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Dear colleagues,

As usual, the June issue of the Bulletin
will be available just before ICALP, the
flagship conference of the EATCS, which
hosts the annual meeting of the council of
our association and its general assembly.
I hope that many of you will be at ICALP
2014, which has a mouth-watering scientific
programme and an exciting collection of
cultural and social events to boot. Thore
Husfeldt and his team at the IT University
in Copenhagen are working very hard on the
final details of the organization of the
41st ICALP, which I am sure will be truly
memorable.

Apart from the invited and contributed
talks, ICALP 2014 will feature the
presentation of the EATCS Award 2014 to
Gordon Plotkin, of the Presburger Award
2014 to David Woodruff and of the Gödel
Prize 2014 to Ronald Fagin, Amnon Lotem,
and Moni Naor. Moreover, during the
conference, we will honour the first group
of EATCS Fellows, consisting of

• Susanne Albers (Technische Universität
München, Germany) for “her
contributions to the design and
analysis of algorithms, especially
online algorithms, approximation
algorithms, algorithmic game theory and
algorithm engineering”;

• Giorgio Ausiello (Universitá di Roma La
Sapienza, Italy) for “the impact of his
scientific work in the field of
algorithms and computational complexity
and for his service to the scientific
community”;
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• the late Wilfried Brauer (Technische
Universität München, Germany) for
“outstanding contributions to the
foundation and organization of the
European TCS community”;

• Herbert Edelsbrunner (Institute of
Science and Technology Austria and Duke
University, USA) for “his tremendous
impact on the field of computational
geometry”;

• Mike Fellows (Charles Darwin
University, Australia) for “his role in
founding the field of parameterized
complexity theory, which has become a
major subfield of research in
theoretical computer science, and for
being a leader in computer science
education”;

• Yuri Gurevich (Microsoft Research, USA)
for “his development of abstract state
machines and for outstanding
contributions to algebra, logic, game
theory, complexity theory and software
engineering”;

• Monika Henzinger (University of Vienna,
Austria) for “being one of the pioneers
of web algorithms, algorithms that deal
with problems of the world wide web”;

• Jean-Eric Pin (LIAFA, CNRS and
University Paris Diderot, France) for
“outstanding contributions to the
algebraic theory of automata and
languages in connection with logic,
topology, and combinatorics and service
to the European TCS community”;

• Paul Spirakis (University of Liverpool,
UK, and University of Patras, Greece)
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for “seminal papers on Random Graphs
and Population Protocols, Algorithmic
Game Theory, as well as Robust Parallel
Distributed Computing”; and

• Wolfgang Thomas (RWTH Aachen
University, Germany) for “foundational
contributions to the development of
automata theory as a framework for
modelling, analyzing, verifying and
synthesizing information processing
systems.”
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I thank the members of the award and fellow
committees for their work in the selection
of this stellar set of award recipients and
fellows. It will be a great honour to
celebrate the work of these colleagues
during ICALP 2014.

The number of submissions for ICALP 2014
was a record 484 (319 for Track A, 106 for
Track B and 59 for Track C). The number of
submissions for Track A also set a new
record for that track. The PCs for the
three tracks, which were chaired by Elias
Koutsoupias (Track A), Javier Esparza
(Track B) and Pierre Fraigniaud (Track C),
did a sterling job in the selection of the
contributed papers for the conference and
in the selection of the best papers and
best student papers.

The invited talks and the talks by the
award recipients at ICALP 2014 will be
recorded and will be streamed live during
the conference. For the first time, the
general assembly of the EATCS will also be
streamed live on the net and there will be
a live Twitter feed, which will enable our
members who are unable to attend the
conference to take an active part in the
event. I look forward to seeing the result
of this experiment, which I do believe is
worth trying for the sake of inclusiveness
and openness.

Since the February issue of the Bulletin
was published, our community has lost
Georgy Maximovich Adelson-Velsky
(1922�2014)), Alberto Bertoni (1946�2014),
Wilfried Brauer (1937�2014) and Robert
McNaughton. Adelson-Velsky is best known
for being the co-inventor of the AVL tree,



The Bulletin of the EATCS

7

which was the first known balanced binary
search tree data structure, in 1962.
Bertoni was one of the fathers of
theoretical computer science in Italy, a
member of the council of the EATCS and one
of the early founders, and former
president, of the Italian Chapter of the
EATCS. Brauer was one of the former
presidents of the EATCS and one of the
first authors in the emerging field of
theoretical computer science in the 1960s
and early 1970s. McNaughton was a pioneer
and master of the field of automata and
formal language theory. The community will
miss them.

Apart from ICALP, the EATCS is involved in
many initiatives and uses its (limited,
alas) financial resources to support young
researchers and meritorious activities in
Theoretical Computer Science. By way of
example, I remind you that the EATCS Young
Researcher School Series, will kick off
this year with a school on Automata, Logic
and Games organized by Tony Kucera.
Moreover, soon after ICALP 2014, we will
issue the first call for nominations for
the EATCS Distinguished Dissertation
Awards, which will be presented to two
outstanding doctoral theses in theoretical
computer science starting from 2015.
Finally, the EATCS Council has decided to
provide some modest financial support to
the Conference on Computational Complexity
(CCC), which, after an open discussion
involving the members of the CCC community,
recently decided to leave IEEE and to
become an independent event.

The above-mentioned activities are just a
sample of the increasingly many ones in
which the EATCS is involved. In addition,
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we are also strengthening our ties with
other sister organizations (such as the
European Association for Computer Science
Logic and the recently established ACM’s
Special Interest Group on Logic and
Computation). In particular, we are
working on stipulating reciprocity
agreements with those organizations and on
the establishment of new joint prizes.
As usual, let me remind you that you are
always most welcome to send me your
comments, criticisms and suggestions for
improving the impact of the EATCS on the
theoretical-computer-science community at
president@eatcs.org.

I hope that you will appreciate the steps
that the council of the EATCS has taken on
several fronts, even though there is still
much more that we could do if we had
suitable resources. I am truly grateful to
our institutional sponsors and to our
members for their support over the years.
If you are not already a member, I hope
that you will join the EATCS and encourage
your colleagues and students to do so. The
EATCS membership fee is low and, by
becoming a member, you will contribute to
the activities of our organization and will
support the development of theoretical
computer science, broadly construed.
I look forward to seeing many of you in
Copenhagen for ICALP 2014 and to discussing
ways of improving the impact of the EATCS
within the theoretical-computer-science
community at the general assembly.

Luca Aceto, Reykjavik, Iceland
June 2014
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Dear Reader,

I have just finished with my travel
arrangements to Copenhagen for ICALP 2014.
As you know, ICALP 2015 will be held in
Kyoto, my city. Of course I know pretty
well what ICALP meetings look like in
general, but even so the trip this time has
a bit of special meaning to me in the sense
that I need to remind myself what is
important to make the meeting more
attractive and more comfortable.

You will meet several articles/reports
related to EATCS/ICALP in the next October
issue. So, this June issue may tend to be
quiet (June is a rainy season and in fact
quiet in Japan). Well, true. But this is
even better to read technical stuff
peacefully: We have five columns including
two new ones: The Algorithmics Column by
Gerhard Woeginger and The Concurrency
Column by Nobuko Yoshida. Our community
includes a lot of different disciplines and
it is not very easy to write professional
surveys so as to be accessible from all
people. One easy answer to this problem is
just to include relatively many surveys on
different topics. Thus this issue is nice,
which I am sure will allow you to spend a
nice time in the next weekend.

Another specific point I would like to make
is the "Book Introduction by the Authors"
section. This issue includes the
contribution by Stasys Jukna about his book
"Boolean Function Complexity." If you are
interested in circuit complexity, you
definitely cannot miss this nice article (I
have a small concern that some of you even
feel that you already know all about the
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contents and do not have to buy one...) I
should strongly like to make this section
regular and one of the features of our
Bulletin. I need your help; looking
forward to receiving your suggestions
and/or information on books for this
section.

See you in Copenhagen very soon!

Kazuo Iwama, Kyoto
June 2014
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Wilfried Brauer (1937–2014) in memoriam

Personal recollections

At the end of February this year we received the sad tidings of the

passing of Wilfried Brauer. Although not quite unexpected, the tidings still

left us with a feeling of sorrow and longing. We had lost a close friend, a

remarkable scientist and an influential administrator. Wilfried was one of

the early pioneers of theoretical computer science in Europe. He was active

in the founding stages of EATCS and the IFIP working group TC–1, and

made significant contributions also to the working group TC–3. Through

his activities as EATCS President, IFIP Vice President and the Chairman

of the Gesellschaft für Informatik, as well as through his scientific work and

that of his students, Wilfried Brauer made a lasting contribution to the

theoretical computer science community. This is visible also in his many

decorations, such as honorary doctorates from the University of Hamburg

and the Freie Universität Berlin, Werner Heisenberg Medal and IFIP Isaac

L. Auerbach Award.

However, the purpose of this writing is not to dwell on such formal mat-

ters. We would rather want to bring forward happenings and recollections

from the forty years we had the privilege of knowing Wilfried and working

with him.

Wilfried could handle difficult matters in a smooth and balanced way. As

far as we remember, he never lost his temper. Another very characteristic

feature of Wilfried was that age seemed to have no influence on his outer

appearance. He was still in the new millennium the same joking boyish

Wilfried we got to know in the early 70’s.

Wilfried belonged to the early small European community working in

theoretical computer science. We got to know Wilfried and his wife Ute at

Oberwolfach meetings in the early 70’s. Wilfried seemed to know everybody

well and was interested in new emerging fields of study. Lindenmayer sys-

tems constituted such a field. Working in L systems, we got invitations to

Hamburg. During such visits we also enjoyed hospitality in Brauers’ home

at Gustav Leo Strasse.

Most of our meetings with Wilfried were connected to the work with

Springer–Verlag. The book series EATCS Monographs in Theoretical Com-
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puter Science was launched at ICALP in Antwerp in 1983. The representa-

tives of Springer–Verlag were then Gerhard Rossbach and Ingeborg Mayer.

Rossbach was replaced by Hans Wössner at the end of the 80’s.

Wilfried, the two of us and the two representatives of Springer-Verlag met

a couple of times yearly, usually at ICALP conferences and in Grzegorz’s

home in Bilthoven. Most of the time Ute accompanied Wilfried. Then

Grzegorz’s wife Maja and Ute had a special “ladies’ program”.

The Bilthoven meetings gradually developed a specific format allowing

ample time for work. Discussions continued during the Dutch breakfast by

Grzegorz and lunch with Maja’s “monograph soup” as the main course. Our

meetings often culminated with a magic show of Grzegorz. Wilfried joined

the enthusiasm of the audience.

Wilfried’s experience and personal connections were invaluable for the

success of our book series. Especially in delicate matters he was able to

provide us with important information by contacting appropriate referees.

Wilfried did not attend the last Bilthoven meeting in 2007. We sent him

a picture of owls with the text Bilthoven owls miss the other wise owl.

Wilfried and Ute became our close family friends. For instance, they

wrote a paper about the jeep problem with the subtitle How to bring a

birthday present to Salosauna. The present, a small teddy bear, became

the most precious toy for Arto’s granddaughter and was named Wilfried.

Wilfried and the bear Wilfried appeared together at the ICALP in Vienna

in 1992, as seen from photos in the EATCS Bulletin. The bear Wilfried is

still in good shape.

Wilfried was a great fan of classical music and attended concerts and

opera performances with Ute. If there was an interesting performance in

another country, the distance constituted no obstacle for them. Wilfried

explained that it is often difficult for him to get rid of thoughts concerning

work. During the overture of an opera he might still think about phone calls

he has to make. But then everything else vanishes, and he is in the world of

the opera. It was a superb present for Arto when Wilfried hosted his visit

to the Bayreuth Festival in 2005.

Our dear friend Wilfried, we miss you. We miss your wise advice and

your relaxing dinners where fish dishes had to be excluded. We miss our

discussions about professional, as well as other matters. Sit tibi terra levis.

Bilthoven and Turku, March 2014

Grzegorz Rozenberg Arto Salomaa
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Obituary

Alberto Bertoni
(1946-2014)

Alberto Bertoni passed away on February 10, 2014, after a long struggle with
a cancer that resisted surgery and therapy. This is a tremendous loss for his wife
Luciana, for his friends and colleagues, and for the community of theoretical com-
puter science in which he played a prominent role.

Alberto was born in Barlassina, Italy, the 17th of July, 1946. He obtained the
degree in Physics, cum laude, at the University of Milan, 22nd July, 1970. He
was Assistant Professor in Cybernetics at the Department of Physics, University
of Milan, from 1976 to 1980. In 1981 he obtained a position as full professor in
Computer Science and, after a short period at the University of Cosenza, he came
back to Milan and was one of the founders of the Department of Information
Sciences of the University of Milan and one of the organizers and first professors
of the degree in Information Sciences, a degree that did not exist before in Milan.
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In the booming decade from 1980 to 1990 the number of students rapidly in-
creased to about 5000, and Alberto passionately devoted much of his energies to
an intense and varied teaching activity. In 35 years he taught courses that covered
many aspects of algorithms and theoretical computer science, but also of com-
binatorics and discrete mathematics. These course ranged from first or second
year classes on Algebra, Algorithms and Data Structures, Analysis and Design of
Algorithms, Formal Languages and Compilers, to more advanced courses on Sig-
nal Processing, Neural Networks, Computability, to very specialized courses on
research related topics in the areas of Structural Complexity Theory, Algorithms
and Combinatorics, Signal Processing, Combinatorial Optimization, Game The-
ory for the PhD students in Computer Science.

His lectures were always well prepared and fascinating, and he was able to
captivate the students attention even when explaining very complex topics.

He was advisor of more than 200 laurea theses in the degrees of Computer Sci-
ence, Mathematics, Physics and more than 20 PhD theses in Computer Science,
Mathematics and Engineering.

To his disciples and advisees Alberto taught not only the notions, the methods
and the technicalities of the different topics of theoretical computer science, but
above all the love for pure research itself.

In fact, Alberto was a very gifted researcher, guided by his curiosity and en-
thusiasm, with a rare capability of identifying interesting research problems, for-
malizing them, and finding solutions.

His research activity covered an impressive range in the area of Theoretical
Computer Science: in computability and complexity, probabilistic and quantum
machines, formal languages, computational learning, theoretical aspects of neural
networks and genetic models. This research is documented by more than 120 pa-
pers in international journals and conference proceedings. In particular, in com-
plexity theory he solved open problems on probabilistic automata and studied
problems of simulation among computational models (for instance he proved that
the enumeration problems in the class #-PSPACE can be solved by arithmetic
RAMs with a polynomial number of operations) and the classification of counting
and ranking problems. Furthermore, he studied the minimum amount of resources
such as space, head inversions and non determinism degree needed to recognize
non regular languages in some models of Turing Machines. Similar techniques
were applied to picture languages, showing that the class of unary tiling recogniz-
able picture languages is characterized by languages accepted by Turing machines
with bounds on space and head inversions.

An important example of his ability to apply deep mathematical concepts to
problems arising in computer science is his proposal to use the theory of free
partially commutative monoids to model concurrent processes. This idea linked
the theory of trace languages to the more general context of formal languages, to



The Bulletin of the EATCS

15

which Alberto and his research group contributed many results on membership
problems and on characterization of classes of trace languages.

In the area of random generation and counting algorithms, he designed a linear
algorithm for random generation of words in regular languages with fixed number
of occurrences of the symbols, and also gave results on asymptotic estimation of
the number of words in regular languages with fixed number of occurrences of
the symbols, with applications to pattern statistics. More recently, he introduced
new models of quantum automata, and compared them with stochastic automata,
exploring the advantages of using quantum devices in computation over prob-
abilistic models. Furthermore, he gave significant contributions to the area of
bioinformatics, designing and experimenting supervised and unsupervised learn-
ing algorithms based on random projections with application to biomolecular data
clustering.

The Italian and European community of theoretical computer science owe
much to Alberto also for his promotional and organizing activity.

He was co-promoter of the Italian Chapter of the European Association of
Theoretical Computer Science (ICh-EATCS) and first President of the Chapter
for 6 years. He was for 6 years the Italian member in the Council of the European
Association of Theoretical Computer Science.

He contributed to the birth of the Italian Society for Neural Networks (SIREN),
and was member of its Scientific Council. He was member of the Academic Sen-
ate for the revision of the Statute of the University of Milan. He was member
of Scientific Committee of the Institute for Applied Mathematics and Informatics
of the CNR (IAMI-CNR), and member IFIP TC1. He was the Director of the
PhD school in Computer Science, Milano-Torino, for 4 years and President of the
Council of the degree in Computer Science, University of Milan, for 6 years.

He was the Director of the Department of Information Sciences, University of
Milan, for 6 years (2003-09). He was member of the programme committee of
several International Conferences (CAAP, STACS, AdPeNets, DLT, MFCS, SOF-
SEM, . . .), and of the Editorial Board of Theoretical Informatics and Applications.

Those who had the fortune to study and work with Alberto will always remember
his strong personality, his honesty, his warm friendship, his scientific generos-
ity, his clarity and originality, and also his passion for the mountains which he
transmitted to many of his students and collaborators.

Giancarlo Mauri and Nicoletta Sabadini
June 2014
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The Algorithmics Column
by

Gerhard J Woeginger

Department of Mathematics and Computer Science
Eindhoven University of Technology
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The Complexity of
Valued Constraint Satisfaction

Peter Jeavons∗ Andrei Krokhin† Stanislav Živný‡

Abstract

We survey recent results on the broad family of problems that can be
cast as valued constraint satisfaction problems. We discuss general methods
for analysing the complexity of such problems, give examples of tractable
cases, and identify general features of the complexity landscape.

1 Introduction
Computational problems from many different areas involve finding an assignment
of values to a set of variables, where that assignment must satisfy some spec-
ified feasibility conditions and optimise some specified objective function. In
many such problems the objective function can be represented as a sum of func-
tions, each of which depends on some subset of the variables. Examples include:
Gibbs energy minimisation, Markov Random Fields (MRF), Conditional Ran-
dom Fields (CRF), Min-Sum Problems, Minimum Cost Homomorphism, Con-
straint Optimisation Problems (COP) and Valued Constraint Satisfaction Prob-
lems (VCSP) [6, 23, 68, 85, 87, 89].

We focus in this article on a generic framework for such problems that cap-
tures their general form. Bringing all such problems into a common framework
draws attention to common aspects that they all share, and allows a very general
algebraic approach for analysing their complexity to be developed. The primary
motivation for this line of research is to understand the general picture of complex-
ity within this general framework, rather than to develop specialised techniques
for specific applications. We will give an overview of this algebraic approach, and
the results that have been obtained by using it.
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The generic framework we use is the valued constraint satisfaction problem
(VCSP), defined formally as follows. Throughout the paper, let D be a fixed finite
set and let Q = Q∪ {∞} denote the set of rational numbers with (positive) infinity.

Definition 1. We denote the set of all functions φ : Dm → Q by Φ(m)
D and let

ΦD =
⋃

m≥1Φ
(m)
D . We will often call the functions in ΦD cost functions over D.

Let V = {x1, . . . , xn} be a set of variables. A valued constraint over V is an
expression of the form φ(x) where x ∈ Vm and φ ∈ Φ(m)

D . The number m is called
the arity of the constraint, the function φ is called the constraint function, and the
tuple x the scope of the constraint.

We will call the elements of D labels (for variables), and say that the cost
functions in ΦD take values.

Definition 2. An instance of the valued constraint satisfaction problem (VCSP)
is specified by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels, and
an objective function Φ expressed as follows:

Φ(x1, . . . , xn) =

q∑
i=1

φi(xi) (1)

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can
appear multiple times in Φ.

The goal is to find an assignment of labels to the variables (or labelling) that
minimises Φ.

Note that the value of the function Φ for any assignment of labels to the vari-
ables in V is given by the sum of the values taken by the constraints; this value
will sometimes be called the cost of the assignment. An infinite value for any
constraint indicates an infeasible assignment.

If the constraint functions in some VCSP instance are finite-valued, i.e., take
only finite values, then every assignment is feasible, and the problem is to identify
an assignment with minimum possible cost (i.e., we need to deal only with the
optimisation issue). On the other hand, if each constraint function in an instance
takes only two values: one finite value (possibly specific to the constraint) and∞,
then all feasible assignments are equally good, and so the only question is whether
any such assignment exists (i.e., we need to deal only with the feasibility issue).
If we have neither of the above cases then we need to deal with both feasibility
and optimisation.

In Section 2 we give examples to show that many standard combinatorial op-
timisation problems can be conveniently expressed in the VCSP framework. In
Section 3 we define certain algebraic properties of the constraints that can be used
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to identify many tractable cases. Section 4 describes the basics of a recently de-
veloped general algebraic theory for analysing the complexity of different forms
of valued constraints. In Section 5 we use this algebraic theory to identify sev-
eral tractable and intractable cases, and in Section 6 we discuss approximation.
In Section 7 we discuss the oracle model for representing the objective function.
Finally, Section 8 gives a brief summary and identifies some open problems.

2 Problems and frameworks captured by the VCSP
In this section we will give examples of specific problems and previously studied
frameworks that can be expressed as VCSPs with restricted forms of constraints.

Definition 3. Any set Γ ⊆ ΦD is called a valued constraint language over D, or
simply a language. We will denote by VCSP(Γ) the class of all VCSP instances
in which the constraint functions are all contained in Γ.

Valued constraint languages may be infinite, but it will be convenient to fol-
low [11, 17] and define the complexity of a valued constraint language in terms of
its finite subsets. We assume throughout that P,NP.

Definition 4. A valued constraint language Γ is called tractable if VCSP(Γ′) can
be solved (to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ

is called intractable if VCSP(Γ) is NP-hard for some finite Γ′ ⊆ Γ.

One advantage of defining tractability in terms of finite subsets is that the
tractability of a valued constraint language is independent of whether the cost
functions are represented explicitly (say, via full tables of values, or via tables for
the finite-valued parts) or implicitly (via oracles).

Example 5 (NAE-SAT). Let D = {0, 1} and let Γnae be the language that contains
just the single ternary cost function φnae : D3 → Q defined by

φnae(x, y, z) def
=

∞ if x = y = z
0 otherwise

.

The problem VCSP(Γnae) is exactly the Not-All-Equal Satisfiability problem, also
known as the 3-Uniform Hypergraph 2-Colourability problem. This problem is
NP-hard [33], so Γnae is intractable.

Example 6 (Max-k-Cut). Let Γxor be the language that contains just the single
binary cost function φxor : D2 → Q defined by

φxor(x, y) def
=

1 if x = y
0 if x , y

.
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The problem VCSP(Γxor) corresponds to the problem of minimising the number
of monochrome edges in a k-colouring (where k = |D|) of the graph G formed
by the scopes of the constraints. This problem is known as the Maximum k-Cut
problem (or simply Max-Cut when |D| = 2), and is NP-hard [33].

Hence, for any choice of D, the language Γxor is intractable.

Example 7 (Potts model). Let ΓPotts be the language that contains all unary cost
functions and the single binary cost function φPotts: D2 → Q defined by

φPotts(x, y) def
=

{
0 if x = y
1 if x , y .

The problem VCSP(ΓPotts) corresponds to finding the minimum energy state of
the Potts model from statistical mechanics (with external field) [72]. This model
is also used as the basis for a standard Markov Random Field approach to a wide
variety of problems in machine vision [6]. For |D| = 2, the function φPotts is
submodular (see Example 18) and we will show that this implies that ΓPotts is
tractable. For |D| > 2, ΓPotts is intractable as it includes, as a special case, the
multiway cut problem, which is NP-hard [27].

Example 8 ((s, t)-Min-Cut). Let G = (V, E) be a directed weighted graph such
that for every (u, v) ∈ E there is a weight w(u, v) ∈ Q≥0 and let s, t ∈ V be
distinguished source and target nodes. Recall that an (s, t)-cut C is a subset of
vertices V such that s ∈ C but t < C. The weight, or the size, of an (s, t)-cut C
is defined as

∑
(u,v)∈E,u∈C,v<C w(u, v). The (s, t)-Min-Cut problem consists in finding

a minimum-weight (s, t)-cut in G. We can formulate the search for a minimum-
weight (s, t)-cut in G as a VCSP instance as follows.

Let D = {0, 1}. For any label d ∈ D and cost c ∈ Q, we define

ηc
d(x) def

=

0 if x = d
c if x , d

.

For any weight w ∈ Q≥0, we define

φw
cut(x, y) def

=

w if x = 0 and y = 1
0 otherwise

.

We denote by Γcut the set {η∞0 , η
∞
1 } ∪ {φ

w
cut | w ∈ Q≥0}. A minimum-weight

(s, t)-cut in a graph G with set of nodes V = {x1, . . . , xn} corresponds to the set of
variables assigned the label 0 in a minimal cost assignment to the VCSP instance
defined by

Φ(x1, . . . , xn) def
= η∞0 (s) + η∞1 (t) +

∑
(xi,x j)∈E

φ
w(xi,x j)
cut (xi, x j).
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The unary constraints ensure that the source and target nodes must be assigned
the labels 0 and 1, respectively, in any minimal cost assignment.

Furthermore, it is an easy exercise to show that any instance of VCSP(Γcut) on
n variables can be solved in O(n3) time by a reduction to (s, t)-Min-Cut and then
using the standard algorithm [35]. Hence Γcut is tractable.

Example 9 (Minimum Vertex Cover). The Minimum Vertex Cover problem asks
for a minimum size set W of vertices in a given graph G = (V, E) such that each
edge in E has at least one endpoint in W. This problem is NP-hard [33].

Let D = {0, 1}. We define

φvc(x, y) def
=

∞ if x = y = 0
0 otherwise

.

We denote by Γvc the language {φvc, η
1
0}, where η1

0 is the function defined in
Example 8 that imposes unit cost for any variable assigned the label 1. A mini-
mum vertex cover in a graph G with set of vertices V = {x1, . . . , xn} corresponds
to the set of vertices assigned the label 1 in some minimum cost assignment to the
VCSP(Γvc) instance defined by

Φ(x1, . . . , xn) def
=

∑
xi∈V

η1
0(xi) +

∑
(xi,x j)∈E

φvc(xi, x j).

The binary constraints ensure that in any minimal cost assignment at least one
endpoint of each edge belongs to the vertex cover.

Furthermore, it is easy to convert any instance of VCSP(Γvc) to an equivalent
instance of Minimum Vertex Cover by repeatedly assigning the label 1 to all vari-
ables which do not appear in the scope of any unary constraints and removing
these variables and all constraints involving them. Hence Γvc is intractable.

We will now show how several broad frameworks previously studied in the
literature can be expressed as special cases of the VCSP with restricted languages.
We will discuss algorithms and complexity classifications for them in Section 5.

Example 10 (CSP). The standard constraint satisfaction problem (CSP) over any
fixed set of possible labels D can be seen as the special case of the VCSP where all
cost functions take only the values 0 or ∞, representing allowed (satisfying) and
disallowed tuples, respectively. Such constraints and cost functions are sometimes
called crisp. In other words, the CSP can be seen as VCSP(Γcrisp), where Γcrisp is
the language consisting of all cost functions on some fixed set D with range {0,∞}.
Note that the CSP can also be cast as the homomorphism problem for relational
structures [29] (cf. Example 11).
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Since the CSP includes many known NP-hard problems, such as NAE-SAT
(Example 5) and Graph-3-Colouring, the language Γcrisp is clearly intractable.
However, many tractable subsets of Γcrisp have been identified [77, 52, 29, 11,
7, 12, 49, 3, 4], mostly through an algebraic approach whose extension we dis-
cuss in Section 4. There are many surveys on the complexity of the CSP, see the
books [25, 26], and also [14, 42].

Feder and Vardi conjectured that the CSP exhibits a dichotomy: that is, ev-
ery finite language Γ ⊆ Γcrisp is either tractable or intractable [29], thus exclud-
ing problems of intermediate complexity, as given by Ladner’s Theorem (assum-
ing P,NP) [66]. The Algebraic Dichotomy conjecture, which we state formally
and discuss in Section 5, specifies the precise boundary between tractable and
intractable crisp languages [11].

Example 11 (Graph Homomorphism). Given two digraphs G = (V(G), E(G)) and
H = (V(H), E(H)), a mapping f : V(G) → V(H) is a homomorphism from G to
H if f preserves edges, that is, (u, v) ∈ E(G) implies ( f (u), f (v)) ∈ E(H).

The problem whether an input digraph G admits a homomorphism to a fixed
digraph H is also known as the H-Colouring problem and has been actively stud-
ied in graph theory [41, 42].

For any graph H, let D = V(H) and let ΓH be the language that contains just
the single binary cost function φH : D2 → Q defined by

φH(x, y) def
=

{
0 if (x, y) ∈ E(H)
∞ otherwise .

For any digraph H, the problem VCSP(ΓH), which is a special case of the CSP
(Example 10), corresponds to the H-colouring problem, where the input graph G
is given by the scopes of the constraints. If we add all unary crisp functions to ΓH

then the resulting VCSP is known as List H-Colouring [41, 42].
It is known that both the Feder-Vardi conjecture and the Algebraic Dichotomy

conjecture are equivalent to their restrictions to the H-colouring problem [13, 29].

Example 12 (Max-CSP). An instance of the (weighted) maximum constraint sat-
isfaction problem (Max-CSP) is an instance of the CSP where the goal is to max-
imise the (weighted) number of satisfied constraints.

When seeking the optimal solution, maximising the number of satisfied con-
straints is the same as minimising the number of unsatisfied constraints. Hence
for any instance Φ of the Max-CSP, we can define a corresponding VCSP instance
Φ′ in which each constraint c of Φ is associated with a constraint over the same
scope in Φ′ which assigns cost 0 to tuples allowed by c, and cost 1 to tuples disal-
lowed by c. It follows that Max-CSP is equivalent to VCSP(ΓMax), where ΓMax is
the language consisting of cost functions whose values are restricted to zero and
one.
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For D = {0, 1}, the complexity of all subsets of ΓMax has been completely
classified in [58]. Initial results for languages over arbitrary finite sets appeared
in [15]. A complete complexity classification will be discussed in Section 5.

Example 13 (Min-Cost-Hom). Let Γunary consist of all unary cost functions and
let Γmc = Γcrisp ∪ Γunary (where Γcrisp is defined in Example 10). Problems of the
form VCSP(Γ) with Γ ⊆ Γmc have been studied under the name of the Minimum-
Cost Homomorphism problem (or Min-Cost-Hom) [39, 43, 81, 80, 85, 86]. Note
that the first three of these papers assume that Γunary ⊆ Γ, while the last three do
not. In [39, 43] Γ is assumed to be of the form {φH} ∪ Γunary, where φH is a binary
crisp cost function, as in Example 11.

In any instance of VCSP(Γmc), the crisp constraints specify the CSP part, i.e.,
the feasibility aspect of the problem, while the unary constraints specify the opti-
misation aspect. More precisely, the unary constraints specify the costs of assign-
ing labels to individual variables. Complexity classifications for special cases of
Min-Cost-Hom will be discussed in Section 5.

Example 14 (Min-Ones). An instance of the Boolean Minimum Ones (Min-Ones)
problem is an instance of the CSP over D = {0, 1} where the goal is to satisfy
all constraints and minimise the number of variables assigned the label 1. Such
instances correspond to Min-Cost-Hom instances over {0, 1} in which all unary
constraints are of the form η1

0 as defined in Example 8 (which impose a unit cost
for any variables assigned the label 1). A classification of the complexity of all
subsets of this language was obtained in [25].

Example 15 (Min-Sol). The Minimum Solution problem (Min-Sol) [53, 54] is a
generalisation of Min-Ones from Example 14 to larger sets of labels where the
only allowed unary cost function is a particular finite-valued injective function.
Thus, this problem is also a subproblem of Min-Cost-Hom. Known complexity
classifications for Min-Sol problems will be discussed in Section 5.

3 Polymorphisms and weighted polymorphisms
To develop general tools to classify the complexity of different valued constraint
languages, we will now define certain algebraic properties of cost functions.

A function f : Dk → D is called a k-ary operation on D. The k-ary projections,
defined for all 1 ≤ i ≤ k, are the operations e(k)

i such that e(k)
i (x1, . . . , xk) = xi. For

any tuples x1, . . . , xk ∈ Dm, we denote by f (x1, . . . , xk) the tuple in Dm obtained
by applying f to x1, . . . , xk componentwise.

Any valued constraint language Γ defined on D can be associated with a set of
operations on D, known as the polymorphisms of Γ, and defined as follows.



The Bulletin of the EATCS

29

Definition 16 (Polymorphism). Let φ : Dm → Q be a cost function and let
Feas(φ) = {x ∈ Dm | φ(x) is finite} be the feasibility relation of φ. We say that an
operation f : Dk → D is a polymorphism of φ if, for any x1, x2, . . . , xk ∈ Feas(φ)
we have that f (x1, x2, . . . , xk) ∈ Feas(φ).

For any valued constraint language Γ over a set D, we denote by Pol(Γ) the
set of all operations on D which are polymorphisms of all φ ∈ Γ. We denote by
Pol(k)(Γ) the k-ary operations in Pol(Γ).

Note that the projections are polymorphisms of all valued constraint languages.
For {0,∞}-valued cost functions (relations) this notion of polymorphism cor-

responds precisely to the standard notion of polymorphism for relations [5, 52].
This notion of polymorphism has played a key role in the analysis of complexity
for the CSP [52, 11]. However, for the analysis of the VCSP we need a more
flexible notion that assigns weights to a collection of polymorphisms.

Definition 17 (Weighted Polymorphism). Let φ : Dm → Q be a cost function and
let C ⊆ Pol(k)(φ) be a collection of k-ary polymorphisms. A function ω : C → Q
is called a k-ary weighted polymorphism of φ on C if it satisfies the following
conditions:

•
∑

f∈C ω( f ) = 0;

• if ω( f ) < 0, then f is a projection;

• for any x1, x2, . . . , xk ∈ Feas(φ)∑
f∈C

ω( f )φ( f (x1, . . . , xk)) ≤ 0 . (2)

We define supp(ω) = { f | ω( f ) > 0) to be the positive support of ω.

Remark. The definition of a weighted polymorphism can be re-stated in proba-
bilistic terms, as follows. Consider Inequality (2) and assume that it is non-trivial,
i.e., not all weights ω( f ) are equal to 0. Let c be the smallest (negative) weight
ω( f ) that appears there. Add

∑k
i=1 |c| · φ(e(k)

i (x1, . . . , xk)) =
∑k

i=1 |c| · φ(xi) to both
sides of Inequality (2). Note that all weights of operations on the left-hand side
are now non-negative. Normalise by dividing both sides by |c| · k and view the
(new) weights of operations on the left-hand side as a probability distribution µ
over a subset of Pol(k)(φ). We can then re-write Inequality (2) as follows:

E f∼µ[φ( f (x1, . . . , xk))] ≤ avg{φ(x1), . . . , φ(xk)}. (3)

Thus, one can identify (non-trivial) k-ary weighted polymorphisms of φwith prob-
ability distributions µ over subsets of Pol(k)(φ) satisfying Inequality (3) for all
x1, . . . , xk ∈ Feas(φ).
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This is illustrated in Figure 1, which should be read from left to right. Let
C = { f1, . . . , fn} ⊆ Pol(k)(φ) and let µ be a probability distribution on C. Starting
with the m-tuples x1, . . . , xk, we first apply operations f1, . . . , fn to these tuples
componentwise, thus obtaining the m-tuples x′1, . . . , x

′
n. Inequality 3 amounts to

comparing the average of the values of φ applied to the tuples x1, . . . , xk, which
corresponds to projections, with the weighted sum of the values of φ applied to
the tuples x′1, . . . , x

′
n, which is the expected value of φ( f (x1, . . . , xk)) as f is drawn

from µ.

x1
x2
...

xk

x′1 = f1(x1, . . . , xk)
x′2 = f2(x1, . . . , xk)

...
x′n = fn(x1, . . . , xk)

x1[1] x1[2] . . . x1[m]
x2[1] x2[2] . . . x2[m]

...
xk[1] xk[2] . . . xk[m]

x′1[1] x′1[2] . . . x′1[m]
x′2[1] x′2[2] . . . x′2[m]

...
x′n[1] x′n[2] . . . x′n[m]

φ
−→

φ(x1)
φ(x2)
...

φ(xk)


1
k

k∑
i=1

φ(xi)

≥

φ
−→

φ(x′1)
φ(x′2)
...

φ(x′n)


n∑

i=1

Pr
µ

[ fi]φ(x′i)

Figure 1: Probabilistic definition of a weighted polymorphism.

If ω is a weighted polymorphism of φ, then we say that φ admits ω as a
weighted polymorphism. We say that a language Γ admits a weighted polymor-
phism ω if ω is a weighted polymorphism of every cost function φ ∈ Γ.

Weighted polymorphisms were introduced in [19] and have allowed a general
algebraic theory of complexity for valued constraints to be developed, as we will
describe in Section 4.

Certain special kinds of weighted polymorphisms were introduced in earlier
papers, but have now been subsumed by the more general theory described here.
For example, the notion of a fractional polymorphism was introduced in [16].
For finite-valued functions, this notion coincides with the notion of a weighted
polymorphism.

A more restricted form of weighted polymorphism was introduced earlier
in [17] and is known as a multimorphism. This is essentially a k-ary weighted
polymorphism where the values of ω( f ) are all integers, and the values of ω( f )
for projection operations are all equal to −1. Using the probabilistic view, this
means that the probability of each operation in a k-ary weighted polymorphism is
of the form `/k where ` ∈ Z.
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One can specify a k-ary multimorphism as a k-tuple f = 〈 f1, . . . , fk〉 of k-ary
operations fi on D, where each operation f for which ω( f ) is positive appears
ω( f ) times, and then the definition simplifies as follows: for all x1, . . . , xk ∈ Dm,

k∑
i=1

φ( fi(x1, . . . , xk)) ≤
k∑

i=1

φ(xi) . (4)

Weighted polymorphisms (including the special cases of fractional polymor-
phisms and multimorphisms) have proved to be a valuable tool for identifying
tractable valued constraint languages, as we will illustrate in this Section.

Example 18 (Submodularity). For any finite set V , a rational-valued function h
defined on subsets of V is called a set function. A set function h is called submod-
ular if for all subsets S and T of V ,

h(S ∩ T ) + h(S ∪ T ) ≤ h(S ) + h(T ). (5)

Submodular functions are a key concept in operational research and combinatorial
optimisation (see, e.g. [30, 78, 84] for extensive information about them). They
are often considered to be a discrete analogue of convex functions. Examples
of submodular functions include cuts in graphs, matroid rank functions, and en-
tropy functions. There are combinatorial algorithms for minimising submodular
functions in polynomial time (see [78, 30], and also [51]).

If we set D = {0, 1}, then any set function h on V can be associated with
a (|V |-ary) cost function φ defined on the characteristic vectors of subsets of V .
The union and intersection operations on subsets correspond to the Min and Max
operations on the associated characteristic vectors. Hence h is submodular if and
only if the associated cost function φ satisfies the following inequality:

φ(Min(x1, x2)) + φ(Max(x1, x2)) − φ(x1) − φ(x2) ≤ 0 .

But this means that φ admits the 2-ary weighted polymorphism ωsub, defined by:

ωsub( f ) def
=


−1 if f ∈ {e(2)

1 , e(2)
2 }

+1 if f ∈ {Min,Max}
0 otherwise.

.

This is equivalent to saying that φ admits 〈Min,Max〉 as a multimorphism.

Example 19 (Generalised Submodularity). Let D be a finite lattice, i.e., a par-
tially ordered set, where each pair of elements {a, b} has a least upper bound,
∨(a, b), and a greatest lower bound, ∧(a, b). We denote by Γsub the set of all
cost functions over D that admit 〈∨,∧〉 as a multimorphism. Using a polynomial-
time strongly combinatorial algorithm for minimising submodular functions, it
was shown in [17] that Γsub is tractable when D is a totally ordered lattice (i.e., a
chain). More general lattices will be discussed in Section 5 and Section 7.
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Example 20 (Max). We denote by Γmax the set of all cost functions (over some
fixed finite totally ordered set D) that admit 〈Max,Max〉 as a multimorphism,
where Max : D2 → D is the binary operation returning the larger of its two
arguments. Note that Γmax includes all monotonic decreasing finite-valued cost
functions, as well as some non-monotonic crisp cost functions [17]. It was shown
in [17] that Γmax is tractable.

Example 21 (Min). We denote by Γmin the set of all cost functions (over some
fixed finite totally ordered set D) that admit 〈Min,Min〉 as a multimorphism,
where Min : D2 → D is the binary operation returning the smaller of its two
arguments. The tractability of Γmin was established in [17].

Example 22 (Bisubmodularity). For a given finite set V , bisubmodular functions
are functions defined on pairs of disjoint subsets of V with a requirement similar
to Inequality 5 (see [30, 71] for the precise definition). Examples of bisubmodular
functions include rank functions of delta-matroids [30].

A property equivalent to bisubmodularity can be defined on cost functions on
the set D = {0, 1, 2}. We define two binary operations Min0 and Max0 as follows:

Min0(x, y) def
=

{
0 if 0 , x , y , 0
Min(x, y) otherwise ,

Max0(x, y) def
=

{
0 if 0 , x , y , 0
Max(x, y) otherwise .

We denote by Γbis the set of finite-valued cost functions that admit 〈Min0,Max0〉

as a multimorphism. The language Γbis can be shown to be tractable using the
results of [71] (see also [30]).

