instances. Concretely, for p € {1,...,d} and
g €{1,...,t"%} identify, vertex by vertex, the pth color class of all instances with
number i = (iy,...,i;) with i, = ¢. In this way, for each color p € {I,...,d}

we end up with #'/¢ color classes (each with n vertices) that are shared by several
instances. Let C,, for p € {1,...,d} and ¢ € {1,...,7'/4} denote the obtained
color classes.

Now, for all colors p and any two vertices u# and v in different color classes
C,4 (i.e., with different values of g) we add a new edge {u, v}. Thus, any hitting
set for the instance has to completely contain all but one color class C, , for each
color p. Let us see what happens if, taking this into account, we ask for a hitting
set of total size at most k&’ = d(t'/¢ — 1)n+k for the combined instance of d-HIrTING
SET(R).

As just observed any k’-hitting set, say S, must contain all but one color class
C,,, for each color p. Let gqy,...,q4 € {1,...,7"} such that C,, ¢ S for all
p, i.e., each g; corresponds to the color class that is not fully contained in S.
Since |S| < k' we find that the intersection of § with Cy, U ... U Cyy, is of
size at most k; let S’ denote the intersection. It follows that S’ is a k-hitting set
for all edges that are fully contained in C, 4 U ... U Cyg4,. Note that, during our
identification process, all color classes of instance i withi = (¢, .. ., g;) have been
identified with C,,...,Cyg4, and all its hyperedges are, therefore, contained in
Cig VU...UCgy,. Thus, S’ is a k-hitting set for instance i, proving that at least
one input is YEs.

For the converse, if some instance (U;, F;, k) is YEs then begin by letting S’
a k-hitting set for that instance. Leti = (ij,...,i;) be the assigned renaming
of i. Now, let § contain S’ as well as all color classes C,,, with g # i,, i.e.,
all color classes not used for instance i. Clearly, this covers all additional edges
between color classes C,,, and C,, , with g # q’. Furthermore, for every instance
V=@,...,i5) # (ii,...,1,) = iat least one position must differ, e.g., i;, # i,. But
then S already includes all vertices of C), covering all hyperedges of instance i'.
Thus, the constructed instance is YES.

To wrap up, note that the combined instance has exactly n’ = d-t'/¢-n vertices,
which is bounded by 7'/¢ times a polynomial in the largest instance size. Thus, we
have an or-cross-composition with cost /¢ implying that d-Hrrring SET(1) has no
kernelization with size O(n?~?) for any € > 0 unless NP € coNP/poly. As in [22]
the analogous bound for d-Hirting SET(k) follows immediately by noting that all
nontrivial instances have k < n.
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Further reading. We point out some more results regarding polynomial lower
bounds for concrete problems since, unlike ruling out polynomial kernels alto-
gether, this is not yet in common use. Independently from Dell and Marx [21],
Hermelin and Wu [47] formalized a form of composition algorithms with larger
dependence on the number ¢ of composed instances, which they called weak com-
positions. Both papers prove polynomial lower bounds for several standard prob-
lems when restricted to families of sets of bounded size or graphs of bounded de-
gree, respectively. A recent work of Cygan et al. [18] obtains kernelization lower
bounds for several problems when restricted to graphs of bounded degeneracy that
almost exactly match known upper bounds. Jansen [48] used the polynomial lower
bound framework to rule out sparsification for computing the treewidth of a graph
by proving that the problem admits no polynomial compression to size O(n*~®),
which would, for example, be implied by any nontrivial reduction to the number
of edges. Generally, also the initial results of Dell and van Melkebeek [22] had
sparsification lower bounds as one of their goals.

5 Representative sets and matroids

In this section we give an introduction to using representative sets and matroids
for kernelization. As a warm-up, we will begin by introducing representative sets
for set families and using them to reproduce two “classic” kernelization results,
namely polynomial kernels for d-Hrrting SeT(k) and d-SET PackinG(k). (See be-
low for problem definitions.) It is known that kernels for these two problems
can also be obtained via the Sunflower Lemma of Erdés and Rado [28]; see,
e.g., [30, 21]. The best known kernelizations for both problems are due to Abu-
Khzam [2, 1], with a slightly smaller ground set of O(k%"!) but same asymptotic
total size of O(k?logk). It is known, by work of Dell and van Melkebeek [22]
and Dell and Marx [21], that neither result can be improved to size O(k“~®) unless
NP < coNP/poly.

In the second part we move on to using representative sets on families of in-
dependent sets of a given matroid. A 1977 result of Lovasz [60] states that such
sets, of modest size, exist for every linear matroid, i.e., for every matroid that
can be represented as the column matroid of a matrix. Marx [62] observed that
Lovdsz’ proof in fact also gives rise to an efficient algorithm. Since then, repre-
sentative sets, both for set families (or, equivalently, uniform matroids) but also
for gammoids and graphic matroids, have found various applications in parame-
terized complexity for kernelization [57] and faster algorithms [31]. In particular,
Fomin et al. [31] also gave faster algorithms for finding representative sets for
both linear matroids and the special case of uniform matroids. To illustrate the
use for kernelization, we will give a fairly detailed description of the polynomial
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kernelization for DELETABLE TERMINAL MuLTiway CuT(k) obtained in [57].

Representative sets for set families. Let us jump right in and give a definition
of g-representativeness for the case of set families.

Definition 5 (g-representative set family). Let A be a family sets and let g € N. A
subset A’ C A is g-representative for A if for every set B of size at most g there
isasetA € Awith AN B = 0if and only if thereis aset A’ € A’ with A’ N B = 0.

We will later give a similar definition for representative independent sets in a
specified matroid (see Definition 6) that additionally requires A U B and A’ U B
to be independent sets of the matroid. The present definition can then be seen
as a special case by using so-called uniform matroids where all sets up to some
prescribed size are independent, but this is not at all required for understanding.
Nevertheless, the general efficient algorithm of Lovasz [60] and Marx [62] (see
also Theorem 5 below) implies the following lemma.