The definitions of Min0 and Max0 still make sense when D = {0, 1, 2 . . . , k},
k ≥ 3. In that case, functions on D that admit 〈Min0,Max0〉 as a multimorphism
are called k-submodular; they were introduced in [46].

Example 23 (Skew Bisubmodularity). Let D = {0, 1, 2}. Recall the definition of
operations Min0 and Max0 from Example 22. We define

Max1(x, y) def
=

{
1 if 0 , x , y , 0
Max(x, y) otherwise .

A function φ: Dm → Q is called α-bisubmodular [48], for some real 0 < α ≤ 1,
if φ admits the weighted polymorphism ω defined by ω(Min0) = 1, ω(Max0) =

α, ω(Max1) = (1 − α), and ω(e(2)
1 ) = ω(e(2)

2 ) = −1. Note that 1-bisubmodular
functions are (ordinary) bisubmodular functions as defined in Example 22. It is
shown in [48] that each distinct value of α is associated with a distinct class of
α-bisubmodular functions. The tractability of α-bisubmodular valued constraint
languages will be discussed in Section 5.
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Example 24 ((Symmetric) Tournament Pair). A binary operation f : D2 → D is
called a tournament operation if (i) f is commutative, i.e., f (x, y) = f (y, x) for
all x, y ∈ D; and (ii) f is conservative, i.e., f (x, y) ∈ {x, y} for all x, y ∈ D. The
dual of a tournament operation is the unique tournament operation g satisfying
x , y⇒ g(x, y) , f (x, y).

A tournament pair is a pair 〈 f , g〉, where both f and g are tournament opera-
tions. A tournament pair 〈 f , g〉 is called symmetric if g is the dual of f .

Let Γ be an arbitrary language that admits a symmetric tournament pair as a
multimorphism. It was shown in [18], by a reduction to the minimisation problem
for submodular functions (cf. Example 19), that any such Γ is tractable. It is
shown in [62] that any finite-valued language that admits a symmetric tournament
pair multimorphism also admits the submodularity multimorphism with respect to
some totally ordered lattice on D (cf. Example 19).

Now let Γ be an arbitrary language that admits any tournament pair as a multi-
morphism. It was shown in [18], by a reduction to the symmetric tournament pair
case, that any such Γ is also tractable.

Example 25 (1-Defect). Let b and c be two distinct elements of D and let (D;<)
be a partial order which relates all pairs of elements except for b and c. We call
〈 f , g〉, where f , g : D2 → D are two binary operations, a 1-defect if f and g are
both commutative and satisfy the following conditions:

• If {x, y} , {b, c}, then f (x, y) = Min(x, y) and g(x, y) = Max(x, y).

• If {x, y} = {b, c}, then { f (x, y), g(x, y)} ∩ {x, y} = ∅, and f (x, y) < g(x, y).

The tractability of languages that admit a 1-defect multimorphism was shown
in [57], and was used in the classification of the Max-CSP over a four-element set
(see Section 5).

Example 26 (Majority). A ternary operation f : D3 → D is called a majority
operation if f (x, x, y) = f (x, y, x) = f (y, x, x) = x for all x, y ∈ D.

Let f = 〈 f1, f2, f3〉 be a triple of ternary operations such that f1, f2 and f3 are
all majority operations. Let φ : Dm → Q be an m-ary cost function that admits f as
a multimorphism. By Inequality (4), for all x, y ∈ Dm, 3φ(x) ≤ φ(x) + φ(x) + φ(y)
and 3φ(y) ≤ φ(y) + φ(y) + φ(x). Therefore, if both φ(x) and φ(y) are finite, then
we have φ(x) ≤ φ(y) and φ(y) ≤ φ(x), and hence φ(x) = φ(y). In other words, the
range of φ is {c,∞}, for some finite c ∈ Q.

Let ΓMjty be the set of all cost functions that admit as a multimorphism some
triple f = 〈 f1, f2, f3〉 of arbitrary ternary majority operations. The tractability of
ΓMjty was shown in [17].
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Example 27 (Minority). A ternary operation f : D3 → D is called a minority
operation if f (x, x, y) = f (x, y, x) = f (y, x, x) = y for all x, y ∈ D. Let ΓMnty be
the set of cost functions that admit as a multimorphism some triple f = 〈 f1, f2, f3〉

of arbitrary ternary minority operations. A similar argument to the one in Exam-
ple 26 shows that the cost functions in ΓMnty have range {c,∞}, for some finite
c ∈ Q. The tractability of ΓMnty was shown in [17].

Example 28 (MJN). Let f = 〈 f1, f2, f3〉 be three ternary operations such that f1

and f2 are majority operations, and f3 is a minority operation. Let ΓMJN be the set
of cost functions that admit f as a multimorphism. The tractability of ΓMJN was
shown in [63], generalising an earlier tractability result for a specific f of this form
from [17].

Other tractable valued constraint languages defined by weighted polymor-
phisms include the so-called L#-convex languages [30], as well as the weakly
and strongly tree-submodular languages defined in [60]. Hirai [45] recently intro-
duced a framework of submodular functions on modular semilattices (defined by a
type of weighted polymorphism) that generalises many examples given above, in-
cluding standard submodularity, k-submodularity, skew bisubmodularity, and tree
submodularity. See [45] for the natural, but somewhat technical, definition of this
very general framework.

4 A general algebraic theory of complexity
We have seen in the previous section that many tractable cases of the VCSP can
be defined by having a particular weighted polymorphism. The algebraic theory
developed in [19] establishes that, in fact, every tractable valued constraint lan-
guage can be exactly characterised by its weighted polymorphisms. This extends
(parts of) the algebraic theory previously developed for the CSP [10, 11, 52] that
has led to significant advances in understanding the landscape of complexity for
the CSP over the last 10 years (e.g., [2, 3, 4, 7, 8, 9, 12, 49, 67]). In this section,
we will give a brief overview of the main results of this new algebraic theory for
the VCSP. We refer the reader to [19] for full details and proofs.

We first recall some basic terminology from universal algebra [5, 79]. We
denote by OD the set of all finitary operations on D and by O(k)

D the k-ary oper-
ations in OD. Let f ∈ O(k)

D and g1, . . . , gk ∈ O(`)
D . The superposition of f and

g1, . . . , gk is the `-ary operation f [g1, . . . , gk] such that f [g1, . . . , gk](x1, . . . , x`) =

f (g1(x1, . . . , x`), . . . , gk(x1 . . . , x`)).
A set F ⊆ OD is called a clone of operations if it contains all the projections on

D and is closed under superposition. It is easy to verify that the set of operations
Pol(Γ) is a clone. Clones are actively studied in universal algebra; for example,
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all (countably many) clones on D = {0, 1} are known, but the situation is known
to be much more complicated for larger sets D (see, e.g., [5, 79]).

For each F ⊆ OD we define Clone(F) to be the smallest clone containing F.
For any clone C, we use C(k) to denote the k-ary operations in C.

Now we consider the effect of extending a valued constraint language Γ ⊆ ΦD

to a possibly larger valued constraint language. We first define and study a notion
of expressibility for valued constraint languages. This notion has played a key role
in the analysis of complexity for the CSP and VCSP [11, 52, 17, 89].

Definition 29. We say that an m-ary cost function φ is expressible over a con-
straint language Γ if there exists a instance Φ ∈ VCSP(Γ) with variables V =

{x1, . . . , xn, y1, . . . , ym}, such that

φ(y1, . . . , ym) = min
x1,...,xn

Φ(x1, . . . , xn, y1, . . . , ym) .

Definition 30. A valued constraint language Γ ⊆ ΦD is called a weighted rela-
tional clone if it is closed under expressibility, scaling by non-negative rational
constants, and addition of rational constants. We define wRelClone(Γ) to be the
smallest weighted relational clone containing Γ.

Theorem 31 ([19]). A valued constraint language Γ is tractable if wRelClone(Γ)
is tractable and intractable if wRelClone(Γ) is intractable.

Example 32. By Theorem 31, and Examples 5 and 6, in order to show that Γ is
an intractable language it is sufficient to show that φnae or φxor is in wRelClone(Γ).
We discuss general reasons for intractability of constraint languages in Section 5.

We now develop tools that will allow an alternative characterisation of any
weighted relational clone.

Definition 33. We define a k-ary weighting of a clone C to be a function ω :
C(k) → Q such that ω( f ) < 0 only if f is a projection and∑

f∈C(k)

ω( f ) = 0 .

We denote by WC the set of all possible weightings of C and by W(k)
C the set of

k-ary weightings of C.

Since a weighting is simply a rational-valued function satisfying certain linear
inequalities it can be scaled by any non-negative rational to obtain a new weight-
ing. Similarly, any two weightings of the same clone of the same arity can be
added to obtain a new weighting of that clone.

The notion of superposition can also be extended to weightings in a natural
way, by forming a superposition with each argument of the weighting, as follows.
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Definition 34. For any clone C, any ω ∈ W(k)
C and any g1, g2, . . . , gk ∈ C(`), we

define the superposition of ω and g1, . . . , gk, to be the function ω[g1, . . . , gk] :
C(`) → Q defined by

ω[g1, . . . , gk]( f ′) def
=

∑
f∈C(k)

f [g1,...,gk]= f ′

ω( f ) . (6)

It follows immediately from the definition of superposition that the sum of the
weights in any superposition ω[g1, . . . , gk] is equal to the sum of the weights in ω,
which is zero, by Definition 33. However, it is not always the case that an arbitrary
superposition satisfies the other condition in Definition 33, that negative weights
are only assigned to projections. Hence we make the following definition:

Definition 35. If the result of a superposition is a valid weighting, then that su-
perposition will be called a proper superposition.

Definition 36. A weighted clone, W, is a non-empty set of weightings of some
fixed clone C which is closed under non-negative scaling, addition of weightings
of equal arity, and proper superposition with operations from C. The clone C is
called the support of W.

Example 37. For any clone, C, the set WC containing all possible weightings of
C is a weighted clone with support C.

Example 38. For any clone, C, the set W0
C containing all zero-valued weightings

of C is a weighted clone with support C. W0
C contains exactly one weighting of

each possible arity, which assigns the value 0 to all operations in C of that arity.

Weighted clones were introduced only very recently and not much is known
about them (in comparison with ordinary clones). Some initial study of weighted
clones can be found in [19, 24].

Given a cost function φ, some weightings will satisfy the conditions of Defi-
nition 17, and hence be weighted polymorphisms of φ.

Definition 39. For any Γ ⊆ ΦD, we denote by wPol(Γ) the set of all weightings
of Pol(Γ) which are weighted polymorphisms of all cost functions φ ∈ Γ.

To define a mapping in the other direction, we need to consider the union
of the sets WC over all clones C on some fixed set D, which will be denoted
WD. If we have a set W ⊆ WD which may contain weightings of different clones
over D, then we can extend each of these weightings with zeros, as necessary,
so that they are weightings of the same clone C, where C is the smallest clone
containing all the clones that are supports of weightings in W. For any set W ⊆

WD, we define wClone(W) to be the smallest weighted clone containing this set
of extended weightings obtained from W.
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Figure 2: Galois connection between ΦD and WD.

Definition 40. For any W ⊆WD, we denote by Imp(W) the set of all cost functions
in ΦD which admit all weightings ω ∈ W as weighted polymorphisms 1.

It follows immediately from the definition of a Galois connection [5] that, for
any set D, the mappings wPol and Imp form a Galois connection between WD

andΦD, as illustrated in Figure 2. A characterisation of this Galois connection for
finite sets D is given by the following theorem from [19]:

Theorem 41 (Galois Connection for Valued Constraint Languages [19]).

1. For any finite D, and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).

2. For any finite D and any finite W ⊆WD, wPol(Imp(W)) = wClone(W).

1The name Imp is chosen to suggest that such cost functions are improved by weightings in W.
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It follows that to identify all tractable valued constraint languages on a finite
set D it is sufficient to study the possible weighted clones on D. This provides a
new approach to the identification of tractable cases, which we hope will prove to
be as successful as the algebraic approach has been in the study of the CSP.

The Galois connection described in Theorem 41 can be used to derive neces-
sary conditions for tractability. It is shown in [19] that every tractable valued con-
straint language must have a weighted polymorphism that assigns positive weight
to certain specific kinds of operations.

The algebraic theory of the CSP extends beyond clones to finite algebras and
varieties of algebras (see [10, 11, 67], see also the surveys in [26]). This extension
explains why the complexity of a (crisp) language is determined by the identi-
ties satisfied by its polymorphisms, which is why we usually define the relevant
operations by identities. This extension was instrumental in obtaining most state-
of-the-art results in this area (e.g. [2, 3, 4, 7, 8, 9, 12, 49, 67]). An initial study of
a similar extension of the algebraic theory for the VCSP can be found in [73].

A valued constraint language Γ is called a core if every unary weighted poly-
morphism ω of Γ has the property that every operation f ∈ supp(ω) is surjective.
Intuitively, a valued constraint language Γ defined on D is a core if no label x ∈ D
can be removed without losing solutions. In other words, for every a ∈ D there
is an instance Φa ∈ VCSP(Γ) such that a appears in every optimal solution to
Φa [48]. Furthermore, a language Γ is called a rigid core if Pol(1)(Γ) contains only
the unary projection e(1)

1 . In this case, all operations in Pol(Γ) must be idempotent,
i.e., satisfy the identity f (x, . . . , x) = x.

Generalising the arguments used for the CSP [11] and finite-valued languages
[48, 83], one can show that the search for tractable valued constraint languages
can be restricted to languages that are rigid cores, see [73]. This technical re-
striction has very important implications because the structural theory of finite
algebras works much better for idempotent operations (and idempotent algebras
and varieties), see, e.g. [2, 3, 4, 7, 8, 12, 49, 67, 69]

5 Algorithms and complexity classifications
A curious feature of research into the tractability of constraint languages is that
all languages known to be tractable have been shown tractable by using very few
algorithmic techniques.

Despite many tractability results concerning crisp languages (i.e., the CSP),
only two algorithmic techniques seem to be sufficient, and the applicability of
each of them individually has been characterised by specific algebraic conditions.
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The first technique is based on enforcing local consistency, which is a natural
algorithm for dealing with (crisp) constraints. Roughly, this algorithm, for a given
CSP instance, starts by adding a new constraint for each subset of variables of
bounded size, the new constraints initially allowing all tuples. Then the algorithm
repeatedly discards (i.e., disallows) tuples of labels in the new constraints that
are inconsistent with at least one constraint in the instance. Eventually, either all
assignments are discarded or else local consistency is established; this procedure
takes polynomial time for any fixed D and any fixed bound on the size of subsets.
The former case implies no feasible assignments. One says that a CSP is solved by
local consistency if the latter case implies the existence of a feasible assignment.
The power of local consistency (i.e., a precise characterisation of crisp languages
that give rise to VCSP instances solvable by some form of local consistency) has
recently been established [4, 8]. A k-ary (k ≥ 2) idempotent operation f : Dk → D
is called a weak near-unanimity operation if, for all x, y ∈ D,

f (y, x, x, . . . , x) = f (x, y, x, x, . . . , x) = f (x, x, . . . , x, y).

Theorem 42 (Bounded Width [4, 8]). Let Γ be a crisp language that is a rigid
core. VCSP(Γ) is solvable by local consistency if and only if Pol(Γ) contains
weak near-unanimity operations of all but finitely many arities.

Remark. One of many equivalent forms of the Algebraic Dichotomy conjecture [11]
mentioned in Example 10 is the following: A crisp language Γ that is a rigid core
is tractable if and only if Pol(Γ) contains a weak near-unanimity operation. Crisp
rigid cores Γ that do not satisfy this condition are known to be NP-complete [11].
This reformulation of the conjecture follows from [69] via [10] (see also [3]).

The second standard algorithmic technique for the CSP is based on the prop-
erty of having a polynomial-sized representation (a generating set) for the solu-
tion set of any instance [9, 49]. Roughly, the algorithm works by starting from
the empty set and adding constraints in an instance one by one while maintain-
ing (in polynomial time) a small enough representation of the current solution set
(of feasible assignments). At the end (i.e., after all constraints have been added),
either this representation is non-empty and contains a solution to the instance or
else there is no solution. In a way, this technique is a generalisation of Gaussian
elimination. This algorithm is often called “few subpowers” because it is related
to a certain algebraic property to do with the number of of subalgebras in powers
of an algebra. The power of this algorithm was established in [49]. A k-ary (k ≥ 3)
operation f : Dk → D is called an edge operation if, for all x, y ∈ D,

f (y, y, x, x, . . . , x) = f (y, x, y, x, x, . . . , x) = x

and

f (x, x, x, y, x, . . . , x) = f (x, x, x, x, y, x, . . . , x) = f (x, . . . , x, y) = x.
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Theorem 43 (Few Subpowers [49]). Let Γ be a crisp language. Then VCSP(Γ) is
solvable by the few subpowers algorithm if Pol(Γ) contains an edge operation.

The converse to this theorem is true in the following sense: the absence of edge
operations from Pol(Γ) implies that the presence of small enough representations
is not guaranteed, see [49] for details. Interestingly, the few subpowers algorithm
makes use of the actual edge operations in its work (in contrast with bounded
width, where the weak near-unanimity operations only guarantee correctness).

It is natural to try to extend the conditions characterising the applicability of
these two algorithms to the VCSP, and to investigate whether valued constraint
languages satisfying these algebraic conditions are also tractable. However, so far
this approach is largely unexplored. Some forms of local consistency techniques
have been generalised to the VCSP [20], but their power is not fully understood.

For the general VCSP another algorithm, based on linear programming, has
been the most thoroughly investigated. Every VCSP instance has a natural linear
programming relaxation called the basic LP relaxation (BLP). For an instance Φ

defined by Φ(x) =
∑q

i=1 φi(xi), with set of variables V , the associated LP instance
BLP(Φ) is defined as follows:

BLP(Φ) def
= min

q∑
i=1

∑
si∈Dxi

φi(si) λi,si (7a)

s.t.
∑

si∈Dxi | si(x)=a

λi,si = µx(a), 1 ≤ i ≤ q, x ∈ xi, a ∈ D (7b)∑
a∈D

µx(a) = 1, x ∈ V (7c)

λi,si = 0, 1 ≤ i ≤ q, φi(si) = ∞ (7d)

We minimise over the variables µx(a), where x ∈ V and a ∈ D, and λi,si , where
1 ≤ i ≤ q and si ∈ Dxi , that take on real values in the interval [0, 1]. These
variables can be seen as probability distributions on D and Dxi , respectively. The
marginalization constraints (7b) impose that µx is the marginal of λi,si , for each
constraint and each variable x in the scope of that constraint. Note that terms
in (7a) corresponding to (7d) are assumed to be equal to 0.

We remark that an LP relaxation of the VCSP, similar or closely related to (7),
has been proposed independently by many authors; we refer the reader to [62] and
the references therein.

Given a VCSP instance Φ, we say that BLP solves Φ if the optimal value of
BLP(Φ) is equal to the optimal value of Φ. Moreover, we say that BLP solves
a valued constraint language Γ if BLP solves every instance Φ ∈ VCSP(Γ). It
is shown in [62] that in all cases where BLP solves Γ, a standard self-reduction
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technique can be used to obtain an assignment that minimises any Φ in VCSP(Γ)
in polynomial time. Hence if BLP solves Γ, then Γ is tractable.

The power of BLP for valued constraint languages was fully characterised
in [82]. To state this result, we first introduce some further terminology about op-
erations. A k-ary operation f : Dk → D is called symmetric if for every permuta-
tion π on {1, . . . , k}, f (x1, . . . , xk) = f (xπ(1), . . . , xπ(k)). A weighted polymorphism
ω is called symmetric if supp(ω) is non-empty and contains symmetric operations
only. Finally, we say that an operation f is generated from a set of operations
F ⊆ OD if f ∈ Clone(F).

Theorem 44 (Power of BLP for Arbitrary Languages [82]). Let Γ be a valued
constraint language. Then the following are equivalent:

1. BLP solves Γ;

2. For every k ≥ 2, Γ admits a k-ary symmetric weighted polymorphism;

3. For every k ≥ 2, Γ admits a weighted polymorphism (not necessarily k-ary)
ωk such that supp(ωk) generates a symmetric k-ary operation.

It is unknown whether the conditions in Theorem 44 are decidable. Never-
theless, condition (3) has turned out to be very useful for proving the tractability
of many valued constraint languages. A binary operation f : D2 → D is called
a semilattice operation if f is associative, commutative, and idempotent. Since
any semilattice operation trivially generates symmetric operations of all arities,
Theorem 44 shows that any valued constraint language with a binary weighted
polymorphism whose positive support includes a semilattice operation is solv-
able using the BLP. This immediately implies that all of the following cases are
solvable using the BLP, and hence tractable: languages with a (generalised) sub-
modular multimorphism (Example 19), a bisubmodular multimorphism (Exam-
ple 22), a symmetric tournament pair multimorphism (Example 24), or a skew
bisubmodular weighted polymorphism (Example 23), or the weighted polymor-
phisms describing submodularity on modular semilattices [45]. Moreover, a not
very difficult argument can be used to show that languages with a 1-defect multi-
morphism (Example 25) also satisfy condition (3) of Theorem 44 [82], and thus
are tractable.

For valued constraint languages where the cost functions take only finite val-
ues, this result has been strengthened even further [82, 61], see also [62].

Theorem 45 (Power of BLP for Finite-Valued Languages [82, 61]). Let Γ be
a valued constraint language where every cost function takes only finite values.
Then the following are equivalent:

1. BLP solves Γ;
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2. For every k ≥ 2, Γ admits a k-ary symmetric weighted polymorphism;

3. For some k ≥ 2, Γ admits a k-ary symmetric weighted polymorphism;

4. Γ admits a binary symmetric weighted polymorphism;

5. Γ admits a weighted polymorphism ω such that supp(ω) generates a sym-
metric operation.

We mentioned above that the tractability of constraint languages seems to
come from very few techniques. Interestingly, the hardness of constraint lan-
guages also seems to come from very few specific hard problems! Recall the
functions φnae and φxor on {0, 1}, from Examples 5 and 6, corresponding to the
NP-hard problems NAE-SAT and Max-Cut.

The hardness of VCSP({φnae}) generalises in an obvious way to any prob-
lem VCSP({φ}) over any set D, where φ is defined as follows: choose a subset
X ⊆ D with |X| > 1 and a surjective function h : X → {0, 1}, and let φ(x, y, z) =

φnae(h(x), h(y), h(z)) if (x, y, z) ∈ X3 and φ(x, y, z) = ∞ otherwise. Call such func-
tions NAE-like. By Theorem 31, every language Γ such that wRelClone (Γ) con-
tains a NAE-like function is intractable. Moreover, every crisp core language Γ

known to be NP-complete satisfies this condition [11]. In other words, the ability
to express φnae is the only known reason for a crisp core language to be NP-hard,
and the only reason for this if the Algebraic Dichotomy conjecture holds.

Now let φ be a binary cost function over D such that, for some distinct a, b ∈ D,
argmin(φ) = {(a, b), (b, a)} and φ(a, a), φ(b, b) are both finite. The hardness of
VCSP({φxor}) on {0, 1} generalises in an obvious way to VCSP({φ}) for such func-
tions φ (see [48, 83]). Call such a function XOR-like. By Theorem 31, every Γ

such that wRelClone (Γ) contains a XOR-like function is intractable. Moreover,
the converse is known to be true, that is, for every NP-hard finite-valued core lan-
guage Γ, wRelClone (Γ) contains a XOR-like function [48, 83] (see Theorem 46).

In fact, most languages (not necessarily crisp or finite-valued) known to be NP-
hard are known to satisfy the condition that wRelClone (Γ) contains a function that
is NAE-like or XOR-like. It is an open question whether there exist intractable
languages Γ that do not satisfy this condition. Some NP-hard languages, e.g. those
from [81], are not known to satisfy it.

We now focus on complexity classifications. For crisp languages (i.e. pure fea-
sibility problems), complexity classifications have been established for languages
over two-element sets [77] and three-element sets [7] and for languages contain-
ing all unary relations [12, 2]. For finite-valued languages (i.e. pure optimisation
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problems), it has been shown that BLP solves all tractable cases [83].

Theorem 46 (Classification of Finite-Valued Languages [83]). Let Γ be a finite-
valued constraint language that is a core. Either Γ has a binary symmetric weighted
polymorphism (and hence is solvable by BLP), or else wRelClone(Γ) contains a
XOR-like function, and hence Γ is intractable.

Theorem 46 generalises several previous classification results for finite-valued
languages. Tractability in these earlier results was often characterised by (more)
specific binary symmetric weighted polymorphisms:

• A core {0, 1}-valued language2 over a two-element set [58, 25], or over a
three-element set [55], or including all unary {0, 1}-valued functions [28]
is tractable if it is submodular on a chain (cf. Examples 18 and 19), and
intractable otherwise.

• A core {0, 1}-valued language over a four-element set [57] is tractable if it is
submodular on some lattice (cf. Example 19) or 1-defect (cf. Example 25)
and intractable otherwise.

• A core finite-valued language over a two-element set [17] is tractable if it is
submodular (cf. Example 18) and intractable otherwise.

• A core finite-valued language over a three-element set [48] is intractable if
it is submodular on a chain (cf. Example 19) or skew bisubmodular (cf.
Example 23) and intractable otherwise.

• A finite-valued language containing all {0, 1}-valued unary cost functions [63]
is tractable if it is submodular on a chain (cf. Example 24) and intractable
otherwise.

Theorem 46 also implies a classification of the so-called Min-0-Ext problems [45].
For languages where the cost functions can take infinite values, no general

complexity classification is known. In fact, even the special case of {0,∞}-valued
languages is a challenging open problem over sets with four or more elements as
it corresponds to the complexity classification of the CSP (cf. Example 10). For
the general VCSP, unlike the CSP, there is not even a well-established conjecture.

Nevertheless, some interesting and nontrivial partial results are known. For ex-
ample, a complete complexity classification for valued constraint languages over
a two-element set was established in [17]. Note that on a two-element set there is
precisely one majority operation, as defined in Example 26, which we will denote
by Mjrty, and precisely one minority operation, as defined in Example 27, which
we will denote by Mnrty. There are also precisely two constant operations, which
will be denoted Const0 and Const1.

2{0, 1}-valued languages correspond to Max-CSPs, cf. Example 12.
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Theorem 47 (Classification of Boolean Languages [17]). A valued constraint
language Γ on D = {0, 1} is tractable if it admits at least one of the following
eight multimorphisms. Otherwise wRelClone (Γ) contains φnae or φxor and Γ is
intractable.

1. 〈Const0〉

2. 〈Const1〉

3. 〈Min,Min〉,
4. 〈Max,Max〉,
5. 〈Min,Max〉,
6.

〈
Mjrty,Mjrty,Mjrty

〉
,

7.
〈
Mnrty,Mnrty,Mnrty

〉
,

8.
〈
Mjrty,Mjrty,Mnrty

〉
.

Let us compare Theorem 47 with a classification of crisp Boolean languages, orig-
inally established by Schaefer in [77] and restated here using polymorphisms (see,
e.g. [14]): A crisp constraint language on D = {0, 1} is tractable if it admits one
of the following six polymorphisms: Const0, Const1, Min, Max, Mjrty, Mnrty;
otherwise it is intractable. These six tractable cases are covered by cases (1-4),
(6), and (7) in Theorem 47. The six cases correspond to sets of Boolean relations
that are 0-valid, or 1-valid, or expressible by Horn clauses, dual Horn clauses,
2-clauses, or linear equations over the field with 2 elements, respectively.

The hardness part of Theorem 47 can be rederived using the algebraic theory
described in Section 4; see [24, 19] for details. We remark that if we restrict
to core Boolean valued constraint languages, the first two cases in Theorem 47
disappear as those languages are not cores (and in fact are solvable trivially).

Another general complexity classification result concerns languages that con-
tain all {0, 1}-valued unary cost functions. Note that a weighted polymorphism ω
is called conservative if f (x1, . . . , xk) ∈ {x1, . . . , xk} for all f ∈ supp(ω).

Theorem 48 (Classification of Conservative Languages [63]). Let Γ be a valued
constraint language on a set D such that Γ contains all {0, 1}-valued unary cost
functions on D. Then either Γ admits a conservative binary multimorphism 〈 f1, f2〉

and a conservative ternary multimorphism
〈

f ′1 , f ′2 , f ′3
〉

and there is a family M of
2-element subsets of D, such that:

• for every {a, b} ∈ M, 〈 f1, f2〉 restricted to {a, b} is a symmetric tournament
pair (see Example 24), and

• for every {a, b} < M,
〈

f ′1 , f ′2 , f ′3
〉

restricted to {a, b} is an MJN multimor-
phism (see Example 28),

in which case Γ is tractable, or else Γ is intractable.
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The algorithm for solving the tractable case identified in Theorem 48 first
enforces local consistency (see the discussion of bounded width at the beginning
of this section). After this preprocessing step, any instance admits a symmetric
tournament pair multimorphism [63] and is thus solvable using BLP.

We now briefly describe the partial classification results so far obtained for the
Min-Cost-Hom and Min-Sol problems discussed in Examples 13 and 15 respec-
tively. Recall that a Min-Cost-Hom problem corresponds to VCSP(Γ) for some
language Γ containing only crisp cost functions and unary cost functions. Min-
Sol problems are Min-Cost-Hom problems where the only unary cost function in
Γ is a specific injective and finite-valued cost function.

The complexity classification for Min-Cost-Hom for languages containing all
unary cost functions was established in [81]. The tractable case can be reduced,
after a preprocessing step using local consistency techniques, to a certain problem
on perfect graphs known to be solvable in polynomial time using linear program-
ming [38]. For the special case of digraphs (i.e., when the only non-unary cost
function allowed is a single binary crisp cost function), a complexity classifica-
tion was obtained in [43].

The classification of Min-Cost-Hom for languages containing all unary crisp
cost functions was initially studied in [80] and fully established in [85].

Finally, using the techniques from Section 4 and from [83], a very recent result
has established the computational complexity of Min-Cost-Hom for all languages
over a three-element set [86]. The only tractable cases either admit a weighted
polymorphism with a semilattice operation in its positive support or a certain type
of tournament pair. The former case is tractable using BLP by Theorem 44 and
the latter case is tractable using a reduction to the result in [81] discussed above.

The classification of Min-Sol problems was established in [56] for maximal
languages over a four-element set and for homogenenous languages. The classifi-
cation of Min-Sol has recently also been obtained for all languages over a three-
element set [85]. Using the notion of cores and the algebraic techniques from
Section 4 and from [82, 83], three tractable cases have been identified: bisub-
modular languages (Example 22), generalised min-closed languages (generalis-
ing Example 21), and generalised weak-tournament pair languages (generalising
Example 24); the first two are solvable using BLP, by Theorem 44, while the last
is solvable by a method similar to the tractable case from [81] discussed above.

Adapting the main result of [13] on CSPs, Powell and Krokhin have recently
shown [74] that for every problem VCSP(Γ), where Γ is finite, there is a polynomial-
time equivalent Min-Cost-Hom problem, VCSP(Γ′), where Γ′ contains only a sin-
gle crisp binary function and a single finite-valued unary function. Moreover, the
equivalence also preserves (in both directions) many useful weighted polymor-
phisms of Γ, such as symmetric and weak near-unanimity polymorphisms [4].
Thus, in order to classify the computational complexity of any valued constraint
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language it suffices to classify Min-Cost-Hom problems of this restricted form.
This mirrors a similar reduction from the general CSP to the binary case which
was first established in [29].

6 Approximation
Since many forms of valued constraint satisfaction problem are NP-hard, it is
natural to study approximation algorithms for these problems, and their limits.
Recall that a polynomial-time algorithm for an optimisation problem Π is called
an r-approximation algorithm if, for each instance I of Π, the algorithm returns a
solution S for I whose measure m(S ) satisfies the inequality

max
(

m(S )
OPT (S )

,
OPT (S )

m(S )

)
≤ r.

The bound r is called the approximation ratio of the algorithm. Note that in gen-
eral r can be a function of the size of I.

There has been major progress in the last 20 years in designing approximation
algorithms and understanding the (in)approximability of combinatorial optimisa-
tion problems. The former direction was boosted by the application of techniques
based on semidefinite programming (SDP) [34] whilst the latter was powered to a
large extent by the theory of probabilistically checkable proofs, or PCPs, see [1].
A notable early source of inapproximability results is [40], where it is shown that
certain problems (such as Max-3-Sat) can be approximated within a (problem-
specific) constant r, but, unless P=NP, not within r− ε for any ε > 0. There is now
a large body of such optimal inapproximability results, including those for Min-
imum Vertex Cover and Max Cut, whose validity depends on the Unique Games
Conjecture, or UGC (see survey [59]). This conjecture states that, for any ε > 0,
there is a large enough integer k = k(ε) such that it is NP-hard to distinguish two
types of systems of linear equations of the form xi +x j ≡ ai j (mod k): those where
at least a (1− ε)-fraction of the equations can be satisfied and those where any as-
signment satisfies at most an ε-fraction of the equations. Despite the fact that the
UGC has been used as a basis for many results, it is still open and the approxima-
tion community seems to be evenly divided as to which way it will eventually be
resolved.

Semidefinite programming is an extension of linear programming where the
variables are vectors in a high-dimensional space and the constraints, as well as
the objective function, are linear in the inner products of these vectors. Any VCSP
instance has a basic semidefinite programming relaxation similar to the BLP re-
laxation defined in Section 5. A breakthrough result of Raghavendra [75, 76]
shows how to use the basic SDP relaxation to design, for any given finite and
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finite-valued language Γ, an approximation algorithm for VCSP(Γ) that achieves
some constant approximation ratio; moreover, this ratio cannot be improved un-
less the UGC is false. This ratio is not explicit, but there is an algorithm that can
compute it with any given accuracy in doubly exponential time. It is interesting
that this (conditionally) optimal ratio is related to a parameter of some objects
similar to weighted polymorphisms. For more details, consult Raghavendra’s pa-
per and thesis [75, 76]; note that the (finite-valued) VCSP is referred to there as
the generalized CSP or GCSP.

The class of all optimisation problems having a (polynomial-time) constant-
factor approximation algorithm is denoted by APX. From the approximation point
of view, the best type of algorithm is a PTAS (polynomial-time approximation
scheme) which is actually a series of algorithms Aε , ε > 0, such that Aε gives
a (1 + ε)-approximation and runs in time that is polynomial in the size of the
instance (but not necessarily in 1/ε). One way to rule out the existence of a PTAS
for a specific optimisation problem Π (unless P=NP) is to show that this problem
is APX-hard, i.e., that every problem in APX has an approximation-preserving
reduction to Π.

The classification results from Section 5 distinguish between (exact) polyno-
mial solvability and NP-hardness. Some of these results can be strengthened to
become dichotomies between polynomial solvability and APX-hardness For ex-
ample, as discussed in Example 12, Max-CSP is equivalent to VCSP(ΓMax) where
ΓMax consists of all cost functions taking only the values 0 and 1. For approxi-
mation results it is convenient to replace these with values with −1 and 0 respec-
tively. Then the intractable cases of VCSP(Γ) with Γ ⊆ ΓMax can be shown to be
APX-hard (in fact, APX-complete, as each Max-CSP problem with a finite lan-
guage belongs to APX) when Γ contains all unary {−1, 0}-valued functions [28]
and when |D| = 3 [55].

There are only a few results concerning the approximability of VCSP(Γ) for
languages Γ containing cost functions that can take infinite values. For example,
it is shown in [44] that the problem VCSP({φH} ∪ Γ+

unary), a special case of Min-
Cost-Hom (see Example 13) where H = (V, E) is an undirected graph without
loops and Γ+

unary contains all unary functions with non-negative values, is not ap-
proximable within any factor if the List H-Colouring problem (cf. Example 11) is
NP-complete and it has a |V |-approximation algorithm otherwise. As another ex-
ample, the APX-hardness of some Min-Sol problems (Example 15) is established
in [53].
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7 The oracle model

In this paper we have assumed that the objective function in our problem is repre-
sented as a sum of functions each defined on some subset of the variables. There
is a rich tradition in combinatorial optimisation of studying problems where the
objective function is represented instead by a value-giving oracle. In this model a
problem is tractable if it can be solved in polynomial time using only polynomially
many queries to the oracle (where the polynomial is in the number of variables).
Note that any query to the oracle can be simulated in linear time in the VCSP
model. Hence, a tractability result (for a class of functions) in the oracle model
automatically transfers to the VCSP model, while hardness results automatically
transfer in the opposite direction.

One class of functions that has received particular attention in the oracle model
is the class of submodular functions (cf. Example 18). There are several known al-
gorithms for minimising a (finite-valued) submodular function using only a poly-
nomial number of calls to a value-giving oracle (see [50, 51, 78]).

However, for some submodular valued constraint languages Γ, VCSP(Γ) can
be solved much more efficiently than by using these general approaches. For
example, the language Γcut defined in Example 8 can be solved in cubic time
using the Min-Cut-based algorithm described in Example 8. A similar efficient
approach can be used for all languages that are expressible over Γcut. However, it
was shown in [88, 90] that not all submodular functions are expressible over Γcut,
so this approach cannot be directly extended to solve arbitrary submodular VCSP
instances. It is currently an open question whether the minimisation problem for
submodular functions defined by sums of bounded arity submodular functions in
the VCSP model is easier than general submodular function minimisation in the
oracle model.

Other classes of finite-valued functions that can be efficiently minimised in
the oracle model include bisubmodular and α-bisubmodular functions (Exam-
ples 22 and 23) [31, 71, 32, 47], functions with a 1-defect multimorphism (Ex-
ample 25) [57], and functions that are submodular on certain lattices (Exam-
ple 19) [64, 65]. The complexity of submodular function minimisation in the
oracle model over arbitrary non-distributive lattices is still unknown (in the VCSP
model, all such language are tractable, by Theorem 44).

The following general problem was mentioned in [48, 57, 82]: which weighted
polymorphisms ω are sufficient to guarantee an efficient minimization algorithm,
in the value-oracle model, for valued constraint languages Γ with ω ∈ wPol(Γ)?
Natural candidates for which the question is open include the k-submodularity
multimorphism for k ≥ 3 from Example 22 and submodularity multimorphisms
on many lattices from Example 19.
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8 Conclusions and future directions
We have shown that the valued constraint satisfaction problem is a powerful gen-
eral framework that can be used to express many standard combinatorial optimisa-
tion problems. The general problem is NP-hard, but there are many special cases
that have been shown to be tractable. In particular, by considering restrictions on
the cost functions we allow in problem instances, we have identified a range of
different sets of cost functions that ensure tractability.

These restricted sets of cost functions are referred to as valued constraint lan-
guages, and we have described in Section 4 the very general algebraic techniques
now being developed to classify the complexity of these languages.

This classification is still far from complete. In fact, even in the special case of
the CSP (Example 10), where all cost functions take only the values 0 or∞, there
is still no complete classification of complexity for the corresponding constraint
languages. This problem has been studied for many years, beginning with the
seminal work of Feder and Vardi who conjectured that any such language will be
either tractable or NP-complete [29]. This conjecture is still unresolved. However,
the Algebraic Dichotomy conjecture [11] specifies the boundary between tractable
and intractable languages, and it has been proved in many important cases. Natu-
rally, it is desirable to develop the algebraic theory of VCSPs to the point where
one could make a credible algebraic dichotomy conjecture for the VCSP, in order
to have a specific target to aim at.

For finite-valued languages, the complexity classification is complete, see
Theorem 46. One could ask, however, whether the tractability condition can be
made tighter by being more specific about which binary symmetric weighted poly-
morphisms need to be present there. For |D| = 2, 3, tight descriptions are given
in [17, 48].

The algebraic theory of the VCSP presented in Section 4 is based on the new
notion of a weighted clone. Very little is known about weighted clones, and this
direction is wide open for purely algebraic investigation. Some specific open
problems include the (possible) description of weighted clones for D = {0, 1},
the identification of minimal weighted clones, and the investigation of classes of
weighted clones supported by a given ordinary clone.

Further developing the algebraic theory of the VCSP using algebras and va-
rieties [73] is a very promising direction of research because this theory works
with a more general notion of expressibility. Possible algebraic dichotomy results
from this theory would state that either a language expresses, in this more gen-
eral way, a given function (usually with undesirable algorithmic properties of the
corresponding VCSP) or else it has a “nice” weighted polymorphism. Such re-
sults [11, 67] have been fundamental to the success of the algebraic approach to
complexity for the CSP.
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It is natural to investigate how the operations that play a role in the algebraic
theory for the CSP can be adapted to the VCSP setting. Examples of such con-
ditions that we discussed earlier are weak near-unanimity and edge operations;
there are several others. What can be said about valued constraint languages with
weighted polymorphisms whose positive support includes such operations?

As we discussed in Section 5, only three algorithmic techniques seem to be
sufficient to solve tractable crisp and finite-valued VCSPs (Bounded Width, Few
Subpowers, and Basic LP relaxation). There also seem to be essentially only two
seeds of hardness that cause intractability (NAE-like and XOR-like functions).
Are there tractable general-valued VCSPs that require different techniques? Are
there intractable general-valued VCSPs that can express neither NAE-like nor
XOR-like functions?

The notion of weighted polymorphism works well for studying the exact solv-
ability of the VCSP. It would be natural to explore its applicability to approxima-
bility questions for the VCSP and to oracle-tractability for classes of functions, as
we discussed in Sections 6 and 7.

In this survey we have focused on the complexity of valued constraint satis-
faction problems with restricted constraint languages. It is also possible to ensure
tractability by restricting the structure of the constraint scopes - so-called struc-
tural restrictions [36, 37, 70]. Combining structural restrictions with language
restrictions leads to so-called hybrid restrictions, and these provide a promising
source of new tractable cases [21, 22] which has so far been very little explored.
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A fundamental technique in the design of parameterized algorithms is kernel-
ization: Given a problem instance I with parameter k, the basic idea is to
try and preprocess the instance I of length n by applying efficient “reduction
rules” in order to simplify it and reduce it to a kernel instance of the same
problem that is of size a polynomial in k. A brute-force/exponential-time al-
gorithm can then be used to solve the kernel instance. Smaller kernels often
lead to faster algorithms. How small, as a function of k, can kernels be made?
There is a nice hardness theory, based on the complexity theoretic assumption
coNP * NP/poly, which can be used to prove lower bounds for kernel size.

Kernelization is a flourishing area of parameterized complexity with many
recent results (both upper and lower bounds). Stefan Kratsch shares with
us some of the latest developments in the field. His very readable survey
article, with illustrative examples, invites the non-expert to this exciting area of
complexity theory.
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Abstract

Kernelization is a formalization of efficient preprocessing, aimed mainly
at combinatorially hard problems. Empirically, preprocessing is highly suc-
cessful in practice, e.g., in state-of-the-art SAT and ILP solvers. The notion
of kernelization from parameterized complexity makes it possible to rigor-
ously prove upper and lower bounds on, e.g., the maximum output size of
a preprocessing in terms of one or more problem-specific parameters. This
avoids the often-raised issue that we should not expect an efficient algorithm
that provably shrinks every instance of any NP-hard problem.

In this survey, we give a general introduction to the area of kernelization
and then discuss some recent developments. After the introductory material
we attempt a reasonably self-contained update and introduction on the fol-
lowing topics: (1) Lower bounds for kernelization, taking into account the
recent progress on the and-conjecture. (2) The use of matroids and repre-
sentative sets for kernelization. (3) Turing kernelization, i.e., understanding
preprocessing that adaptively or non-adaptively creates a large number of
small outputs.

1 Introduction
Kernelization is a theoretical formalization of efficient preprocessing for (NP-)
hard problems. By efficient preprocessing we mean any polynomial-time algo-
rithm that given a problem instance outputs an equivalent instance that is, if pos-
sible, simpler than the initial one. Mainly, we are interested in data reduction
where the obtained instance is as small as possible (but we will avoid the term
data reduction for its name clash with reductions). Empirically, preprocessing is

∗Supported by the Emmy Noether-program of the German Research Foundation (DFG), KR
4286/1.
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very successful in practice, e.g., within the well-known ILP solver CPLEX, which
motivates a mathematically rigorous study.

Before giving formal definitions and further background, let us begin with a
simple and well-known example. Consider the Vertex Cover problem where we
are given as input a graph G = (V, E) and a value k ∈ N and we need to deter-
mine whether there exists a set S of at most k vertices such that every edge is
incident with at least one vertex in S . Due to the NP-hardness of the problem
we do not expect that every instance can be efficiently reduced in size. Indeed,
any polynomial-time algorithm that guarantees a size reduction of at least one bit
for all instances of Vertex Cover could be iterated to also solve Vertex Cover
in polynomial time, implying P = NP. Despite this obstacle to efficient prepro-
cessing there are simple reduction rules that can be seen to yield a provable size
bound; how does that fit together?

Rule 1. Delete any isolated vertex v of G, i.e., return (G − v, k). Correctness: We
never need v in any solution since it covers no edges.

Rule 2. If a vertex v has degree greater than k in G then we (are forced to) select
the vertex for the solution, which is expressed by returning (G− v, k−1). Correct-
ness: Not selecting v would require selecting the neighborhood N(v) of v which is
of size greater than our budget k.

Rule 3. If Rule 2 does not apply and the graph G has more than k2 edges then
answer no. Correctness: Covering more than k2 edges with at most k vertices
would require at least one vertex of degree greater than k.

It is not hard to see that all three rules can be applied in polynomial time and
that when no rule is applicable we have an equivalent instance with a graph that
has at most k2 edges and 2k2 vertices; this instance can be encoded in O(k2 log k)
bits. (By more sophisticated arguments this can be improved to at most 2k vertices
and O(k2) total size [15].)

We see that by relating the output guarantee of our preprocessing to the value
k, we avoided the issue of not being able to shrink every instance. Intuitively,
the solution size k in a vertex cover instance is a good measure of its complexity,
since it is not hard to find, e.g., a O(2knm) time branching algorithm for it; if
k is constant or at least k ∈ O(log n) then this runtime is even polynomial in the
input size. Similarly, our simple preprocessing has showed us that a comparatively
small value of k implies that the size of our instance can be reduced. If, otherwise,
k is large (compared to n) then the bound of n ≤ 2k2 does not guarantee any
simplification, which is consistent with the observed obstacle to general efficient
size reductions.

Generally, the field of parameterized complexity studies the influence of so-
called parameters, like k for Vertex Cover, on problem complexity. We will
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adopt the naming convention of including the parameter choice into the problem
name, e.g., Vertex Cover(k) stands for Vertex Cover with parameter k and Ver-
tex Cover(∆) stands for parameterization by maximum degree. A kernelization
for a parameterized problem can then be simply formalized as any efficient algo-
rithm that gives an equivalent instance of size (and parameter value) bounded by
a function in the input parameter (see Section 3 for formal definitions). It should
come as no surprise that the achievable output guarantees depend greatly on the
choice of parameter.

2 A brief history and overview of kernelization

The use of reduction rules to simplify problems is often traced back to the work
of Quine [66] from 1952 on simplifying truth functions, e.g., by unit-clause prop-
agation and elimination of pure literals. It was recognized early that efficient
reduction rules are not only empirically useful but could also be used to improve
theoretical performance guarantees of exhaustive search algorithms by ensuring
structural restrictions (like degree-bounds); see, e.g., [68]. The study of provable
performance guarantees for preprocessing by reduction rules (or any other means)
regarding the achievable output size, rather than achievable structure, took much
longer to develop.

Kernelization originated as one of many techniques in the toolbox of param-
eterized complexity (see [24, 25]) and is a successful theoretical formalization of
efficient preprocessing with provable performance guarantees. In its early stages
kernelization was mostly about coming up with clever reduction rules and com-
bining them with combinatorial arguments to prove that exhaustively reduced in-
stances (to which no more rule could be applied) have size bounded by some func-
tion in the initial parameter value. A 2007 survey of Guo and Niedermeier [40]
nowadays provides a nice overview on these “early days of kernelization”1 and in
particular asked to develop techniques for kernelization lower bounds. Two other
influential works from that time are the linear kernel for Planar Dominating Set
by Alber et al. [3] and a programmatic paper of Estivill-Castro et al. [29] that
amongst others was perhaps the first to explicitly ask for Turing kernelizations.

The field of kernelization matured, in a sense, when in 2008 Bodlaender et
al. [9] came up with a framework for ruling out polynomial sized kernels for
many parameterized problems, and, shortly afterwards, this was followed by the
first paper on meta kernelization by Bodlaender et al. [10] that gave general ker-
nelization results for a wealth of problems on planar and bounded genus graphs
(see also the 2009 survey of Bodlaender [7]). Since then, the field of kernelization

1The field of kernelization is still in its twenties.
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has been growing rapidly and many new techniques for upper and lower bounds
were invented in short succession, apart, of course, from a wealth of results for
concrete problems. The survey of Lokshtanov et al. [58] on the occasion of Mike
Fellows’ 60th birthday in 2012 (see also [8]) gives an excellent account of these
developments.

In the present survey we want to focus mainly on recent developments that
have taken place since 2012, but also provide a fair introduction for readers new
to the field. To this end, the core part of the survey singles out three topics and at-
tempts a (as far as possible) self-contained and detailed presentation. Concretely,
we will discuss the use of matroids and representative sets for kernelization (based
on [56, 57]), and review the current knowledge about Turing kernelization (moti-
vated by recent progress [69, 49]). Furthermore, since the lower bound framework
initiated by Bodlaender et al. [9] holds a central place in kernelization, we explain
one complete set of tools for proving such lower bounds. This is, of course, also
motivated by the breakthrough work of Drucker [26] that (among other results)
settled the so-called and-distillation conjecture.2 But, first things first, let us begin
by giving an overview of all the interesting things that could not be fitted into this
survey for the sake of length and focus.3

Overview. The “bread and butter”, so to speak, in the kernelization business
lies in studying a given parameterized problem, deriving efficient reduction rules
for it, and analyzing the obtained rules, that is, analyzing the structure and size
of reduced instances. Unfortunately, such rules are of course problem dependent
and there does not appear to be the single general recipe for them. That said, two
frequently used approaches are the following: (1) Begin with an approximation of
the desired object or a dual structure. If this is sufficiently large then the instance
is trivially yes or trivially no. If not then there must be large parts that do not
contribute to the solution (or do not incur any cost), or that are obstructed by a
small set of objects/vertices/etc. Often, a careful analysis can devise “high-degree
rules” (as for the simple example of Vertex Cover(k)) that resolve or simplify
these cases. (2) Another frequently used tool is the Sunflower Lemma of Erdős
and Rado [28], particularly for covering or packing objects or sets of bounded
size. Effectively, the Sunflower Lemma states that a sufficiently large family of
bounded size objects either involves a large packing (giving trivial yes for packing
and trivial no for covering) or it contains a so-called sunflower formed by objects
that are pairwise obstructing in the same way; often, we can safely delete on of
these obstructing objects (and repeat).

2Very recently, Dell [20] announced a simpler proof for the and-distillation conjecture.
3Conveniently, and not entirely by chance, these topics are covered in detail by Lokshtanov et

al. [58].
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To get a more detailed understanding of reduction rule based kernelization
results it is probably best to read some of them in detail; see, e.g., [50, 11, 52].

Above-guarantee parameterization. Many maximization problems have the
property that, perhaps after some simple reduction rules, the optimum value OPT
for an instance x is at least 1

c · |x|. This entails that, if |x| ≥ ck then the question
whether OPT ≥ k is trivially yes, and otherwise we have |x| < ck; this is a (trivial)
kernelization for the problem. As an example, consider the Max Cut(k) problem
where given a graph G = (V, E) and k ∈ N we ask whether there is a bipartition
of the vertex set such that at least k edges have endpoints on both sides. It is well
known that OPT equals at least half the number m of the edges. Thus, m ≥ 2k
gives an immediate yes and m < 2k gives a linear kernelization (after discarding
isolated vertices). More generally, if we know that OPT ∈ Ω(|x|−c) then we get a
trivial kernelization to size O(kc).

Motivated by these trivial kernelizations and the fact that the parameter needs
to be large to have a nontrivial instance, Mahajan and Raman [61] initiated the
study of problems parameterized above lower bounds. For example, they con-
sidered the Max Cut(k − m

2 ) problem asking whether there is a cut with at least
k = m

2 + k′ edges, parameterized by k′ = k − m
2 , and showed that this problem

remains fixed-parameter tractable. Gutin et al. [43] (and follow-up work of Alon
et al. [4]) made an important contribution to this direction by introducing the use
of the probabilistic method. At high level, they prove that a random solution will
exceed the lower bound by at least k with nonzero probability, provided that the
instance is sufficiently large compared to k; again (though no longer trivial) this
yields either a direct yes or the instance is sufficiently small. Among the further
results in this direction let us point out Crowston et al. [17, 16] who obtain further
kernelization results.

Meta kernelization. The term meta kernelization refers to a series of (pos-
itive) kernelization results that apply to a large variety of graph problems when
the input graphs are restricted to (in most cases) sparse graph classes such as pla-
nar, bounded genus, or H-minor-free graphs [10, 32, 36, 37, 51, 38]. “Meta”
here means that the results apply assuming that the problem in question fulfills an
appropriate set of technical but rather general properties, obviating the need for
any problem-specific reduction rules. A key necessity (but far from sufficient) is,
thus, that the problem in question can be formalized in some general language,
e.g., monadic second order logic. The first result of this type was obtained by
Bodlaender et al. [10], namely linear and polynomial kernelizations for a wealth
of problems when restricted to planar or bounded genus graphs. Important pre-
decessors of this work are the linear kernelization for Dominating Set in planar
graphs by Alber et al. [3] and a more general planar kernelization result, still us-
ing problem-specific rules, by Guo and Niedermeier [41].

Most meta kernelization results are based on the following intuition: The cen-
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tral notion is that of a protrusion, which refers to a subgraph (of the input graph)
that is structurally simple and has a limited interaction with the rest of the graph.
More concretely, a protrusion has a constant size boundary of vertices that are ad-
jacent to the rest of the graph. Furthermore, it has bounded treewidth, which, for
the considered problems, implies that we have an efficient dynamic programming
routine to solve the problem on the protrusion subgraph (or any other graph of
bounded treewidth). The outcome of this dynamic programming is a set of par-
tial solutions relative to the boundary vertices alone. Intuitively, if the problem in
question has a bounded number of partial solutions relative to any constant-size
boundary, then many protrusions must give rise to the same partial solutions; this
is, roughly, captured by the notion of the problem being finite integer index. Thus,
if we can manage to compute a smaller protrusion with the same partial solutions
then this can replace the original protrusion, shrinking the overall instance size.
Thus, modulo a significant amount of technical heavy lifting (which we omit),
this yields a protrusion replacement rule that can be used to replace large pro-
trusions by smaller ones. Apart from this well-behaved interaction with dynamic
programming it is required that yes- or no-instances of the problem in question
admit a small set of vertices whose deletion leaves a graph of bounded treewidth.
(This holds trivially, for example, for VertexCover(k) or for the FeedbackVertex
Set(k) problem of deleting at most k vertices to obtain a forest.) This can be com-
bined with the topological properties of the input graph class under consideration
to prove that the graph can be decomposed into a small number of protrusions, the
so-called protrusion decomposition.

Let us conclude this part by highlighting recent papers on meta kernelization:
Kim et al. [51] recently extended the range of applicable sparse graph classes to
classes excluding any fixed graph H as a topological minor. Gajarský et al. [36]
extended this even further to the larger classes of graphs of bounded expansion,
locally bounded expansion, and nowhere dense graphs. This, however, comes
at the price that the kernelization bounds are no longer (implicitly) in terms of
vertex-deletion distance to bounded treewidth, but instead by distance to bounded
treedepth (which cannot be avoided [36]). Note also, that, unlike previous work
where a low vertex-deletion distance to bounded treewidth is a consequence of
other problem properties, Gajarský et al. [36] directly consider the deletion dis-
tance to bounded treedepth as the parameter. Independently, Ganian et al. [37]
also initiated a study of meta kernelization with respect to structural parameters.
Their results apply to problems on general graphs and do not require finite in-
teger index. Very recently, Garnero et al. [38] revisited the meta kernelization
framework and initiated research into making the obtained kernelization results
more explicit. At high level, this is achieved by working more closely on the
intuitive connection between meta kernelization and dynamic programming. For
an overview on earlier meta kernelization results and a more detailed explanation
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thereof we refer to the survey of Lokshtanov et al. [58].
Further new results. Last year, Wahlström [70] came up with an intriguing

polynomial compression for the Steiner Cycle(k) problem of finding a cycle (of
unbounded length) through a given set of k terminals in a graph. Crucially, the
result makes use of the Tutte matrix (and randomization) and, while it obtains an
equivalent instance of bounded size, it is not known whether this can be turned
into a polynomial kernelization because the output language is not known to be
in NP (the connection between compressions and kernelizations will be discussed
later).

Fomin et al. [34] proved that Dominating Set(k) and Connected Dominating
Set(k) admit linear kernels when restricted to input graphs excluding any fixed
graph H as a topological minor. This continues a sequence of results [44, 65,
59, 63, 33, 34] on kernels for (Connected) Dominating Set(k) in restricted graph
classes. Note that both problems are W[2]-hard on general graphs and thus do not
even admit exponential kernels unless FPT = W[2].

A recent work of Kratsch et al. [54] settled the question of whether the so-
called Point Line Cover(k) problem of covering a point set in the plane by at
most k lines admits an efficient reduction to significantly less than O(k2) points.
(The reader is invited to rediscover a simple reduction to k2 points that is in the
spirit of the Vertex Cover(k) example.) Crucially, the result that no reduction
to O(k2−ε) points is possible unless the polynomial hierarchy collapses used the
full generality of Dell and van Melkebeek’s [22] lower bound framework that
applies also to oracle communication protocols. While we will discuss at length
the existing lower bound techniques (see Section 4), a discussion of the latter is
beyond the scope of this survey.

3 Formal definitions

Formally, a parameterized problem is any language Q ⊆ Σ∗ × N, where Σ is any
finite alphabet and N denotes the non-negative integers. The second component
k of any instance (x, k) ∈ Σ∗ × N is called the parameter. The problem Q is
fixed-parameter tractable (FPT) if there is an algorithm A, a computable function
f : N → N, and a constant c such that A correctly decides (x, k) ∈ Q for all
(x, k) ∈ Σ∗ × N in time f (k) · |x|c. We omit in this survey a detailed discussion of
fixed-parameter intractability, e.g., regarding fpt-reductions and the W-hierarchy.
It suffices to know that intractability is typically established by proving W[1]-
or W[2]-hardness;4 note that FPT ⊆ W[1] ⊆ W[2] and it is believed that the
inclusions are strict.

4E.g., Clique(k) is W[1]-complete and Hitting Set(k) is W[2]-complete.
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A kernelization for a parameterized problem Q is a polynomial-time algorithm
K that given any instance (x, k) ∈ Σ∗ × N returns an instance (x′, k′) such that
(x, k) ∈ Q if and only if (x′, k′) ∈ Q and with |x′|, k′ ≤ f (k) for some computable
function f : N → N. The function f is called the size of the kernelization K
and K is a polynomial (linear) kernelization if f (k) is polynomially (linearly)
bounded in k. For simplicity, we allow a kernelization to outright answer yes or
no, understanding that it could instead return any hard-wired yes- or no-instance of
Q (of constant size). It is known that a parameterized problem is fixed-parameter
tractable if and only if it is decidable and admits a kernelization (see Theorem 1
below).

In the literature there exist two relaxed variants of kernelization: A generalized
kernelization (or bikernel) returns an output instance (x′, k′) that is with respect to
a, possibly different, parameterized problemQ′. More general, a compression may
return an instance with respect to any (also unparameterized) language L ⊆ Σ∗. All
kernelization lower bound tools in this survey, and almost all lower bounds in the
literature, imply also the same lower bounds for compressions. We will see later
(in Section 4) that lower bounds for compressions are slightly preferable, due to
greater ease of transferring them by appropriate reductions.

Theorem 1. A parameterized problem Q is fixed-parameter tractable if and only
if it is decidable and has a kernelization.

Proof. Assume that we have a kernelization for Q that reduces any instance (x, k)
to an equivalent instance (x′, k′) of size at most f (k). We can then apply an ar-
bitrary algorithm for Q (guaranteed by decidability) to solve (x′, k′) and thereby
also (x, k). If g : N → N bounds the runtime of the assumed algorithm then the
total time investment is |x|O(1) for the kernelization plus g( f (k)) for the algorithm.
This is bounded by f ′(k)|x|O(1) where f ′(k) := g( f (k)), implying fixed-parameter
tractability.

For the converse, assume that we have an algorithm that solves all instances
(x, k) of Q in time f (k)|x|c. Now run this assumed algorithm for |x|c+1 steps. If it
finishes then we have the correct yes or no answer. Otherwise, it did not finish
cause f (k)|x|c > |x|c+1. This, however, implies |x| < f (k). Thus, either way, in
polynomial time O(|x|c+1) we get an equivalent instance of size at most f (k). �

Note that the kernelizations implied by this theorem are not very useful cause
the size bound f (k) is the same f (k) as in the FPT runtime, which is usually
exponential in k. Nevertheless, the existence of exponential kernelizations for
many problems further motivates the question which of them also have polynomial
kernelizations. Conversely, if a problem is W[1]-hard and thus not FPT unless
FPT = W[1] then we also expect no kernelization.
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4 Lower bounds for kernelization
The goal of this section is to explain the basic intuition underlying known tech-
niques for lower bounds for kernelization and to give one complete set of tools for
proving them. To this end, we will formally define so-called cross-compositions
and polynomial parameter transformations as these appear very convenient to use.
Cross-composition is a unifying front end to various insightful tools, and complex-
ity theorists might prefer to directly employ these underlying results of, e.g., Dell
and van Melkebeek [22] and Drucker [26].

At high level, there are two prevalent forms of kernelization lower bounds
known so far: First, and dominantly, for a wealth of problems it has been shown
that they admit no polynomial kernelization unless NP ⊆ coNP/poly. Second,
for a smaller list of problems that do have polynomial kernels, it is known that
no kernels of size O(kc−ε) are possible, where k is the parameter and c is some
constant, unless NP ⊆ coNP/poly. The assumption that NP * coNP/poly (or,
equivalently, coNP * NP/poly) is clearly stronger than P , NP and NP * coNP
but, since its failure would imply a collapse of the polynomial hierarchy [71, 14],
it is still widely believed.

Intuition for ruling out polynomial kernels. Let us consider the NP-hard
Path(k) problem where we are given a graph G = (V, E) and k ∈ N with the
question of whether G contains a simple path on at least k vertices. If we com-
bine t instances (G1, k), . . . , (Gt, k) into a single one (G′, k) by letting G′ be the
disjoint union of the graphs Gi then, clearly, (G′, k) is yes if and only if at least
one (Gi, k) is yes. Intuitively, for t large but polynomial in k, a kernelization ap-
plied to (G′, k) would have to determine some graphs Gi that are less likely to be
yes and remove the corresponding components from G′. More concretely, if we
assume a kernelization to size kc and take t = kc+1 then the output of the kernel-
ization applied to G′ has less than one bit per instance (Gi, k). On the other hand,
the total input size is polynomial in the largest instance (Gi, k) and, hence, we do
not expect that (in general) the time would suffice to solve any of the instances.

More generally, we do not expect an efficient algorithm that for s ∈ N takes
t instances of any NP-hard problem, each of size at most s, and returns a single
instance of size polynomial in s that is yes if at least one of the inputs is yes.
Such an algorithm is called an or-distillation in the breakthrough lower bound
framework of Bodlaender et al. [9]; and they conjectured that no NP-hard problem
admits an or-distillation. The conjecture was proved shortly after by Fortnow and
Santhanam [35] modulo the assumption that NP * coNP/poly. The analogous
conjecture for the natural variant called and-distillation was made as well, but
it remained an open problem for five years until it was settled by an impressive
work of Drucker [26]; amongst a wide range of results on both deterministic and
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probabilistic compression (in fact also for quantum compression) Drucker proved
that the and-distillation conjecture holds under NP * coNP/poly as well.

The framework of Bodlaender et al. [9] introduced so-called or- and and-
composition algorithms that, essentially, generalize the above example for Path(k)
to any efficient mapping (not just disjoint union and not just for graph problems)
that encodes the or or and of t instances with parameter value k into a single in-
stance of the same problem with parameter value k′ polynomially bounded in k.
I.e., given t instances the obtained instance is yes if and only if at least one respec-
tively all given instances are yes. Similarly to the example, such a composition
together with a polynomial kernelization gives an or- or and-distillation. Since
proving existence of a particular algorithm (the composition) is typically easier
than ruling out an algorithm (the polynomial kernelization) proving compositions
became a very successful way of ruling out polynomial kernels. Curiously, even
before Drucker’s result [26], most lower bounds used or-compositions and only
very few proofs had to rely on the then unproven and-distillation conjecture.

Cross-composition. We will now review an extension to the composition-based
framework that was introduced by Bodlaender at al. [12]. In a so-called or- resp.
and-cross-composition the input consists of instances of any NP-hard problem,
while the output is an instance of the target parameterized problem for which
we desire a lower bound. Essentially, the parameter of the output instance must
be polynomially bounded in the largest size among input instances, which often
makes the proofs easier. In addition, there is the straightforward notion of a so-
called polynomial equivalence relation that simplifies arguments for why inputs
to a (cross-)composition may be assumed to be fairly similar (e.g., you may have
wondered why we tacitly assumed that all Path(k) inputs have the same parame-
ter).

Despite these extensions to the composition-based framework [9, 35, 26] the
underlying ideas go through in the same way. Nevertheless, several fairly ad-hoc
tricks needed for compositions are no longer required for cross-compositions and
this front end has seen wide adoption.

Definition 1 (polynomial equivalence relation [12]). An equivalence relation R
on Σ∗ is called a polynomial equivalence relation if the following two conditions
hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ takes time polynomial
in |x|+ |y| and decides whether x and y belong to the same equivalence class.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S .
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A simple example usage of a polynomial equivalence relation for Path(k)
instances (Gi, ki) would be to declare instances (Gi, ki) and (G j, k j) equivalent
if ki = k j. (As a technical remark, if k is given in binary then this would formally
allow an exponential number of equivalence classes. Thus, one usually resorts
to a dummy class containing “ill-posed” or otherwise infeasible inputs. E.g., for
Path(k) we can make one class for all instances where k exceeds the number of
vertices since these are trivially no.)

Definition 2 (and/or-cross-composition [12]). Let L ⊆ Σ∗ be a language, let R be
a polynomial equivalence relation on Σ∗, and let Q ⊆ Σ∗ × N be a parameterized
problem. An or-cross-composition of L into Q (with respect to R) is an algorithm
that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging to the same equivalence
class of R, takes time polynomial in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗×N

such that:

“PB”: The parameter value k is polynomially bounded in maxi |xi| + log t.

“OR”: The instance (y, k) is yes for Q if and only if at least one instance xi is yes
for L.

An and-cross-composition of L into Q (with respect to R) is an algorithm that,
instead, fulfills Properties “PB” and “AND”.

“AND”: The instance (y, k) is yes for Q if and only if all instances xi are yes
for L.

We say that L or-cross-composes, respectively and-cross-composes, into Q if a
cross-composition algorithm of the relevant type exists for a suitable relation R.

Note that the use of a polynomial equivalence relation in the definition is,
effectively, optional since R = Σ∗ × Σ∗ is a valid choice and simply makes all
inputs equivalent. The intended use of polynomial equivalence relations, however,
is to group inputs for a cross-composition such that it need only be applied to
groups of instances that are somewhat similar, thereby simplifying the necessary
constructions and gadgets.

Similar to compositions, any and- or or-cross-composition combined with a
polynomial kernelization creates an and- or or-distillation. Thus, using the results
of Fortnow and Santhanam [35] and Drucker [26] we can use them to rule out
polynomial kernelizations.

Theorem 2 ([12]). If an NP-hard language L and/or-cross-composes into the
parameterized problem Q, then Q does not admit a polynomial kernelization or
polynomial compression unless NP ⊆ coNP/poly and the polynomial hierarchy
collapses.
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Note that the theorem also rules out polynomial compressions, which relax
polynomial kernelizations by allowing the output to be an instance (a string) with
respect to any language; in the same way this holds also for lower bounds via and-
and or-compositions. This simplifies transferring lower bounds via appropriate
reductions (as we will see later).

An example for AND-cross-composition. We will now sketch an and-cross-
composition for the Edge Clique Cover(k) problem. The question about existence
of a polynomial kernelization for Edge Clique Cover(k) was a frequently posed
open problem (see, e.g., Guo and Niedermeier [40]) until being settled negatively
by Cygan et al. [19].

Edge Clique Cover(k)
Input: A graph G = (V, E) and k ∈ N.
Parameter: k.
Question: Is there a collection of at most k cliques in G such that
each edge is contained in at least one of them?

We give an and-cross-composition from Edge Clique Cover to Edge Clique
Cover(k) following in spirit the construction of Cygan et al. [19]. (Note that Edge
CliqueCover has the same problem definition as EdgeCliqueCover(k), including
the value k ∈ N, except for not specifying k as the parameter.) We begin by
choosing a polynomial equivalence relation. We make one equivalence class for
all instances that are trivially yes because k exceeds the number of edges. Among
the rest, let any two instances (Gi, ki) and (G j, k j) be equivalent if Gi and G j have
the same number of vertices and furthermore ki = k j. Finally, since we are careful
theoreticians, we devote one class to all inputs that are not valid encodings of a
graph and integer k (and which are thus no instances). Of course, in the following
it suffices to discuss the interesting case of inputs that are not trivially yes or no.

Let t instances from the same (nontrivial) equivalence class be given, e.g.,
(G1, k), . . . , (Gt, k). Let n be the number of vertices in each graph and, for con-
venience, assume that the vertices of each graph Gi are numbered arbitrarily,
say Vi = {vi,1, . . . , vi,n}.

The basic idea is to start with a disjoint union of the graphs and add all edges
between different graphs (i.e., we take the join of the graphs). Then, if all instances
are yes, we may combine the t times k cliques used for the graphs into k cliques
that cover all edges in graphs Gi. Concretely, say that for i ∈ {1, . . . , t} the edges
of Gi can be covered by cliques Ci,1, . . . ,Ci,k. Then for j ∈ {1, . . . , k} each set
Ĉ j :=

⋃
i Ci, j induces a clique (using join edges), and together these k cliques

cover all edges inside each graph Gi.
The caveat, however, is that the combination of the cliques does not neces-

sarily cover all join edges that we introduced between different graphs Gi. We
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handle this situation by increasing the budget and forcing inclusion of additional
O(n log t) cliques that cover all join edges but do not contain any edge in any
graph Gi. If we can ensure this, then the remaining budget of k will allow only
k further cliques, like, e.g., Ĉ1, . . . , Ĉk, that must induce a k-clique cover in each
graph Gi.

The idea is to add auxiliary vertices that will each be adjacent to exactly one
vertex vi,` per graph Gi. To ensure that we cover all edges between any graphs Gi

and G j the exact choice for each auxiliary vertex depends on the binary expansion
of i and j (using that different numbers differ in at least one position, but avoiding
the use of O(t), or worse, many extra vertices/cliques).

We introduce auxiliary vertices wa,b,p for all a, b ∈ {1, . . . , n} and
p ∈ {1, . . . , log t}. We connect a vertex wa,b,p to vertex vi,a of graph Gi if the
pth bit in the binary expansion of i is even, and to vi,b otherwise (if the bit is odd).
We call the obtained graph (of Gi’s and auxiliary vertices) G′ and let the budget be
k′ := k + n2 · log t. Since we already excluded instances with k exceeding the num-
ber of edges, which is less than n2, the value k′ is indeed polynomially bounded
in the largest input instance plus log t.

Let us briefly check that the obtained instance behaves as intended. Crucially,
the auxiliary vertices form an independent set and none of them is isolated. Thus,
we need to include at least one separate clique for each of them. Clearly, the
closed neighborhood of any wa,b,p is a clique since all neighbors are adjacent by
join edges. Thus, a single clique per wa,b,p is necessary and sufficient. For any
join edge from, say, vi,a to v j,b, we find that both vertices are contained in the
neighborhood of wa,b,p or wb,a,p for all positions p where the binary expansions of
i and j differ (the choice of wa,b,p or wb,a,p depends on the respective parities in
position p). At this point, all join edges are covered and all edges inside graphs
Gi still need to be covered by the remaining k cliques (which can be combined
over all t graphs). Thus, the instance (G′, k′) correctly encodes the and and by
Theorem 2 this rules out polynomial kernels and compressions for Edge Clique
Cover(k).

Polynomial parameter transformations. Before the framework of Bodlaender
et al. [9] the question for lower bounds for kernelization was frequently posed as
an open problem. It is surprising, in hindsight, that this never led to a reduction-
based study of polynomial kernels akin to the collective evidence created by NP-
complete problems. In contrast, shortly after the framework was published, it was
recognized that compositions are by no means always as easy as for Path(k) and
may sometimes be outright impossible.5

5This problem was mainly with the original notion of compositions, where source and target
problem needed to be the same.
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It was soon recognized that having a Karp reduction from one parameterized
problem to another with the additional restriction that the output parameter is
polynomially bounded in the input parameter essentially preserves kernelization
properties (we will formalize this in a moment). This was first, implicitly, used by
Binkele-Raible [6], first made formal by Bodlaender et al. [13], and first heavily
used by Dom et al. [23]. We introduce these reductions under the widely adopted
name of polynomial parameter transformations.

Definition 3 (polynomial parameter transformation). Let Q,Q′ ⊆ Σ∗ × N be pa-
rameterized problems. A polynomial parameter transformation (PPT) from Q to
Q′ is a polynomial-time computable mapping π : Σ∗×N→ Σ∗×N : (x, k) 7→ (x′, k′)
such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q′ and k′ ≤ p(k) for all (x, k) ∈ Σ∗ ×N,
where p : N→ N is some fixed polynomial. If there is such a reduction from Q to
Q′ then we write Q ≤ppt Q

′.

If Q ≤ppt Q
′ and Q′ has a polynomial kernelization (or compression) then we

can take any instance (x, k) for Q, compute an equivalent instance (x′, k′) of Q′

with k′ polynomially bounded in k, and then apply the kernelization/compression
of Q′. The obtained instance, say (x′′, k′′) of Q′ is yes if and only if (x, k) is yes
for Q and its size is polynomially bounded in k. Thus, the combined algorithm
of PPT plus polynomial kernelization/compression constitutes a polynomial com-
pression for Q. This yields the following simple but useful lemma for proving
lower bounds.

Lemma 1. If Q ≤ppt Q
′ and Q admits no polynomial compression (possibly mod-

ulo some complexity assumption) then Q′ admits no polynomial kernel or com-
pression (under the same assumption).

Note that to combine a PPT from Q to Q′ and a polynomial kernelization for
Q′ into a polynomial kernelization for Q we still need to convert the output, which
is a poly(k)-sized instance for Q′, into an instance for Q without blowing up size
and parameter more than polynomially. If Q is NP-hard and Q′ ∈ NP then we
can use the implied Karp reduction from Q′ to Q; a technicality, however, is that
we need NP-hardness of Q for polynomially bounded value of its parameter (or,
equivalently, with parameter value encoded in unary) to ensure that there is a Karp
reduction that also implies a polynomial bound for the parameter (see Bodlaender
et al. [13]).

We will make further use of PPTs in Section 6. Let us anyway copy a nice
example from [58]: In the 2-Path(k) problem, given (G, k) we need to find two
vertex-disjoint simple paths of length k each. The disjoint union composition
fails, since we might have two input graphs with only one k-path each. There
is, however, a simple PPT from Path(k) to 2-Path(k): Given a Path(k) instance
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(G, k), simply return (G′, k) where G′ is obtained from the disjoint union of G and
a k-path. Clearly, G has a k-path if and only if G′ contains two vertex-disjoint
k-paths.

Let us add to the example that there is also a simple or-cross-composition
from Path(k) to 2-Path(k), either by disjoint union with two copies of each input
graph or by similarly adding one additional disjoint k-path.

Polynomial lower bounds for kernelization. So far we have discussed how to
rule out polynomial kernels for certain parameterized problems. An insightful
work of Dell and van Melkebeek [22] was the first to open up the possibility of
proving polynomial lower bounds for problems that do admit some polynomial
kernelization. E.g., they showed that d-Hitting Set(k) admits no kernelization to
size O(kd−ε) for any fixed ε > 0 unless NP ⊆ coNP/poly. In fact, their bounds are
more general and apply also to compressions and, interestingly, to a form of oracle
communication protocol. For reasons of space (and focus) we restrict ourselves to
the goal of discussing polynomial lower bounds, but strongly suggest a follow-up
reading of [22].

The key step for getting to polynomial lower bounds was a closer inspec-
tion of Fortnow and Santhanam’s [35] proof of the or-distillation conjecture [22].
This revealed that, roughly speaking, an efficient algorithm that encodes the or of
any t instances for L into an equivalent instance of L′ of length O(t log t) implies
L ∈ coNP/poly. More concretely, we need such an algorithm that works when
given t := t(n) instances of size at most n each for any value of n, where t is any
polynomially bounded function. A similar statement follows for encoding the and
of t instances of L (see Theorem 4) as one of many consequences of Drucker’s
work [26].

To sketch how this gives polynomial lower bounds let us first see how it works
for ruling out all polynomial kernels. If we have an or-cross-composition of some
L into a parameterized problem that yields parameter k ∈ O(nc) then applying any
polynomial kernelization yields a total size of O(kd) ⊆ O(ncd). If we apply the
combined algorithm to t = ncd instances then this makes the total size O(ncd) ⊆
O(t). Hence, for any assumed polynomial kernelization we can choose t : N → N
such that we get “or of t instances into O(t) bits”, implying L ∈ coNP/poly.

Now, assume instead that we can encode the or of t instances of L of size n
each into one instance with parameter k ∈ O(t1/2nc). Using any kernelization with
size guarantee O(k2−ε) would now give total size O(t1−ε′nc′). This again, for an
appropriate function t : N → N, suffices to get “or of t instances into O(t) bits”
and, hence, L ∈ coNP/poly.

We will next define an extension of and/or-cross-composition that allows for
such larger contributions of the number t of instances in the parameter obtained
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by the compositions. Again, this is a front end to very insightful works [22, 26],
and, hopefully, motivates more applications of their results.

Definition 4 (and/or-cross-composition of bounded cost [12]). An and/ or-cross-
composition of L intoQ (with respect toR) of cost f (t) for t instances is an and/or-
cross-composition algorithm as described in Definition 2 that satisfies “CB” in-
stead of “PB”.

“CB”: The parameter k is bounded by O( f (t) · (maxi |xi|)c), where c is some con-
stant independent of t.

The following theorem formalizes the intuition of how the dependence on t in
an and/or-cross-composition relates to polynomial lower bounds.

Theorem 3 ([12]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N be a parameter-
ized problem, and let d, ε be positive reals. If L has an and/or-cross-composition
intoQwith cost f (t) = t1/d+o(1), where t denotes the number of instances, andQ has
a polynomial compression into an arbitrary language L′ with size bound O(kd−ε),
then L ∈ coNP/poly. If, additionally, L is NP-hard, then NP ⊆ coNP/poly.

The statement for or-cross-composition was proved in [12] building on [22].
The analogous proof for and-cross-compositions is given here for the first time.
Modulo swapping of and and or and avoiding the use of the oracle communication
protocol this proof is fully analogous to the or-cross-composition case. Crucially,
however, the proof depends on having a proven consequence of encoding the and
of t instances of any L into O(t log t) bits, which follows as a consequence of a
more powerful result of Drucker [26, 27].6

Theorem 4 (Consequence of [27, Theorem 7.1]). Let L, L′ be any languages, let
d > 0, and let t : N → N be polynomially bounded. Suppose that there exists a
polynomial-time mapping that on input of t := t(n) instances x1, . . . , xt for L each
of size n computes a single instance x of size at most d · t log t such that x ∈ L′ if
and only if xi ∈ L for all i. Then L ∈ coNP/poly.

Proof. This follows as an application of the more general [27, Theorem 7.1].
First, we need to swap the role of and and or by complementation to match [27,
Theorem 7.1]: Assume a mapping that given x1, . . . , xt returns x with x ∈ L′ if
and only if xi ∈ L for all i. If we consider L and L′ instead then we get x ∈ L′ if
and only xi ∈ L for at least one i. Once we have chosen all other parameters we
can thus apply our mapping as an or for L in [27, Theorem 7.1] which implies
L ∈ NP/poly and L ∈ coNP/poly.

6The author is indebted to Andrew Drucker for clarifying how this follows from his work.
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We use the following choices for t1(n), t2(n), δ̂, and ξ(n): We have an error-
free mapping and, thus, use error bound ξ(n) = 0. We set t1(n) := t(n) and
t2(n) := d · t(n) log t(n). Using the definition of δ̂ in [27, Theorem 7.1], this yields
δ̂ ≤ 1 − 1

8 (t(n))−d. Since t is polynomially bounded, there are constants a, b such
that t(n) ≤ a · nb for sufficiently large n. Our parameters fulfill the requirement of
1 − 2ξ(n) − δ̂ ≥ 1

nc in [27, Theorem 7.1] for c = bd + 1:

1 − 2ξ(n) − δ̂ ≥
1

8 · (t(n))d ≥
1

8 · a · nbd ≥
1
nc ,

for sufficiently large n. �

Now we can explain the proof of Theorem 3. It follows the basic intuition
given earlier and is analogous to the or case in Bodlaender et al. [12].

Proof of Theorem 3 for and-cross-compositions. LetR denote a polynomial equiv-
alence relation on Σ∗ which partitions any set of strings of length at most s into at
most O(sb) equivalence classes. Let f (t) = t1/d+o(1) for some constant d. Let C be
an and-cross-composition from L into Q, which maps t instances of size at most s
and from the same R-equivalence class to an output instance with parameter value
bounded byO( f (t)sc). Finally, let K be a polynomial compression forQ into some
language L′ that given an instance with parameter k outputs an equivalent string
(with respect to L′) of size bounded by h(k) = O(kd−ε).

We define a polynomially bounded function t by t(s) := s(b+cd)· dε . By Theo-
rem 4 it suffices to provide an appropriate encoding of the and of t instances of L.
As the target language we will use and(L′) := {(x1, . . . , xr) | r ∈ N ∧ x1, . . . , xr ∈

L′}. Fixing s and t := t(s), let t instances x1, . . . , xt of L each of length at most s
be given.

As a first step, we partition the strings xi according to equivalence under R,
obtaining r ≤ O(sb) groups. Then we apply the and-cross-composition C to
each group, obtaining r instances (y1, k1), . . . , (yr, kr). The parameter values ki are
bounded by O( f (t)sc). Now we apply the assumed polynomial compression K to
each instance (yi, ki), obtaining instances z1, . . . , zr of the language L′. We return
the instance (z1, . . . , zr).

Each compressed instance zi has size at most

h(ki) = O((ki)d−ε) = O(( f (t)sc)d−ε).