Lemma 2. Let A be a family of sets of size p each and let g € N. In time

polynomial in (” ;") + |A| one can compute a q-representative subset A’ C A of

size at most (”;‘1).

While the guaranteed size bound of (p;q) might seem somewhat arbitrary at

first, it is in fact tight: Consider the family A containing all (p;") subsets of size
p of the set {1,..., p + g}. Then, going over all sets B that are size g subsets of
{1,..., p + g}, we always find a unique set A € A that is disjoint from B, namely
A={l,...,p+q}\B. Thus, all sets in A must be included and the lemma is tight.
We will later make more use of the implicit observation that sets A that are unique
“partners” for some set B must be included in any g-representative subset.

Let us now see that even this simple form of using representative sets, i.e.,
without the full power of specialized matroids, already suffices to reproduce “clas-
sic” kernelization results. We begin with the d-Hrrtin SET(k) problem, defined as
follows.

d-Hitting SET(k)

Input: A universe U, a family A of subsets of U each of size at
most d, and k € N.

Parameter: k.

Question: Is there a set of at most k elements of U that intersects all
sets in A?

We sketch a kernelization; let an instance (U, A, k) be given. Using Lemma 2
with p = d and ¢ = k compute a k-representative subset A’ C A of size at
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most (k;d) € O(k?). If (U, A, k) is vEs then also (U, A’, k) must be YEs since A’ C
A. If, however, (U, A, k) is No then, in particular, no set B C U of size at most k
can be a solution for (U, A, k). In other words, for each such set B there is at
least one set A € A that avoids B, i.e., AN B = (0. Since A’ is k-representative
for A, for each choice of B we also find a set A” € A’ with A’ N B = 0, implying
that (U, A’, k) is No, too.

We remark that the reduction to |[A’| € O(k?) allows an encoding in O(k“ log d)
bits, which is essentially optimal due to the mentioned result of Dell and van
Melkebeek [22] that rules out efficient reduction to bit size O(k?®) unless
NP C coNP/poly. It is possible, however, to improve the size of the ground set
to O(k?~"), rather than the implicit O(d - k) = O(k?), using the kernelization of
Abu-Khzam [2]. (It is an interesting problem to close the wide gap between this
result and the trivial lower bound of Q(k) for the ground set size.)

Let us now consider d-SET PackiNg(k) where the argument is slightly more
involved, though certainly comparable to the less obvious application of the Sun-
flower Lemma as compared to d-Hirting SeT(k) (cf. [21]).

d-SET PackING(k)

Input: A universe U, a family A of subsets of U each of size at
most d, and k € N.

Parameter: k.

Question: Is there a selection of k sets in A that are pairwise disjoint?

Again, representative sets can be used to obtain a polynomial kernelization
whose size is essentially optimal. This time, given an instance (U, A, k) of d-
SET PackiNG(k) we compute a d(k — 1)-representative subset A" of A. Let us see
that this works correctly. Clearly, if (U, A, k) was No in the first place then the
obtained instance (U, A’, k) will be No too. Assume now that (U, A, k) is YEs.
Let Ay,...,Ar € A be a selection of k pairwise disjoint sets such that as many
sets A; as possible are also contained in A’. If A,...,A; € A then we are
done, so assume w.l.o.g. that A; ¢ A’. Then, letting B := A, U ... U A; we
note that Ay N B = 0 and that |B| < d(k — 1). It follows, since A’ is d(k — 1)-
representative for A, that there exists A} € A’ with A} N B = (0. Then, however,
we immediately see that A] € A and A/, A, ..., Ay is also a selection of k pairwise
disjoint sets but with more sets also contained in A’; a contradiction. Thus, we
must have A,,...,A; € A, and, therefore, the obtained instance (U, A’, k) is
indeed equivalent to (U, A, k).

Representative sets for matroids. We will now introduce representative sets
for families of independent sets of a given matroid. Since all further known kernel-
izations via representative sets [57] make use of a particular type of matroid called
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gammoid we will mainly focus on those. Let us recall that a matroid M = (U, I)
consists of a finite set U and a family J of subsets of U, called independent sets,
fulfilling the following properties:

1. 0er.
2. If XCYandY € J thenalso X € 7.
3. If X, Y € I with |X| < |Y] then there exists y € Y \ X such that X U {y} € 7.

We can now give the full definition of g-representative sets for families of
independent sets in a matroid. For ease of writing, let us say that an independent
set A extends an independent set Bif ANB = () and AU B is independent. Note that
independence of A U B requires independence of both A and B due to the second
matroid property.

Definition 6 (g-representativeness for families of independent sets). Let M =
(U, T) be a matroid. Let A C I be a collection of independent sets of M and let
g € N. We call a set A" C A g-representative for A if for every independent set
B of size at most g there is an A € A that extends B if and only if there is also an
A’ € A’ that extends B.

It should not come as a surprise that with the addition of matroid independence
this opens up a much bigger world of applications. The, so far, most interesting
matroids regarding kernelization applications are the gammoids (defined below).
Their independence notion is strongly related to Menger’s Theorem, and the proof
that they are indeed matroids is due to Perfect [64].

Let G = (V, E) be a graph that may have both directed and undirected edges,
and let S C V. Say thataset T C V is linked to S if there exist |T| vertex-disjoint
paths from S to 7, i.e., each vertex in T is endpoint of a different path from S.
Then the set system M = (V, 1) where I contains all sets 7 that are linked to
S is a matroid. We say that M is the gammoid on G with sources S. (We note
that often the roles of S and 7" are switched, which makes no difference regarding
what matroids are gammoids. Furthermore, restricting 7 to any subset V' C V
still yields a gammoid, and the case of V' = V is also called a strict gammoid.)