Thus we can bound the output size, i.e., the size of (z1, . . . , zr), as follows:

O
(
r ( f (t)sc)d−ε

)
= O

(
sb

(
t

1
d +o(1)sc

)d−ε
)

= O
(
sb+c(d−ε)t1− εd +o(1)

)
= O(t),
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using that r ≤ O(sb) and the following bound for sb+c(d−ε):

sb+c(d−ε) = sb+cd · s−cε = t
ε
d · s−cε = t

ε
d−δ,

where δ = cε2

(b+cd)d > 0. (Note that t1−δ+o(1) = O(t), for any δ > 0.)
Correctness. It remains to show that the returned instance (z1, . . . , zr) is in-

deed an encoding of the and of the instances x1, . . . , xt. Assume first that at least
one input instance xi is a no-instance (requiring the output to be no for and(L′)).
It follows that the corresponding instance (y j, k j) that is created by C from all
instances R-equivalent to xi must be no for Q. Accordingly, the polynomial com-
pression K transforms (y j, k j) to a no-instance z j for the language L′. Hence, the
output instance (z1, . . . , zr) is no for and(L′).

In the remaining case all input instances x1, . . . , xt are yes for L. The and-
cross-composition C will therefore create r yes-instances (yi, ki) for Q. These are
converted to r yes-instances zi for L′. Hence, the returned instance (z1, . . . , zr) is
yes for and(L′). Thus, we get a polynomial-time mapping fulfilling the require-
ment of Theorem 4. It follows that L ∈ coNP/poly, as claimed. If L is NP-hard
then NP ⊆ coNP/poly. �

To conclude the section on lower bounds for kernelization, let us illustrate a
successful “design-paradigm” for proving polynomial lower bounds that has been
identified through results of Dell and van Melkebeek [22] and Dell and Marx [21].
The idea is to use a source problem that is d-partite in a sense. More strongly,
similar to, for example, problems on bipartite graphs, all the relevant information
needs to be encoded in the adjacency (or other structure) between the partite sets;
the partite sets themselves should be isomorphic over all input instances (here
polynomial equivalence relations can be of help). Thus, one can tightly encode t
instances of a bipartite problem by using only

√
t copies each of both partite sets

and choosing a different pair for each instance. Let us perhaps make this more
concrete in the following example.

Example of a polynomial lower bound. As an illustration let us sketch an
O(nd−ε) lower bound for the d-Hitting Set(n) problem for any fixed d ≥ 3. We
give an or-cross-composition from Hitting Set restricted to d-partite d-uniform
hypergraphs, which is NP-hard for d ≥ 3 (cf. [42]). In that problem we have a
given partition of the ground set U into d color classes, say U = C1∪ . . .∪Cd with
each hyperedge containing exactly one vertex from each set Ci, and the task is to
find k elements of U that intersect all edges (if possible).

Let t instances (Ui,Fi, k) of Hitting Set on d-partite d-uniform hypergraphs be
given. For simplicity, skipping over padding arguments and choice of polynomial
equivalence relation, assume that the ground set Ui of each instance is partitioned
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into d color classes, each containing exactly n vertices. As a first step, rename the
instances from i ∈ {1, . . . , t} to i ∈ {(i1, . . . , id) | i j ∈ {1, . . . , t1/d}; a simple counting
argument shows that this allows an injective renaming.

Now, rather than taking simply the disjoint union of the instances we carefully
identify the color classes of different instances. Concretely, for p ∈ {1, . . . , d} and
q ∈ {1, . . . , t1/d} identify, vertex by vertex, the pth color class of all instances with
number i = (i1, . . . , id) with ip = q. In this way, for each color p ∈ {1, . . . , d}
we end up with t1/d color classes (each with n vertices) that are shared by several
instances. Let Cp,q for p ∈ {1, . . . , d} and q ∈ {1, . . . , t1/d} denote the obtained
color classes.

Now, for all colors p and any two vertices u and v in different color classes
Cp,q (i.e., with different values of q) we add a new edge {u, v}. Thus, any hitting
set for the instance has to completely contain all but one color class Cp,q for each
color p. Let us see what happens if, taking this into account, we ask for a hitting
set of total size at most k′ = d(t1/d−1)n+k for the combined instance of d-Hitting
Set(n).

As just observed any k′-hitting set, say S , must contain all but one color class
Cp,q for each color p. Let q1, . . . , qd ∈ {1, . . . , t1/d} such that Cp,qp * S for all
p, i.e., each qi corresponds to the color class that is not fully contained in S .
Since |S | ≤ k′ we find that the intersection of S with C1,q1 ∪ . . . ∪ Cd,qd is of
size at most k; let S ′ denote the intersection. It follows that S ′ is a k-hitting set
for all edges that are fully contained in C1,q1 ∪ . . . ∪ Cd,qd . Note that, during our
identification process, all color classes of instance i with i = (q1, . . . , qd) have been
identified with C1,q1 , . . . ,Cd,qd and all its hyperedges are, therefore, contained in
C1,q1 ∪ . . . ∪ Cd,qd . Thus, S ′ is a k-hitting set for instance i, proving that at least
one input is yes.

For the converse, if some instance (Ui,Fi, k) is yes then begin by letting S ′

a k-hitting set for that instance. Let i = (i1, . . . , id) be the assigned renaming
of i. Now, let S contain S ′ as well as all color classes Cp,q with q , ip, i.e.,
all color classes not used for instance i. Clearly, this covers all additional edges
between color classes Cp,q and Cp,q′ with q , q′. Furthermore, for every instance
i′ = (i′1, . . . , i

′
r) , (i1, . . . , ir) = i at least one position must differ, e.g., i′p , ip. But

then S already includes all vertices of Cp,i′p covering all hyperedges of instance i′.
Thus, the constructed instance is yes.

To wrap up, note that the combined instance has exactly n′ = d · t1/d ·n vertices,
which is bounded by t1/d times a polynomial in the largest instance size. Thus, we
have an or-cross-composition with cost t1/d implying that d-Hitting Set(n) has no
kernelization with size O(nd−ε) for any ε > 0 unless NP ⊆ coNP/poly. As in [22]
the analogous bound for d-Hitting Set(k) follows immediately by noting that all
nontrivial instances have k ≤ n.
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Further reading. We point out some more results regarding polynomial lower
bounds for concrete problems since, unlike ruling out polynomial kernels alto-
gether, this is not yet in common use. Independently from Dell and Marx [21],
Hermelin and Wu [47] formalized a form of composition algorithms with larger
dependence on the number t of composed instances, which they called weak com-
positions. Both papers prove polynomial lower bounds for several standard prob-
lems when restricted to families of sets of bounded size or graphs of bounded de-
gree, respectively. A recent work of Cygan et al. [18] obtains kernelization lower
bounds for several problems when restricted to graphs of bounded degeneracy that
almost exactly match known upper bounds. Jansen [48] used the polynomial lower
bound framework to rule out sparsification for computing the treewidth of a graph
by proving that the problem admits no polynomial compression to size O(n2−ε),
which would, for example, be implied by any nontrivial reduction to the number
of edges. Generally, also the initial results of Dell and van Melkebeek [22] had
sparsification lower bounds as one of their goals.

5 Representative sets and matroids
In this section we give an introduction to using representative sets and matroids
for kernelization. As a warm-up, we will begin by introducing representative sets
for set families and using them to reproduce two “classic” kernelization results,
namely polynomial kernels for d-Hitting Set(k) and d-Set Packing(k). (See be-
low for problem definitions.) It is known that kernels for these two problems
can also be obtained via the Sunflower Lemma of Erdős and Rado [28]; see,
e.g., [30, 21]. The best known kernelizations for both problems are due to Abu-
Khzam [2, 1], with a slightly smaller ground set of O(kd−1) but same asymptotic
total size of O(kd log k). It is known, by work of Dell and van Melkebeek [22]
and Dell and Marx [21], that neither result can be improved to size O(kd−ε) unless
NP ⊆ coNP/poly.

In the second part we move on to using representative sets on families of in-
dependent sets of a given matroid. A 1977 result of Lovász [60] states that such
sets, of modest size, exist for every linear matroid, i.e., for every matroid that
can be represented as the column matroid of a matrix. Marx [62] observed that
Lovász’ proof in fact also gives rise to an efficient algorithm. Since then, repre-
sentative sets, both for set families (or, equivalently, uniform matroids) but also
for gammoids and graphic matroids, have found various applications in parame-
terized complexity for kernelization [57] and faster algorithms [31]. In particular,
Fomin et al. [31] also gave faster algorithms for finding representative sets for
both linear matroids and the special case of uniform matroids. To illustrate the
use for kernelization, we will give a fairly detailed description of the polynomial
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kernelization for Deletable TerminalMultiway Cut(k) obtained in [57].

Representative sets for set families. Let us jump right in and give a definition
of q-representativeness for the case of set families.

Definition 5 (q-representative set family). LetA be a family sets and let q ∈ N. A
subset A′ ⊆ A is q-representative for A if for every set B of size at most q there
is a set A ∈ A with A∩ B = ∅ if and only if there is a set A′ ∈ A′ with A′ ∩ B = ∅.

We will later give a similar definition for representative independent sets in a
specified matroid (see Definition 6) that additionally requires A ∪ B and A′ ∪ B
to be independent sets of the matroid. The present definition can then be seen
as a special case by using so-called uniform matroids where all sets up to some
prescribed size are independent, but this is not at all required for understanding.
Nevertheless, the general efficient algorithm of Lovász [60] and Marx [62] (see
also Theorem 5 below) implies the following lemma.

Lemma 2. Let A be a family of sets of size p each and let q ∈ N. In time
polynomial in

(
p+q

p

)
+ |A| one can compute a q-representative subset A′ ⊆ A of

size at most
(

p+q
p

)
.

While the guaranteed size bound of
(

p+q
p

)
might seem somewhat arbitrary at

first, it is in fact tight: Consider the family A containing all
(

p+q
p

)
subsets of size

p of the set {1, . . . , p + q}. Then, going over all sets B that are size q subsets of
{1, . . . , p + q}, we always find a unique set A ∈ A that is disjoint from B, namely
A = {1, . . . , p+q} \B. Thus, all sets inAmust be included and the lemma is tight.
We will later make more use of the implicit observation that sets A that are unique
“partners” for some set B must be included in any q-representative subset.

Let us now see that even this simple form of using representative sets, i.e.,
without the full power of specialized matroids, already suffices to reproduce “clas-
sic” kernelization results. We begin with the d-Hitting Set(k) problem, defined as
follows.

d-Hitting Set(k)
Input: A universe U, a family A of subsets of U each of size at
most d, and k ∈ N.
Parameter: k.
Question: Is there a set of at most k elements of U that intersects all
sets inA?

We sketch a kernelization; let an instance (U,A, k) be given. Using Lemma 2
with p = d and q = k compute a k-representative subset A′ ⊆ A of size at
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most
(

k+d
d

)
∈ O(kd). If (U,A, k) is yes then also (U,A′, k) must be yes since A′ ⊆

A. If, however, (U,A, k) is no then, in particular, no set B ⊆ U of size at most k
can be a solution for (U,A, k). In other words, for each such set B there is at
least one set A ∈ A that avoids B, i.e., A ∩ B = ∅. Since A′ is k-representative
for A, for each choice of B we also find a set A′ ∈ A′ with A′ ∩ B = ∅, implying
that (U,A′, k) is no, too.

We remark that the reduction to |A′| ∈ O(kd) allows an encoding in O(kd log d)
bits, which is essentially optimal due to the mentioned result of Dell and van
Melkebeek [22] that rules out efficient reduction to bit size O(kd−ε) unless
NP ⊆ coNP/poly. It is possible, however, to improve the size of the ground set
to O(kd−1), rather than the implicit O(d · kd) = O(kd), using the kernelization of
Abu-Khzam [2]. (It is an interesting problem to close the wide gap between this
result and the trivial lower bound of Ω(k) for the ground set size.)

Let us now consider d-Set Packing(k) where the argument is slightly more
involved, though certainly comparable to the less obvious application of the Sun-
flower Lemma as compared to d-Hitting Set(k) (cf. [21]).

d-Set Packing(k)
Input: A universe U, a family A of subsets of U each of size at
most d, and k ∈ N.
Parameter: k.
Question: Is there a selection of k sets inA that are pairwise disjoint?

Again, representative sets can be used to obtain a polynomial kernelization
whose size is essentially optimal. This time, given an instance (U,A, k) of d-
Set Packing(k) we compute a d(k − 1)-representative subset A′ of A. Let us see
that this works correctly. Clearly, if (U,A, k) was no in the first place then the
obtained instance (U,A′, k) will be no too. Assume now that (U,A, k) is yes.
Let A1, . . . , Ak ∈ A be a selection of k pairwise disjoint sets such that as many
sets Ai as possible are also contained in A′. If A1, . . . , Ak ∈ A

′ then we are
done, so assume w.l.o.g. that A1 < A

′. Then, letting B := A2 ∪ . . . ∪ Ak we
note that A1 ∩ B = ∅ and that |B| ≤ d(k − 1). It follows, since A′ is d(k − 1)-
representative for A, that there exists A′1 ∈ A

′ with A′1 ∩ B = ∅. Then, however,
we immediately see that A′1 ∈ A and A′1, A2, . . . , Ak is also a selection of k pairwise
disjoint sets but with more sets also contained in A′; a contradiction. Thus, we
must have A1, . . . , Ak ∈ A

′, and, therefore, the obtained instance (U,A′, k) is
indeed equivalent to (U,A, k).

Representative sets for matroids. We will now introduce representative sets
for families of independent sets of a given matroid. Since all further known kernel-
izations via representative sets [57] make use of a particular type of matroid called
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gammoid we will mainly focus on those. Let us recall that a matroid M = (U,I)
consists of a finite set U and a family I of subsets of U, called independent sets,
fulfilling the following properties:

1. ∅ ∈ I.

2. If X ⊆ Y and Y ∈ I then also X ∈ I.

3. If X,Y ∈ I with |X| < |Y | then there exists y ∈ Y \ X such that X ∪ {y} ∈ I.

We can now give the full definition of q-representative sets for families of
independent sets in a matroid. For ease of writing, let us say that an independent
set A extends an independent set B if A∩B = ∅ and A∪B is independent. Note that
independence of A ∪ B requires independence of both A and B due to the second
matroid property.

Definition 6 (q-representativeness for families of independent sets). Let M =

(U,I) be a matroid. Let A ⊆ I be a collection of independent sets of M and let
q ∈ N. We call a set A′ ⊆ A q-representative for A if for every independent set
B of size at most q there is an A ∈ A that extends B if and only if there is also an
A′ ∈ A′ that extends B.

It should not come as a surprise that with the addition of matroid independence
this opens up a much bigger world of applications. The, so far, most interesting
matroids regarding kernelization applications are the gammoids (defined below).
Their independence notion is strongly related to Menger’s Theorem, and the proof
that they are indeed matroids is due to Perfect [64].

Let G = (V, E) be a graph that may have both directed and undirected edges,
and let S ⊆ V . Say that a set T ⊆ V is linked to S if there exist |T | vertex-disjoint
paths from S to T , i.e., each vertex in T is endpoint of a different path from S .
Then the set system M = (V,I) where I contains all sets T that are linked to
S is a matroid. We say that M is the gammoid on G with sources S . (We note
that often the roles of S and T are switched, which makes no difference regarding
what matroids are gammoids. Furthermore, restricting I to any subset V ′ ⊆ V
still yields a gammoid, and the case of V ′ = V is also called a strict gammoid.)

It is known that every gammoid can be represented as the (linear) indepen-
dence of column vectors of a matrix, making them linear matroids (cf. [62]). The
construction of the matrix over an appropriately large field can be made construc-
tive by an efficient, randomized algorithm but it is a big open problem whether
a deterministic construction exists. For simplicity, we hide these details in the
following theorem, noting that the general version [60, 62] holds for any linear
matroid when given the matrix representation (and without further use of random-
ization).
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Theorem 5 (simplified version of result by Lovász [60] and Marx [62]). Let M
be a gammoid and let A = {A1, . . . , Am} be a collection of independent sets, each
of size p. We can find in randomized polynomial time a set A′ ⊆ A of size at
most

(
p+q

p

)
that is q-representative forA.

A highly useful property of representative sets is that they can be employed
for actually finding particular objects (e.g., vertices) rather than just “blindly” dis-
carding sets (or other objects) as we did for d-Hitting Set(k) and d-Set Packing(k).
For A′ to be q-representative for A it is required that every set B that can be ex-
tended by some A ∈ A can also be extended by some A′ ∈ A′. This entails,
however, that if a given A ∈ A is unique in extending some given B then this en-
forces that A ∈ A′; else, no set in A′ could extend B. We will return to this trick
soon.

Example application. Let us now discuss an application of Theorem 5, namely
a polynomial kernelization for the following variant of Multiway Cut(k), called
Deletable TerminalMultiway Cut(k):

Deletable TerminalMultiway Cut(k)
Input: A graph G = (V, E), a set of terminals S ⊆ V , and k ∈ N.
Parameter: k.
Question: Is there a set X of at most k vertices such that in G − X no
two terminals t1, t2 ∈ S \ X are in the same connected component?

The problem can be easily seen to be NP-hard, since using terminal set S = V
requires finding a vertex cover of size at most k. Note also, that all instances with
|S | ≤ k + 1 are trivial since this would allow deletion of all but one terminal.
Finally, unlike Multiway Cut, which is hard already for three terminals, for any
fixed size of S we have a trivial solution if k ≥ |S | − 1 or else can enumerate and
test all O(|V |k) ⊆ O(|V ||S |−1) solution candidates in polynomial time.

The kernelization proceeds as follows: (1) We show that if an instance is yes
then there is always a solution X that allows a certain path packing from S to X.
(2) We set up a gammoid based on a graph G′ derived from G, and with sources S .
(3) We use Theorem 5 to find a superset of X of size O(k3), using the path packing
to distinguish vertices in V . (4) We briefly explain how to use this superset to
shrink the input graph G to O(k3) vertices.

Analyzing solutions. Let an instance (G, S , k) of Deletable Terminal Mul-
tiway Cut(k) be given. Assume that the instance is yes and, for analysis, let X
denote a solution for (G, S , k) that contains the maximum number of terminals
from S (among solutions of size at most k). Clearly, vertices in X ∩ S correspond
to outright deletions of terminals, whereas X0 := X \ S separates the remaining
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terminals S 0 := S \ X from one another. We want to establish that X0 is linked to
S 0 in a strong sense, by using Hall’s theorem.

Note that each connected component of G − X contains at most one terminal
from S ; for brevity, we will call C containing a terminal from S 0 = S \X a terminal
component. Let us say that a vertex x ∈ X0 sees a terminal component C if in G
the vertex x is adjacent to a vertex of C. We extend this to sets Y ⊆ X0 by saying
that Y sees a terminal component C if at least one x ∈ Y sees C. Intuitively, if a
vertex of X0 sees some terminal components, then “putting that vertex back” into
G − X reconnects those components and terminals; ditto for Y ⊆ X0.

We set up for using Hall’s Theorem: Assume that any nonempty set Y ⊆ X0

sees at most |Y | + 1 terminal components. It follows that in G − (X \ Y) the set Y
together with these terminal components (and possibly terminal-free components)
forms a larger component with up to |Y | + 1 terminals. All other terminal compo-
nents not seen by Y are unaffected. Observe that this allows an alternative solution
by deleting any |Y | of the |Y |+1 terminals, say a set Y ′ ⊆ S 0. This, however, contra-
dicts our choice of X since (X \Y)∪Y ′ would be a solution with larger intersection
with S . Thus, every Y ⊆ X0 sees at least |Y | + 2 terminal components C.

Using Hall’s Theorem it can now be checked that we can find a matching of
|X0| + 2 terminal components to vertices in X0 such that:

• Each component is matched to a vertex x ∈ X0 that sees it.

• For any fixed vertex x ∈ X0 we get three components matched to x.

Now, we “trade” matched components for disjoint paths from S 0 to X0: Notice
that in each component with a terminal t that is seen by some x ∈ X0 we can freely
choose a path from t to x with all vertices but x contained in the component. Thus,
for all |X0|+2 components we can find disjoint paths to the matched vertices in X0.
Hence, we get a path packing with |X0| + 2 paths from S 0 to X0 with three paths
ending in any chosen vertex x ∈ X0.

Setting up the gammoid. For the gammoid M we use a graph G′ that is ob-
tained from G = (V, E) by adding two so-called sink-only copies v′, v′′ for each
vertex v ∈ V . A sink-only copy v′ (or v′′) for v shares all in-neighbors with v
but has no out-neighbors (i.e., if {u, v} is an edge then we only add a directed
edge (u, v′)). Thus, adding such vertices does not affect, e.g., the existence of
paths between any terminals, since they can only act as endpoints (sinks) of paths.
Using the sink-only copies, we can formalize the informal statement of three paths
ending in any x ∈ X0 to three paths ending in {x, x′, x′′}. Let us also point out that
the gammoid setting allows trivial paths consisting of just one vertex, e.g., we have
such paths from S ∩X to S ∩X. Overall, together with the above path packing we
get that in G′ there must exist a path packing of |X|+2 paths from S to X∪{x′, x′′}
for every choice of x ∈ X0.
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Applying representative sets. Now we will apply the idea that representative
sets can be used to identify particular objects. We will use Theorem 5 to compute
a k − 1 representative subset T ′ of T where T := {{v, v′, v′′} | v ∈ V}. Our goal is
to show that for all x ∈ X0 we must have {x, x′, x′′} ∈ T ′. Note that the theorem
guarantees |T ′| ∈ O(k3).

Our argument now depends crucially on the trick that we outlined previously:
If there exists an independent set I of M of size/rank at most k − 1 such that
{x, x′, x′′} uniquely extends I then this directly implies that {x, x′, x′′} is contained
in every k − 1-representative subset T ′ of T . Recall that we already know that
X∪{x′, x′′} is linked to S in G′ and thus it is independent, for all x ∈ X0. It follows
directly that {x, x′, x′′} extends the independent set X − x for all x ∈ X0. It remains
to prove that no other set {v, v′, v′′} ∈ T extends X − x.

Consider first any v ∈ X− x. In this case we have {v, v′, v′′}∩ (X− x) = {v} , ∅,
implying that the set {v, v′, v′′} does not extend X − x. The more interesting case is
for {v, v′, v′′} with v ∈ V \ X. First, note that for {v, v′, v′′} to extend X − x requires
for (X − x) ∪ {v, v′, v′′} to be linked to S in G′. A (weaker) requirement is that
{v, v′, v′′} is linked to S in G′ − (X − x), since any paths from S to X − x definitely
block at least X − x from being used in paths from S to {v, v′, v′′}.

Let us see that there cannot be three disjoint paths from S to {v, v′, v′′} in
G′ − (X − x): Recall that paths cannot have sink-only copies as interior vertices,
so apart from v′ and v′′ we can use that X is a solution in graph G. At most one
of the paths can come from a terminal in the terminal component of v, and one
more path can include the vertex x. No third path is possible. Thus, we find that
no other set {v, v′, v′′} can extend X − x.

Since for each x ∈ X0 the set {x, x′, x′′} uniquely extends X − x we get that for
all vertices x ∈ X0 we must have {x, x′, x′′} ∈ T ′. Hence, letting V(T ′) stand for
{v | {v, v′, v′′} ∈ T ′}, it is guaranteed that X0 ⊆ V(T ′). In extension this implies
X = X0 ∪ (X ∩ S ) ⊆ V(T ′) ∪ S . There is a reduction rule that ensures |S | = O(k)
(see [39]), but let us omit this detail and directly assume that we have a set of
O(k3) vertices containing all terminals S as well as at least one solution X (if one
exists).

Shrinking the input graph to O(k3) vertices. We can now complete the ker-
nelization. Let W denote the established set of O(k3) vertices that is guaranteed
to completely contain at least one solution (as well as all terminals). Using this
guarantee, there is no harm in making all vertices of V \W undeletable: For any
vertex v ∈ V \W simply make the neighbors of v a clique and remove v from the
graph; this captures the intention that deleting v does not remove any connectivity
while also shrinking the graph. (Note that doing this for all vertices of V \ W at
once corresponds to the so-called torso operation applied to W.) We obtain an
equivalent instance (Ĝ, S , k) where Ĝ is a graph on vertex set W of size at most
O(k3).
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Further results kernelization results based on matroids. Prior to the applica-
tion of representative sets for kernelization [57], the fact that gammoids admit an
efficient representation as column matroids of matrices over (sufficiently large) fi-
nite fields (cf. [62]) was used to find a (randomized) polynomial kernelization for
Odd Cycle Transversal(k) [56], settling a well-known problem in kernelization.
At high level, a represented gammoid is used to fairly succinctly encode a fam-
ily of two-way cut queries that are sufficient to determine the status of the input
instance. In the follow-up work [57] representative set tools were used, amongst
others, to obtain somewhat more combinatorial7 kernel results based on irrelevant
vertex arguments.

Theorem 6 ([57]). The following kernelizations are possible: Almost 2-SAT(k),
with O(k6) variables; s-Multiway Cut(k), with O(ks+1) vertices; s-Multicut(k),
with O(kd

√
2se+1) vertices; Group Feedback Vertex Set(k), for a group of s ele-

ments, with O(k2s+2) vertices. All results are randomized, with failure probability
exponentially small in n.

Note that, Almost 2-SAT(k), i.e., the task of making a 2-CNF formula satisfi-
able by deleting at most k variables, is a pivotal problem since several other prob-
lems have PPTs to it, e.g., e.g., Vertex Cover Above Matching, Vertex Cover
Above LP, and RHorn-Backdoor Deletion Set. It also directly generalizes Odd
Cycle Transversal(k). All these problems have polynomial kernelizations due to
this connection.

Furthermore, the techniques were also used to obtain results called cut cov-
ering sets, which guarantee to include an optimal cut for each one of a (possibly
exponentially large) set of cut queries. We recall the statement for the two-way cut
setting and direct the reader to [57] for an s-multiway cut variant of the theorem.

Theorem 7 ([57]). Let G = (V, E) be a digraph and let S ,T ⊆ V. Let r denote the
size of a minimum (S ,T )-vertex cut (which may intersect S and T). There exists
a set Z ⊆ V, |Z| = O(|S | · |T | · r), such that for any A ⊆ S and B ⊆ T, it holds
that Z contains a minimum (A, B)-vertex cut. We can find such a set in randomized
polynomial time with failure probability O(2−n).

Further reading. The already mentioned recent paper of Fomin et al. [31] is
a recommended follow-up read. Fomin et al. obtain faster algorithms for finding
representative sets for linear matroids and for the special case of uniform matroids;
in particular the second does not require a matrix representation. Furthermore,
they explain several algorithmic applications and obtain, amongst others, the so
far fastest deterministic algorithm for Path(k), running in time O(2.851km log2 n).

7The underlying result of Lovász [60] is proved via exterior algebra, and derived algo-
rithms [62, 31] still use linear algebra tools.
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6 Turing kernelization
Already before the kernelization lower bound framework [9] several authors had
suggested the possibility of preprocessing into many independent small instances
rather than just one [29, 40]. After the framework appeared, it was noted that the
obtained lower bounds do not apply to this relaxed form of kernelization, which
makes it a possible option for avoiding lower bounds.

A Turing kernel for Leaf Out-Tree(k). A first example was soon discovered
by Binkele-Raible et al. [6]: Say that an out-tree is any directed tree with a
unique vertex of in-degree zero, called the root, and with vertices of out-degree
zero called the leaves. The Leaf Out-Tree(k) problem asks whether a given di-
graph D = (V, A) contains an out-tree with at least k leaves. Binkele-Raible
et al. [6] showed that this problem admits no polynomial kernelization unless
NP ⊆ coNP/poly (using the then new framework of Bodlaender et al. [9]). In
contrast, they proved that a variant called Rooted Leaf Out-Tree(k), where in ad-
dition to D = (V, A) and k we are given a fixed vertex v ∈ V to use as the root of
the out-tree, does admit a kernelization to O(k3) vertices (and, hence, polynomial
total size). They concluded that, since a given instance (D = (V, A), k) of Leaf
Out-Tree(k) has only |V | choices for a root v, one may preprocess the instance by
returning |V | instances (D, v, k) of Rooted Leaf Out-Tree(k), one for each choice
of v ∈ V . Since the latter admits a polynomial kernelization, this yields |V | in-
stances on O(k3) vertices each. Furthermore, (D, k) is yes for Leaf Out-Tree(k)
if and only if at least one instance (D, v, k) is yes for Rooted Leaf Out-Tree(k).
Altogether, the reduction of one instance of Leaf Out-Tree(k) to |V | instances of
Rooted Leaf Out-Tree(k) combined with a polynomial kernelization for the latter
gave the first example8 of what is now called a (polynomial) Turing kernelization.
More specifically, it is a polynomial disjunctive kernelization since the status of
the input instance is equivalent to the disjunction (or) of the outcomes of the |V |
reduced instances.

Turing kernelization and other variants. Given the success of the lower bound
framework and the wealth of obtained results, a notion of preprocessing that
avoids these lower bounds is of course highly interesting. Note that, from a prac-
tical perspective, a sequence of small, independent instances might also be easier
to handle (e.g., by parallelization) than a single large instance. This aspect applies
of course only to the case that the reduced instances are created in parallel, rather
than adaptively. Theoretically, also an adaptive creation of inputs is interesting;

8Binkele-Raible et al. [6] also proved analogous results for Rooted Leaf Out-Branching(k)
and Leaf Out-Branching(k) where the out-tree is required to span the input graph D.
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in particular, lower bounds against adaptive (i.e., Turing) kernelization would be
very powerful. Note that this necessitates a slightly more involved definition, since
the “kernelization” needs to know the answers to already created instances before
outputting the next one. It is thus natural to formalize a Turing kernelization for
Q ⊆ Σ∗ × N as an efficient algorithm that given (x, k) ∈ Σ∗ × N correctly decides
whether (x, k) ∈ Q provided that it gets the answers to all (adaptively) created
small instances. The traditional way in computer science to formalize this is by
means of an oracle; we recall the definition given by Binkele-Raible et al. [6].

Definition 7 ([6]). A t-oracle for a parameterized problem Q is an oracle that
takes as input (x, k) with |x|, k ≤ t and decides whether (x, k) ∈ Q in constant time.

Definition 8 ([6]). A parameterized problem Q is said to have a g(k)-sized Turing
kernelization if there is an algorithm which given an input (x, k) together with a
g(k)-oracle for Q decides whether (x, k) ∈ Q in time polynomial in |x| + k.

Naturally, by letting the oracle queries be to any other parameterized problem
Q′ or to any (classical) language L we could define variants such as generalized
Turing kernelization or Turing compression. Note, however, that using Karp re-
ductions we can easily translate oracle questions, which probably makes the dis-
tinction meaningless. In the following we will not insist on a concrete definition
and simply allow the most relaxed variant of t-sized queries to any language L.

Let us informally state also the following restricted variants of Turing kernel-
ization:

Disjunctive kernels: Like the example for Leaf Out-Tree(k), given an input
(x, k), create |x|O(1) instances of size bounded in k such that (x, k) is yes
if and only if at least one output instance is yes.

Conjunctive kernels: Given an input (x, k), create |x|O(1) instances of size
bounded in k such that (x, k) is yes if and only if all output instances are
yes. Surprisingly perhaps, we are already able to rule out polynomial con-
junctive kernels for most problems with lower bounds against polynomial
kernelization. We will recall this briefly later in this section.

Truth-table kernels: Generalizing conjunctive and disjunctive kernels one may
simply define any Boolean function (or a family thereof, one for each ar-
ity) and demand that the input is yes if and only if the function applied to
the outcomes for all output instances (treating yes as true and no as false)
evaluates to true.

Initially, only few examples of polynomial Turing kernels were found for
problems without polynomial kernels and all of them are in fact disjunctive ker-
nels [6, 5, 67]. A few more simple examples have been observed throughout the
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community. As an example, the reader is invited to consider the Clique(∆) prob-
lem where we seek a k-clique in a given graph G, parameterized by the maximum
degree of G. It is not hard to give both an or-(cross-)composition and a disjunctive
polynomial kernelization.

Recently discovered Turing kernels. Last year, Thomassé et al. [69] found a
polynomial Turing kernelization for Independent Set on bull-free graphs9, where
the oracle questions are used in a dynamic programming fashion on a decomposi-
tion of the bull-free input graphs. In this case, the full power of Turing kerneliza-
tions as opposed to truth-table kernelization (or others) seems required. A similar
form of Turing kernelization was independently found by Jansen [49] more re-
cently for the Path(k) problem restricted to planar graphs (and related cases). We
describe a simplified version of the approach taken by Jansen [49], since this re-
quires less preliminaries.

1. We are given a planar graph G = (V, E) and an integer k, and want to find out
whether G contains a simple path on at least k vertices. We will efficiently
solve the instance by making a polynomial in |V | number of oracle queries
of size polynomial in k each.

2. We apply a tree-like decomposition of the graph into its three-connected
components (attributed to Tutte). Any two incident components overlap in
at most two vertices. Roughly, this can be obtained by recursing on vertex-
separators of size at most two, until reaching a three-connected component.

3. Any three-connected component of a planar graph on at least Ω(kc) vertices
must contain a path of length at least k, for some known constant c (cf. [49]).
Thus, if the graph has a three-connected component that has size Ω(kc), then
we can safely answer yes. Otherwise, and henceforth, all three-connected
components have size O(kc).

4. If we take a leaf component then this is of size O(kc) and we can afford an
oracle question for the longest path therein. If this returns a path of length at
least k then we can answer yes and stop. Else, we ask for the longest paths
ending in the component or passing through it. Concretely, if, e.g., the
component has vertices p and q shared with its parent component, then we
also perform oracle questions for (1) the longest p,q-path; (2) the maximum
total length of two disjoint paths starting in p and q; (3) the longest path

9The so-called bull graph is obtained from a triangle by attaching a leaf each to two of its
vertices. Bull-free graphs are exactly those graphs that contain no induced subgraph (on five
vertices) that is isomorphic to the bull.
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starting in p; (4) the longest path starting in p and avoiding q; (5) the longest
path starting in q; (6) the longest path starting in q and avoiding p.

5. If the computation on a component does not lead to an immediate yes an-
swer, then we encode the gained information from questions (1-6) using
annotations in the parent component, delete the present component, and
continue. Note that, in this simplified version, we tacitly used oracle ques-
tions for finding longest paths in some form of annotated graph. With a bit
more work (cf. [49]), we can avoid annotations and employ self-reduction
to find longest paths.

Jansen [49] also proved a polynomial Turing kernelization for Cycle(k) on
planar graphs, and generalized his ideas to work also on bounded degree graphs,
claw-free graphs, and K3,t minor graphs (for both problems). Note also that all
mentioned cases of Path(k) and Cycle(k) remain NP-hard and have trivial or-
(cross-)compositions by disjoint union that rule out polynomial kernels (cf. [49]).
While the Tutte decomposition works on general graphs, it is crucial that the con-
sidered graph class has an inverse polynomial lower bound on the length of sim-
ple paths inside three-connected components (i.e., a component of size ` must be
known to contain a path of length at least `−c).

Ruling out polynomial conjunctive kernels. Consider a polynomial conjunc-
tive kernelization for a problem Q. On input (x, k) it will create |x|O(1) instances of
size polynomial in k such that the input is yes if and only if all output instances
are yes. (Note that, again, this will work just fine independently of whether the
outputs are for Q, another problem Q′, or any classical language L.) Let us mod-
ify the kernelization to arbitrarily (i.e., nondeterministically) output only one of its
created instances. Clearly, if the input is yes then all outputs are yes and it returns
any one of them. If the input is no then at least one created output is no. Thus, by
nondeterministically selecting one output, it may falsely return a yes instance but
at least one possible computation leads to the output of a no instance. Generally,
such kernelizations have been called co-nondeterministic kernelizations [53] for
their similarity to Turing machines for coNP. (Note that those are in general more
powerful because they are not restricted to “just” |x|O(1) instances but may in fact
have 2|x|

O(1)
computation paths, each with different output.)

It has been observed10 that the proof of Fortnow and Santhanam [35] for the
or-distillation conjecture applies also if the or-distillation behaves, similarly to
above, in a co-nondeterministic fashion. In the work of Dell and van Melke-
beek [22] the so-called “complementary witness lemma” holds explicitly also for
the co-nondeterministic setting. Long story short, both or-(cross-)compositions

10This is attributed to Chen and Müller by Harnik and Naor [45].
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and polynomial kernelizations/compressions may behave co-nondeterministically
without any harm to the lower bound implications. Thus, any (possibly
co-nondeterministic) or-(cross-)composition rules out co-nondeterministic poly-
nomial kernelizations and compressions; in particular, this rules out the more re-
stricted case of polynomial conjunctive kernels for the problem in question [53].
(For more applications of co-nondeterminism we refer to [53, 55].)

Lower bounds for Turing kernels. Unlike for normal (many-one) kerneliza-
tion, there is yet no technique for ruling out polynomial Turing kernels for any
FPT problem (modulo any reasonable complexity hypothesis). The observation
applied for polynomial conjunctive kernelizations should not be expected to gen-
eralize, in particular not to the seemingly powerful adaptive setting of Turing
kernels. (Note that having any Turing kernelization again also implies fixed-
parameter tractability, and thus W[1]-hardness rules out such kernels, assuming
FPT , W[1].)

Motivated by this state of the art, Hermelin et al. [46] initiated a completeness
program centered around a newly introduced WK/MK-hierarchy of parameterized
problems.11 The starting point is the fact that results for polynomial kernelizations
transfer, modulo technical details, by polynomial parameter transformations (see
Bodlaender et al. [13]). If we relax to using generalized kernelizations or com-
pressions then results transfer directly (see, e.g., Lemma 1). In the same way, this
applies to the existence and non-existence of polynomial disjunctive, conjunctive,
truth-table, and Turing kernelizations.

Arguably the most important class in [46] is WK[1]; it is the lowest hardness
class in the hierarchy. Since a variety of problems were shown to be complete for
WK[1] we will simply list some complete problems for WK[1], MK[2], and WK[2]
below rather than giving formal definitions (and will not discuss further classes).
At high level, all WK[i] and MK[i] classes are defined as closures of certain pa-
rameterized satisfiability-related problems under PPTs. These defining problems
are reparameterizations of problems used to define the W[i] and M[i] classes from
the parameterized hierarchy of intractability (see, e.g., [30]). Motivated by the va-
riety of problems that could be classified as WK[1]-complete, Hermelin et al. [46]
conjectured that no WK[1]-hard problem admits a polynomial Turing kerneliza-
tion. Similarly to an efficient algorithm for any NP-hard problem (but maybe
not as surprising) a polynomial Turing kernelization for any WK[1]-hard problem
would be a breakthrough since none of the known hard problems (see below) seem

11The hierarchy is, in a sense, a reparameterization of the W[i]- and M[i]-hierarchies in param-
eterized intractability. It subsumes a strongly related hierarchy of Harnik and Naor [45] aimed at
classical problems in relation to their witness size. A detailed discussion of the relation is given in
Hermelin et al. [46].
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particularly amenable to this (see also the discussion in [46]).
The Hitting Set problem (note the unrestricted set size) nicely showcases sev-

eral levels of the hierarchy when taken under different parameterizations.

Hitting Set
Input: A universe U, a set family F ⊆ 2U , and k ∈ N.
Question: Is there a set of at most k elements of U that intersects
every set in F ?

Under its standard parameter k the problem is complete for W[2] under parame-
terized reductions and, thus, not even FPT unless FPT = W[2]. Using, however,
parameters n := |U |, m := |F |, or k log n it can be easily seen to be FPT. Neverthe-
less, for all three parameters it is possible to rule out polynomial kernelizations;
for the first two results this follows from work of Dom et al. [23]. Curiously, all
three parameterizations give problems that are complete for different levels of the
WK- and MK-hierarchies.

• Hitting Set(m) is complete for WK[1] and equivalent (also under PPTs) to
problems such as Capacitated Vertex Cover(k), Connected Vertex
Cover(k), Steiner Tree(k + t), Min Ones d-SAT(k), Clique(k log n), Set
Cover(n), Multicolored Path(k), and Binary NDTM Halting(k). The latter
problem asks whether a given nondeterministic Turing machine with binary
alphabet stops within k steps.

Disjoint Paths(k) and Disjoint Cycles(k) are WK[1]-hard.

• Hitting Set(n) is complete for MK[2] and equivalent to problems such as
Set Cover(m) and CNF-SAT(n).

Among hard problems for MK[2] there are, e.g., several structural parame-
terizations of Dominating Set(k).

• Hitting Set(k log n) is complete for WK[2] and equivalent to Set
Cover(k log m), and Dominating Set(k log n).

We refer to Hermelin et al. [46] for a more extensive list of hard and complete
problems, in particular also for MK[2] and WK[2]. The most interesting feature,
perhaps, is the richness of complete problems for WK[1]. The fact that all these
fairly different problems are equivalent for existence of polynomial Turing kernel-
izations supports the conjecture that no WK[1]-hard problem has such a kerneliza-
tion. We also refer to Hermelin et al. [46] for a discussion of why these problems
seem hard to Turing-kernelize.

A particular problem that has so far resisted a classification is Path(k), for
which neither a polynomial Turing kernelization nor WK[1]-hardness are known.
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If we make the problem slightly richer by taking the input graph to be k-colored
and asking for a k-path containing all k colors then it becomes WK[1]-complete
[46]; Jansen [49] extended this to the special case of planar inputs, motivated
by his Turing kernelization for the un-colored version. Apart from this it would,
obviously, be of high interest to have any complexity-theoretic evidence for the
correctness of the conjecture that WK[1]-hard problems have no polynomial Tur-
ing kernels.

7 Open problems
In this section we conclude the survey with some open problems. One of the cen-
tral problems in kernelization research is certainly the understanding of possibili-
ties and limitations of Turing kernelization. Furthermore, the Turing kernelization
status of the Path(k) problem is of particular interest since it is not known to be
hard for WK[1].

Open problem 1. Devise general upper and lower bound tools for Turing kernel-
ization.

Open problem 2. Prove or disprove the conjecture that no WK[1]-hard problem
admits a polynomial Turing kernelization.

Open problem 3. Prove or disprove the existence of a polynomial Turing kernel-
ization for Path(k).

The randomized polynomial kernelizations for, e.g., Deletable TerminalMul-
tiway Cut(k) and Odd Cycle Transversal(k) [57], bring up the question of
whether there are also deterministic polynomial kernels for these problems. This
could be either by a derandomization of the existing approach or by completely
new methods. Note that the exponentially small error in the kernelizations makes
a lower bound against deterministic kernelizations unlikely (at least within the
current framework).

Open problem 4. Are there deterministic polynomial kernelizations for the prob-
lems covered by the matroid-based kernelization results in [57]?

Finally, we mention (and recall) two concrete parameterized problems that
have so far resisted classification into admitting or not admitting (e.g., modulo
NP * coNP/poly) a polynomial kernelization.

Open problem 5. In the Multiway Cut(k) problem we are given an undirected
graph G = (V, E), a set of terminal vertices T , and k ∈ N with the task of deleting
at most k non-terminal vertices to disconnect all terminals. Does this problem
have a polynomial kernelization?
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Recall that the restricted variant with only a fixed number s of terminals has a
kernelization to an equivalent instance with O(ks+1) vertices [57]. It is interesting
whether the occurrence of s in the exponent is necessary and, if so, whether it is
asymptotically optimal.

Open problem 6. In the Directed Feedback Vertex Set(k) problem we are given
a directed graph G = (V, A) and k ∈ N with the task to delete at most k vertices
to make the graph acyclic (if possible). Does this problem have a polynomial
kernelization?

This problem has survived, so far, the development of various upper and lower
bound techniques, and is probably the longest-standing open problem in kerneliza-
tion (and holding a solid place among established open problems in parameterized
complexity overall).

Acknowledgements

The author is indebted to Andrew Drucker and Magnus Wahlström for several
discussions and comments that greatly improved this survey. Furthermore, de-
tailed comments of Bart Jansen and Somnath Sikdar on their work are gratefully
acknowledged.

References
[1] Faisal N. Abu-Khzam. An improved kernelization algorithm for r-Set Packing. Inf.

Process. Lett., 110(16):621–624, 2010.

[2] Faisal N. Abu-Khzam. A kernelization algorithm for d-Hitting Set. J. Comput. Syst.
Sci., 76(7):524–531, 2010.

[3] Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data
reduction for dominating set. J. ACM, 51(3):363–384, 2004.

[4] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving
MAX-r-SAT above a tight lower bound. Algorithmica, 61(3):638–655, 2011.

[5] Abhimanyu M. Ambalath, Radheshyam Balasundaram, Chintan Rao H., Venkata
Koppula, Neeldhara Misra, Geevarghese Philip, and M. S. Ramanujan. On the ker-
nelization complexity of colorful motifs. In IPEC, volume 6478 of LNCS, pages
14–25. Springer, 2010.

[6] Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket
Saurabh, and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees
with many leaves. ACM Transactions on Algorithms, 8(4):38, 2012.



The Bulletin of the EATCS

93

[7] Hans L. Bodlaender. Kernelization: New upper and lower bound techniques. In
IWPEC, volume 5917 of LNCS, pages 17–37. Springer, 2009.

[8] Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors. The
Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael R.
Fellows on the Occasion of His 60th Birthday, volume 7370 of LNCS. Springer,
2012.

[9] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin.
On problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434,
2009.

[10] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket
Saurabh, and Dimitrios M. Thilikos. (Meta) Kernelization. In FOCS, pages 629–
638. IEEE Computer Society, 2009.

[11] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for
treewidth: A combinatorial analysis through kernelization. SIAM J. Discrete Math.,
27(4):2108–2142, 2013.

[12] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower
bounds by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014.

[13] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint
cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.

[14] Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori
Ogihara. Competing provers yield improved Karp-Lipton collapse results. Inf. Com-
put., 198(1):1–23, 2005.

[15] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and
further improvements. J. Algorithms, 41(2):280–301, 2001.

[16] Robert Crowston, Michael R. Fellows, Gregory Gutin, Mark Jones, E. J. Kim, Fran
Rosamond, Imre Z. Ruzsa, Stéphan Thomassé, and Anders Yeo. Satisfying more
than half of a system of linear equations over GF(2): A multivariate approach. J.
Comput. Syst. Sci., 80(4):687–696, 2014.

[17] Robert Crowston, Gregory Gutin, Mark Jones, and Gabriele Muciaccia. Maximum
balanced subgraph problem parameterized above lower bound. Theor. Comput. Sci.,
513:53–64, 2013.

[18] Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. Tight kernel bounds for
problems on graphs with small degeneracy - (extended abstract). In ESA, volume
8125 of LNCS, pages 361–372. Springer, 2013.

[19] Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus
Wahlström. Clique cover and graph separation: New incompressibility results. In
ICALP (1), volume 7391 of LNCS, pages 254–265. Springer, 2012.

[20] Holger Dell. A simple proof that AND-compression of NP-complete problems is
hard. Electronic Colloquium on Computational Complexity (ECCC), 2014. Avail-
able at http://eccc.hpi-web.de/report/2014/075/.



BEATCS no 113

94

[21] Holger Dell and Dániel Marx. Kernelization of packing problems. In SODA, pages
68–81. SIAM, 2012.

[22] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsi-
fication unless the polynomial-time hierarchy collapses. In STOC, pages 251–260.
ACM, 2010.

[23] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through
colors and IDs. In ICALP (1), volume 5555 of LNCS, pages 378–389. Springer,
2009.

[24] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity (Mono-
graphs in Computer Science). Springer, November 1998.

[25] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013.

[26] Andrew Drucker. New limits to classical and quantum instance compression. In
FOCS, pages 609–618. IEEE Computer Society, 2012.

[27] Andrew Drucker. New limits to classical and quantum instance compression. Elec-
tronic Colloquium on Computational Complexity (ECCC), 19:112, 2012.
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Abstract

We study an example due to Wooldridge of a small robotic agent that will
vacuum clean a room. The room is an n × n grid and at any point the robot
can move forward one step or turn right 90 degrees. The problem is to find a
deterministic strategy for the robot in which (1) its next action only depends
on its current square and orientation (one of north, west, south, east), and
(2) all squares are visited infinitely often. We use a model checker and a
SAT solver to find such strategies, and a proof assistant to exhibit certain
symmetries in the problem.

1 Introduction
In his textbook on multiagent systems, Wooldridge [6] describes an example of
a small robotic agent that will clean up a room. Figure 1 illustrates the vacuum
world in which this robot operates. It is assumed that the room is a 3 × 3 grid,
and that the robot always starts in square (0, 0) facing north. The agent can suck
up dirt, move forward to the next square, or turn right 90◦. The goal is to traverse
the room continuously searching for dirt and removing dirt. Wooldridge asks for
the construction of a deterministic, memoryless strategy which, given the current
square and orientation (one of north, west, south, east), and given whether the
robot observes dirt, specifies the next action of the agent (one of suck, forward,
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Figure 1: Vacuum world

turn). Assuming that all actions of the robot have their intended effect, this strat-
egy should ensure that the robot will visit all squares infinitely often. Wooldridge
gives a partial specification of such a strategy using a number of rules. The first
rule states that if the agent is at location (x, y) and it perceives dirt, then the pre-
scribed action is to suck up dirt.

In(x, y) ∧ Dirt(x, y) −→ Do(suck)

This rule takes priority over all other possible behaviors of the agent. Next four
rules are listed which state that the robot will move from (0, 0) to (0, 1) to (0, 2)
and then to (1, 2):

In(0, 0) ∧ Facing(north) ∧ ¬Dirt(0, 0) −→ Do(forward)
In(0, 1) ∧ Facing(north) ∧ ¬Dirt(0, 1) −→ Do(forward)
In(0, 2) ∧ Facing(north) ∧ ¬Dirt(0, 2) −→ Do(turn)

In(0, 2) ∧ Facing(east) −→ Do(forward)

According to Wooldridge, “similar rules can easily be generated that will get the
agent to (2, 2), and once at (2, 2) back to (0, 0).” The first author, however, while
diligently preparing a lecture on robotics for a freshman class, failed to find these
rules. The problem is how to return to (0, 0) after (2, 2) has been reached. While
on the way back, the robot may not revisit any square and orientation where it
has been before: in such a case, since the robot is memoryless, it will continue
forever on a loop that does not contain square (0, 0). It appears that, after the
robot has followed the initial rules specified by Wooldridge, it has painted itself
in a corner and can never return to (0, 0). It is not even obvious that there exists
a deterministic, memoryless strategy for the robot that visits all squares infinitely
often.



BEATCS no 113

102

Figure 2: Uppaal model

This note describes how we tackled this problem using a model checker, a SAT
solver, and even a proof assistant. The models and logical theories that we de-
scribe are available at the URL http://www.mbsd.cs.ru.nl/publications/
papers/fvaan/vacuumworld/.

2 Model Checking
The problem of finding strategies for the vacuum cleaning robot can easily be
encoded in a model checker. We constructed a model using the Uppaal tool [2].
Figure 2 displays the main template of our model. The model is parametrized by
a constant n, which specifies the size of the grid. We use variables x and y, which
range over type pos = {0, , . . . , n − 1}, to store the current position of the robot,
and a variable d, which ranges over type dir = {N, W, S, E}, to store the current
orientation. Initially, x and y equal 0, and d equals N. There are two transitions in
the model, turn_act! and forward_act!. In the turn transition, the orientation
d is updated using the function rotate, given by rotate(N) = E, rotate(E) = S,
rotate(S) = W and rotate(W) = N. A forward transition is only enabled when there
is a square in front of the robot, to prevent that the robot will hit the wall. In the
model we abstract away from the dirt sucking as this is irrelevant for our problem.

An auxiliary array variable strategy records, for each position (i, j) and
orientation k, the current strategy value, which is either undefined, forward
or turn. Initially, strategy[i][j][k] is undefined for all i, j and k. Once
strategy[i][j][k] is set to either turn or forward, it can never be changed
again. We also use auxiliary variables tcount and fcount to count the total
number of turns and forward moves, respectively.

Using the Uppaal verifier, we established that if the robot follows the rules
specified by Wooldridge, it indeed paints itself in a corner. In fact, since the
following Uppaal query does not hold for our model, there does not even exist a
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Figure 3: Two strategies with 12 (left) and 16 turns (right)

strategy that follows the rules for (0, 0) and (0, 1):

E<> (x==0 && y==0 && d==N &&
forall (i:pos) forall (j:pos) visited(i,j) &&
strategy[0][0][N]==forward && strategy[0][1][N]==forward)

Here E <> is Uppaal notation for the temporal operator ∃� and means “there
exists a run leading to a state satisfying”. Predicate visited(i, j) evaluates to
true if the robot has visited square (i, j), that is, strategy[i][j][k] is defined for
some orientation k. By omitting the last two conjuncts in the above query, we can
instruct the Uppaal verifier to search for strategies that visit all squares infinitely
often. Figure 3 shows two strategies found by Uppaal. The strategy on the right
was (independently) also discovered by Bart van Thiel, one of the students from
the robotics class. The two strategies of Figure 3 differ since the left one makes
12 turns whereas the right one makes 16 turns. Clearly, the number of turns in any
strategy must be a multiple of 4. Using Uppaal we found that in fact all strategies
contain either 12, 16 or 20 turns. Figure 4 shows two strategies, found by Uppaal,
which both make 20 turns. These strategies differ since the left one contains 12
forward moves whereas the right one has 14 forward moves. It is easy to see that
the number of forward moves in any strategy must be an even number. Using
Uppaal we found that all strategies contain either 10, 12 or 14 forward moves.

In theory it is easy to enumerate all strategies using Uppaal: one repeatedly
asks Uppaal whether there exists a strategy that is different from all strategies
found thus far. In practice, however, this is quite involved, requiring either manual
entry of all strategies as part of queries, or a nontrivial script which transforms
Uppaal traces into queries. In order to obtain a complete overview of all possible
strategies we therefore found it convenient to use a different tool.
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Figure 4: Two strategies with 20 turns and 12 (left) resp. 14 (right) forward moves

3 Constraint Solving
To enumerate vacuum cleaning strategies, we reformulate the problem: we need
to find a path of length p that traverses a set of states Q and has to satisfy certain
constraints. We then solve this problem for all p such that l ≤ p ≤ h with l and
h some conservatively estimated lower and higher bounds. The constraints can
be formulated as a propositional satisfiability (SAT) problem. We therefore use
zChaff [4], an automated solver for SAT problems.

For our SAT formulation of finding a vacuum cleaning strategy, we formalize
the vacuum world as a labeled transition system.

Definition 3.1. A labeled transition system (LTS) is a tripleL = (Q, A,→), where
Q is a set of states, A is a set of actions, and→⊆ Q×A×Q is a set of transitions.
We write q

a
−→ q′ if (q, a, q′) ∈→, and q→ q′ if there exists an a ∈ A s.t. q

a
−→ q′.

Fix a grid size n. Then our vacuum cleaning world is described by the LTS
V = ({0, 1, . . . , n−1}×{0, 1, . . . , n−1}×{N, W, S, E}, {forward, turn},→), where re-
lation→ contains the following transitions, for x, y ∈ [0, n−1] and d ∈ {N, W, S, E},

(x, y, d)
turn
−−→ (x, y, rotate(d))

(x, y, N)
forward
−−−−−→ (x, y + 1, N) if y < n − 1

(x, y, E)
forward
−−−−−→ (x + 1, y, E) if x < n − 1

(x, y, S)
forward
−−−−−→ (x, y − 1, S) if y > 0

(x, y, W)
forward
−−−−−→ (x − 1, y, W) if x > 0

The SAT formulation of our problem introduces a Boolean variable for each
pair (q, t), with q a state and t a natural number such that 0 ≤ t < p. We denote
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Figure 5: Another strategy with 20 turns and 12 forward moves found by zChaff

the Boolean variable corresponding to (q, t) with 〈q, t〉. The intended semantics is
that Boolean variable 〈q, t〉 is true iff the vacuum cleaner is in state q at time slot
t. All constraints are expressed in terms of these Boolean variables:
The strategy begins in (0, 0, N):

〈(0, 0, N), 0〉

The strategy ends in (0, 0, N):

〈(0, 0, N), p − 1〉

The strategy is connected:

∀q, t < p − 1 · 〈q, t〉 =⇒
∨

∃a·q
a
−→ q′

〈q′, t + 1〉

The strategy is covering:

∀x, y · ∃d, t · 〈(x, y, d), t〉

The strategy contains no duplicates other than the starting position:

∀q, t0, t1 > t0 · 〈q, t0〉 ∧ q , (0, 0, N) =⇒ ¬〈q, t1〉

Within one second, zChaff finds 28 solutions, ranging from the smallest (12
turns, 12 forward moves) to the most complex (20 turns, 14 forward moves). How-
ever, many solution are symmetric. There are four variants of the left strategy in
Figure 3, which can be obtained by rotating the entire strategy 90, 180 and 270
degrees. Rotation and reflection variants of the right strategy of Figure 3 occur
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eight times, variants of the left strategy of Figure 4 four times, and variants the
right strategy of Figure 4 eight times. The only really new strategy found with
zChaff, which has four incarnations, is displayed in Figure 5.

In order to obtain insight in these symmetries, we found it convenient to use a
different tool.

4 Symmetries
In this section, we take a closer look at the symmetries that are present in the
vacuum cleaning world. The proofs of all the theorems and lemmas in this section
have been checked using the proof assistant Isabelle [5]. First we give a slightly
more abstract characterization of the strategies Wooldridge asks for.

Definition 4.1. Let L = (Q, A,→) be an LTS. A cycle of L is a sequence σ =

q1, . . . , qk of states such that, for all i < k, qi → qi+1 and qk → q1. A cycle is
minimal if all states occurring in it are pairwise different.

Definition 4.2. Let Q be a a set of states, let σ be a sequence of states from Q, and
let ≡ be an equivalence relation on Q. We say that σ covers ≡ if each equivalence
class C of ≡ contains a state that occurs in σ.

Let ≈ be the equivalence relation that deems two states of the vacuum world
LTSV equivalent if they belong to the same square on the grid:

(x, y, d) ≈ (x′, y′, d′) ⇔ x = x′ ∧ y = y′.

Then the strategies Wooldridge asks for correspond to minimal cycles of the LTS
V that cover ≈. Observe that the requirement that a strategy starts with (0, 0, N)
is not essential since any minimal cycle ofV that covers ≈ contains (0, 0, N), and
any state on a cycle can be turned into the initial state by shifting states.

An automorphism is an isomorphism from an object to itself. It preserves the
structure and captures a symmetry present in an object.

Definition 4.3. An automorphism for an LTS L = (Q, A,→) is a bijection f :
Q→ Q such that, for all q, q′ ∈ Q and for all a ∈ A, q

a
−→ q′ iff f (q)

a
−→ f (q′).

The next theorem states that the function R that takes the whole vacuum world
LTS and rotates it 90◦ to the right is an automorphism.

Theorem 4.4. Let R be the function on states ofV given by

R(x, y, d) = (y, n − 1 − x, rotate(d)).

Then R is an automorphism for vacuum worldV.
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Theorem 4.5. Let f be an automorphism for an LTS L and let σ be a cycle of L.
Then f (σ) is a cycle of L. Moreover, if σ is minimal then f (σ) is also minimal.

Lemma 4.6. Let f be a bijection on a set of states Q, let ≡ be an equivalence
relation on Q such that ∀q, q′ ∈ Q : q ≡ q′ implies f (q) ≡ f (q′) (≡ is a congruence
for f ), and let σ be a sequence of states in Q that covers ≡. Then f (σ) covers ≡.

Suppose σ is a minimal cycle of V that covers ≈. By Theorems 4.4 and 4.5,
R(σ) is a minimal cycle ofV. Since bijection R trivially is a congruence for ≈, it
follows by Lemma 4.6 that R(σ) covers ≈. Thus automorphism R maps strategies
to strategies.

With the rotation automorphism R we capture most but not all the symmetries
in our vacuum world. Besides rotation of a strategy, we also must consider the
reflection of a strategy in the axis x = 1/2n. The mirror image of a strategy in
which the robot only takes right turns, is a strategy in which the robot only takes
left turns. However, in order to obtain a strategy with right turns again we can
reverse the direction in which the edges are traversed. Mathematically, we need a
notion of “autocontramorphism” to capture these symmetries.

Definition 4.7. An autocontramorphism for an LTS L = (Q, A,→) is a bijection
f : Q→ Q such that, for all q, q′ ∈ Q and for all a ∈ A, q

a
−→ q′ iff f (q′)

a
−→ f (q).

Theorem 4.8. Let F be the function on states ofV given by

F(x, y, d) = (n − 1 − x, y, flip(d)),

where function flip is defined by flip(N) = S, flip(E) = E, flip(S) = N, and flip(W) = W,
Then F is an autocontramorphism for vacuum worldV.

Theorem 4.9. Let f be an autocontramorphism for an LTS L and let σ be a cycle
of L. Then f (σ) is a cycle of L. Moreover, if σ is minimal then f (σ) is also
minimal.

Suppose σ is a minimal cycle of V that covers ≈. By Theorems 4.8 and 4.9,
F(σ) is a minimal cycle of V. Since bijection F trivially is a congruence for ≈,
it follows by Lemma 4.6 that F(σ) covers ≈. Thus autocontramorphism F maps
strategies to strategies.

Modulo the symmetries induced by rotation automorphism R and reflection
autocontramorphism F, the 28 vacuum cleaning strategies found by zChaff reduce
to the 5 strategies displayed in Figures 3, 4 and 5.
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5 Snake Tilings

Now that we have a full understanding and classification of the vacuum cleaning
strategies for a 3 × 3 grid, the natural question arises whether we can also solve
this problem for arbitrary m × n grids, for m, n ≥ 1. Model checking and SAT
solving can only compute strategies in case m and n are small: Uppaal runs out of
memory for a 5× 5 grid, and the largest instance that we could solve using zChaff

was a 7 × 7 grid.
We can at least prove the existence of vacuum cleaning strategies for arbitrary

m × n grids using “tiles” with incoming and outgoing arrows. Figure 6 illustrates
a tiling scheme that we may use to obtain a strategy for an arbitrary m × n grid,
for m, n even and at least 4. The idea is that we can duplicate tile B m−4

2 times to
obtain a bottom row of length m. The B∗C pattern can then be copied to the two
rows above. Next the row of tile D can be copied n−4

2 times leading to a tiling of
the m×n grid. Using similar tiling patterns one can prove the existence of vacuum
cleaning strategies for arbitrary m × n grids.

The tilings of Figure 6 are closely related to the work of Kari [3] on infinite
snake tiling problems, except that the trajectories (“snakes”) of Kari may also
turn left and do not have to return to their starting state. Similar tilings were also
studied by Adleman et al. [1] in their work on self-assembly.

Figure 6: A tiling for m × n grids, with m, n ≥ 4 even



The Bulletin of the EATCS

109

6 Conclusion
The vacuum world example of Wooldridge [6] serves as a nice illustration of how
the combined use of various tools and techniques from theoretical computer sci-
ence may help to solve a problem.

We do not expect that this note will revolutionize the vacuum cleaning indus-
try. After all, why would one impose the restriction that a vacuum cleaning robot
may only turn right when electric motors just as easily run forward as backward?
Why would one restrict to memoryless strategies when memory is so cheap and
just adding a single bit to the domain of strategies makes it trivial to design sched-
ules that visit each square infinitely often? Our strategies are also based on the
unrealistic assumption that the floor is empty and without obstacles like tables
and chairs that must be avoided.

The trajectories of Figures 3, 4 and 5 have some aesthetic quality and may
serve as a basis for design of tilings, e.g. a long snake that bites itself in the tail.

The moral of our story is that authors of wonderful textbooks should be careful
with the use of phrases like “similar rules can easily be generated”. The risk is
that colleagues will publish a note in the Bulletin of the EATCS pointing out that
in fact the generation of such rules is impossible or at least tricky.
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Abstract

This paper provides formal definitions for a comprehensive collection
of consistency conditions for transactional memory (TM) computing. We
express all conditions in a uniform way using a formal framework that we
present.

For each of the conditions, we provide two versions: one that allows a
transaction T to read the value of a data item written by another transac-
tion T ′ that can be live and not yet commit-pending provided that T ′ will
eventually commit, and a version which allows transactions to read values
written only by transactions that have either commited before T starts or
are commit-pending. Deriving the first versions was not an easy task but
it has some benefits: (1) this version of each condition is weaker than the
second one and so it results in a wider universe of algorithms which there
is no reason to exclude from being considered correct, and (2) some defini-
tions work, as is, for universal constructions contributing towards unifying
the two models.

The formalism for the presented consistency conditions does not base on
any unrealistic assumptions, such as that transactional operations are exe-
cuted atomically or that write operations write distinct values for data items.
Making such assumptions facilitates the task of formally expressing the con-
sistency conditions significantly, but results in formal presentations of them
that are unrealistic, i.e. that cannot be used to characterize the correctness of
most of the executions produced by any reasonable TM algorithm.

∗Currently with École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, where she
works as an EcoCloud visiting professor.
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1 Introduction
Transactional memory (TM) [19, 27] is a promising programming paradigm that
aims at simplifying parallel programming by using the notion of a transaction. A
transaction is a piece of code containing accesses to pieces of data, known as data
items, which are accessed simultaneously by several threads in a concurrent set-
ting. A transaction may either commit and then its updates are effectuated or abort
and then its updates are discarded. By using transactions, the naive programmer
need only enhance its sequential code with invocations of special routines such
as ReadDI and WriteDI (which we will call transactional operations) to indicate
reads or writes for data items, respectively.

The TM algorithm provides a shared representation for each data item and im-
plementations for ReadDI and WriteDI using the base objects supported by the
system, so that all synchronization problems that may arise during the concurrent
execution of transactional operations are addressed. When a transaction executes
all its transactional operations it calls a routine called TryCommit in order to com-
mit. TryCommitmay return TRUE in which case the transaction commits or FALSE
in which case the transaction aborts. We say that a transaction is commit-pending
at some point in time if it has invoked TryCommit but it has not yet received a re-
sponse. The implementation details of the TM algorithm are hidden from the naive
programmer whose programming task is therefore highly simplified. TM has been
given special attention in the last ten years with hundreds or even thousands of pa-
pers addressing different problems arising in TM computing (see e.g. [17, 16] for
books addressing different aspects of TM computing).

One of the most fundamental problems of TM computing is safety. Most TM
consistency conditions [3, 15, 16, 21, 12, 6, 7] originate from existing shared
memory or database consistency models. However, in contrast to what happens in
shared memory models where safety is defined in terms of read and write opera-
tions in memory, safety in TM computing is defined in terms of transactions, each
of which may contain more than one read or write operations on data items. Com-
paring now to database transactions, the main difficulty when defining safety in
TM computing is that transactional operations are executed by invoking ReadDI
or WriteDI and therefore the execution of a transactional operation has duration
and is usually overlapping with the execution of other transactional operations,
whereas in database transactions read and write operations are considered to be
atomic. For these reasons, existing safety definitions for these two settings (shared
memory and database concurrent transactions) cannot be applied verbatim to TM
algorithms. Formalizing safety definitions for TM computing requires more effort.

This article presents a comprehensive collection of consistency conditions for
TM computing. All conditions are expressed in a uniform way using a formal
framework that we present in Section 2. This article can therefore serve as a
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survey of consistency conditions for TM computing. However, it aspires to be
much more than this.

For all known TM consistency conditions we provide a new version, called
live, in which a transaction T is allowed to read the value of a data item written by
another transaction T ′ that can be live and not yet commit-pending provided that
T ′ will eventually commit (or that T ′ will commit if T commits). Most TM consis-
tency conditions [3, 6, 7, 15, 16, 21] presented thus far did not allow a transaction
to read values that have been written by transactions that are neither committed nor
commit-pending; we call this version of a consistency condition commit-oriented.
The live version of a definition is weaker than its commit-oriented version, thus
resulting in a wider universe of algorithms which should not be excluded from
being considered correct. For instance, consider an algorithm which produces
executions in which a transaction T is allowed to read a value for a data item
x writtten by some transaction T ′ which has neither committed nor is commit-
pending when T starts its execution. However, suppose that the algorithm has
been designed in such a way that when this occurs, the algorithm ensures that T ′

will commit. Then, there is no reason for executions of the algorithm in which
this behaviour is met not to be considered correct, i.e. such executions are cor-
rect. However, current consistency conditions, as they are formally expressed,
exclude such executions from the set of executions they allow. The live version of
a consistency condition we present here solves this problem.

A universal construction [18] is a mechanism for automatically executing
pieces of sequential code in a concurrent environment. A universal construc-
tion supports a single operation Perform which takes as a parameter a pointer
to a routine containing the piece of sequential code to execute concurrently and
returns TRUE if this is done successfully. Similarly to TM, the sequential code
must be enhanced so that accesses to data items are identified by calling routines
ReadDI and WriteDI. Aparently, universal constructions and TM algorithms are
closely related since they both aim at simplifying parallel programming. There are
however two basic differences between these two paradigms: (1) the application
code must be programmed differently; specifically, in a universal construction,
the piece of (the enhanced) sequential code must be included in a routine and a
pointer to this routine must then be passed as a parameter to Perform, whereas in
a TM setting, the code may contain direct invocations of ReadDI and WriteDI,
and (2) a TM algorithm allows the external environment to choose the action to
be performed when a transaction aborts, whereas a call to Perform returns only
when the simulated code has been successfully applied to the simulated state, i.e.
after commit1.

1 We remark that the common behaviour for the external environment in a TM setting is to
restart an aborted transaction until it eventually commits, so the difference is not essential.



The Bulletin of the EATCS

115

A second benefit of the live versions of the consistency conditions presented
here is that some of them work, as are, for universal constructions, by having a call
to Perform to play the role of a transaction2. This contributes towards unifying
the two models. It is remarkable that deriving the live version of consistency
conditions was not an easy task so we consider their presentation as a significant
contribution of this report.

For the derivation of the presented consistency conditions, we do not make any
restrictive assumptions, such as that transactional operations are executed atom-
ically or that write operations write distinct values for data items. Making such
an assumption is unrealistically restrictive since all TM algorithms produce exe-
cutions that do not satisfy these assumptions. Thus, a consistency condition that
has been expressed making such an assumption cannot be used to characterize
such executions, and thus fail to also characterize whether the TM algorithm it-
self satisfies the condition. We remark that making such assumptions significantly
facilitates the task of formally expressing a consistency condition but the formal
presentation that results is extremely restricitve since it cannot be used to charac-
terize the correctness of most of the executions produced by any reasonable TM
algorithm.
Related Work. Among the consistency conditions met in TM computing papers
are the following: strict serializability [23], serializability [23], opacity [15, 16],
virtual world consistency [21], TMS1 [12] (and TMS2 [12]), and snapshot iso-
lation [2, 10, 25, 6, 7]. Weaker consistency conditions like processor consis-
tency [7], causal serializability [6, 7] and weak consistency [7] have also been
considered in the TM context when proving impossibility results.

Strict serializability, as well as serializability, are usually presented in an infor-
mal way in TM papers which cite the original paper [23] where these conditions
have first appeared in the context of database research. Thus, the differences that
exist between database and TM transactions have been neglected in TM research.
We present formal definitions of these consistency conditions here. Additional
consistency conditions originating from the database research are presented in [3].
To present their formalism, the authors of [3] make the restrictive assumption that
transactional operations are atomic. The presentation of most of the other consis-
tency conditions (e.g. opacity [15, 16], virtual world consistency [21], snapshot
isolation [2, 10, 25, 6, 7] and weaker variants of them [6, 7]) is based on the as-
sumption that a read for a data item by a transaction T can read a value written
by either transaction that has committed or is commit-pending when T starts its
execution. Finally, virtual world consistency [21] has been presented in a rather
informal way and its definition is based on the assumption that each instance of

2 This is not achieved by employing the commit-oriented version of the definitions since the
notion of pieces of code that are "commit-pending" is not defined for universal constructions.
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WriteDI writes a distinct value for the data item it accesses (or that the transac-
tional operations are executed atomically).

2 TM Model

In this section, we describe a model for transactional memory (TM) computing.

2.1 Transactions and histories

Transactional memory (TM) is a parallel programing paradigm which employs
transactions to synchronize the execution of threads. A transaction is a piece
of code which accesses pieces of data, called data items. A data item may be
accessed by several threads simultaneously in a concurrent environment. A TM
algorithm uses base objects to store the state of each data item and ensures syn-
chronization between threads accessing the same data items. A base object has
a state and supports a set of operations, called primitives, to access or update its
state. Base objects are usually simple objects that are provided by the hardware.

In order to read or write a data item, the transaction’s code must call specific
routines, called ReadDI and WriteDI, respectively. The TM algorithm provides
implementations for these routines from the base objects. A transaction may com-
mit or abort. If it commits, all its updates to data items are realized, whereas if
it aborts, all its updates are discarded. The TM algorithm provides implementa-
tions for two routines, called Abort and TryCommit, which are called to try to
commit or to abort a transaction, respectively. We refer to all these routines as
transactional operations. Whenever it is clear from the context, we use the term
operation to refer to a transactional operation.

A transactional operation starts its execution when the thread executing it is-
sues an invocation for it; the operation completes its execution when the thread
executing it returns a response. A valid response for an instance of TryCommit
executed by some transaction T can be either CT which identifies that T has com-
mitted, or AT which identifies that T has aborted. A valid response for an instance
of Abort executed by T is always AT . A valid response for ReadDI can be either
a value or AT ; finally, a valid response for WriteDI can be either an acknowl-
edgment or AT . An event is either an invocation or a response of a transactional
operation. A history is a finite sequence of events. We say that a response res
matches an invocation inv in some history H, if they are both by the same thread
p, res is a valid response for inv, res follows inv in H, and there is no other re-
sponse by p between inv and res in H. A transactional operation is complete, if
there is a response for it; otherwise, the operation is pending.
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Thus, in a history H, there are two events for every completed operation op,
an invocation inv(op) and a matching response res(op). H contains only the invo-
cation of each pending operation in it. For each data item x, we denote by H | x
the subsequence of H containing the invocations and responses of all transactional
operations that access x. For each thread pi, we denote by H | pi the subsequence
of H containing all invocations and responses of transactional operations executed
by pi. For each event e in H, we denote by H ↑ e the longest prefix of H that does
not include e.

Consider any history H. We say that a transaction T (executed by a thread pi)
is in H or H contains T , if there are events in H issued by pi when executing T .
The transaction subhistory of H for T , denoted by H | T , is the subsequence of
all events in H issued by pi when executing T . Each transaction T in H for which
H | T contains at least one invocation of WriteDI is called an update transaction.
A transaction in H is called read-only, if it is not an update transaction.

A history H is said to be well-formed if, for each transaction T in H, H | T
is an alternating sequence of invocations and matching responses, starting with an
invocation, such that:

• no events in H | T follow CT or AT ;

• if T ′ is any transaction in H executed by the same thread that executes T ,
either the last event of H | T precedes in H the first event of H | T ′ or the
last event of H | T ′ precedes in H the first event of H | T .

From now on we focus on well-formed histories. Let H be any such history. A
transaction T is committed in H, if H | T includes CT ; a transaction T is aborted in
H, if H | T includes AT . A transaction is completed in H, if it is either committed
or aborted, otherwise it is live.

A transaction is commit-pending in H if it is live in H and H | T includes an
invocation to TryCommit for T . We denote by comm(H) the subsequence of all
events in H issued and received by committed transactions. Two histories H and
H′ are said to be equivalent if each thread p executed the same transactions, in the
same order, in H and H′, and for every transaction T in H, H | T = H′ | T , i.e. for
each transaction the same transactional operations are invoked and each of these
operations has the same response in both histories.

Consider any history H. We denote by Complete(H) a set of histories that
extend H. Specifically, a history H′ is in Complete(H) if and only if, all of the
following hold:

1. H′ is well-formed, H is a prefix of H′, and H and H′ contain the same set
of transactions;
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2. for every live transaction3 T in H:

(a) if H | T ends with an invocation of TryCommit, H′ contains either CT

or AT ;

(b) if H | T ends with an invocation other than TryCommit, H′ contains
AT ;

(c) if H | T ends with a response, H′ contains AbortT and AT .

Roughly speaking, each history in Complete(H) is an extension of H where
some of the commit-pending transactions in H appear as committed and all other
live transactions appear as aborted.

A configuration is a vector consisting of the state of each thread and the state of
each base object. In an initial configuration, threads and base objects are in initial
states. A step of a thread consists of applying a single primitive on some base
object, the response to that primitive, and zero or more local operations that are
performed after the access and which may cause the internal state of the thread to
change. As a step, we also consider the invocation of a transactional operation or
the response to such an invocation; notice that a step of this kind does not change
the state of any base object. Each step is executed atomically. An execution α is
a sequence of steps starting from an initial configuration. An execution is legal
starting from a configuration C if the sequence of steps performed by each thread
follows the algorithm for that thread (starting from its state in C) and, for each base
object, the responses to the operations performed on the object are in accordance
with its specification (and the state of the object at configuration C). Given an
execution α, the history of α, denoted by Hα, is the subsequence of α consisting
of just the invocations and the responses of transactional operations.

The execution interval of a completed transaction T in an execution α is the
subsequence of consecutive steps of α starting with the first step executed by any
of the operations invoked by T and ending with the last such step. The execution
interval of a transaction T that does not complete in α is the suffix of α starting
with the first step executed by any of the operations invoked by T .

2.2 Relations and Partial Orders
Consider a well-formed history H. We define a partial order, called real time order
and denoted <H, on the set of transactions in H as follows:

• for any two transactions T1 and T2 in H, if T1 is completed in H and the last
event of H | T1 precedes the first event of H | T2 in H, then T1 <H T2.

3We remark that the order in which the live transactions of H are inspected to form H′ is
immaterial, i.e. all histories that result from any possible such order are added in Complete(H).



The Bulletin of the EATCS

119

Transactions T1 and T2 are concurrent in H, if neither T1 <H T2 nor T2 <H

T1. Similarly, transactions T1 and T2 are concurrent in an execution α, if neither
T1 <Hα

T2 nor T2 <Hα
T1. We say that a history H (or an execution α) is sequential

if no two transactions in H (or in α, respectively) are concurrent.
We also define a partial order, called operation real-time order and denoted by

<
op
H , on the set of transactional operations in H as follows:

• for any two transactional operations op1 and op2 in H, if H contains a re-
sponse for op1 which precedes the invocation of op2, then op1 <

op
H op2.

Operations op1 and op2 are concurrent in H, if neither op1 <
op
H op2 nor

op2 <
op
H op1. H is operation-wise sequential if no two operations in H are con-

current.
Let S op be an operation-wise sequential history equivalent to H. We say that

S op respects some relation < on the set of transactions in H if the following holds:
for any two transactions T1 and T2 in S , if T1 < T2, then T1 <S T2. We say that
S op respects some relation <op on the set of transactional operations in H if the
following holds: for any two operations op1 and op2 in S op, if op1 <

op op2, then
op1 <

op
S op

op2. Notice that a partial order is a relation, so these definitions hold for
partial orders as well.

Consider any operation-wise sequential history S op that is equivalent to H and
respects <H. We define a binary relation (with respect to S op), called reads-from
and denoted by <r

H, between transactions in H such that, for any two transactions
T1,T2 in H, T1 <

r
H T2 only if:

• T2 executes a ReadDI operation op that reads some data item x and returns
a value v for it,

• T1 is the transaction in S op which executes the last WriteDI operation that
writes v for x and precedes op.

Notice that each operation-wise sequential history S op that is equivalent to H,
induces a reads-from relation. We denote by RH the set of all reads-from relations
that can be induced for H.

For each <r
H in RH , we define the causal relation for <r

H on transactions in H
to be the transitive closure of

⋃
i

(
<H|pi

)
∪ <r

H. We define CH to be the set of all
causal relations in H.

2.3 Legality
A set S of sequences is prefix-closed if, whenever H is in S, every prefix of H
is also in S. A history H is a single data-item history for some data item x, if
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H | x = H. Consider a sequential history S and a transaction T in S . We say that
T is legal in S , if for every invocation inv of ReadDI on each data item x that T
performs whose response is not AT the following hold:

1. if there is an invocation of WriteDI for x by T that precedes inv in S then v
is the argument of the last such invocation,

2. otherwise, if there are no committed transactions preceding T in S which
invoke WriteDI for x, then v is the initial value for x,

3. otherwise, v is the argument of the last invocation of WriteDI of any com-
mitted transaction that precedes T in S .

A complete sequential history S is legal if every transaction in S is legal.

3 TM Consistency

3.1 Strict Serializability
Strict serializability was first introduced in [23] as a (strong) consistency condition
for executions of concurrent transactions in database systems. In TM computing,
it can be expressed in several different flavors, two of which are discussed below.
We start with live strict serializability (or `-strict serializability for short).

Definition 1 (Live Strict Serializability or L-Strict Serializability). We say that an
execution α is `-strictly serializable if it is possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to insert a serialization point ∗T somewhere between
T’s first invocation of a transactional operation and T’s last response for a
transactional operation in α.

• To choose a subset B of the live transactions in α and, for each transaction
T ∈ B, insert a serialization point ∗T somewhere after T’s first invocation
of a transactional operation in α.

These serialization points should be inserted, so that, in the sequential execution
σ that we get by serially executing each transaction T ∈ A ∪ B at the point that
its serialization point has been inserted, the following hold:

• for each transaction T ∈ A, the same transactional operations, as in α, are
invoked by T in σ and the response of each such operation in σ is the same
as that in α, and
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• for each transaction T ∈ B, a prefix of the operations4 invoked by T in σ is
the same as the sequence of operations invoked by T in α and the response
of each such operation in σ is the same as that in α.

If an execution α is `-strictly serializable, there exists a sequential execution
σ that satisfies the properties of Definition 1; we say that σ justifies that α is
`-strictly serializable.

We continue to provide a stronger version of `-strict serializability in Defi-
nition 2 called commit-oriented strict serializability (or c-strict serializability for
short) which is based on the definition of Complete.

Definition 2 (C-Strict Serializability). A history H is c-strictly serializable, if there
exist a history H′ ∈ Complete(H) and a history S equivalent to comm(H′) such
that:

• S is a legal sequential history, and

• S respects <comm(H′).

We remark that Definition 1 provides a weaker version of strict serializability
than Definition 2, since it allows a transaction to read a value for a data item
written by another transaction that is not committed or commit-pending in H. This
is allowed only if eventually, all complete transactions that are not aborted, and
some of those that are still live can be "serialized" within their execution intervals.
For instance, let’s consider the history H and its prefix H1 both shown in Figure 1.
H is both `-strictly serializable and c-strictly serializable, whereas H1 is just `-
strictly serializable. Notice that since `-strict serializability is weaker than c-strict
serializability, the universe of algorithms that are `-strictly serializable is larger
than that of the algorithms that are c-strictly serializable.