It is known that every gammoid can be represented as the (linear) indepen-
dence of column vectors of a matrix, making them linear matroids (cf. [62]). The
construction of the matrix over an appropriately large field can be made construc-
tive by an efficient, randomized algorithm but it is a big open problem whether
a deterministic construction exists. For simplicity, we hide these details in the
following theorem, noting that the general version [60, 62] holds for any linear
matroid when given the matrix representation (and without further use of random-
ization).
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Theorem 5 (simplified version of result by Lovasz [60] and Marx [62]). Let M
be a gammoid and let A = {A,, ..., A} be a collection of independent sets, each
of size p. We can find in randomized polynomial time a set A’ C A of size at
most (p ;q) that is g-representative for A.

A highly useful property of representative sets is that they can be employed
for actually finding particular objects (e.g., vertices) rather than just “blindly” dis-
carding sets (or other objects) as we did for d-HirTiNg SET(k) and d-SET PAcKING(K).
For A’ to be g-representative for (A it is required that every set B that can be ex-
tended by some A € A can also be extended by some A’ € A’. This entails,
however, that if a given A € A is unique in extending some given B then this en-
forces that A € A’; else, no set in A’ could extend B. We will return to this trick
soon.

Example application. Let us now discuss an application of Theorem 5, namely
a polynomial kernelization for the following variant of Murriway Cut(k), called
DELETABLE TERMINAL MuLtiway Cut(k):

DEeLETABLE TERMINAL MuLtiway Cut(k)

Input: A graph G = (V, E), a set of terminals § C V, and k € N.
Parameter: k.

Question: Is there a set X of at most k vertices such that in G — X no
two terminals 1,7, € § \ X are in the same connected component?

The problem can be easily seen to be NP-hard, since using terminal set S = V
requires finding a vertex cover of size at most k. Note also, that all instances with
IS] < k + 1 are trivial since this would allow deletion of all but one terminal.
Finally, unlike Murtiway Cur, which is hard already for three terminals, for any
fixed size of S we have a trivial solution if £ > |S| — 1 or else can enumerate and
test all O(|V[F) € O([V|SI-!) solution candidates in polynomial time.

The kernelization proceeds as follows: (1) We show that if an instance is YES
then there is always a solution X that allows a certain path packing from S to X.
(2) We set up a gammoid based on a graph G’ derived from G, and with sources S .
(3) We use Theorem 5 to find a superset of X of size O(k?), using the path packing
to distinguish vertices in V. (4) We briefly explain how to use this superset to
shrink the input graph G to O(k?) vertices.

Analyzing solutions. Let an instance (G, S, k) of DELETABLE TERMINAL MUL-
TiwaY Cut(k) be given. Assume that the instance is YEs and, for analysis, let X
denote a solution for (G, S, k) that contains the maximum number of terminals
from S (among solutions of size at most k). Clearly, vertices in X NS correspond
to outright deletions of terminals, whereas X, := X \ S separates the remaining
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terminals Sy := § \ X from one another. We want to establish that X, is linked to
S in a strong sense, by using Hall’s theorem.

Note that each connected component of G — X contains at most one terminal
from S ; for brevity, we will call C containing a terminal from Sy = S\ X a terminal
component. Let us say that a vertex x € X sees a terminal component C if in G
the vertex x is adjacent to a vertex of C. We extend this to sets ¥ C X by saying
that Y sees a terminal component C if at least one x € Y sees C. Intuitively, if a
vertex of X, sees some terminal components, then “putting that vertex back” into
G — X reconnects those components and terminals; ditto for ¥ C Xj.

We set up for using Hall’s Theorem: Assume that any nonempty set ¥ € X
sees at most |Y| + 1 terminal components. It follows that in G — (X \ Y) the set Y
together with these terminal components (and possibly terminal-free components)
forms a larger component with up to |Y| + 1 terminals. All other terminal compo-
nents not seen by Y are unaffected. Observe that this allows an alternative solution
by deleting any |Y| of the |Y|+1 terminals, say a set Y’ C S. This, however, contra-
dicts our choice of X since (X\ Y)UY’ would be a solution with larger intersection
with §. Thus, every Y C Xj sees at least |Y| + 2 terminal components C.

Using Hall’s Theorem it can now be checked that we can find a matching of
|Xo| + 2 terminal components to vertices in X, such that:

o Each component is matched to a vertex x € X that sees it.
e For any fixed vertex x € X, we get three components matched to x.

Now, we “trade” matched components for disjoint paths from S, to Xp: Notice
that in each component with a terminal ¢ that is seen by some x € X, we can freely
choose a path from 7 to x with all vertices but x contained in the component. Thus,
for all |Xp|+2 components we can find disjoint paths to the matched vertices in Xj.
Hence, we get a path packing with [Xo| + 2 paths from S to X, with three paths
ending in any chosen vertex x € Xj.

Setting up the gammoid. For the gammoid M we use a graph G’ that is ob-
tained from G = (V, E) by adding two so-called sink-only copies v',v"” for each
vertex v € V. A sink-only copy V' (or v") for v shares all in-neighbors with v
but has no out-neighbors (i.e., if {u,v} is an edge then we only add a directed
edge (u,v")). Thus, adding such vertices does not affect, e.g., the existence of
paths between any terminals, since they can only act as endpoints (sinks) of paths.
Using the sink-only copies, we can formalize the informal statement of three paths
ending in any x € Xj to three paths ending in {x, x’, x”’}. Let us also point out that
the gammoid setting allows trivial paths consisting of just one vertex, e.g., we have
such paths from S N X to S N X. Overall, together with the above path packing we
get that in G’ there must exist a path packing of |X|+ 2 paths from S to X U {x’, x"’}
for every choice of x € Xj.
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Applying representative sets. Now we will apply the idea that representative
sets can be used to identify particular objects. We will use Theorem 5 to compute
a k — 1 representative subset 7’ of 7" where 7 := {{v,v',v"’} | v € V}. Our goal is
to show that for all x € X, we must have {x, x’, x"} € 7. Note that the theorem
guarantees 77| € O(k%).