We remark that c-strict serializability is not a prefix-closed property. On the
contrary, `-strict serializability is a prefix-closed property. We remark that prefix-
closure can be imposed to c-strict serializability in an explicit way, i.e. by directly
stating in Definition 2 that each prefix Hp of H must also satisfy the conditions
imposed by the definition (as it is done in Definition 5 in Section 3.3). However,
this would make Definition 2 even stronger, and therefore the resulted universe of
c-strictly serializable TM algorithms even smaller.

3.2 Serializability
As with strict serializability, serializability was first introduced in [23] as a con-
sistency condition for executions of concurrent transactions in database systems.

4Notice that since σ is a sequential execution, each transaction T ∈ B commits in σ.
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T1

T2

W (x)1

R(x)1 Commit

Commit

H1 H

Figure 1: Example showing that strict serializability is not a prefix-closed property.

Below we discuss two different flavors of serializability in a way similar to that
for strict serializability.

Definition 3 (L-Serializability). We say that an execution α is `-serializable if it
is possible to do all of the following:

• If A is the set of all complete transactions in α that are not aborted, for each
transaction T ∈ A, to insert a serialization point ∗T in α.

• To choose a subset B of the live transactions in α and, for each transaction
T ∈ B, insert a serialization point ∗T in α.

These serialization points should be inserted, so that, in the sequential execution
σ that we get by serially executing each transaction T ∈ A ∪ B at the point that
its serialization point has been inserted, the following hold:

• for each transaction T ∈ A, the same transactional operations, as in α, are
invoked by T in σ and the response of each such operation in σ is the same
as that in α, and

• for each transaction T ∈ B, a prefix of the operations invoked by T in σ is
the same as the sequence of operations invoked by T in α and the response
of each such operation in σ is the same as that in α.

We continue to provide a stronger version of serializability in Definition 4,
called commit-oriented serializability (or c-serializability for short), which is based
on the definition of Complete.

Definition 4 (C-Serializability). A history H is c-serializable, if there exist a his-
tory H′ ∈ Complete(H) and a history S equivalent to comm(H′) such that:

• S is a legal sequential history.

Notice that S in Definition 4 respects the program order of transactional op-
erations executed by the same thread in H. This is implied by the definition of
equivalent histories.
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T1

T2

W (x)1

R(x)1 Commit

Commit

H1 H

Figure 2: Example showing that serializability is not a prefix-closed property.

We remark that, similarly to the corresponding definitions of strict serializabil-
ity, Definition 3 provides a weaker version of serializability than Definition 4.

The difference between serializability and strict serializability is that strict
serializability additionally ensures that the real-time order of transactions is re-
spected by the sequential history defined by the serialization points. Thus, every
history/execution that is (c-) `-strictly serializable is also (c-) `-serializable but not
vice versa.

It is worth-pointing out that `-serializability and c-serializability are not prefix-
closed properties. This is so, since it is easy to design a history H which is `-
serializable (as well as c-serializable) in which a committed transaction T (exe-
cuted by some thread p) reads for some data item x a value v written by some other
committed (or commit-pending) transaction T ′ such that T ′ is executed by some
thread p′ , p in H and T ′’s execution has started after T has been completed.
Aparently, the prefix of H up until CT is neither `-serializable, nor c-serializable.

We remark that prefix-closure can be imposed to `-serializability (as well as to
c-serializability) in an explicit way, as discussed for c-strict serializability above.
It is not clear if the versions that would then result will be weaker than the cor-
responding versions of strict serializability. Imposing prefix closure to the con-
sistency conditions presented in Sections 3.4.1-3.5 may be too restrictive as well.
Thus, we present the non-prefix-closed versions of them given that it is straight-
forward to derive their prefix-closed versions, in an explicit way.

Several impossibility results [4, 8, 13] and lower bounds [4] in TM computing
have been proved for strict serializability or serializability. Most TM algorithms
in the literature (see e.g. [9, 28, 11, 26] for some examples) satisfy some form of
serializability.

3.3 Opacity
Opacity was first introduced in [15]. In [16], a prefix-closed version of it was
formally stated. Here, we will present the later version which we will call c-
opacity (to be coherent with definitions in previous sections).
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Definition 5 (C-Opacity [16]). A history H is c-opaque if, for each prefix Hp of H,
there exists a sequential history S p equivalent to some history H′p ∈ Complete(Hp)
such that:

• S p is legal, and

• S p respects <H′p .

T1

T2

W (x)1 Commit

R(x)2

Figure 3: A strictly serializable history which is not opaque.

C-opacity is stronger than c-strict serializability. Figure 3 shows an example
of a history that is not c-opaque but is c-strictly serializable. This history is not
c-opaque because it violates the last condition of Definition 5; specifically, trans-
action T2 cannot be legal.

Strict serializability (independently of the variant we consider) doesn’t impose
any restrictions on non-committed (or not commit-pending) transactions, whereas
c-opacity requires that all reads of each transaction T (independently of whether
the transaction is committed, aborted or live in the considered history) read values
written by previously committed transactions (or by T itself). This additional
property is required in order to avoid undesired situations where a transaction
may cause an exception or enter into an infinite loop after reading a value for a
data item written by a live transaction that may eventually abort.

It is remarkable that the first of these undesired situations (i.e. the production
of an exception or an error code) can be avoided even by TM system that en-
sure only strict serializability if we make the following simple assumptions in our
model. An exception (or an error code) that has been resulted by the execution
of a transactional operation op is considered as a response for op. A transaction
that has experienced an exception or has received an error code as a response, to
one of its operations, is considered to be completed (but not aborted). Then, a
(`- or c-) strictly serializable TM implementation will never produce such excep-
tions (or error codes). Notice that the second undesirable situation, namely having
some transaction enter an infinite loop, will not appear in TM systems that ensure
standard progress properties, like lock-freedom, starvation-freedom, etc.

We continue to present live opacity (`-opacity). Consider any history H and
a transaction T in H. An instance op of ReadDI for some data item x executed
by T is global if T has not invoked WriteDI on x in H before invoking op. Let
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T |read be the longest subsequence of H|T consisting only of those invocations
of ReadDI for which there is a response and this response is not AT , followed by
TryCommitT ,CT . Let T |readg be the subsequence of T |read consisting only of
the invocations of the global instances of ReadDI and their responses, followed
by TryCommitT ,CT . We denote by Tr a transaction that invokes the same trans-
actional operations (and in the same order) as those invoked in T |read. Similarly,
denote by Tgr a transaction that invokes the same transactional operations (and in
the same order) as those invoked T |readg. For each ReadDI operation op on any
data item x that is in Tr but not in Tgr, we say that the response for op (if it exists)
is legal, if it is the value written by the last WriteDI for x performed by T before
the invocation of op.

Definition 6 (L-Opacity). We say that an execution α is `-opaque if there exists
some sequential execution σ which justifies that α is `-strictly serializable, and
all of the following hold:

1. We can extend the history Hσ of σ to get a sequential history H′σ such that:

• for each transaction T in α that is not in σ, H′σ contains T |readgr

• if < is the partial order which is induced by the real time order <Hα
in

such a way that for each transaction T in α that is not in σ, we replace
each instance of T in the set of pairs of <Hα

with transaction Tgr, then
H′σ respects <

• H′σ is legal

2. for each transaction T in α that is not in σ, and for each transactional
operation op in T |read that is not in T |readgr, the response for op is legal.

We remark that most TM algorithms presented in the literature are opaque.

3.4 Causality-Related Consistency Conditions
3.4.1 Causal Consistency

Causal consistency was informally introduced as a shared memory consistency
condition in [20], and it was formally defined in [1]. As in the previous sections,
we provide two formal definitions of causal consistency for TM computing using
the framework of Section 2.

Definition 7 (L-Causal Consistency). Consider an execution α and let A be the
set of all complete transactions in α that are not aborted. We say that α is `-
causally-consistent if there exists a subset B of live transactions in α and a causal
relation <c in CH′α where H′α is the subsequence of Hα containing just the events
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of transactions in A ∪ B, such that, for each thread pi, it is possible to do the
following:
For each transaction T ∈ A ∪ B, to insert a serialization point ∗T in α so that, if
σi is the sequential execution that we get by serially executing each transaction
T ∈ A ∪ B at the point that its serialization point has been inserted, then the
following hold:

• Hσi respects <c,

• for each transaction T ∈ A, the same transactional operations, as in α, are
invoked by T in σi and the response of each such operation in σi is the same
as that in α, and

• for each transaction T ∈ B, a prefix of the operations invoked by T in σi are
the same as the sequence of operations invoked by T in α, the response of
each such operation in σi is the same as that in α.

Definition 8 (C-Causal Consistency). A history H is c-causally consistent if there
exists a history H′ ∈ Complete(H) and a causal relation <c in Ccomm(H′) such that,
for each thread pi, there exist a sequential history S i such that:

• S i is equivalent to comm(H′),

• S i respects the causality order <c, and

• every transaction executed by pi in S i is legal.

T1

T2

T3

T4

R(y)0

R(y)0

W (x)1

W (x)2

Commit

Commit

R(x)1 W (y)1

R(x)2 W (y)1 Commit

Commit

Figure 4: A causally consistent history which is not serializable.

L-causal consistency and c-causal consistency are weaker properties than `-
serializability and c-serializability, respectively. For instance, Figure 4 shows an
example of a history which is (`- and c-) causally consistent but not (`- or c-
) serializable. In this history both transactions T1 and T2 should be serialized
before transactions T3 and T4, because both T1 and T2 read 0 from data item y
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which is written by T3 and T4. Regardless of how the serialization points for T1

and T2 are ordered, both T3 and T4 should read the same value for data item x.
Thus, this history is not serializable. However, it is causally consistent because
threads running T3 and T4 may see writes executed by threads running T1 and T2

in a different order.

3.4.2 Causal Serializability

Causal serializability was introduced in [24] as a consistency condition which
is stronger than causal consistency but weaker than serializability. Informally, in
addition to the constraints imposed by causal consistency, the following constraint
must also be satisfied: all transactions that update the same data item must be
perceived in the same order by all threads.

Definition 9 (L-Causal Serializability). Consider an execution α and let A be
the set of all complete transactions in α that are not aborted. We say that α is
`-causally serializable if there exists a subset B of live transactions in α and a
causal relation <c in CH′α where H′α is the subsequence of Hα containing just the
events of transactions in A ∪ B, such that, for each thread pi, it is possible to do
the following:
For each transaction T ∈ A ∪ B, to insert a serialization point ∗T in α so that, if
σi is the sequential execution that we get by serially executing each transaction
T ∈ A ∪ B at the point that its serialization point has been inserted, then the
following hold:

• Hσi respects <c,

• for each transaction T ∈ A, the same transactional operations, as in α, are
invoked by T in σi and the response of each such operation in σi is the same
as that in α,

• for each transaction T ∈ B, a prefix of the operations invoked by T in σi are
the same as the sequence of operations invoked by T in α, the response of
each such operation in σi is the same as that in α.

• for each pair of transactions T1,T2 ∈ A∪B that write to the same data item,
if T1 <Hσi

T2, then for each j ∈ {1, . . . , n}, it holds that T1 <Hσ j
T2.

Definition 10 (C-Causal Serializability). A history H is c-causally serializable if
there exists a history H′ ∈ Complete(H) and a causal relation <c in Ccomm(H′) such
that, for each thread pi, there exist a sequential history S i for which the following
hold:

• S i is equivalent to comm(H′),
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• S i respects the causality order <c,

• every transaction executed by pi in S i is legal, and

• for each pair of transactions T1 and T2 in comm(H′) that write to the same
data item, if T1 <S i T2, then for each j ∈ {1, . . . , n}, it holds that T1 <S j T2.

Obviously, every (`- or c-) causally serializable history satisfies the proper-
ties of (`- or c-, respectively) causal consistency, but the oposite is not true. For
instance, the history shown in Figure 4 is not causally serializable, since threads
executing transactions T3 and T4 do not see writes from T1 and T2 to data item x
in the same order.

T1

T2

T3

T4

W (x)1

W (y)1

Commit

Commit

R(x)1 R(y)0 Commit

R(x)0 R(y)1 Commit

Figure 5: A causally serializable history which is not serializable.

Figure 5 shows an example of a history which is causally serializable but not
serializable. Here, if transaction T1 is serialized before T2 (the opposite case is
symmetrical), then it is not possible to serialize transaction T4. However, by defi-
nition of causal serializability, sequential histories constructed for threads p3 and
p4 may include transactions T1 and T2 in different orders.

In the context of TM research, causal consistency, as well as causal serializ-
ability, are interesting in the context of proving impossibility results [6, 7] and
lower bounds. We remark that when proving such results, considering a weak
consistency condition makes the result stronger. It is therefore an interesting open
problem to see whether some of the TM impossibility results (e.g. [4, 8, 13]) that
have been proved assuming some strong consistency condition, like opacity, strict
serializability or serializability, can be extended to hold for weaker consistency
conditions like those formulated in this or later sections. For instance in this av-
enue, the impossibility result proved in [14] assuming serializability is extended
in [6, 7] to hold for a much weaker consistency condition.
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3.4.3 Virtual World Consistency

Virtual World Consistency (VWC) was defined in [21] as a family of consistency
conditions. Informally, VWC ensures serializability or strict serializability for the
committed (and some of the commit-pending) transactions but a weaker condition
than that imposed by opacity for the rest of the transactions.

For each transaction T in history H and each causal relation <c
H in CH, we

define the causal past of T denoted by pastT (H, <c
H) as the subsequence of all

events produced either by transaction T in H itself or by any transaction Ti in H
such that Ti <

c
H T .

Definition 11 (C-Virtual World Consistency). A history H is c-virtual world con-
sistent if there exists a history H′ ∈ Complete(H) and a causal relation <c in CH′

such that:

• there exists a legal sequential history S which is equivalent to comm(H′),
and

• for each transaction Ti in H′ that is not in S , there exists a legal sequential
history S i which is equivalent to pastTi(H

′, <c) and respects the restriction
of <c to those pairs whose components are transactions in pastTi(H

′, <c).

Definition 12 (C-Strong Virtual World Consistency). A history H is c-strong vir-
tual world consistent if there exists a history H′ ∈ Complete(H) and a causal
relation <c in CH′ such that:

• there exists a legal sequential history S which is equivalent to comm(H′)
and respects the real-time order of H′, and

• for each non-committed transaction Ti in H′, there exists a legal sequential
history S i which is equivalent to pastTi(H

′, <c
H′) and respects the restriction

of <c to those pairs whose components are transactions in pastTi(H
′, <c).

Clearly, virtual world consistency is a stronger consistency condition than se-
rializability. Similarly, strong virtual world consistency is stronger than strict seri-
alizability. Still, strong virtual world consistency (and therefore also virtual world
consistency) is weaker than opacity. The history shown in Figure 6 is strong vir-
tual world consistent but not opaque: regardless of the order of the serialization
points of transactions T1 and T2, it is not possible to derive a sequential history
where both transaction T3 and T4 are legal.

The history shown in Figure 7 is a slightly modified version of the history
shown in Figure 6. This history is virtual world consistent but not strong virtual
world consistent. In this history, transactions T1 and T2 are not concurrent, and
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T1

T2

T3

T4

W (x)1

W (x)2

Commit

Commit

R(x)1

R(x)2

Figure 6: A virtual world consistent history which is not opaque.

T1

T2

T3

T4

W (x)1 Commit

W (x)2 Commit

R(x)1

R(x)2

Figure 7: A virtual world consistent history which is not strong virtual world consistent.

since strong virtual world consistency respects the real-time order of transactions,
there is only one way that the serialization points of these two transactions can be
ordered in any equivalent sequential history.

We continue to present the live versions of virtual world consistency and
strong virtual world consistency.

Definition 13 (L-Virtual World Consistency and L-Strong Virtual World Consis-
tency). We say that an execution α is `-virtual world consistent (`-strong virtual
world consistent) if there exists some sequential execution σ which justifies that α
is `-serializable (`-strictly serializable, respectively), and the following holds:

1. for each transaction Ti in α that is not in σ there exists a legal sequential
history S i which is equivalent to pastTi(H

′, <c) and respects the restriction
of <c to those pairs whose components are transactions in pastTi(H

′, <c).

Strong consistency conditions such as opacity ensure the safe execution of
non-committed transactions by imposing on them the same safety demands as
those that committed transactions are required to obey. This has been criticized
in [21] to result in TM algorithms that produce histories in which live transactions
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are forced to abort in order to preserve the safety of other transactions that are
deemed to also abort. Virtual world consistency relaxes the correctness criteria
used for non-committed transactions in order to avoid such scenarios when possi-
ble, and by consequence, allow for more live transactions to commit, than a TM
algorithm that implements a stronger criterion would.

3.5 Snapshot Isolation
Snapshot isolation was originally introduced as a safety property in the database
world [5, 22]. Snapshot isolation is an appealing property for TM computing [2,
10, 25] since it provides the potential to increase throughput for workloads with
long transactions [25]. The first formal definitions for TM snapshot isolation was
given in [6, 7].

Consider a history H and let T be a transaction that either commits or is
commit-pending in H. Recall that we have already defined the sequences T |read,
T |readg, as well as transactions Tr and Tgr in Section 3.3. Let T |other be the subse-
quence of H|T that consists of all invocations performed by T (and their matching
responses) other than those comprising T |readg, followed by TryCommitT ,CT .
Let To be a transaction that invokes the same transactional operations (and in the
same order) as those invoked in T |other.

Definition 14 (C-Snapshot isolation [7]). An execution α satisfies c-snapshot iso-
lation, if there exists a set D consisting of all committed and some of the commit-
pending transactions in α for which the following holds: for each transaction
T ∈ D, it is possible to insert (in α) a global read point ∗T,gr and a write point
∗T,w, so that if δα is the sequence defined by these serialization points, the follow-
ing hold:

1. ∗T,gr precedes ∗T,w in δα,

2. both ∗T,gr and ∗T,w are inserted within the execution interval of T ,

3. if Hδα is the history we get by replacing each ∗T,gr with Tgr and each ∗T,w

with To in δα, then Hδα is legal.

We finally present live snapshot isolation. Consider a legal execution α and
let C(α) be the set of all legal executions such that each execution α′ ∈ C(α) is
an extension of α such that the same transactions are executed in α and α′ and no
transaction is live in α′.

Definition 15 (L-Snapshot Isolation). Consider an execution α. We say that α
satisfies `-snapshot isolation, if there exists an execution α′ ∈ C(α) for which the
following holds: if A is the set of transactions that commit in α′ then for each
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transaction T ∈ A, it is possible to insert a global read point ∗T,gr and a write
point ∗T,w, so that:

1. both ∗T,gr and ∗T,w are inserted within the execution interval of T in α

2. ∗T,gr precedes ∗T,w, and

3. if σ is the sequential execution that we get when for each transaction T ∈
A, we serially execute transactions Tgr and To at the points that ∗T,gr and
∗T,w have been inserted, respectively, then for each transaction T ∈ A, the
response of each transactional operation invoked by Tgr and To in σ is the
same as that of the corresponding transactional operation in T |readg and
T |other (as defined based on α′), respectively.
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Abstract

We discuss quantum non-locality and contextuality, emphasising logical
and structural aspects. We also show how the same mathematical structures
arise in various areas of classical computation.

1 Introduction
In this paper we shall discuss some fundamental concepts in quantum mechanics:
non-locality, contextuality and entanglement. These concepts play a central
rôle in the rapidly developing field of quantum information, in delineating how
quantum resources can transcend the bounds of classical information processing.
They also have profound consequences for our understanding of the very nature
of physical reality.

Our aim is to present these ideas in a manner which should be accessible to any
computer scientist, and which emphasises the logical and structural aspects. We
shall also show how the same mathematical structures which arise in our analysis
of these ideas appear in a range of contexts in classical computation.

2 Alice and Bob look at bits
We consider the following scenario, depicted in Figure 1. Alice and Bob are
agents positioned at nodes of a network. Alice can access local bit registers a1
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0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0

Figure 1: Alice and Bob look at bits

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

Figure 2: The Bell table

and a2, while Bob can access local bit registers b1, b2. Alice can load one of her
bit registers into a processing unit, and test whether it is 0 or 1. Bob can perform
the same operations with respect to his bit registers. They send the outcomes of
these operations to a common target, which keeps a record of the joint outcomes.

We now suppose that Alice and Bob perform repeated rounds of these opera-
tions. On different rounds, they may make different choices of which bit registers
to access, and they may observe different outcomes for a given choice of register.
The target can compile statistics for this series of data, and infer probability dis-
tributions on the outcomes. The probability table in Figure 2 records the outcome
of such a process.

Consider for example the cell at row 2, column 3 of the table. This corresponds
to the following event:
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0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0

0101
...

Source

Figure 3: A Source

• Alice loads register a1 and observes the value 0.

• Bob loads register b2 and observes the value 1.

This event has the probability 1/8, conditioned on Alice’s choice of a1 and Bob’s
choice of b2.

Each row of the table specified a probability distribution on the possible joint
outcomes, conditioned on the indicated choice of bit registers by Alice and Bob.

We can now ask:

How can such an observational scenario be realised?

The obvious classical mechanism we can propose to explain these observa-
tions is depicted in Figure 3.

We postulate a source which on each round chooses values for each of the
registers a1, a2, b1, b2, and loads each register with the chosen value. Alice and
Bob will then observe the values which have been loaded by the source. We
can suppose that this source is itself randomised, and chooses the values for the
registers according to some probability distribution P on the set of 24 possible
assignments.

We can now ask the question: is there any distribution P which would give
rise to the table specified in Figure 2?
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Important Note A key observation is that, in order for this question to be non-
trivial, we must assume that the choices of bit registers made by Alice and Bob
are independent of the source.1 If the source could determine which registers are
to be loaded on each round, as well as their values, then it becomes a trivial matter
to achieve any given probability distribution on the joint outcomes.

Under this assumption of independence, it becomes natural to think of this
scenario as a kind of correlation game. The aim of the source is to achieve as
high a degree of correlation between the outcomes of Alice and Bob as possible,
whatever the choices made by Alice and Bob on each round.

3 Logic rings a Bell
We shall now make a very elementary and apparently innocuous deduction in ele-
mentary logic and probability theory, which could easily be carried out by students
in the first few weeks of a Probability 101 course.

Suppose we have propositional formulas ϕ1, . . . , ϕN . We suppose further that
we can assign a probability pi to each ϕi.

In particular, we have in the mind the situation where the boolean variables
appearing in ϕi correspond to empirically testable quantities, such as the values of
bit registers in our scenario; ϕi then expresses a condition on the outcomes of an
experiment involving these quantities. The probabilities pi are obtained from the
statistics of these experiments.

Now suppose that these formulas are not simultaneously satisfiable. Then
(e.g.)

N−1∧
i=1

φi → ¬φN , or equivalently φN →

N−1∨
i=1

¬φi.

Using elementary probability theory, we can calculate:

pN ≤ Prob(
N−1∨
i=1

¬φi) ≤
N−1∑
i=1

Prob(¬φi) =

N−1∑
i=1

(1 − pi) = (N − 1) −
N−1∑
i=1

pi.

The first inequality is the monotonicity of probability, and the second is sub-
additivity.

Hence we obtain the inequality

N∑
i=1

pi ≤ N − 1.

1This translates formally into a conditional independence assumption, which we shall not spell
out here; see e.g. [14, 17].
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We shall refer to this as a logical Bell inequality, for reasons to be discussed later.
Note that it hinges on a purely logical consistency condition.

3.1 Logical analysis of the Bell table

We return to the probability table from Figure 2.

(0, 0) (1, 0) (0, 1) (1, 1)

(a1, b1) 1/2 0 0 1/2

(a1, b2) 3/8 1/8 1/8 3/8

(a2, b1) 3/8 1/8 1/8 3/8

(a2, b2) 1/8 3/8 3/8 1/8

If we read 0 as true and 1 as false, the highlighted entries in each row of the
table are represented by the following propositions:

ϕ1 = (a1 ∧ b1) ∨ (¬a1 ∧ ¬b1) = a1 ↔ b1

ϕ2 = (a1 ∧ b2) ∨ (¬a1 ∧ ¬b2) = a1 ↔ b2

ϕ3 = (a2 ∧ b1) ∨ (¬a2 ∧ ¬b1) = a2 ↔ b1

ϕ4 = (¬a2 ∧ b2) ∨ (a2 ∧ ¬b2) = a2 ⊕ b2.

The events on first three rows are the correlated outcomes; the fourth is anticor-
related. These propositions are easily seen to be jointly unsatisfiable. Indeed,
starting with ϕ4, we can replace a2 with b1 using ϕ3, b1 with a1 using ϕ1, and a1

with b2 using ϕ2, to obtain b2 ⊕ b2, which is obviously unsatisfiable.
It follows that our logical Bell inequality should apply, yielding the inequality

4∑
i=1

pi ≤ 3.

However, we see from the table that p1 = 1, pi = 6/8 for i = 2, 3, 4. Hence the
table yields a violation of the Bell inequality by 1/4.

This rules out the possibility of giving an explanation for the observational
behaviour described by the table in terms of a classical source. We might then
conclude that such behaviour simply cannot be realised. However, as we shall
now see, in the presence of quantum resources, this is no longer the case.
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3.2 A crash course in qubits

We shall now very briefly give enough information about some of the primitives
of quantum computing to show how these can be used to realise behaviour such
as that in the Bell table in Figure 2. There are a number of excellent introductions
to quantum computing aimed at or accessible to computer scientists (see e.g. [31,
36, 32]), and we refer the reader seeking more detailed information to these.

A classical bit register of the kind we began our discussion with can hold the
values 0 or 1; we can say that it has two possible states. The operations we can
perform on such a register, or an array of such registers, include:

• Reading the value currently held in the register without changing the state
of the register.

• Using the values currently held in one or more such registers to compute a
new value according to any boolean function.

In quantum computing, we introduce a new object, the qubit, with very differ-
ent properties. The key features of the qubit are best explained using the beautiful
geometric representation in terms of the “Bloch sphere” (the unit 2-sphere), as
illustrated in Figure 4.

Note the following key features:

• States of the qubit2 are represented as points on the surface of the sphere. In
Figure 4, a state |ψ〉 is depicted. Note that there are a continuum of possible
states.

• Each pair (Up,Down) of antipodal points on the sphere define a possible
measurement that we can perform on the qubit. Each such measurement
has two possible outcomes, corresponding to Up and Down in the given
direction. We can think of this physically e.g. as measuring Spin Up or Spin
Down in a given direction in space.

• When we subject a qubit to a measurement (Up,Down), the state of the qubit
determines a probability distribution on the two possible outcomes. For a
geometric view on this see Figure 5. The probabilities are determined by
the angles between the qubit state |ψ〉 and the points (|Up〉, |Down〉) which
specify the measurement. In algebraic terms, |ψ〉, |Up〉 and |Down〉 are unit
vectors in the complex vector space C2, and the probability of observing Up

2More precisely, the pure states; mixed states are represented as points in the interior of the
sphere.



BEATCS no 113

144

|ψ〉

φ

θ

Z = |↑〉

|↓〉

Y

X

Figure 4: The Bloch sphere representation of qubits
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|Up〉

|Down〉

|ψ〉

θU

θD

Figure 5: Truth makes an angle with reality

when in state |ψ〉 is given by the square modulus3 of the inner product:

|〈ψ|Up〉|2.

This is known as the Born rule. It gives the basic predictive content of
quantum mechanics.

• Note in addition that a measurement has an effect on the state, which will
no longer be the original state |ψ〉, but rather one of the states Up or Down,
in accordance with the measured value.

The sense in which the qubit generalises the classical bit is that, for each ques-
tion we can ask — i.e. for each measurement — there are just two possible an-
swers. We can view the states of the qubit as superpositions of the classical states
0 and 1, so that we have a probability of getting each of the answers for any given
state.

But in addition, we have the important feature that there are a continuum of
possible questions we can ask. However, note that on each run of the system, we
can only ask one of these questions. We cannot simultaneously observe Up or
Down in two different directions. Note that this corresponds to the feature of the
scenario we discussed in Section 1, that Alice and Bob could only look at one
their local registers on each round.

3Recall that the square modulus of a complex number z = a + ib is given by |z|2 = zz∗ =

(a + ib)(a − ib).
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|↑↑〉 + |↓↓〉

Figure 6: The Bell state

3.3 Compound systems and entanglement

The deeper features of quantum behaviour are revealed when we look at com-
pound systems of multiple qubits.4 It is here that we find the phenomena of
quantum entanglement and non-locality.

Consider for example the 2-qubit system shown in Figure 6. We can think of
Alice holding one qubit, and Bob the other. The combined state of the system is
described by the vector |↑↑〉+ |↓↓〉.5 According to the standard postulates of quan-
tum mechanics, when Alice measures her qubit, she may, with equal probability,
get either answer (Spin Up or Down). If she gets the answer Spin Up, then the
state of the entangled qubit becomes |↑↑〉, so that if Bob now measures his qubit,
he can only get the answer Spin Up; while if she gets the answer Spin Down,
the state becomes |↓↓〉, and Bob can only get the answer Spin Down. This is re-
gardless of the fact that Bob may be far away from Alice (spacelike separated).
This is the phenomenon that Einstein famously referred to as “spooky action at a
distance”, and which Schrödinger named entanglement.

How can the world be this way? This remains a challenge to our understand-
ing of the nature of physical reality. Meanwhile, though, the field of quantum
information seeks to understand how entanglement can be used as a new kind
of resource, opening up new possibilities which transcend those of the classical
models of information and computation.

3.4 From the Bell state to the Bell table

We refer again to the table in Figure 2. This table can be physically realised, us-
ing the Bell state (|↑↑〉 + |↓↓〉)/

√
2, with Alice and Bob performing 1-qubit local

measurements corresponding to directions in the XY-plane of the Bloch sphere,
at relative angle π/3. Thus this behaviour is physically realisable using quan-
tum entanglement, although, as we have seen, it has no realisation by means of a
classical source.

4More generally, we can consider d-dimensional quantum systems for any positive integer d.
A system of n qubits has dimension 2n. Contextuality emerges already at dimension d = 3.

5We are ignoring normalisation constants.
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Computing the Bell table

Some readers may find it helpful to see in detail how a table such as that in Figure 2
is computed. We shall now explain this. Nothing following this subsection will
depend on this material, so it can safely be skipped.

We shall consider spin measurements lying in the equatorial plane of the Bloch
sphere, i.e. the XY-plane as shown in Figure 4. For such a measurement at an angle
φ to the X-axis, the Spin Up outcome is specified by the vector (|↑〉 + eiφ|↓〉)/

√
2,

while the Spin Down outcome is specified by (|↑〉 + ei(φ+π)|↓〉)/
√

2. For the X
direction itself, we have φ = 0, and these are the vectors (|↑〉 + |↓〉)/

√
2 and

(|↑〉 − |↓〉)/
√

2 respectively.
We shall use the measurement in the X direction for Alice’s measurement a1

and Bob’s measurement b1; while a2 and b2 will be interpreted by the measure-
ments at angle φ = π/3 to the X axis. Note that Alice’s measurements are applied
to the first qubit of the Bell state, while Bob’s measurements are applied to the
second qubit.

For example, consider the following situation: Alice performs the measure-
ment a1 on the first qubit and observes the outcome 0 (Spin Up), while Bob per-
forms the measurement b2 on the second qubit and observes outcome 1 (Spin
Down). This corresponds to the cell in row 2, column 3 of the table in Figure 2.
This event is represented by taking the tensor product of the vectors representing
the outcomes for the local measurements by Alice and Bob on their qubits:

|↑〉 + |↓〉
√

2
⊗
|↑〉 + ei4π/3|↓〉

√
2

=
|↑↑〉 + ei4π/3|↑↓〉 + |↓↑〉 + ei4π/3|↓↓〉

2
.

Call this vector M. The probability of observing this event when performing the
joint measurement (a1, b2) on the Bell state B = (|↑↑〉 + |↓↓〉)/

√
2 is given, using

the Born rule, by |〈B|M〉|2. Since the vectors |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 are pairwise
orthogonal, this simplifies to∣∣∣∣∣∣1 + ei4π/3

2
√

2

∣∣∣∣∣∣2 =
|1 + ei4π/3|2

8
.

Using the Euler identity eiθ = cos θ + i sin θ, we have

|1 + eiθ|2 = 2 + 2 cos θ.

Hence
|1 + ei4π/3|2

8
=

2 + 2 cos(4π/3)
8

=
1
8
,

the value given in the table in Figure 2. The other entries can be computed simi-
larly.
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(0, 0) (0, 1) (1, 0) (1, 1)

(a1, b1) 1

(a1, b2) 0

(a2, b1) 0

(a2, b2) 0

Figure 7: The Hardy Paradox

Summary

More broadly, we can say that this shows that quantum mechanics predicts cor-
relations which exceed those which can be achieved by any classical mechanism.
This is the content of Bell’s theorem [15], a famous result in the foundations of
quantum mechanics, and in many ways the starting point for the whole field of
quantum information. Moreover, these predictions have been confirmed by many
experiments which have been performed [11, 10].

4 The “Hardy Paradox”

We shall now see how the same phenomena manifest themselves in a stronger
form, which highlights a direct connection with logic. Consider the table in Fig-
ure 7.

This table depicts the same kind of scenario we considered previously. How-
ever, the entries are now either 0 or 1. The idea is that a 1 entry represents a
positive probability. Thus we are distinguishing only between possible (positive
probability) and impossible (zero probability). In other words, the rows corre-
spond to the supports of some (otherwise unspecified) probability distributions.
Moreover, only four entries of the table are filled in. Our claim is that just from
these four entries, referring only to the supports, we can deduce that there is no
classical explanation for the behaviour recorded in the table. Moreover, this be-
haviour can again be realised in quantum mechanics, yielding a stronger form of
Bell’s theorem, due to Lucien Hardy [20].6

6For a detailed discussion of realisations of the Bell and Hardy models in quantum mechanics,
see Section 7 of [2]. Further details on the Hardy construction can be found in [20, 30].
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4.1 What Do “Observables” Observe?

Classically, we would take the view that physical observables directly reflect prop-
erties of the physical system we are observing. These are objective properties
of the system, which are independent of our choice of which measurements to
perform — of our measurement context. More precisely, this would say that
for each possible state of the system, there is a function λ which for each mea-
surement m specifies an outcome λ(m), independently of which other measure-
ments may be performed. This point of view is called non-contextuality, and
may seem self-evident. However, this view is impossible to sustain in the light
of our actual observations of (micro)-physical reality.

Consider once again the Hardy table depicted in Figure 7. Suppose there is
a function λ which accounts for the possibility of Alice observing value 0 for a1

and Bob observing 0 for b1, as asserted by the entry in the top left position in the
table. Then this function λ must satisfy

λ : a1 7→ 0, b1 7→ 0.

Now consider the value of λ at b2. If λ(b2) = 0, then this would imply that
the event that a1 has value 0 and b2 has value 0 is possible. However, this is
precluded by the 0 entry in the table for this event. The only other possibility
is that λ(b2) = 1. Reasoning similarly with respect to the joint values of a2 and
b2, we conclude, using the bottom right entry in the table, that we must have
λ(a2) = 0. Thus the only possibility for λ consistent with these entries is

λ : a1 7→ 0, a2 7→ 0, b1 7→ 0, b2 7→ 1.

However, this would require the outcome (0, 0) for measurements (a2, b1) to be
possible, and this is precluded by the table.

We are thus forced to conclude that the Hardy models are contextual. More-
over, we can say that they are contextual in a logical sense, stronger than the
probabilistic form we saw with the Bell tables, since we only needed information
about possibilities to infer the contextuality of this behaviour.

5 Mathematical Structure of Possibility Tables

Consider again a table such as



BEATCS no 113

150

(0, 0) (1, 0) (0, 1) (1, 1)

(a1, b1) 1 1 1 1

(a2, b1) 0 1 1 1

(a1, b2) 0 1 1 1

(a2, b2) 1 1 1 0

Let us anatomise the structure of this table. There are measurement contexts

{a1, b1}, {a2, b1}, {a1, b2}, {a2, b2}.

These are the possible combinations of measurements which can be made to-
gether, yielding the directly accessible empirical observations.7 Each measure-
ment has possible outcomes 0 or 1. More generally, we write O for the set of
possible outcomes. Thus for example the matrix entry at row (a2, b1) and column
(0, 1) indicates the event

{a2 7→ 0, b1 7→ 1}.

The set of events relative to a context C is the set of functions OC. Each row
of the table specifies a Boolean distribution on events OC for a given choice of
measurement context C. Such a Boolean distribution is just a non-empty set of
events.

Mathematically, this defines a presheaf. We have:

• A set of measurements X (the “space”). In our example, X = {a1, a2, b1, b2}.

• A family of subsets of X, the measurement contexts (a “cover”). In our
example, these are

{a1, b1}, {a2, b1}, {a1, b2}, {a2, b2}

as already discussed.

• To each such set C a boolean distribution (finite non-empy subset) on local
sections s : C → O, where O is the set of outcomes. Each row of the
above table specifies such a distribution. Note that this notion of distribution
generalises naturally to distributions valued in a commutative semiring.
We assume that the distributions have finite support, and are normalised
(have total weight 1). In our case, we are using the idempotent semiring of
the booleans. We use the notationDB(X) for the set of boolean distributions
on a set X.

7In quantum mechanics, these correspond to compatible families of observables.
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sU

sV

U

V

U ∩ V O

Figure 8: Gluing functions

Note that, if we use the semiring of non-negative reals instead, we obtain
probability distributions with finite support.

• A distribution on C restricts to C′ ⊆ C by pointwise restriction of the local
sections. More precisely, given such a distribution d on OC, we restrict it to
C′ by defining, for s ∈ OC′:

d|C′(s) =
∑

s′∈OC ,s′ |C′=s

d(s′).

This definition makes sense for any semiring. In the boolean case, where ad-
dition is disjunction, it can be expressed equivalently as projection, where
we think of the distribution as a finite set:

d|C′ = {s|C′ : s ∈ d}.

In the probability case, it gives the usual notion of marginalisation.

These local sections correspond to the directly observable joint outcomes of
compatible measurements, which can actually be performed jointly on the sys-
tem. The different sets of compatible measurements correspond to the different
contexts of measurement and observation of the physical system. The fact that the
behaviour of these observable outcomes cannot be accounted for by some context-
independent global description of reality corresponds to the geometric fact that
these local sections cannot be glued together into a global section.

For a picture of the familiar and simple situation of gluing functions together,
consider the diagram in Figure 8. If sU |U∩V = sV |U∩V , they can be glued to form

s : U ∪ V −→ O
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branch-name account-no customer-name balance

Cambridge 10991-06284 Newton £2,567.53

Hanover 10992-35671 Leibniz e11,245.75

. . . . . . . . . . . .

Figure 9: A relation table

such that s|U = sU and s|V = sV .
In geometric language, the Hardy paradox corresponds to the fact that there

is a local section which cannot be extended to a global section which is compat-
ible with the family of boolean distributions. In other words, the space of local
possibilities is sufficiently logically ‘twisted’ to obstruct such an extension.

The quantum phenomena of non-locality and contextuality correspond ex-
actly to the existence of obstructions to global sections in this sense. This ge-
ometric language is substantiated by the results in [7], which show that sheaf
cohomology can be used to characterise these obstructions, and to witness con-
textuality in a wide range of cases.

This geometric picture and the associated methods can be applied to a wide
range of situations in classical computer science, which do not seem to have any-
thing in common with the quantum realm. In particular, as we shall now see, there
is an isomorphism between the formal description we have given for the quantum
notions of non-locality and contextuality, and basic definitions and concepts in
relational database theory.

6 Relational Databases and Bell’s Theorem
Consider an example of a table in a relational database, as in Figure 9.

Let us anatomise such tables:

• The columns are determined by a set A of attributes. Assume A ⊂ A for
some global setA specified by the database schema.

• For each attribute a, there is a possible set of data values Da. For simplicity,
we collect these into a global set D =

⊔
a∈A Da.

• An A-tuple is specified by a function t : A→ D.

• A relation instance or table of schema A is a set of A-tuples.
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• A database schema is given by a family Σ = {A1, . . . , Ak} of finite subsets
ofA.

• A database instance of schema Σ is given by a family of relation instances
{Ri} where Ri is of schema Ai.

Does this look familiar? In fact, it is straightforward to express this structure
in the language of presheaves:

• An A-tuple t is just a local section over A: t ∈ DA.

• A relation table R of schema A is a boolean distribution on A-tuples:

R ∈ DB(DA).

• Note that if A ⊆ B, then restriction is just projection. For R ∈ DB(DB)

R|A := {t|A : t ∈ R}.

• We can regard a schema Σ as a cover ofA.

• A database instance of schema Σ is a family of elements {RA}A∈Σ.

• The compatibility condition for an instance is projection consistency:

RA|A∩B = RB|A∩B

means that the two relations have the same projections onto their common
set of attributes.

6.1 Universal Relations
A universal relation for an instance {RA : A ∈ Σ} of a schema Σ is a relation
R ∈ DB(DA) such that, for all A ∈ Σ:

R|A = RA.

Thus it is a relation defined on the whole set of attributes A from which each of
the relations in the instance can be recovered by projection.

This notion, and various related ideas, played an important rôle in early devel-
opments in relational database theory; see e.g. [27, 19, 24, 26, 34]. Note that a
universal relation instance corresponds exactly to the notion of global section for
the database instance viewed as a compatible family. (Compatibility is obviously
a necessary condition for such an instance to exist).
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It is also standard that a universal relation need not exist in general, and even
if it exists, it need not be unique. There is a substantial literature devoted to the
issue of finding conditions under which these properties do hold.

There is a simple connection between universal relations and lossless joins.