Our argument now depends crucially on the trick that we outlined previously:
If there exists an independent set I of M of size/rank at most k — 1 such that
{x, x’, X’} uniquely extends / then this directly implies that {x, x’, x”’} is contained
in every k — 1-representative subset 7 of 7. Recall that we already know that
XU{x’,x"}is linked to S in G’ and thus it is independent, for all x € X,. It follows
directly that {x, x’, x”’} extends the independent set X — x for all x € Xj. It remains
to prove that no other set {v,v',v"} € 7 extends X — x.

Consider first any v € X — x. In this case we have {v,V',v"}N(X—x) = {v} # 0,
implying that the set {v, V", v"’} does not extend X — x. The more interesting case is
for {v,v',v”} with v € V'\ X. First, note that for {v,V’,v"} to extend X — x requires
for (X — x) U {v,v',v"} to be linked to S in G’. A (weaker) requirement is that
{v,v,v"}is linked to § in G’ — (X — x), since any paths from S to X — x definitely
block at least X — x from being used in paths from S to {v,v",v"}.

Let us see that there cannot be three disjoint paths from S to {v,v’,v”} in
G’ — (X — x): Recall that paths cannot have sink-only copies as interior vertices,
so apart from V' and v we can use that X is a solution in graph G. At most one
of the paths can come from a terminal in the terminal component of v, and one
more path can include the vertex x. No third path is possible. Thus, we find that
no other set {v,V’, v} can extend X — x.

Since for each x € X, the set {x, x’, x””} uniquely extends X — x we get that for
all vertices x € X, we must have {x, x’, X’} € 7'. Hence, letting V(7) stand for
{v | {v,v,v"} € T}, it is guaranteed that Xy C V(7). In extension this implies
X=XoUXNS)C V(T’)US. There is a reduction rule that ensures |S| = O(k)
(see [39]), but let us omit this detail and directly assume that we have a set of
O(k?) vertices containing all terminals S as well as at least one solution X (if one
exists).

Shrinking the input graph to O(k®) vertices. We can now complete the ker-
nelization. Let W denote the established set of O(k?) vertices that is guaranteed
to completely contain at least one solution (as well as all terminals). Using this
guarantee, there is no harm in making all vertices of V \ W undeletable: For any
vertex v € V' \ W simply make the neighbors of v a clique and remove v from the
graph; this captures the intention that deleting v does not remove any connectivity
while also shrinking the graph. (Note that doing this for all vertices of V \ W at
once corresponds to the so-called rorso operation applied to W.) We obtain an
equivalent instance (G, S, k) where G is a graph on vertex set W of size at most

O(k%).
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Further results kernelization results based on matroids. Prior to the applica-
tion of representative sets for kernelization [57], the fact that gammoids admit an
efficient representation as column matroids of matrices over (sufficiently large) fi-
nite fields (cf. [62]) was used to find a (randomized) polynomial kernelization for
Opp CycLE TRANSVERSAL(k) [56], settling a well-known problem in kernelization.
At high level, a represented gammoid is used to fairly succinctly encode a fam-
ily of two-way cut queries that are sufficient to determine the status of the input
instance. In the follow-up work [57] representative set tools were used, amongst
others, to obtain somewhat more combinatorial’ kernel results based on irrelevant
vertex arguments.

Theorem 6 ([57]). The following kernelizations are possible: Aimost 2-SAT(k),
with O(k®) variables; s-Murtiway Cur(k), with O(k**') vertices; s-Murricur(k),
with O(K"Y21) vertices; Group FeepBack VERTEX SET(K), for a group of s ele-
ments, with O(k**?) vertices. All results are randomized, with failure probability
exponentially small in n.

Note that, ALmost 2-SAT(k), i.e., the task of making a 2-CNF formula satisfi-
able by deleting at most k variables, is a pivotal problem since several other prob-
lems have PPTs to it, e.g., e.g., VERTEX COVER ABOVE MATCHING, VERTEX COVER
ABove LP, and RHorN-Backpoor DELETION SET. It also directly generalizes Opp
CycLE TRANSVERSAL(K). All these problems have polynomial kernelizations due to
this connection.

Furthermore, the techniques were also used to obtain results called cut cov-
ering sets, which guarantee to include an optimal cut for each one of a (possibly
exponentially large) set of cut queries. We recall the statement for the two-way cut
setting and direct the reader to [57] for an s-multiway cut variant of the theorem.

Theorem 7 ([57]). Let G = (V, E) be a digraph and let S, T C V. Let r denote the
size of a minimum (S, T)-vertex cut (which may intersect S and T ). There exists
asetZ CV,|Z| = O(S|-I|T| - r), such that for any A C S and B C T, it holds
that Z contains a minimum (A, B)-vertex cut. We can find such a set in randomized
polynomial time with failure probability OQ27").

Further reading. The already mentioned recent paper of Fomin et al. [31] is
a recommended follow-up read. Fomin et al. obtain faster algorithms for finding
representative sets for linear matroids and for the special case of uniform matroids;
in particular the second does not require a matrix representation. Furthermore,
they explain several algorithmic applications and obtain, amongst others, the so
far fastest deterministic algorithm for Paru(k), running in time O(2.851%m log2 n).

"The underlying result of Lovdsz [60] is proved via exterior algebra, and derived algo-
rithms [62, 31] still use linear algebra tools.
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6 Turing kernelization

Already before the kernelization lower bound framework [9] several authors had
suggested the possibility of preprocessing into many independent small instances
rather than just one [29, 40]. After the framework appeared, it was noted that the
obtained lower bounds do not apply to this relaxed form of kernelization, which
makes it a possible option for avoiding lower bounds.