Proposition. Let (R1, . . . ,Rk) be an instance for the schema Σ = {A1, . . . , Ak}.
Define R := ./k

i=1 Ri. Then a universal relation for the instance exists if and only
if R|Ai = Ri, i = 1, . . . , k, and in this case R is the largest relation in R(

⋃
i Ai)

satisfying the condition for a global section. �

We can summarise the striking correspondence we have found between the
realms of quantum contextuality and database theory in the following dictionary:

Relational databases measurement scenarios

attribute measurement

set of attributes defining a relation table compatible set of measurements

database schema measurement cover

tuple local section (joint outcome)

relation/set of tuples boolean distribution on joint outcomes

universal relation instance global section/hidden variable model

acyclicity Vorob’ev condition [35]

This dictionary goes beyond what we have discussed so far. The last entry
concerns Vorob’ev’s Theorem [35], a remarkable result motivated by game theory
which provides a necessary and sufficient combinatorial condition on a set cover
or hypergraph (formulated equivalently in terms of abstract simplicial complexes)
such that any compatible family of probability distributions over this cover can
be glued together into a global section — a joint distribution on the whole set
of vertices which marginalises to yield the given distribution over each simplex.
This condition is equivalent to the well-studied notion of acyclicity of database
schemes [13, 25].

It seems that there is considerable scope for taking these connections and com-
mon structures further. For example, we can consider probabilistic databases, and
more generally distributions valued in semirings. See [1] for a more detailed dis-
cussion.
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Alice Bob
a, a′, . . . b, b′, . . .

0110
...

aa′bb′

Source

0110 0110

Target

a 7→ 0 b 7→ 1

Figure 10: The Mermin instruction set picture

6.2 Hidden variables and all that
We mentioned hidden variable models in the above table, but have not otherwise
done so in this article. Traditionally, such models have played a leading rôle in
discussions of quantum non-locality and contextuality. Essentially, a local hidden-
variable model is what we called a “classical source” in Section 3. Indeed, a
standard way of picturing such a model, due to David Mermin [29], is shown in
Figure 10. This is essentially the same picture as Figure 3. Mermin calls the
hidden variables “instruction sets”; these correspond exactly to the global assign-
ments we have been discussing, which can be considered as canonical forms of
hidden variables. It is shown in [3, Theorem 8.1] that these are equivalent to the
more general forms of hidden variable models which have been considered in the
literature.

6.3 Contextual semantics
Why do such similar structures arise in such apparently different settings? The
phenomenon of contextuality is pervasive. Once we start looking for it, we can
find it everywhere! Examples already considered include: physics [3], computa-
tion [5], and natural language [8].
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This leads to what we may call the Contextual semantics hypothesis: we
can find common mathematical structure in all these diverse manifestations, and
develop a widely applicable theory.

7 Kochen-Specker Models
We now return to quantum mechanics, and discuss another fundamental result, the
Kochen-Specker theorem [23].8 This result shows the contextuality of quantum
mechanics in an even stronger form than Bell’s theorem, in the sense that the argu-
ment is independent of any particular quantum state. Whereas our arguments for
the Bell and Hardy theorems hinged on realising contextual behaviours using cer-
tain entangled quantum states, the Kochen-Specker argument rests on properties
of certain families of measurements which hold for any quantum state.

There is, however, a trade-off. Whereas the conclusion of the Kochen-Specker
theorem is stronger than that of Bell’s theorem, its assumptions are also stronger,
in that it assumes (for a contradiction) non-contextuality for measurements in gen-
eral. By contrast, Bell’s theorem applies to a particular class of measurement
scenarios where Alice and Bob are spacelike separated; in these situations, the
assumption of non-contextuality is supported by relativistic considerations, which
imply that there can be no direct causal influence by the measurements on each
other.

The stronger form of state-independent contextuality given by the Kochen-
Specker theorem is nevertheless of great interest, and has been the subject of a
number of recent experimental verifications [12, 22]. It is also a topic of current
interest to develop methods for exploiting contextuality as a resource in quantum
information, extending what has been done for non-locality. A feature of our
sheaf-theoretic framework, as described in Section 5, is that it provides a unified
setting for Bell’s theorem, the Kochen-Specker theorem, and other results relating
to non-locality and contextuality.

We recall the general setting discussed in Section 5. We have a set X of mea-
surement labels, and a family U of subsets of X — a “measurement cover”. The
sets C ∈ U are the measurement contexts; those combinations of measurements
which can be performed together. Formally speaking, (X,U) is just a hypergraph.

For convenience we fix our set of outcomes as O = {0, 1}. Given C ∈ U, we
say that s ∈ OC satisfies the KS property if s(x) = 1 for exactly one x ∈ C. The
Kochen-Specker model over (X,U) is defined by setting dC, for each C ∈ U, to
be the set of all s ∈ OC which satisfy the KS property. Note that the model is
uniquely determined once we have given (X,U).

8Since Bell independently proved a version of this result [16], it is often called the Bell-
Kochen-Specker theorem.
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Note that, if we regard the elements of X as propositional variables, we can
think of s ∈ OC as a truth-value assignment.9 Then the KS property for an assign-
ment s is equivalent to s satisfying the following formula:

ONE(C) :=
∨
x∈C

(x ∧
∧

x′∈C\{x}

¬x′)

We say that the Kochen-Specker model over (X,U) is contextual if there is no
global assignment s : X → O on the whole set of variables X such that s|C ∈ dC

for all C ∈ U. Equivalently, we can say that the model is contextual if the formula∧
C∈U

ONE(C)

is unsatisfiable.10

It is interesting to compare this with the property of the Hardy models dis-
cussed in Section 5. As we saw there, the contextuality property exhibited by
these models was that there was a local section in the support at some C ∈ U

which was not extendable to a global assignment on X which was compatible
with the support. By contrast, the form of contextuality we are considering here is
much stronger; that there is no global assignment at all which is consistent with
the support. In fact, the Hardy models do not satisfy this stronger property.

The simplest example of a contextual Kochen-Specker model is the triangle,
i.e. the cover

{a, b}, {b, c}, {a, c}

on X = {a, b, c}. For a more elaborate example, consider the set X = {m1, . . . ,m18},
and the measurement coverM whose elements are the columns of the following
table:

m1 m1 m8 m8 m2 m9 m16 m16 m17

m2 m5 m9 m11 m5 m11 m17 m18 m18

m3 m6 m3 m7 m13 m14 m4 m6 m13

m4 m7 m10 m12 m14 m15 m10 m12 m15

How we do we show that a model such as this is contextual? We shall give
a combinatorial criterion on (X,U) which can be used for most of the examples
which have appeared in the literature.

9Interpreting 1 as true and 0 as false.
10Note that in the general case where O is some finite set, this becomes a constraint satisfaction

problem. Contextuality means that the problem has no solution.
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For each x ∈ X, we define

U(x) := {C ∈ U : x ∈ C}.

Proposition [3, Proposition 7.1]. If the Kochen-Specker model on (X,U) is
non-contextual, then every common divisor of {|U(x)| : x ∈ X} must divide |U|. �

Applying this to the above example, we note that the coverM has 9 elements,
while each element of X appears in two members ofM. Thus the Kochen-Specker
model on (X,M) is contextual.

Quantum representations
What do these combinatorial questions have to do with quantum mechanics? A
contextual Kochen-Specker model (X,U) gives rise to a quantum mechanical wit-
ness of contextuality whenever we can label X with unit vectors in Rn, for some
fixed n, such that U consists exactly of those subsets C of X which form orthonor-
mal bases of Rn. The point of our exampleM above is that it is possible to label
the 18 elements of X with vectors in R4 such that the four-element subsets in
M are orthogonal [18]. This yields one of the most economical known quantum
witnesses for contextuality.11

To connect this directly to quantum measurement, note that such a family of
vectors can be used to define corresponding measurements, such that the mea-
surements corresponding to orthogonal sets are compatible, and moreover for any
quantum state |ψ〉, the support of the distribution on outcomes induced by perform-
ing this joint measurement on |ψ〉 will satisfy the KS property. Thus contextuality
of the model yields a state-independent witness of quantum contextuality. For a
detailed discussion of this point, see Section 9.2 of [3].

The smallest dimension for which contextuality witnesses appear in this form
is n = 3. Currently, the smallest known Kochen-Specker model providing a con-
textuality witness in dimension 3 has 31 vectors [33]. Computational methods
have established a lower bound of 18 [9].

8 Discussion and Further Reading
One aim of this paper has been to present some central concepts of quantum in-
formation and foundations in a form which will be accessible to computer scien-
tists, in particular those with an interest in logical and structural methods. At the
same time, we have also aimed to provide an introduction to recent research by

11By contrast, the triangle does not yield a quantum witness, since orthogonality is a pairwise
notion; if all the pairs are orthogonal, the whole set must be also.
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the author and a number of colleagues, which aims to use tools which have been
developed within computer science logic and semantics to study these quantum
notions. This “high-level” approach has led to a number of developments, both
within quantum information, and in identifying the same formal structures in a
number of classical computational situations; we have seen an example of this in
the case of relational database theory.

We shall conclude by discussing some references where the interested reader
can find further information, and see these ideas developed in greater depth.12

8.1 The sheaf-theoretic approach

As discussed briefly in Section 5, our analysis of non-locality and contextuality
uses the mathematical framework of sheaves and presheaves. The issue of find-
ing “local realistic” explanations of correlated behaviour is interpreted geometri-
cally in terms of finding global sections in the sense of sheaf theory. These ideas,
and many basic results, are developed in the paper [3] with Adam Brandenburger
which laid the basis for this approach.

This leads to a number of developments in quantum information and founda-
tions:

• The sheaf-theoretic language allows a unified treatment of non-locality and
contextuality, in which results such as Bell’s theorem [15] and the Kochen-
Specker theorem [23] fit as instances of more general results concerning
obstructions to global sections. In recent work [28], it has been shown how
this framework can be used to transform contextuality scenarios into non-
locality scenarios.

• A hierarchy of degrees of non-locality or contextuality is identified in [3].
This explains and generalises the notion of “inequality-free” or “probability-
free” non-locality proofs, and makes a strong connection to logic, as devel-
oped in [2]. This hierarchy is lifted to a novel classification of multipartite
entangled states, leading to some striking new results concerning multi-
partite entanglement, which is currently poorly understood. These results
will appear in forthcoming joint publications with Carmen Constantin and
Shenggang Ying.

• The obstructions to global sections witnessing contextuality are charac-
terised in terms of sheaf cohomology in [7] with Shane Mansfield and Rui
Barbosa, and a range of examples are treated in this fashion.

12The papers by the author which are referenced can be found at arXiv.org.
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• A striking connection between no-signalling models and global sections
with signed measures (“negative probabilities”) is established in [3]. An
operational interpretation of such negative probabilities, involving a signed
version of the strong law of large numbers, is developed in [4].

8.2 Logical Bell inequalities

The discussion in Section 3 is based on [6]. Bell inequalities are a central tech-
nique in quantum information. In [6] with Lucien Hardy, a general notion of
“logical Bell inequality”, based on purely logical consistency conditions, is intro-
duced, and it is shown that every Bell inequality (i.e. every inequality satisfied by
the “local polytope”) is equivalent to a logical Bell inequality. The notion is devel-
oped at the level of generality of [3], and hence applies to arbitrary contextuality
scenarios, including multipartite Bell scenarios and Kochen-Specker configura-
tions.

8.3 Contextual semantics in classical computation

We discussed the isomorphism between the basic concepts of quantum contex-
tuality and those of relational database theory in Section 6. A number of other
connections have been studied:

• In [2] connections between non-locality and logic are emphasised. A num-
ber of natural complexity and decidability questions are raised in relation to
non-locality.

• Our discussion of the Hardy paradox in Section 5 showed that the key issue
was that a local section (assignment of values) could not be extended to a
global one consistently with some constraints (the “support table”). This
directly motivated some joint work with Georg Gottlob and Phokion Ko-
laitis [5], in which we studied a refined version of constraint satisfaction,
dubbed “robust constraint satisfaction”, in which one asks if a partial assign-
ment of a given length can always be extended to a solution. The tractability
boundary for this problem is delineated in [5], and this is used to settle one
of the complexity questions posed in [2].

• Application of the contextual semantics framework to natural language se-
mantics is initiated in [8] with Mehrnoosh Sadrzadeh. In this paper, a basic
part of the Discourse Representation Structure framework [21] is formu-
lated as a presheaf, and the gluing of local sections into global ones is used
to represent the resolution of anaphoric references.
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Further connections and applications of contextual semantics are currently be-
ing studied, and it seems likely that more will be forthcoming.
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C. S. Calude

Department of Computer Science, University of Auckland
Auckland, New Zealand

cristian@cs.auckland.ac.nz

1 Scientific and Community News
The latest CDMTCS research reports are (http://www.cs.auckland.ac.nz/
staff-cgi-bin/mjd/secondcgi.pl):

441. C.S. Calude, R. Freivalds and F. Stephan. Deterministic Frequency Push-
down Automata. 09/2013

442. C.S. Calude. Quantum Randomness: From Practice to Theory and Back.
09/2013

443. A.A. Abbott, C.S. Calude and K. Svozil. Value Indefiniteness Is Almost
Everywhere. 09/2013

444. C.S. Calude, L. Staiger and F. Stephan. Finite State Incompressible Infinite
Sequences. 11/2013

445. A. Nies. Calculus of Cost Functions. 11/2013

446 S. Figueira and A. Nies. Feasible Analysis, Randomness, and Base Invari-
ance. 11/2013
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447. K. Wei and M.J. Dinneen, Comparing Two Local Searches in a (1+1)
Restart Memetic Algorithm on the Clique Problem. 12/2013

448. C.S. Calude and L. Staiger. Liouville Numbers, Borel Normality and Algo-
rithmic Randomness. 12/2013

449. F. Ferrarotti, S. Hartmann and S. Link. Reasoning about Functional and
Full Hierarchical Dependencies Over Partial Relations. 12/2013

450. J. Kontinen, S. Link and J. Väänänen. Independence in Database Relations.
12/2013

451. V.B. Tran Le, S. Link and F. Ferrarotti. Effective Recognition and Visual-
ization of Semantic Requirements by Perfect SQL Samples. 12/2013

452. H. Köhler, U. Leck and S. Link. Possible and Certain SQL Keys. 12/2013

453. S. Böttcher, S. Link and L. Zhang. LECQTER: Learning Conjunctive SQL
Queries Through Exemplars. 02/2014

454. S. Hartmann and S. Link. Normal Forms and Normalization for Probabilis-
tic Databases under Sharp Constraints. 02/2014

455. A. Gavruskin, S. Jain, B. Khoussainov and F. Stephan. Graphs Realised by
R.E. Equivalence Relations. 01/2014

456. A. Gavruskin, B. Khoussainov and F. Stephan. Reducibilities Among
Equivalence Relations Induced by Recursively Enumerable Structures.
01/2014

457. S. Jain, B. Khoussainov, F. Stephan, D. Teng and S. Zou. Semiautomatic
Structures. 02/2014

458. A. A. Abbott, C. S. Calude and K. Svozil. On the Unpredictability of
Individual Quantum Measurement Outcomes. 03/2014

459. L. Staiger. On the Hausdorff Measure of Regular ω-languages in Cantor
Space. 04/2014

460. M. Hannula, J. Kontinen and S. Link. On Independence Atoms and Keys.
04/2014

461. C.S. Calude and N. Poznanović. Free Will and Randomness. 05/2014
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2 A Dialogue with Mioara Mugur-Schachter on In-
formation, Quantum mechanics and Probabilities

Professor Mioara Mugur-Schachter, http://www.mugur-schachter.net is a
physicist, mathematician and philosopher specialising in quantum mechanics,
probability theory, information theory and epistemology. Her PhD Thesis (su-
pervised by Nobel laureate Louis de Broglie) contains the first invalidation of
von Neumann’s famous proof stating the impossibility of hidden parameters com-
patible with the quantum mechanical formalism. This result was included in the
volume “Etude du caractère complet de la mécanique quantique", (with a Preface
by L. de Broglie) published in the collection “Les grands problèmes des sciences",
Gauthiers Villars, Paris, 1964, two years before Bell’s invalidation.

Professor Mugur-Schachter has founded the Laboratoire de Mécanique Quan-
tique & Structures de l’Information at the University of Reims, the Centre pour la
Synthèse d’une Épistéémologie Formalisée and L’Association pour le Développe-
ment de la Méthode de Conceptualisation Relativisée.

CC: You have been born and educated in Romania. Tell us about your time at
the University of Bucharest: subjects you studied, professors, general atmosphere.

MM-S: I began by studying mathematics and philosophy (especially logic and
psychology). Then I chose to specialise in theoretical physics. For political rea-
sons my studies suffered an interruption that seemed to be fated to be irreversible.
But later the events evolved and I finally was allowed to resume my studies. So
I graduated with a Master in theoretical physics. My Professors, as I remem-
ber them, were very remarkable indeed. Profoundly educated persons, and many
among them endowed with genuine originality. The teaching was very thorough.
For me however—from a subjective point of view—my student years have been
a deeply troubled time about which I prefer not to focus my attention again. The
general atmosphere after 1948, as I perceived it, was constantly growing more and
more oppressive from a moral point of view.

CC: Your PhD Thesis was elaborated in Bucharest and sent to Louis de Broglie
before you came to Paris. How did you choose your subject? Did you have any
supervision in Bucharest for this work?

MM-S: During a recent public visit in a town from the South of France, a young
man asked how Louis de Broglie had recruited me? I answered that in fact it was
me who tried—very hard indeed—to recruit Louis de Broglie.

When I graduated, my former Professor of Atomic Physics, Horia Hulubei
(who was a pupil of Jean Perrin, in Paris, and after the war was called back to
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Romania to create an Institute of Atomic Physics) obtained for me a position in
the team of theoretical physics of the new Institute.

The subject of research assigned to me was to calculate, using the method
established by van Vleck, the interaction between three spins using the frame-
work of quantum mechanics. While covering with matrix elements meter-long
sheets of paper intended for architectural projects, I constantly suffered from a
very disagreeable feeling of not ‘understanding’ at all what I was calculating in
the prescribed way. This was a new feeling. The Newtonian mechanics seemed to
me fully intelligible, and also thermodynamics, atomic physics, statistical physics,
and even Maxwell’s electromagnetism. But in the case of quantum mechanics I
simply did not grasp how the mathematical formalism manages to carry definite
meanings.

In that state of mind, reading a textbook of quantum mechanics translated
from Russian I found the assertion that a certain von Neumann had proved a fa-
mous theorem stating that ‘hidden parameters’ that would ‘complete’ the quantum
mechanical formalism, making it intelligible, are impossible. The proof was not
given. Immediately I reacted with a mixture of satisfaction and astonishment.
I felt happy to learn that other persons also perceived the unintelligibility and
they were investigating it. But I was unable to imagine how it could be possible
to prove a definitive impossibility. Inside what conceptual-formal environment
could such a proof be achieved? Founded upon what assumptions? So I became
very eager to examine the proof. I had a friend who worked at the library of the
Academy and I convinced him to order an English translation of the German book
by von Neumann where the proof was first presented. The book eventually ar-
rived, but its access was restricted to the library basement. Using a trick, I found
von Neumann’s book and took it home.

During the next months I became an expert in von Neumann’s book. Mean-
while the calculus of matrix elements suffered a nearly total stagnation. At the end
of the year I was downgraded for not having finished my assignment. On the other
hand, I had written in English the first draft of what I thought to be an invalidation
of von Neumann’s proof.

I then began asking teachers and colleagues to read my work. But it appeared
that nobody around was interested in von Neumann’s proof. At the same time
everybody was a priori convinced that it was a ‘definitive’ result. This was my
first collision with the social environment of scientific thought.

Meanwhile I kept improving the text. And when I finally thought it to be
achieved I asked Professor Hulubei to do me the enormous favour to send the
manuscript by diplomatic courier (correspondence with the West was restricted at
that time in Romania) to Louis de Broglie as I learned indirectly that he believed
the theorem to be false. Professor Hulubei accepted, though assuring me that I
would never receive an answer.
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During the period that followed my husband (who was a Professor of resis-
tance of materials at the Polytechnic Institute of Bucharest) decided that both of
us give up our professional positions in order to apply for a passport for leaving
the country without creating a dangerous and useless small scandal. We knew
quite well how illusory was such an action, but we felt that we just had to try. So
we coldly put an end to our Romanian ‘careers’ and left Bucharest to start a long
period of uncertainty (it lasted three full years) during which, quasi incognito,
we wandered through the country with temporary jobs here and there. Which,
unexpectedly, we enjoyed profoundly.

One morning, while we were living on a boat anchored on a void island in
the delta of the Danube, where my husband was in charge of the construction of
an irrigation system for a rice field, I rather miraculously got a telegram from my
parents informing that Professor Hulubei wanted to see me as soon as possible.
I left a small note on the boat, traversed swamps in a tractor, caught a train to
Bucharest, and at the end of that very day I stood before Professor Hulubei. He
said: “Do you know what? Louis de Broglie answered you! And he agrees that
you have invalidated von Neumann’s proof!”. He handed me a very brief letter
addressed to ‘Mister Misare Mugur-Schächter (I abandoned that precious letter in
Romania, like any other hand-written document). In essence, Louis de Broglie’s
letter said that it was curious to see that two minds so different as his and mine,
reached the same conclusion about von Neumann’s proof. But since I had taken a
logical approach and had genuinely demonstrated the circularity character of the
proof, he would be happy if my work could one day become a PhD under his
supervision.

From that moment on I nourished only one dream: to manage to arrive in
France. In 1962 this dream became true following an unrealistically adven-
turous detective path to obtain a passport. And in 1964 my PhD Thesis, ti-
tled Étude du caractère complet de la mécanique quantique1 was defended at
the University of Paris and published by Gauthier Villars in the collection “Les
grands problèmes des sciences”, in a volume prefaced by Louis de Broglie
(http://www.mugur-schachter.net). The first part of the volume contains
a French version of my initial invalidation (practically unchanged); the second
part contains the proposal of an experiment derived from considerations on the
quantum theory of measurement and from de Broglie’s reinterpretation of quan-
tum mechanics (the experiment has not been realised, but it might be some day).
CC: You arrived in Paris in 1962. Can you reminiscence about your first en-
counters with Louis de Broglie, the 7th duke de Broglie?
MM-S: As if it were yesterday. We were towards the end of April. I imme-
diately announced my arrival and obtained a “rendez-vous”. I was now waiting

1Study of Completness of Quantum Mechanics.
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seated in the hall of the Academy of Science. An usher came and presented a
silver tray asking me to put my visit card. I had no card, so I wrote my name on a
piece of paper. And a little later Louis de Broglie himself arrived. He greeted me
and invited me to follow him.

I shall never forget the instantaneous transition from the ocean of vague and
moving inner images that had so long subsisted in my mind regarding the possible
scene of my first meeting with Louis de Broglie, to that unique real scene, so
radically definite in every detail, that was uncoiling with apodictic evidence. An
upright, infinitely distinguished man, in a dark costume and a shirt with broken
collar, was there, in front of me, confirming that he accepted me to become his
“last student”. He was Louis de Broglie, and I was in Paris, France, seated in an
office from the Academy of Science.

During the two subsequent years we met practically every Wednesday to dis-
cuss a fragment of my work that I had left in his letterbox from Neuilly-sur-Seine,
at least two days in advance. He never forgot and never postponed something
that he had announced he would do. He never argued with an idea or a way of
expressing something. He just stated his opinion. He also meticulously corrected
my French. And very discreetly, he constantly helped me in essential ways to
settle myself in France. His attitude influenced me profoundly.

CC: What was wrong with von Neumann’s proof?

MM-S: It simply was circular. The hypotheses contained the conclusion. The
conclusion of ‘definitive’ (absolute) impossibility of hidden parameters was in
fact derived inside the mathematical formulation of quantum mechanics, namely
using the particular way of representing probabilities that is specific to Hilbert
spaces, not of micro-states. (If micro-states are represented by another mathemat-
ical syntax, different from that of Hilbert spaces—as it is indeed the case for the
de Broglie-Bohm representation—then the proof ceases to hold.)

But this is not the unique insufficiency of von Neumann’s argument. In my
Thesis I have brought forth the unacceptable global structure of von Neumann’s
argument. The inadequacies of this argument overflow abundantly the strictly
logical-formal aspects. They leak out into epistemology, method, and usual lan-
guage. This ‘proof’ can be regarded as a striking illustration of the extreme dif-
ficulty to achieve a wholly and explicitly dominated mathematical representation
of a domain of ‘physical facts’. Such a representation involves quite essentially
operations of various sorts, physical as well as abstract ones; it involves assump-
tions of various nature, in particular methodological choices and conventions; it
involves aims of different natures, the aim to know in a precise way, of course, but
also other aims that should be all composed under the constraint of a sort of global
coherence. What thus comes out is a need of a sort of coherence that cannot be
separated from a feeling of beauty, or on the contrary, of ugliness when certain
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slopes of it are violated in some unspeakable way. I had tried as much as I was
able to bring all these aspects together into one representation and to extract the
essence of the whole. But I was very young, and this was my first research.
CC: You have also challenged Wigner’s proof on the impossibility of a joint
probability of position and momentum compatible with the formalism of quantum
mechanics. Is the theorem false as well?
MM-S: I would not say that it is ‘false’. I only showed that the asserted con-
clusion does not follow. I even identified a trivial counterexample and I showed
how this counterexample is allowed to arise inside Wigner’s construction. As in
my experience with von Neumann’s proof, as soon as I succeeded to achieve a
sufficiently compact variant of this second critical work (which took more than
two years and a long preliminary publication) I sent it to Wigner himself. Wigner
invited me to visit him in his wooden house in Vermont, for a direct discussion.
So I went there. He recommended the work for publication in the Foundations of
Physics.
CC: What is the “opacity functional of a statistic" and how did you use it for a
mathematical unification between the theory of probabilities and Shannon’s theory
of communication of information?
MM-S: This has been my first constructive work. It is the result of an attempt at
explaining why Boltzmann’s statistical distribution tied with the Carnot-Clausius
definition of physical ‘entropy’, possesses a mathematical form that is identical
with that of Shannon’s purely mathematical concept of ‘informational entropy’.
My motivation came from the seemingly unconceivable fact that this formal iden-
tity between two concepts, that are so radically different in their semantic contents,
is just a coincidence.

The central idea of the approach has been to construct—inside a Kolmogorov
probability space—a pure mathematical definition of the probability of realisation
of a given statistical distribution of the elementary events of the space.

Consider a Kolmogorov space that contains a universe of elementary events
and a probability law on it. Consider a very long but finite random sequence of
elementary events from this universe. The elementary events emerge inside this
sequence in a certain order, and each elementary event possesses a certain rela-
tive frequency inside the sequence, which defines a certain ‘statistical structure’
of the sequence. It is obvious that: a) a given statistical structure can arise for
various lengths of the sequence, b) for a fixed length, not any statistical structure
is possible.

Two questions can be examined. The first one is: What is the expression
of the probability for the realisation of a sequence with a given statistical struc-
ture, abstraction being made of the order and length? We have proved that the
Kolmogorov expression of the limit of the ratio between the probability of the
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sequence considered and the length of the sequence, is equal to the difference be-
tween two terms, the Shannon-entropy of the probability law from the considered
Kolmogorov probability space, and ‘the modulation of the probability law by the
fixed statistical structure’. I called this difference the opacity of the (fixed) statis-
tical structure of the sequence of elementary events with respect to the probability
law of the Kolmogorov probability space.

The second question is: How does this probability evolve when the length of
the considered sequence tends to inifity? The answer is: If the length of the se-
quence of elementary events tends to infinity, then the opacity functional satisfies
the weak law of large numbers.

The opacity functional realises an abstract unification between the proba-
bilistic and the informational approaches. This unification permits to construct
deductively inside the theory of probability, the identity of form between, on
the one hand, the concept of physical statistical entropy introduced by Carnot,
Clausius and Boltzmann, and on the other hand, Shannon’s concept of informa-
tional entropy of the probability law assigned to the signs from an alphabet of an
information-source regarded as elementary events. The formal identity can now
be clearly distinguished from the semantic specificities (physical, informational),
while the relations between formalism and semantics are clearly defined in each
case.

CC: Your work on “formalised epistemology" was characterised by Jean-Paul
Baquiast, editor of “Automates intelligents", as a revolution in the way of repre-
senting the processes by which we acquire knowledge.... Can you describe your
method of “relativized conceptualisation”?

MM-S: The method of relativized conceptualisation (MRC) is similar to a
grammar or ‘a formal logic’, that give syntactic rules for making use of a set
of signs. But instead of dealing with this or that ‘language’ or symbolic way
of constructing ‘rational truths’ (conclusions established deductively), MRC con-
cerns the whole of human processes of conceptualisation: it is a general syntax
for normalised creation of consensual knowledge. I say ‘normalised’ in the sense
of ‘methodologies’: indeed, like any method, MRC is organically tied with aims,
and MRC major aim is expressed in the following: The system of norms organised
by MRC assures the realisation of ‘safe scientific knowledge’, that is, of commu-
nicable and consensual knowledge where any possibility of emergence of false
problems or of paradoxes is excluded by construction.

MRC establishes a bridge from my initial investigations—exclusively criti-
cal and achieved with reference to norms that worked only implicitly and were
devoid of generality—to a quite general and explicitly organised methodological
framework.

Let me detail a little more. Any piece of knowledge that can be communi-
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cated without resource restrictions (space or/and time) is a ‘description’ (pointing
toward something restricts to co-presence on a same place at the same time, so it
does not give a ‘description’). What is not ‘described’ cannot be communicated
in unrestricted ways, even if it is known by someone. So, MRC is a method of
scientific and safe description.

MRC is constructed in a deductive way and uses the current natural logic. It
involves 1 postulate, 3 principles, 1 convention, 22 main definitions and 6 proved
“propositions”. That is all.

A ‘description’ consists of some ‘qualification’—in a certain generalised ad-
jectival sense—of some ‘entity-to-be-qualified’. According to MRC-norms, any
description has to be realised within a previously defined ‘epistemic referential
(G,V) which consists of an explicitly defined operation of generation G of the
object-entity oeG to be ‘qualified’ (‘described’), and a concept denoted V that is
called a view which consists of a structure thatrealises precisely the desired sort
of qualification.

The operation of generation G can consist of just selecting a pre-existing entity
and assigning it the role of object oeG for future qualifications; but G can also be
a radically creative operation (as it happens indeed for a free micro-state to be
studied according to quantum mechanics).

On the basis of very careful analyses, it appears that in order to avoid any arbi-
trary a priori restriction it is unavoidable to posit—even if a posteriori this posit is
modified—that the object-entity oeG stays in a one-to-one relation with its oper-
ation of generation G (this is expressed by the index G from the denotation oeG).
This a priori posit constitutes inside MRC an essential methodological decision.

The basic nature of V is analogous to that of a grammatical predicate. But its
structure is far more complex, precise and general. A view V consists of a finite
union V =

⋃
g Vg of aspect-views Vg. Each aspect-view Vg introduces a freely

chosen ‘semantic dimension g’ (for instance the trivial one indicated by the word
‘colour’, but also any other more unusual or sophisticated one) endowed with a
finite set of ‘values’ denoted gk, where g is fixed and k varies in a finite set (for in-
stance, for the semantic dimension of ‘colour’, one could place just green, red and
yellow, or these and also other 15 colours, etc.). An aspect-view Vg is ‘blind’ with
respect to the semantic dimensions different from its own, as well as with respect
to any value gk with which it has not been endowed by its definition: it is a filter.
Moreover, each aspect-view Vg states explicitly (a) what conceptual-physical op-
erations constitute an act of ‘examination by Vg’; (b) what is the observable result
of a given act of examination, and (c) how this result is translated into a value gk

of Vg (when oeG is not directly perceivable, this requirement is highly non-trivial).
For the sake of effectiveness in the sense of computability, MRC operates with

operationally specified entities using finite constructions.
The relativised genesis of any MRC description induces a definite global struc-
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ture for the whole evolving volume. This structure possesses the character of a
network of chains of increasing complexity, subject to explicit rules of mutual
connection. Each relative description from this network reproduces the same ba-
sic epistemological structure D = {(gk)}.

In the framework of MRC classical concepts and theories get a new form.

• The classical logic corresponds to a ‘genetic relativized logic’ that entails a
calculus with relative descriptions.

• Classical probabilities correspond to relativised genetic probabilities.

• Genetic logic and genetic probabilities become essentially unified.

• Shannon’s theory of communication of information, which by construction
does not talk about the meaning of information, becomes relativised when it
is embedded into the relativized theory of probabilities; some meaning can
emerge.

• The MRC ‘complexity’ can be expressed by a set of relativised numerical
‘measures’ established by measurements.

• The concept of time acquires an explicit bi-dimensional representation.

New applications of MRC are developed. For example, a relativized concept of
‘system’ was constructed in H. Boulouet’s Ph.D. Thesis Relativized Systems The-
ory to be submitted to the University of Valencienne (2014).

Furthermore, all classical disciplines are constructed and presented as if the
descriptions ‘mirror’ things and facts that pre-exist quite independently of the
model (even Wittgenstein’s extraordinary analyses do not clearly challenge this
conception). In contrast, MRC is explicitly founded on transferred descriptions.
I dare assert that MRC is the first scientific general method of deliberate human
conceptualisation.
CC: In which way did you recently collaborate with Giuseppe Longo, an expert
in computability theory and discrete mathematics, areas seemingly far away from
your main interests? Is this an indication that quantum physics might benefit from
an interaction with these areas?
MM-S: I think so. For historical reasons, the beginnings of quantum mechanics
have been marked by contributions expressed in terms of continuous mathematics;
but also of contributions expressed in algebraic terms. I believe that in the future
a discrete and finite, algebraic approach will predominate.

And I think the same is true for probabilities. (The opacity functional can be
relativised and discretised.)
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Anyhow, MRC is quite essentially finite, so discrete, by construction. With
MRC I solved, I think, a major (though rarely discussed) difficulty of the classi-
cal probabilistic conceptualisation (see my paper “On the concept of probability”,
Mathematical Structures in Computer Science, special issue on “Randomness,
Statistics and Probability”, 2014 (in press)). Namely, the lack of a general pro-
cedure for constructing the numerical distribution of probability to be used in
a factual situation that is generally considered to be probabilistic. I called this
difficulty “Kolmogorov’s aporia" because starting from 1983 Kolmogorov him-
self denounced this startling and scandalous situation. For example, in the paper
“Combinatorial foundations of information theory and the calculus of probabili-
ties”, Russia Mathematical Surveys, 38 (1983) 29–40, Kolmogorov says:

The applications of probability theory can be put on a uniform basis.
It is always a matter of consequences of hypotheses about the impos-
sibility of reducing in a way or another the complexity of the descrip-
tions of the objects in question. Naturally this approach to the matter
does not prevent the development of probability theory as a branch of
mathematics being a special case of general measure theory.

The MRC solution to Kolmogorov’s aporia consists of an explicit finite proce-
dure for constructing, in a given factual probabilistic situation, the corresponding
finite distribution of a numerically defined law of probability. Furthermore, an
equation has been worked out, that expresses the formal consistency between the
finite data that characterise the above-mentioned procedure and the mathematical
theorem of large numbers.

Professor Longo was aware of this work and I think that he has understood
its social difficulties. I must mention that the same special issue contains a very
interesting discussion of probability from a historical perspective, C. Porter, “Kol-
mogorov on the role of randomness in probability theory”, of which I was unaware
while developing my work. In this way I learned that quite a number of mathe-
maticians are well aware of what I have called Kolmogorov’s aporia, but they
called it long before “the applicability problem”, clearly a better name.

Mathematicians seem to believe that the applicability problem can be solved
by purely mathematical means, while I believe that this is fundamentally impos-
sible. I believe that the semantic content cannot be reduced to pure syntax, nor
entirely “mimed’ by it (in the sense in which a mould can ‘mime’ a face).

The special issue referred above contains also a brief debate between several
outstanding contributors about the ways of connecting factual data with mathe-
matical syntax. This debate brings into evidence that the applicability problem—
even though Kolmogorov himself considered it so essential—not only is surpris-
ingly little known, but, even when it is raised in quite explicit and insistent terms,
it captures very little attention.
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I believe that this state of facts deserves closer examination. Human intuition
is magic. Nevertheless, the introduction of explicit principles and rules for match-
ing a given semantic content and an assigned syntactic expression, could be very
fertile, acting like a vehicle for rapid and precise understanding and consensus.
People have lived before Aristotle’s syllogistic, but its creation has avoided heaps
of sophisms in heaps of lost time and effort. MRC offers a framework for match-
ing safely semantic contents and syntactic structures.

CC: Your last book Principles of a 2nd Quantum Mechanics (arXiv:1310.1728,
in French) presents yet another quantum mechanical formalism. What is wrong
with the “1st quantum mechanics"?

MM-S: It is simply devoid of a theory of measurement acceptable from a formal
as well as from a conceptual point of view, with general factual validity.

The von Neumann-Hilbert theory of measurement is, both, fallacious and de-
void of general validity. As long as one is confined inside the formalism itself it is
very difficult to fully perceive this. (Personally, I am startled to discover what an
incredibly long time I needed in order to acquire what I now believe to be a clear
and coherent view on the global structure of the quantum mechanical formalism.)

The problem of ‘interiority’, i.e. of ways of transgressing the limitations in-
side which one is yourself imprisoned, is a very difficult problem indeed. If the
imprisonment is absolute, this problem is radically devoid of solution. This may
seem trivial, but many fine authors act as if they were unaware of it, in particu-
lar, all those who make assertions concerning the entire Universe. Wittgenstein
stressed this epistemological fact in various contexts. He repeated that in order to
be able to think of a ‘whole’ one has to be able to be inside as well as outside of
that ‘whole’. To which he added his well-known injunction: Whereof one cannot
speak, thereof one must be silent.

Now, what happens when one wants to size up globally, as well as in its de-
tails, the structure of the quantum mechanical representation of micro-states? The
imprisonment inside this representation, of course, is not absolute. One can place
oneself outside it. But what is available outside, on which one can place the feet of
one’s mind? There is the classical physics and the whole classical thinking, with
its “objects”, its space-time and causal structures. But everybody says that quan-
tum mechanics violates all this and nevertheless—marvellously—‘is working’.
An organised formalism (outside of the quantum mechanical one) permitting to
perceive consensually expressible specificities, or necessities, or impossibilities,
does not exist.

And this is quite understandable. Indeed, quantum mechanics is the very first
physical theory that introduces—-implicitly—what I have called ‘transferred de-
scriptions’ of the physical entities. And, as I have already stressed, the whole
organised thinking that is exterior to quantum mechanics ignores the concept of
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primordial transferred descriptions. So with respect to this concept there cannot
exist an organised outside.

As long as these conditions persist nothing can be asserted on the formalism of
quantum mechanics in terms endowed with a precise meaning and with a character
of objectivity. This, as a fact, is manifest since tenths of years. What is cruelly
lacking is an organised structure of reference, different from quantum mechanics
itself, but constructed in a way that permits to be clearly related with quantum
mechanics, that admits a controlled comparison with quantum mechanics, in the
details as well as globally.

So I constructed such an organised structure of reference. I maintained invari-
ant that what is represented inside quantum mechanics, namely states of micro-
systems, ‘micro-states’, but I constructed another representation involving them.
Quite independently of quantum mechanics, I brought into evidence just the nec-
essary and sufficient conditions for constructing a communicable and consensual
representation of micro-states, but nothing more.In this way an epistemological-
operational-methodological representation of the geneses of human very first
pieces of knowledge on micro-states is obtained. I called this infra-(quantum
mechanics) to be understood as ‘beneath the formalism of quantum-mechanics’.

By systematic reference to infra-(quantum mechanics), the formalism of quan-
tum mechanics reveals unexpected deficiencies. Here are three of them:

• It does not distinguish clearly between the individual level of conceptualisa-
tion, and the statistical one. In fact it almost entirely occults the individual
level.

• It does not represent at all, neither mathematically nor informally, the way
in which a describable micro-state is generated. The process of generation
of a physical and individual micro-state is confused with something radi-
cally different, namely the process of ‘preparation for measurement of the
mathematical state vector’ that represents the statistics of results of mea-
surement obtained with numerous replicas of the physical micro-state that
is involved.

• Quantum mechanics lacks a generally valid theory of measurement.

I have sketched a 2nd quantum mechanics where the deficiencies enumer-
ated above (and some others) have disappeared. This new representation—not
a re-interpretation—introduces measurement operations based on the de Broglie-
Bohm guidance relation, but assumed to be an observable process, not an only
conceived process. And whether the process is indeed observable, or not,. . . can
be observed.
CC: Are you preparing an English version?
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MM-S: I have already notably improved the French version and I shall soon
update it on arXiv of quantum physics. As for the English version, it will be avail-
able before the end of July, I hope. Meanwhile I shall try to publish somewhere
an extended abstract in English.
CC: Do you believe in the possibility of a grand unification between quantum
mechanics and relativity?
MM-S: One can postulate that if one could directly observe micro-systems via
signals travelling with a universally invariant velocity, then we would construct
descriptions of them that would obey Einstein’s theories. There is a very strong
tendency to extrapolate into absolute generality an approach that has produced
remarkable successes in some given domain.