A Turing kernel for Leaf Out-Tree(k). A first example was soon discovered
by Binkele-Raible et al. [6]: Say that an out-tree is any directed tree with a
unique vertex of in-degree zero, called the root, and with vertices of out-degree
zero called the leaves. The LEar OuT-Treg(k) problem asks whether a given di-
graph D = (V,A) contains an out-tree with at least k leaves. Binkele-Raible
et al. [6] showed that this problem admits no polynomial kernelization unless
NP C coNP/poly (using the then new framework of Bodlaender et al. [9]). In
contrast, they proved that a variant called Rootep LEar Out-TReE(k), where in ad-
dition to D = (V, A) and k we are given a fixed vertex v € V to use as the root of
the out-tree, does admit a kernelization to O(k®) vertices (and, hence, polynomial
total size). They concluded that, since a given instance (D = (V, A), k) of LEaF
Out-Treg(k) has only |V| choices for a root v, one may preprocess the instance by
returning |V| instances (D, v, k) of Rootep LEarF OuT-TREE(k), one for each choice
of v € V. Since the latter admits a polynomial kernelization, this yields |V/| in-
stances on O(k®) vertices each. Furthermore, (D, k) is YEs for LEaAF Our-TREE(k)
if and only if at least one instance (D, v, k) is YES for RooTED LEAF OUT-TREE(K).
Altogether, the reduction of one instance of LEaAr Out-TRrEE(k) to |V| instances of
Rootep LEAF OuT-TREE(K) combined with a polynomial kernelization for the latter
gave the first example® of what is now called a (polynomial) Turing kernelization.
More specifically, it is a polynomial disjunctive kernelization since the status of
the input instance is equivalent to the disjunction (or) of the outcomes of the |V]|
reduced instances.

Turing kernelization and other variants. Given the success of the lower bound
framework and the wealth of obtained results, a notion of preprocessing that
avoids these lower bounds is of course highly interesting. Note that, from a prac-
tical perspective, a sequence of small, independent instances might also be easier
to handle (e.g., by parallelization) than a single large instance. This aspect applies
of course only to the case that the reduced instances are created in parallel, rather
than adaptively. Theoretically, also an adaptive creation of inputs is interesting;

8Binkele-Raible et al. [6] also proved analogous results for Rootep LEar Out-BrANCHING(k)
and Lear Out-BrancHING(k) where the out-tree is required to span the input graph D.
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in particular, lower bounds against adaptive (i.e., Turing) kernelization would be
very powerful. Note that this necessitates a slightly more involved definition, since
the “kernelization” needs to know the answers to already created instances before
outputting the next one. It is thus natural to formalize a Turing kernelization for
Q C ¥ X N as an efficient algorithm that given (x, k) € £* X N correctly decides
whether (x,k) € Q provided that it gets the answers to all (adaptively) created
small instances. The traditional way in computer science to formalize this is by
means of an oracle; we recall the definition given by Binkele-Raible et al. [6].

Definition 7 ([6]). A t-oracle for a parameterized problem Q is an oracle that
takes as input (x, k) with |x|, k < t and decides whether (x, k) € Q in constant time.

Definition 8 ([6]). A parameterized problem Q is said to have a g(k)-sized Turing
kernelization if there is an algorithm which given an input (x, k) together with a
g(k)-oracle for Q decides whether (x, k) € Q in time polynomial in |x| + k.

Naturally, by letting the oracle queries be to any other parameterized problem
@ or to any (classical) language L we could define variants such as generalized
Turing kernelization or Turing compression. Note, however, that using Karp re-
ductions we can easily translate oracle questions, which probably makes the dis-
tinction meaningless. In the following we will not insist on a concrete definition
and simply allow the most relaxed variant of #-sized queries to any language L.

Let us informally state also the following restricted variants of Turing kernel-
ization:

Disjunctive kernels: Like the example for Lear Out-Treg(k), given an input
(x, k), create |x]°0 instances of size bounded in k such that (x,k) is YEs
if and only if at least one output instance is YEs.

Conjunctive kernels: Given an input (x,k), create |x|°" instances of size
bounded in k such that (x, k) is vEs if and only if all output instances are
YEs. Surprisingly perhaps, we are already able to rule out polynomial con-
junctive kernels for most problems with lower bounds against polynomial
kernelization. We will recall this briefly later in this section.

Truth-table kernels: Generalizing conjunctive and disjunctive kernels one may
simply define any Boolean function (or a family thereof, one for each ar-
ity) and demand that the input is vEs if and only if the function applied to
the outcomes for all output instances (treating YEs as true and ~o as false)
evaluates to true.

Initially, only few examples of polynomial Turing kernels were found for
problems without polynomial kernels and all of them are in fact disjunctive ker-
nels [6, 5, 67]. A few more simple examples have been observed throughout the
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community. As an example, the reader is invited to consider the CLIQUE(A) prob-
lem where we seek a k-clique in a given graph G, parameterized by the maximum
degree of G. It is not hard to give both an or-(cross-)composition and a disjunctive
polynomial kernelization.

Recently discovered Turing kernels. Last year, Thomassé et al. [69] found a
polynomial Turing kernelization for INDEPENDENT SET on bull-free graphs®, where
the oracle questions are used in a dynamic programming fashion on a decomposi-
tion of the bull-free input graphs. In this case, the full power of Turing kerneliza-
tions as opposed to truth-table kernelization (or others) seems required. A similar
form of Turing kernelization was independently found by Jansen [49] more re-
cently for the PatH(k) problem restricted to planar graphs (and related cases). We
describe a simplified version of the approach taken by Jansen [49], since this re-
quires less preliminaries.

1. We are given a planar graph G = (V, E) and an integer k, and want to find out
whether G contains a simple path on at least k vertices. We will efficiently
solve the instance by making a polynomial in |V| number of oracle queries
of size polynomial in k each.

2. We apply a tree-like decomposition of the graph into its three-connected
components (attributed to Tutte). Any two incident components overlap in
at most two vertices. Roughly, this can be obtained by recursing on vertex-
separators of size at most two, until reaching a three-connected component.

3. Any three-connected component of a planar graph on at least Q(k¢) vertices
must contain a path of length at least k, for some known constant c (cf. [49]).
Thus, if the graph has a three-connected component that has size Q(k°), then
we can safely answer YEs. Otherwise, and henceforth, all three-connected
components have size O(k°).

4. If we take a leaf component then this is of size O(k¢) and we can afford an
oracle question for the longest path therein. If this returns a path of length at
least k then we can answer YEs and stop. Else, we ask for the longest paths
ending in the component or passing through it. Concretely, if, e.g., the
component has vertices p and g shared with its parent component, then we
also perform oracle questions for (1) the longest p,g-path; (2) the maximum
total length of two disjoint paths starting in p and ¢; (3) the longest path

°The so-called bull graph is obtained from a triangle by attaching a leaf each to two of its
vertices. Bull-free graphs are exactly those graphs that contain no induced subgraph (on five
vertices) that is isomorphic to the bull.
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starting in p; (4) the longest path starting in p and avoiding g; (5) the longest
path starting in g; (6) the longest path starting in ¢ and avoiding p.

5. If the computation on a component does not lead to an immediate YES an-
swer, then we encode the gained information from questions (1-6) using
annotations in the parent component, delete the present component, and
continue. Note that, in this simplified version, we tacitly used oracle ques-
tions for finding longest paths in some form of annotated graph. With a bit
more work (cf. [49]), we can avoid annotations and employ self-reduction
to find longest paths.

Jansen [49] also proved a polynomial Turing kernelization for CycLe(k) on
planar graphs, and generalized his ideas to work also on bounded degree graphs,
claw-free graphs, and K, minor graphs (for both problems). Note also that all
mentioned cases of PatH(k) and CycLe(k) remain NP-hard and have trivial or-
(cross-)compositions by disjoint union that rule out polynomial kernels (cf. [49]).
While the Tutte decomposition works on general graphs, it is crucial that the con-
sidered graph class has an inverse polynomial lower bound on the length of sim-
ple paths inside three-connected components (i.e., a component of size £ must be
known to contain a path of length at least £7°).

Ruling out polynomial conjunctive kernels. Consider a polynomial conjunc-
tive kernelization for a problem Q. On input (x, k) it will create |x|°" instances of
size polynomial in k such that the input is vEs if and only if all output instances
are YEs. (Note that, again, this will work just fine independently of whether the
outputs are for @, another problem @', or any classical language L.) Let us mod-
ify the kernelization to arbitrarily (i.e., nondeterministically) output only one of its
created instances. Clearly, if the input is YEs then all outputs are YEs and it returns
any one of them. If the input is No then at least one created output is No. Thus, by
nondeterministically selecting one output, it may falsely return a YEs instance but
at least one possible computation leads to the output of a No instance. Generally,
such kernelizations have been called co-nondeterministic kernelizations [53] for
their similarity to Turing machines for cONP. (Note that those are in general more
powerful because they are not restricted to “just” |x|°" instances but may in fact
have 2" computation paths, each with different output.)

It has been observed'? that the proof of Fortnow and Santhanam [35] for the
or-distillation conjecture applies also if the or-distillation behaves, similarly to
above, in a co-nondeterministic fashion. In the work of Dell and van Melke-
beek [22] the so-called “complementary witness lemma” holds explicitly also for
the co-nondeterministic setting. Long story short, both or-(cross-)compositions

10This is attributed to Chen and Miiller by Harnik and Naor [45].
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and polynomial kernelizations/compressions may behave co-nondeterministically
without any harm to the lower bound implications. Thus, any (possibly
co-nondeterministic) or-(cross-)composition rules out co-nondeterministic poly-
nomial kernelizations and compressions; in particular, this rules out the more re-
stricted case of polynomial conjunctive kernels for the problem in question [53].
(For more applications of co-nondeterminism we refer to [53, 55].)

Lower bounds for Turing kernels. Unlike for normal (many-one) kerneliza-
tion, there is yet no technique for ruling out polynomial Turing kernels for any
FPT problem (modulo any reasonable complexity hypothesis). The observation
applied for polynomial conjunctive kernelizations should not be expected to gen-
eralize, in particular not to the seemingly powerful adaptive setting of Turing
kernels. (Note that having any Turing kernelization again also implies fixed-
parameter tractability, and thus W[1]-hardness rules out such kernels, assuming
FPT = W[1].)

Motivated by this state of the art, Hermelin et al. [46] initiated a completeness
program centered around a newly introduced WK/MK-hierarchy of parameterized
problems.!! The starting point is the fact that results for polynomial kernelizations
transfer, modulo technical details, by polynomial parameter transformations (see
Bodlaender et al. [13]). If we relax to using generalized kernelizations or com-
pressions then results transfer directly (see, e.g., Lemma 1). In the same way, this
applies to the existence and non-existence of polynomial disjunctive, conjunctive,
truth-table, and Turing kernelizations.

Arguably the most important class in [46] is WK[1]; it is the lowest hardness
class in the hierarchy. Since a variety of problems were shown to be complete for
WK[1] we will simply list some complete problems for WK[1], MK[2], and WK[2]
below rather than giving formal definitions (and will not discuss further classes).
At high level, all WK[i] and MK[i] classes are defined as closures of certain pa-
rameterized satisfiability-related problems under PPTs. These defining problems
are reparameterizations of problems used to define the W[i] and M[i] classes from
the parameterized hierarchy of intractability (see, e.g., [30]). Motivated by the va-
riety of problems that could be classified as WK[1]-complete, Hermelin et al. [46]
conjectured that no WK[1]-hard problem admits a polynomial Turing kerneliza-
tion. Similarly to an efficient algorithm for any NP-hard problem (but maybe
not as surprising) a polynomial Turing kernelization for any WK[1]-hard problem
would be a breakthrough since none of the known hard problems (see below) seem

The hierarchy is, in a sense, a reparameterization of the W[i]- and M[i]-hierarchies in param-
eterized intractability. It subsumes a strongly related hierarchy of Harnik and Naor [45] aimed at
classical problems in relation to their witness size. A detailed discussion of the relation is given in
Hermelin et al. [46].
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particularly amenable to this (see also the discussion in [46]).
The HrrtinGg SET problem (note the unrestricted set size) nicely showcases sev-
eral levels of the hierarchy when taken under different parameterizations.

Hrrring SET

Input: A universe U, a set family ¥ C 2V and k € N.

Question: Is there a set of at most k elements of U that intersects
every set in ¥ ?

Under its standard parameter k the problem is complete for W[2] under parame-
terized reductions and, thus, not even FPT unless FPT = W[2]. Using, however,
parameters n := |U|, m := ||, or klog n it can be easily seen to be FPT. Neverthe-
less, for all three parameters it is possible to rule out polynomial kernelizations;
for the first two results this follows from work of Dom et al. [23]. Curiously, all
three parameterizations give problems that are complete for different levels of the
WK- and MK-hierarchies.

e Hirring SeT(m) is complete for WK[1] and equivalent (also under PPTs) to
problems such as CapaciTaTED VERTEX CoVER(k), CONNECTED VERTEX
Cover(k), STEINER TREE(k + f), MIN OnEs d-SAT(k), Criue(k logn), SET
Cover(n), MurricoLoreD PaTH(k), and BiNnaARy NDTM Harring(k). The latter
problem asks whether a given nondeterministic Turing machine with binary
alphabet stops within k steps.

Disyoint Paths(k) and DissoiNnt CycLes(k) are WK[1]-hard.

e Hirting SET(n) is complete for MK[2] and equivalent to problems such as
Ser Cover(m) and CNF-SAT(n).

Among hard problems for MK[2] there are, e.g., several structural parame-
terizations of DoMINATING SET(k).

e Hirring Ser(klogn) is complete for WK[2] and equivalent to SET
Cover(k log m), and DomiNaTING SET(k log ).

We refer to Hermelin et al. [46] for a more extensive list of hard and complete
problems, in particular also for MK[2] and WK][2]. The most interesting feature,
perhaps, is the richness of complete problems for WK[1]. The fact that all these
fairly different problems are equivalent for existence of polynomial Turing kernel-
izations supports the conjecture that no WK[1]-hard problem has such a kerneliza-
tion. We also refer to Hermelin et al. [46] for a discussion of why these problems
seem hard to Turing-kernelize.

A particular problem that has so far resisted a classification is PatH(k), for
which neither a polynomial Turing kernelization nor WK[1]-hardness are known.
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If we make the problem slightly richer by taking the input graph to be k-colored
and asking for a k-path containing all k colors then it becomes WK[1]-complete
[46]; Jansen [49] extended this to the special case of planar inputs, motivated
by his Turing kernelization for the un-colored version. Apart from this it would,
obviously, be of high interest to have any complexity-theoretic evidence for the
correctness of the conjecture that WK[1]-hard problems have no polynomial Tur-
ing kernels.

7 Open problems

In this section we conclude the survey with some open problems. One of the cen-
tral problems in kernelization research is certainly the understanding of possibili-
ties and limitations of Turing kernelization. Furthermore, the Turing kernelization
status of the PatH(k) problem is of particular interest since it is not known to be
hard for WK[1].

Open problem 1. Devise general upper and lower bound tools for Turing kernel-
ization.

Open problem 2. Prove or disprove the conjecture that no WK[1]-hard problem
admits a polynomial Turing kernelization.

Open problem 3. Prove or disprove the existence of a polynomial Turing kernel-
ization for Paru(k).

The randomized polynomial kernelizations for, e.g., DELETABLE TERMINAL MuUL-
Tiway Cut(k) and Opp CycLe TRANSVERSAL(k) [57], bring up the question of
whether there are also deterministic polynomial kernels for these problems. This
could be either by a derandomization of the existing approach or by completely
new methods. Note that the exponentially small error in the kernelizations makes
a lower bound against deterministic kernelizations unlikely (at least within the
current framework).

Open problem 4. Are there deterministic polynomial kernelizations for the prob-
lems covered by the matroid-based kernelization results in [57]?

Finally, we mention (and recall) two concrete parameterized problems that
have so far resisted classification into admitting or not admitting (e.g., modulo
NP & coNP/poly) a polynomial kernelization.

Open problem 5. In the Murriway Cur(k) problem we are given an undirected
graph G = (V, E), a set of terminal vertices T, and k € N with the task of deleting
at most k non-terminal vertices to disconnect all terminals. Does this problem
have a polynomial kernelization?
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Recall that the restricted variant with only a fixed number s of terminals has a
kernelization to an equivalent instance with O(k**!) vertices [57]. It is interesting
whether the occurrence of s in the exponent is necessary and, if so, whether it is
asymptotically optimal.

Open problem 6. In the DirRecTED FEEDBACK VERTEX SET(K) problem we are given
a directed graph G = (V,A) and k € N with the task to delete at most k vertices
to make the graph acyclic (if possible). Does this problem have a polynomial
kernelization?

This problem has survived, so far, the development of various upper and lower
bound techniques, and is probably the longest-standing open problem in kerneliza-
tion (and holding a solid place among established open problems in parameterized
complexity overall).
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Abstract

We study an example due to Wooldridge of a small robotic agent that will
vacuum clean a room. The room is an n X n grid and at any point the robot
can move forward one step or turn right 90 degrees. The problem is to find a
deterministic strategy for the robot in which (1) its next action only depends
on its current square and orientation (one of north, west, south, east), and
(2) all squares are visited infinitely often. We use a model checker and a
SAT solver to find such strategies, and a proof assistant to exhibit certain
symmetries in the problem.

1 Introduction

In his textbook on multiagent systems, Wooldridge [6] describes an example of
a small robotic agent that will clean up a room. Figure 1 illustrates the vacuum
world in which this robot operates. It is assumed that the room is a 3 X 3 grid,
and that the robot always starts in square (0, 0) facing north. The agent can suck
up dirt, move forward to the next square, or turn right 90°. The goal is to traverse
the room continuously searching for dirt and removing dirt. Wooldridge asks for
the construction of a deterministic, memoryless strategy which, given the current
square and orientation (one of north, west, south, east), and given whether the
robot observes dirt, specifies the next action of the agent (one of suck, forward,
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Figure 1: Vacuum world

turn). Assuming that all actions of the robot have their intended effect, this strat-
egy should ensure that the robot will visit all squares infinitely often. Wooldridge
gives a partial specification of such a strategy using a number of rules. The first
rule states that if the agent is at location (x, y) and it perceives dirt, then the pre-
scribed action is to suck up dirt.

In(x,y) A Dirt(x,y) — Do(suck)

This rule takes priority over all other possible behaviors of the agent. Next four
rules are listed which state that the robot will move from (0, 0) to (0, 1) to (0, 2)
and then to (1,2):

In(0,0) A Facing(north) A =Dirt(0,0) — Do(forward)

In(0, 1) A Facing(north) A =Dirt(0,1) — Do(forward)

In(0,2) A Facing(north) A =Dirt(0,2) — Do(turn)
In(0,2) A Facing(east) — Do(forward)

According to Wooldridge, “similar rules can easily be generated that will get the
agent to (2, 2), and once at (2, 2) back to (0,0).” The first author, however, while
diligently preparing a lecture on robotics for a freshman class, failed to find these
rules. The problem is how to return to (0, 0) after (2, 2) has been reached. While
on the way back, the robot may not revisit any square and orientation where it
has been before: in such a case, since the robot is memoryless, it will continue
forever on a loop that does not contain square (0,0). It appears that, after the
robot has followed the initial rules specified by Wooldridge, it has painted itself
in a corner and can never return to (0,0). It is not even obvious that there exists
a deterministic, memoryless strategy for the robot that visits all squares infinitely
often.
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Figure 2: Uppaal model

This note describes how we tackled this problem using a model checker, a SAT
solver, and even a proof assistant. The models and logical theories that we de-
scribe are available at the URL http://www.mbsd.cs.ru.nl/publications/
papers/fvaan/vacuumworld/.

2 Model Checking

The problem of finding strategies for the vacuum cleaning robot can easily be
encoded in a model checker. We constructed a model using the Uppaal tool [2].
Figure 2 displays the main template of our model. The model is parametrized by
a constant n, which specifies the size of the grid. We use variables x and y, which
range over type pos = {0,,...,n — 1}, to store the current position of the robot,
and a variable d, which ranges over type dir = {N,W, S, E}, to store the current
orientation. Initially, x and y equal 0, and d equals N. There are two transitions in
the model, turn_act! and forward_act!. In the turn transition, the orientation
d is updated using the function rotate, given by rotate(N) = E, rotate(E) = S,
rotate(S) = W and rotate(W) = N. A forward transition is only enabled when there
is a square in front of the robot, to prevent that the robot will hit the wall. In the
model we abstract away from the dirt sucking as this is irrelevant for our problem.

An auxiliary array variable strategy records, for each position (i, j) and
orientation k, the current strategy value, which is either undefined, forward
or turn. Initially, strategy[i][j][k] is undefined for all i, j and k. Once
strategy[i][j][k] is set to either turn or forward, it can never be changed
again. We also use auxiliary variables tcount and fcount to count the total
number of turns and forward moves, respectively.

Using the Uppaal verifier, we established that if the robot follows the rules
specified by Wooldridge, it indeed paints itself in a corner. In fact, since the
following Uppaal query does not hold for our model, there does not even exist a
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Figure 3: Two strategies with 12 (left) and 16 turns (right)

strategy that follows the rules for (0, 0) and (0, 1):

E<> (x==0 && y==0 && d==N &&
forall (i:pos) forall (j:pos) visited(i,j) &&
strategy[0] [0] [N]==forward && strategy[0][1][N]==forward)

Here E <> is Uppaal notation for the temporal operator 3¢ and means “there
exists a run leading to a state satisfying”. Predicate visited(i, j) evaluates to
true if the robot has visited square (i, j), that is, strategy[i][j][k] is defined for
some orientation k. By omitting the last two conjuncts in the above query, we can
instruct the Uppaal verifier to search for strategies that visit all squares infinitely
often. Figure 3 shows two strategies found by Uppaal. The strategy on the right
was (independently) also discovered by Bart van Thiel, one of the students from
the robotics class. The two strategies of Figure 3 differ since the left one makes
12 turns whereas the right one makes 16 turns. Clearly, the number of turns in any
strategy must be a multiple of 4. Using Uppaal we found that in fact all strategies
contain either 12, 16 or 20 turns. Figure 4 shows two strategies, found by Uppaal,
which both make 20 turns. These strategies differ since the left one contains 12
forward moves whereas the right one has 14 forward moves. It is easy to see that
the number of forward moves in any strategy must be an even number. Using
Uppaal we found that all strategies contain either 10, 12 or 14 forward moves.

In theory it is easy to enumerate all strategies using Uppaal: one repeatedly
asks Uppaal whether there exists a strategy that is different from all strategies
found thus far. In practice, however, this is quite involved, requiring either manual
entry of all strategies as part of queries, or a nontrivial script which transforms
Uppaal traces into queries. In order to obtain a complete overview of all possible