But—personally—I do not see any reason why that postulate should be partic-
ularly fertile. I do not believe that what is called a “grand unification” is the best
choice of an aim of today’s Physics. I believe that the unique sort of a genuinely
fertile unification of scientific rationality—in its entirety—can only be of a purely
methodological nature. The contents should be left free of a priori constraints.
They should emerge explicitly from all the specific conditions that are brought
into play, so marked by unlimited diversity.
CC: As a researcher you had good moments and bad moments . Can you recall
one of them?
MM-S: By far the best moments that I have had as a researcher—-and not very
seldom—have been those that have emerged unexpectedly, when without any ex-
pressible specific cause I have suddenly felt a sort of inner certitude to have finally
“understood” something that before, and for a long time, had stubbornly resisted
my understanding.
CC: Many thanks.
MM-S: The thanks, indeed, are from my part.
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Report on BCTCS 2013

The 29th British Colloquium for Theoretical Computer Science

24–27 March 2013, University of Bath

Guy McCusker

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual
forum in which researchers in Theoretical Computer Science can meet, present
research findings, and discuss developments in the field. It also provides an envi-
ronment for PhD students to gain experience in presenting their work in a wider
context, and to benefit from contact with established researchers.

BCTCS 2013 was hosted by the University of Manchester, and held from 24th
– 27th March 2013. The event attracted over 49 participants, and featured an inter-
esting and wide-ranging programme of four invited talks and 28 contributed talks,
in large part from PhD students, covering the full gamut of topics in theoretical
computer science; abstracts of the talks are provided below.

The conference began with an invited talk by Samson Abramsky, University
of Oxford, entitled “From Quantum Mechanics to Logic, Databases, Constraints,
and Complexity”. Other invited talks were given by Angela Wallenburg, Altran
UK (“Proof and test: will they blend?”) and Assia Mahboubi, INRIA–École Poly-
technique (“Computer-checked Mathematics”), As in previous years, the London
Mathematical Society sponsored a keynote talk in Discrete Mathematics: Susanne
Albers, Humboldt-Universität zu Berlin, gave an excellent lecture on “Energy Ef-
ficient Algorithms”. The financial support of the London Mathematical Society
(LMS) in support of this lecture is gratefully acknowledged. We also acknowl-
edge the financial support of the Heilbronn Institute for Mathematical Research
which made available 24 student bursaries to cover full costs of attendance.
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Invited Talks at BCTCS 2013

Samson Abramsky, University of Oxford
From Quantum Mechanics to Logic, Databases, Constraints, and Complexity
Quantum Mechanics presents a disturbingly different picture of physical reality to
the classical world-view. These non-classical features also offer new resources and
possibilities for information processing. At the heart of quantum non-classicality
are the phenomena of non-locality, contextuality and entanglement. We shall de-
scribe recent work in which tools from Computer Science are used to shed new
light on these phenomena. This has led to a number of developments, including
a novel approach to classifying multipartite entangled states, and a unifying prin-
ciple for Bell inequalities based on logical consistency conditions. At the same
time, there are also striking and unexpected connections with a number of topics
in classical computer science, including relational databases, constraint satisfac-
tion, and complexity theory. The lecture will present an introduction to contextual
semantics, in a self-contained, tutorial fashion.

Angela Wallenburg, Altran UK
Proof and Test: Will They Blend?
Extensive and expensive testing is the primary method used to gain confidence
in safety-critical software today. There are some notable exceptions where for-
mal software verification has been successfully used and scaled to large industrial
projects. SPARK is a programming language, a set of verification tools, and a
design approach for such critical systems. A number of military and commer-
cial high integrity projects, ranging from 10 000 to 5 million lines of code, have
been developed in SPARK. Examples include Rolls Royce Trent (engine control),
EuroFighter Typhoon (military aircraft), and NATS iFACTS (air traffic control).
We have identified two reasons why formal program verification is still a hard
sell: 1) the difficulty of reaching non-expert users, and 2) the lack of a convinc-
ing cost-benefit argument. In this talk I will describe our approach to solve those
two problems in the design of the new SPARK 2014 language and its associated
verifying compiler, developed jointly by Altran UK and AdaCore. I will give an
overview of some lessons learned from the programming language and verifica-
tion research community, from the development of industrial standards such as
DO-178C, and from our experiences in the industrial use of SPARK. In particular
I will describe our unique integration of testing and proving. We argue that sub-
program level formal verification using SPARK 2014 can be cheaper than testing
in DO-178C terms, and that our integrated approach allows a mix of test and proof
so that the most cost-effective method can be used for each part of a program.

Susanne Albers, Humboldt-Universität zu Berlin, the LMS-sponsored keynote



The Bulletin of the EATCS

183

speaker in Discrete Mathematics.
Energy-Efficient Algorithms
We study algorithmic techniques for energy savings in computer systems. We
consider power-down mechanisms that transition an idle system into low power
stand-by or sleep states. Moreover, we address dynamic speed scaling, a relatively
recent approach to save energy in modern, variable-speed microprocessors. In the
first part of the talk we survey important results in the area of energy-efficient algo-
rithms. In the second part we investigate a setting where a variable-speed proces-
sor is equipped with an additional sleep state. This model integrates speed scaling
and power-down mechanisms. We consider classical deadline-based scheduling
and settle the complexity of the offline problem. As the main contribution we
present an algorithmic framework that allows us to develop a number of signifi-
cantly improved constant-factor approximation algorithms.

Assia Mahboubi, INRIA–École Polytechnique
Computer-checked Mathematics
For the last decades, computers have been playing an increasing role in the ev-
eryday activity of many researchers in mathematics: for typesetting articles, for
testing conjectures, and sometimes even for validating parts of proofs by large
computations. However most mathematicians are hardly familiar with "proof as-
sistants", which are also pieces of software for "doing mathematics with a com-
puter". These systems allow their users to trust with the highest degree of cer-
tainty the validity of the proofs they have carefully described to the machine. So
far proof assistants have been successfully employed to verify the correctness of
hardware and software components with respect to given specifications, scrutiniz-
ing proofs that are too long and pedestrian to be checked by hand. In September
2012, a proof of the Odd Order Theorem (Feit-Thompson, 1963), which is a mile-
stone for the the classification of finite simple groups, was machine-checked by
the Coq proof assistant. In this case, the computer has verified a proof which does
not rely on heavy computations but on a sophisticated combination of mathemati-
cal theories resulting in one of the longest published proof of its time. In this talk
we will give an overview of the panel of research areas and methodologies that
should be combined in order to ensure the success of such a formalization. Black
(or white) board will eventually never be surpassed to convey and give rise to the
intuitions of the mind who discovers new mathematics, but having proofs checked
by a machine rather than by a human reviewer may open some new perspectives
we will discuss.

Contributed Talks at BCTCS 2013



BEATCS no 113

184

Chris Bak, University of York
Rooted Graph Programs
We present an approach for programming with graph transformation rules in which
graph programs can be as efficient as programs in imperative languages. The basic
idea is to equip rules and host graphs with distinguished nodes, so-called roots.
At the start of the search process for the match of a graph transformation rule,
roots in rules are matched with roots in host graphs. This facilitates a local search
of the host graph in the neighbourhood of its root nodes, enabling rules to be
matched and applied in constant time, provided that host graphs have a bounded
node degree (which in practice is often the case). Hence, for example, programs
with a linear bound on the number of rule applications run in truly linear time. We
demonstrate the feasibility of this approach with a case study in graph colouring
using the graph programming language GP.

Mohamed Arikiez, University of Liverpool
Combinatorial Optimization Techniques in Domestic Renewable Power Man-
agement
Our work is in the emerging area of Computational Sustainability. We contend
that the area has a great potential for fostering cutting-edge research in Computer
Science and related disciplines. In particular, the main aim of the research pre-
sented here was to design an intelligent interactive control system that efficiently
manages the household energy needs taking into account presence of renewable
power (hybrid Solar/Wind) and the resident’s preferences in order to reduce con-
sumed power from the utility grid and increase the immediate renewable power
(RP) utilization (the ratio of total consumed RP to total Generated RP) without
decreasing the comfort level. Despite the fact that installing a domestic renewable
power generation system can reduce power bills, the utilization of this power still
needs improvement because sometimes the surplus of RP could hit 70% (depend-
ing on output power of generation system and consumed power in the building)
but no intelligent mechanism exists to try and exploit such resource before it gets
dumped to a storage system or the national grid. We describe a novel Knapsack
formulation that can be used to solve the resulting allocation problem and analyse
its performances both in a real-life and simulated environment. Our results sug-
gest that the approach could allow the immediate use of as much as 90% of the
generated power surplus.

Giles Reger, University of Manchester
A pattern-based technique for inferring first-order temporal specifications
Formal program specifications are useful for a number of different applications
– the most obvious being formal program verification. But they can also aid
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program understanding, test generation, bug location, software development and
other new applications that are the subject of active research. However, formal
specifications are difficult and costly to write, and as a consequence, precise spec-
ifications are often missing, incomplete or informal. This has led to a growing in-
terest in the area of specification inference (also known as model inference, speci-
fication mining, automata learning). These techniques extract temporal properties
or state-based invariants from code or, more often, dynamic program traces. These
techniques are defined by the coverage they can achieve, the expressiveness of the
specification language they target and their ability to scale with program size. In
this talk I introduce a technique for inferring temporal specifications that deal with
data. In order to handle data effectively I make use of a highly expressive spec-
ification language (Quantified Event Automata) developed within the context of
runtime verification to infer specifications using a technique where specification
patterns are mined from program traces and then combined together. By target-
ing an expressive specification language this technique is able to discover useful
specifications whilst maintaining scalability by adopting algorithms for efficient
runtime monitoring.

Andrew Lawrence, Swansea University
Program Extraction in Action: A Verified Clause Learning SAT Solver
Modern SAT solvers typically include optimizations such as clause learning which
are rarely treated with formal methods in practice. In this talk we show how to
obtain such an optimized SAT solver together with a formal correctness proof by
the method of program extraction from proofs: we have formalized a construc-
tive proof of completeness for a modified DPLL proof system combined with unit
resolution and extract a conflict driven clause learning SAT algorithm. This algo-
rithm is capable of learning information during the search for a proof as well as
performing non-chronological backtracking. This is a new case study in the area
of program extraction and opens up many possibilities for future work. It also
demonstrates how efficiency considerations can be taken into account at the proof
level. The formalization and extraction has been carried out in the interactive
proof assistant Minlog.

Gregory Woods, Swansea University
A Case Study On Imperative Program Extraction
The process of program extraction has long been associated with functional pro-
grams with little research in the direction of imperative program extraction. While
many useful tools exist to extract functional programs (Agda, Isabelle, Coq and
NuPRL) the simple fact is that most programs that are written are more towards
the imperative paradigm. In this talk we explore a case study which demonstrates
that imperative program extraction is possible. The problem we choose to solve
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using this method is the classic of sorting a list of numbers. Many algorithms ex-
ist to solve this problem and we will focus on one of the most famous, Quicksort.
We present a successful attempt at extracting a program, that yields imperative
behaviour, from a constructive proof. The software used for this is the interactive
theorem prover Minlog.

Matthew Gwynne, Swansea University
Towards a theory of good SAT representations
We aim at providing a foundation of a theory of “good” SAT representations (CNF
clause-sets) F of boolean functions f . The hierarchy UCk of unit-refutation com-
plete clause-sets of level k was introduced by the authors, based on notions of
hardness and generalised unit-clause propagation (UCP). We argue UCk provides
the most basic target classes for representation. That is, for a good representation,
F in UCk is to be achieved for k as small as feasible.

The first level of the hierarchy, UC1, is the same as the class UC of unit-
refutation complete clause-sets, introduced in 1994. The aim of UC was to offer
a class of clause-sets which was good for knowledge compilation and representa-
tion. More formally, UC is the class of clause-sets where unit-clause propagation
(UCP), a simple linear-time inference algorithm, is sufficient decide questions of
clausal entailment. In 1995 the class S LUR (Single Lookahead Unit Resolution)
was introduced as an umbrella class for efficient satisfiability (SAT) solving. The
motivation was to offer an algorithm for efficiently deciding satisfiability for ex-
isting poly-time SAT classes, including renamable Horn, extended Horn, hidden
extended Horn, simple extended Horn, and CC-balanced clause-sets. In previous
work we generalise SLUR to a hierarchy S LURk, again using generalised UCP,
and show that these two hierarchies are in fact equal (S LURk = UCk). This brings
together the two notions of representation and efficient SAT solving, and allows
one to think of “finding a good representation” as a form of “SAT knowledge com-
pilation”. As a first application of this dual perspective, we show that, for (fixed)
k ≥ 1, deciding whether a clause-set is in UCk is coNP-complete.

UCk is directly related to the space complexity of tree resolution. However,
in general, it is known that modern SAT solvers can (in some sense) simulate
stronger proof systems such as full-resolution. Using the notion of resolution
width, we introduce the hierarchy WCk of clause-sets with width-hardness k; for
all k the class UCk is a subset of WCk. We introduce lower bound methods for
WCk and use these to prove separation results between UCk+1 and UCk, as well as
between WCk+1) and WCk. More formally, we show that for every k ≥ 1 there are
sequences of boolean functions with polynomial size equivalent clause-set repre-
sentations in UCk+1 which have no equivalent polynomial-size representations in
WCk. The boolean functions for these separations are “doped” minimally unsat-
isfiable clause-sets of deficiency 1; we generalise their construction and show a
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correspondence to a strengthened notion of irredundant sub-clause-sets. Turning
from lower bounds to upper bounds, we believe that many common CNF rep-
resentations fit into the UCk scheme, and we give some basic tools to construct
representations in UC1 with new variables, based on the Tseitin translation.

Augustine Kwanashie, University of Glasgow
The Hospitals/Residents Problem with Free Pairs
The classical Hospitals/Residents problem models the assignment of junior doc-
tors to hospitals based on their preferences over one another. In an instance of this
problem, a stable matching M is sought which ensures that no blocking pair can
exist in which a resident r and hospital h can improve relative to M by becoming
assigned to each other. Such a situation is undesirable as it could naturally lead
to r and h forming a private arrangement outside of the matching. This however
assumes that a blocking pair that exists in theory would invariably lead to a match-
ing being undermined in practice. However such a situation need not arise if the
lack of social ties between agents prevents an awareness of certain blocking pairs
in practice. Relaxing the stability definition to take such a scenario into account
can yield larger stable matchings.

In this talk, we define the Hospitals/Residents problem with Free pairs (HRF)
in which a subset of acceptable resident-hospital pairs are defined as free. This
means that they can belong to a matching M but they can never block M. Free
pairs correspond to resident and hospitals that do not know one another. Relative
to a relaxed stability definition for HRF, called local stability, we show that locally
stable matchings can have different sizes and the problem of finding a maximum
locally stable matching is NP-hard, though approximable within 3/2. Furthermore
we give polynomial time algorithms for three special cases of the problem.

Alexander Baumgartner, RISC, Johannes Kepler University of Linz
A Variant of Higher-Order Anti-Unification
The anti-unification problem of two terms t1 and t2 is concerned with finding their
generalization, a term t such that both t1 and t2 are instances of t under some sub-
stitutions. Interesting generalizations are the least general ones. The purpose of
anti-unification algorithms is to compute such least general generalizations. For
higher-order terms, in general, there is no unique least general higher- order gen-
eralization. Therefore, special classes have been considered for which the unique-
ness is guaranteed. One of such classes is formed by higher-order patterns. These
are lambda-terms where the arguments of free variables are distinct bound vari-
ables. A rule-based anti-unification algorithm in simply-typed lambda-calculus
which computes a least general higher-order pattern generalization will be pre-
sented. The algorithm computes it in cubic time within linear space and it has
been implemented.
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Iain McBride, University of Glasgow
The Hospitals / Residents Problem with Couples
Large scale allocation processes can be modelled as matching problems involving
sets of participants who may express preferences over members of other sets. Cen-
tralised matching schemes, which use algorithms to solve the underlying matching
problems, are often employed in such allocation processes.

The National Resident Matching Program (NRMP) was established in 1952,
in response to problems with the previous competitive system, to match graduat-
ing medical residents to hospitals in the US, matching 25,526 students in 2012.
A similar process is used in Scotland to match medical graduates to Foundation
Programme places via the Scottish Foundation Allocation Scheme (SFAS). These
schemes may be modelled by a classical combinatorial problem, the Hospitals /

Residents Problem (HR).
Centralised matching schemes such as these have had to evolve to accommo-

date couples who may wish to be allocated to (geographically) compatible hospi-
tals. This extension, which can be modelled by the Hospitals / Residents Problem
with Couples (HRC), has been in operation in the NRMP for a number of years
and has also been applied more recently in the SFAS context.

The classical Gale-Shapley algorithm solves the Hospitals / Residents problem
by finding a so called stable matching. We prove that, even under some very severe
restrictions, the problem of deciding whether a stable matching exists, given an
instance of HRC, is NP-complete. These complexity results drive the search for
alternative methods of dealing with such problems.

We describe an Integer Programming model of the Hospitals / Residents Prob-
lem with Couples which produces exact, optimal solutions in larger instances
where previously only heuristics, which are not guaranteed to terminate, have
been applied. We prove the validity of the model and demonstrate the empirical
performance of an implementation over a number of randomly generated datasets
in addition to anonymised real data from the SFAS context.

Nosheen Gul, University of Leicester
A Process Calculus for Ubiquitous Computing
In the ubiquitous computing setting computing devices are distributed and could
be mobile, and interactions among devices are concurrent and often depend on the
location of the devices. Process calculi are formal models of concurrent systems
and mobile agents. In particular, Calculus of Communicating Systems (CCS, for
short) of Milner is a well suited formalism for agents executing concurrently, and
Mobile Ambients (MA) by Cardelli and Gordon is a formalism for agents’ mobil-
ity. We propose a process calculus for specifying mobility, communication, and
concurrency in the ubiquitous computing setting. The calculus is inspired by CCS
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and Mobile Ambients. We use the idea of ports as in CCS, that allow agents to
communicate on, and ambient capabilities as in Mobile Ambients, allowing the
agents to move around. We give an LTS-based operational semantics for our cal-
culus, which is inspired by Merro and Hennessy operational semantics. Then we
provide some examples to show the usefulness of our calculus.

Andrew Fish, University of Brighton
Ordered Gauss Paragraphs
The talk will discuss recent work on the EPSRC funded Automatic Diagram Gen-
eration project which aims to build a unified framework for the automatic genera-
tion of mixed-type diagrams arising as the integration of Euler diagrams, knot di-
agrams, and graphs. There has been limited prior consideration of mixed-type di-
agram generation, and the intent is bring theoretical benefits by developing meth-
ods which make use of any commonality of abstraction, together with practical
oriented benefits in terms of providing the groundwork for generic tool support
for such diagrams that may be used in areas such as diagrammatic logics, or on-
tology and network visualisations. The talk will focus on Euler diagrams, which
are collections of closed curves used to visualise set systems, discussing a new
encoding for Euler diagrams, using Ordered Gauss Paragraphs, making use of an
existing code together with methods for solving the planarity problem for knots
in order to solve the corresponding planarity problem for Euler diagrams. We
indicate how the code encapsulates the topology of the diagram, demonstrate the
generality of the approach, and provide a link between knots and Euler diagrams
via a construction which yields a family of Brunnian links which project to Ed-
wards’ construction of Venn diagrams, observing that the code rewriting methods
developed are more widely applicable

Kevin McDonald, University of Aberdeen
A Substructural Logic of Layered Graphs
Complex systems, be they natural or synthetic, are ubiquitous. In particular, com-
plex networks of devices and services underpin most of society’s operations. By
their very nature, such systems are difficult to conceptualize and reason about ef-
fectively. The concept of layering is widespread in complex systems, but has not
been considered conceptually. Noting that graphs are a key formalism in the de-
scription of complex systems, I will establish a notion of a layered graph and pro-
vide a logical characterization of this notion of layering using a non-associative,
non-commutative substructural, separating logic.

Layering need not be defined in one direction only: it may be that two graphs
are layered over each other. In modelling terms, this would mean that whilst it
remains useful to separate the two layers, resources can flow both up and down.
To this end, I establish a notion of ‘bi-layering’ that is consistent with the basic
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notion of layering and also the intuitive notion of a stack.
I will define a class of algebraic models that includes layered graphs for which

soundness and completeness results can be obtained. This gives a mathematically
substantial semantics to this very weak logic.

The notion of layering that I develop has many natural applications in complex
systems modelling. One particularly appealing area of application lies in security,
such as instances of security circumvention or a flaw in the security policy of an
organisation based on lax protocols. There are many others in a variety of network
settings, the IP Stack, for example. I will present some simple examples before
discussing how my work could be applied to more complex security issues such as
investigating how I may begin to compose security models such as Bell-LaPadula
and Biba in the layered environment.

Abiar S. Al-Homaimeedi, King’s College London
Achieve pi-calculus Style Mobility in CSP
In process calculi, passing channel names is considered as transferring of com-
munication capabilities from one process to another, usually called mobility. In-
troducing mobility into CSP as in the pi-calculus is not straightforward for the
following reasons: (i) the parallel composition in CSP is parametrised with an
interface set which governs the synchronisation between participants. Events in
this set should be simultaneously per- formed by all participants whereas events
outside this set (even if they are shared) are not. Although CSP parallel com-
position improves com- munication exibility, it lets processes alphabets play a
significant role in the communication. Therefore, the silent growth of alphabets
as in pi-calculus is not enough. Processes alphabets should be grown explicitly
because of its relation with the parallel operator. (ii) restricting communication
to names as the pi-calculus, is insuficient in the CSP. The restriction will compro-
mise the CSP typed multi-way communications To overcome this problem several
solutions have been proposed. However, each of these models have some draw-
backs, therefore, in this talk, we propose a new mobility model to accommodate
mobility into CSP. Our mobility model generalises the notations and relaxes the
restrictions which are made by one of the previously proposed models. Addition-
ally, we introduce a novel dynamic algorithm to update the synchronisation set of
the generalised parallel operator.

Shang Chen, Loughborough University
Computability of Hybrid Systems
In this presentation, we will introduce several models of hybrid systems and dis-
cuss the computability of reachability and convergence properties of them. Hy-
brid systems are a model incorporating both discrete and continuous dynamics in
the same formalism, which can be used to describe a large number of real-world
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applications. They are often used in places where we have some form of dis-
crete device acting in a continuous environment. Firstly, we will introduce several
mathematical models studied in this area such as piecewise constant derivative
systems (PCD), piecewise affine maps (PAM), timed automata (TA) and rectan-
gular automata (RA). We will then explain the problems we are interested in for
these models, which include reachability, control and stability problems. We will
then survey some known results from the literature from the point of view of de-
cidability. Finally we will discuss future research directions, some applications of
hybrid systems and some new areas which seem worthy of study.

Casper Bach Poulsen, Swansea University
Partial Derivation in Modular Structural Operational Semantics
Abstract: The scientific study of programming languages requires a formal spec-
ification of their semantics. However, the incentives of applying formal speci-
fication frameworks during programming language design are often outweighed
by more pragmatic concerns, such as developing and maintaining an executable
interpreter for the language under design.

One way of bridging the gap between formal specification and pragmatic pro-
gramming language design is by making formal specifications pragmatic for the
language developer. Modular structural operational semantics (MSOS), a modu-
lar variant of structural operational semantics (SOS), is a formalism that supports
incremental and scalable language design, e.g., by taking a component-based ap-
proach to semantic specification.

Interpreting the transitive closure of the transition function for a set of MSOS
rules gives a prototype interpreter, where evaluation corresponds to proof deriva-
tion using the underlying MSOS rules. However, a naive implementation of such
an interpreter has a worst-case interpretive overhead where each proof step re-
quires a number of inferences that is linear in the depth of the input term. Fur-
thermore, while small-step semantics have several declarative advantages, term
reduction using small-step rules requires more inference steps than when using
their big-step counterparts. For the programming language designer who is con-
cerned with efficiency, the considerable interpretive overhead incurred by a naive
interpretation may be unacceptable in practice.

Here, we explore how to reduce interpretive overhead of small-step MSOS
rules through partial evaluation techniques which, in our modular structural proof
system setting, we will call partial derivation. Combining ideas from partial eval-
uation in logic programming, bisimulation theory, and refocusing in reduction se-
mantics we show how to derive rules whose proofs require fewer inferences (and
hence, whose evaluation requires less computation). Applying partial derivation
to a semantics is a fully mechanisable transformation that gives a provably seman-
tically equivalent set of rules. Furthermore, the techniques are broadly applicable,
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being constrained by only a very mild set of conditions for correctness. The trans-
formations result in rules with a big-step flavour, hinting at the inter-derivability
of small-step and big-step style semantics.

As a proof of concept, we have prototyped semantic rules in Prolog, where we
can observe a significant reduction in the running time of interpreters based on
partially derived semantics in comparison with their naive counterparts. We con-
clude that partial derivation is a viable technique for reducing interpretive over-
head in modular structural proof systems and practical interpreters derived from
these, and that partial derivation is a viable tool for prototypical and pragmatic
language design.

Timothy Revell, University of Strathclyde
Relational Semantics of Type Systems
Category Theory, in particular cartesian closed categories, provide a powerful se-
mantics for the simply typed lambda calculus (STLC). Logical relations are an-
other model of the STLC using the category of relations. In this talk, we shall
describe the relationship between these two models using a fibrational framework.
We show how two important results, the Fundamental Theorem of Logical Rela-
tions (otherwise known as the Parametricity Theorem) and the Identity Extension
Lemma have natural and simple formulations within this fibrational framework.
We will conclude by discussing fibred category theory and how it can describe
concisely the ideas of this talk. In particular, parametricity simply means that we
shift from working in a categorical universe of categories, functors and natural
transformations, to working in a fibrational universe of fibrations, fibred functors
and fibred natural transformations.

David Wilson, University of Bath
Advances in Cylindrical Algebraic Decomposition
Cylindrical Algebraic Decomposition (CAD) was initially introduced to tackle the
classic problem of quantifier elimination over real closed algebraic fields, however
it has since seen many applications in its own right. Given a set of polynomials,
multiple algorithms exist to produce a CAD such that over each cell the polynomi-
als have constant sign. Inherently doubly exponential in the number of variables
present, much work has been done to make CAD a practical tool through precon-
ditioning, more efficient construction and truncated algorithms.

I will give a brief history of CAD before covering work conducted by the Uni-
versity of Bath real geometry research group. Recently, we have shifted emphasis
to try and produce a CAD for a given problem rather than the set of polynomials
involved. A major step forward is research on Truth Table Invariant CADs (TTI-
CADs) for which a set of given clauses have invariant truth value over each cell.
This research has also led to further investigation of how problems are formulated
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for input into various related algorithms.
Alongside new research, key applications will be discussed. In particular, re-

cent work on the use of CAD to verify identities involving multi-valued functions
over the complex numbers will be described. This work will be included in the
forthcoming release of the computer algebra system Maple 17.

This work was conducted with James Davenport, Russell Bradford and Matthew
England at the University of Bath. The work on TTICADs was also conducted
jointly with Scott McCallum of Macquarie University.

Joseph Davidson, Heriot-Watt University
Elegance requires eloquence
oChaitin’s exploration of his notion of program elegance using the Lisp language
does not explicitly take into account the balance between a notation’s expressive
power and the richness of its semantics. To investigate further this link, we have
developed a flavour of the Random Access Stored Program (RASP) machine to
compare with the traditional Turing machine model.

By implementing interpreters and compilers from RASP to TM and vice versa,
in both RASP and TM, we believe that we can gain a more precise view into the
expressive power of these languages. Bootstrapping the compilers on one another
will allow examination of the models from a common representation. We can
also investigate the full abstract chain of the model, from the most abstract - the
operational semantics - to the most concrete - the implementation of programs
which actually run on realisations of these models.

This talk presents where we have come from, where we want to end up and
what we hope to find along the way.

Paolo Torrini, Swansea University
Parametric polymorphism, value restriction and resource logic
Hindley-Milner polymorphism is a form of parametric polymorphism that is widely
used in functional languages, for efficiency reasons. It is also known as let poly-
morphism, as it allows for generalisation of type variables that do not occur free
in the environment of let expressions. The soundness of this form of generalisa-
tion relies on the logic of propositional quantification as enshrined in system F,
although it can be syntactically defined on top of a distinction between types and
type schemes, making it possible to dispense with explicit use of quantifiers.

In languages with references, there are well-known problems that arise when
the term fed to the let expression is not a value. If the evaluation of this term
requires allocation of new references, and its type depends on type variables that
occur in the types of such references, one may end up with typeable expressions
that still lead to runtime errors. This problem is usually dealt with by means of
some form of the so-called value restriction.
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In the classic approach, which dates back to the early ’90 and is essentially due
to Mads Tofte, value restriction is handled by distinguishing variables that may
occur in the type of references (imperative), from those that cannot (applicative).
The analysis in Tofte’s paper shows that the justification of value restriction boils
down, again, to the fact that variables can be generalised only when they do not
occur free in the environment — though this time in an extended sense, that should
take the store into account.

Tofte’s analysis may then suggest, that by relying on a more expressive logic,
allowing for premises to represent resources needed for evaluation, a more declar-
ative formulation of the restriction could be given, simply based on the free vari-
able criterion. In fact, given a typeable program, when the types of the references
that need to be allocated for its evaluation are included in the premises of its typ-
ing judgement, the restriction on generalisation turns out be logically enforced
without further ado.

In this talk, we first present the standard approach to value restriction in terms
of imperative and applicative variables. We then outline an alternative approach
based on intuitionistic linear logic, allowing for more expressive typing judge-
ments which include store types. At a basic level, the new typing may be intu-
itively understood as obtained by reversing the operational semantic evaluation
big step ρ ` 〈t, σ〉 −→ 〈v, σ′〉 where the value v has type τ, and the new store σ′ is
obtained by extending σwith the newly allocated references a1 7→ v1, . . . , ak 7→ vk

of types τ1, ..., τk, into a judgement of form Γ; ∆ ` t ⇒ τ where Γ types the envi-
ronment ρ, and crucially, ∆ = {l1 : τ1, . . . , lk : τk} types the difference between the
old store and the new one, in terms of the locations l1, . . . , lk needed to allocate
the new references.

Thomas Gorry, University of Liverpool
Faster Communication-less Agent Location Discovery on the Ring
This talk will be about our on going study of a randomised distributed communication-
less coordination mechanism for n uniform anonymous agents located on a circle
with unit circumference. We assume the agents are located at arbitrary but distinct
positions, unknown to other agents. The agents perform actions in synchronised
rounds. At the start of each round an agent chooses the direction of its movement
(clockwise or anticlockwise), and moves at unit speed during this round. Agents
are not allowed to overpass, i.e., when an agent collides with another it instantly
starts moving with the same speed in the opposite direction. Agents cannot leave
marks on the ring, have zero vision and cannot exchange messages. However,
on the conclusion of each round each agent has access to (some, not necessarily
all) information regarding its trajectory during this round. This information can be
processed and stored by the agent for further analysis. The location discovery task
to be performed by each agent is to determine the initial position of every other
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agent and eventually to stop at its initial position, or proceed to another task, in
a fully synchronised manner. Our primary motivation is to study distributed sys-
tems where agents collect the minimum amount of information that is necessary
to accomplish this location discovery task. Previously we have shown that by us-
ing a fully distributed randomised technique this location discovery problem can
be solved in O(n log2 n) rounds. However, we can now show improvements to this
with an algorithm that solves the location discovery problem w.h.p in O(n+log2 n)
rounds.

Diana Cionca, University of Surrey
Path Dependency Analysis in Complex Systems
Nowadays, business environments are changing very fast from centralised and
closed to distributed and open. Typically, they involve a large number of entities
or agents who interact in a dynamic, uncertain and unpredictable fashion. There
is growing interest in the development of analytical tools for understanding the
behaviour of such complex systems both from an individual’s point of view and
from the global interaction perspective. Agent-based scenario analysis has been
proposed for the analysis of complex systems. The agent’s behaviour is consid-
ered the key factor that influences the overall system’s evolution. An agent can
reason to achieve certain goals, can act autonomously, has a knowledge-base about
its environment and can interact with other agents. The objective here is to pre-
dict and model the evolution of a complex system through a set of rules which
describe the behaviour and interactions of participating agents. We look into web
services applications for open and distributed systems like the Web, and find that
similar issues arise, especially with regard to orchestration (individual viewpoint)
and choreography (global viewpoint) of participating services. We argue that the
way these interactions are modelled, in particular with respect to handling concur-
rency, is important when it comes to specification and verification (conformance
and realisability) of a choreography specification. In addition, we are keen to
investigate the use of business rules in arriving at a choreography specification
in a declarative fashion. We take a case study from the ERIE project on global
food supply chains as a complex system and build a model which can be used to
reason about the system’s behaviour, in terms of inter-dependencies and different
possible outcomes.

Ben Horsfall, University of Sussex
Using a separation logic for verification of reflective programs
Reflective programming allows one to construct programs that can manipulate or
examine their behaviour or structure at runtime. One of the benefits is the ability
to create more generic code that is able to adapt to being incorporated in differ-
ent larger programs without modification to suit each concrete situation. Due to



BEATCS no 113

196

the runtime nature of reflection, static verification is limited and has largely been
ignored. This talk gives an overview of research into a method for specification
and verification of a reflective library by utilising a separation logic that has been
extended with support for stored procedures. The approach stores the metadata
on the heap such that a reflective library can be implemented and verified in terms
of primitive commands, rather than developing new proof rules for the reflective
operations. The specified library may then be used to verify programs that use re-
flection. The support for stored procedures in the logic is important for the chosen
technique, where the metadata representation of method and constructor objects
are realised as stored procedures. The supported reflective operations characterise
a subset of Java’s reflection library, and the approach is supported by a tool pro-
viding semi-automated verification.

Ferdinand Vesely, Swansea University
Compiler back-end for a component-based semantic specification framework
Traditional approaches to formal programming language specification are gener-
ally criticised for being difficult to use. This difficulty impedes their wider adop-
tion. The main points of criticism are usually the notation, which requires too
much effort to penetrate, or lacking tool support. Action semantics is one exam-
ple of a framework that was designed to address the issue of comprehensibility in
particular. It provides a closed collection of semantic entities. Concrete program-
ming language constructs are defined by translations into action notation. The
notation itself has some shortcomings, such as a somewhat unusual syntax us-
ing action combinators. A new framework is currently being developed that will
provide an open ended collection of named fundamental constructs, or funcons.
Each funcon has formally defined dynamic and static semantics and is stored in a
repository. Real programming language constructs are defined in terms of funcons
and thus programs can be translated into funcon terms. Case studies on a subset
of OCaml and Caml Light have already been carried out and there is tool sup-
port for translating program terms into funcon terms as well as an interpreter for
these translations. Modular SOS is used do give definitions of individual funcons.
This variant of SOS was designed to address modularity issues of standard SOS
and allows independent definition of language constructs. This is made possible
by using transition labels for auxiliary entities and automatically propagating all
unmentioned entities between the premises and conclusion of a rule.

As good tool support for prototyping of the language being designed is deemed
critical for the success of a specification framework, multiple tools have been de-
veloped for action notation. Iversen developed a compiler for action notation
which translates actions into Standard ML code. This code can then be compiled
by an optimizing ML compiler. The compiler chain has been tested on Standard
ML programs with satisfying results in execution speeds. The action compiler



The Bulletin of the EATCS

197

itself did not perform any optimisations. We build on Iversen’s work on the ac-
tion compiler and aim to develop an optimising compiler back-end for translating
funcons into executable code. In the first phase, translations of funcons into Caml
Light programs will be designed and implemented. A specification for this lan-
guage is already available and we can use the existing tool support as a front-end
to translate Caml Light programs into funcon terms. Once we have a working pro-
totype of the back-end, we should be able to do a round-trip by translating from a
Caml Light program into a funcon term and then back into Caml Light in a similar
manner to Iversen’s action compiler. This will allow us to evaluate our approach
by comparing performance of code generated through funcons to code generated
directly by the Caml Light compiler. In this talk we will discuss preliminaries
and observe the differences between action notation and funcons. We will give
an overview of Iversen’s action compiler and suggest an approach to compiling
funcons into Caml Light.

Andrew Collins, University of Liverpool
Visualisation and Analysis of Graphs
In this talk I will discuss work completed by the authors in the area of graph
visualiation and graph analysis. Specifically I will show our current work in force
directed algorithms for graph layout and the methods that we use to identify a
significant vertex within a graph. Further I will make a reference to the future
directions that we hope to take the work we have completed. While I will be
showing mostly applied concepts, nearly all aspects of the work are backed by
deeply theoretical work. Throughout this talk we will look at the visualisation
and analysis of the retirement of Pope Benedict XVI and (possibly) the election
of his successor.

Patrick Totzke, University of Edinburgh
Checking Equivalences and Preorders of One-Counter Processes
I will outline recent results on the Verification of Pushdown Systems, specifically
on checking Bisimulation, Simulation and Trace inclusion of various restrictions
of One-Counter Processes.

Of particular interest is a model called One-Counter Nets, that can be seen
both as restriction of PDA and Petri nets and inherits a structural monotonicity
from the latter. I will provide some intuition on how to expoit this property to
provide decision procedures.

If time permits I will discuss the interplay of monotonicity and infinitely
branching.

Robert Powell, Durham University
Skew Bisubmodularity and Valued CSPs
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An instance of the finite Valued Constraint Satisfaction Problem (VCSP) is given
by a finite set of variables, a finite domain of values, and a set of finite valued
functions, where each function depends on a subset of the variables. The goal is
to find an assignment of values to the variables that minimises the total sum of
the functions. We study (assuming that PTIME , NP) how the complexity of this
very general problem depends on the functions allowed in the instances. The case
when the variables can take only two values was classified by Cohen et al., with
submodular functions giving rise to the only tractable case. Any non-submodular
function can be used to express, in a certain specific sense, the NP-hard Max Cut
problem. We investigate the case when the variables can take three values. We
identify a new infinite family of conditions, that includes bisubmodularity as a
special case, which can collectively be called skew bisubmodularity. By a recent
result of Thapper and Zivny, this condition implies that the corresponding VCSP
can be solved by linear programming. We prove that submodularity with respect to
a total order and skew bisubmodularity give rise to the only tractable cases, and, in
all other cases, Max Cut can be expressed. We also show that our characterisation
of tractable cases is tight, that is, none of the conditions can be omitted. Thus, our
results provide a new dichotomy theorem in constraint satisfaction research, and
lead to a whole series of intriguing open problems in submodularity research.

Jules Hedges, Queen Mary University of London
Selection functions and games
Selection functions are a family of higher-type functionals related to continua-
tions, introduced by Martin Escardo and Paulo Oliva to extract computational
content from proofs in classical analysis. An unexpected connection with game
theory arose: many apparently unrelated proofs in constructive mathematics can
be seen as computing subgame-perfect equilibria of a suitable kind of generalised
sequential game. I show that a certain amount of classical game theory carries
over to this more general setting: generalised sequential games can be turned into
simultaneous games based on von Neumann’s ’strategic-form’ construction, and
Nash’s theorem for the existence of mixed-strategy equilibria of finite games still
holds.
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Report on BCTCS 2014

The 30th British Colloquium for Theoretical Computer Science

9–11 April 2014, Loughborough University

Paul Bell, Daniel Reidenbach

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual
forum in which researchers in Theoretical Computer Science can meet, present
research findings, and discuss developments in the field. It also provides an envi-
ronment for PhD students to gain experience in presenting their work in a wider
context, and to benefit from contact with established researchers.

BCTCS 2014 was hosted by the Department of Computer Science at Lough-
borough University, and held from 9th – 11th April 2014. The event attracted
over 40 participants from sixteen universities, and featured an engaging and wide-
ranging programme of four invited talks and 25 contributed talks. These were in
large part from PhD students and covered the full gamut of topics in Theoretical
Computer Science. Abstracts of the talks are provided below.

The conference began with an invited talk by Leszek Gąsieniec, University
of Liverpool, entitled “Distributed maintenance of mobile entities”. Other invited
talks were given by Timo Kötzing, Friedrich-Schiller-Universität Jena/Germany
(“Recent advances in inductive inference”) and Achim Jung, University of Birm-
ingham (“A modal Belnap logic”). As in previous years, the London Mathematical
Society (LMS) sponsored a keynote talk in Discrete Mathematics, which this year
was given by Jeffrey Shallit, University of Waterloo/Canada, on “Open problems
in automata theory”. The financial support of this lecture by the LMS is gratefully
acknowledged. We also acknowledge the generous financial support of the Heil-
bronn Institute for Mathematical Research, which provided 24 bursaries to cover
the full costs of attendance for research students.
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Invited Talks at BCTCS 2014

Leszek Gąsieniec, University of Liverpool
Distributed maintenance of mobile entities
With the recent advent of ad-hoc, not well-structured, large, and (very often) dy-
namic network environments there is a strong need for more robust, universal,
and inexpensive distributed network protocols. The purpose of these protocols is
to support basic network formation and integrity mechanisms as well as more ded-
icated tasks such as information dissemination, network search and exploration,
network monitoring and others.

One of the novel and promising alternatives in supporting such network pro-
tocols are dedicated teams of mobile entities (MEs) that can work independently
on top of basic network system routines. The MEs’ ability to communicate and
to move within the environment impels the design and implementation of efficient
formation, communication and navigation mechanisms including motion control
and coordination mechanisms that allow MEs to perform dedicated tasks collec-
tively.

We will provide an introduction to the field and will discuss several extensively
studied algorithmic problems as well as those just touched upon in the recent
years. The talk will be concluded with open problems.

Achim Jung, University of Birmingham
A modal Belnap logic
Four valued logic was introduced by Nuel Belnap in the 70s. It is very easy to
motivate and seems to be central to Computer Science; in fact, one of his papers
on the subject was called “How a computer should think”. Adding mathematical
structure to his basic ideas turned out not to be so easy, however. Much work was
done by Arieli and Avron in the 90s, and more recently, by Umberto Rivieccio,
a collaborator on the work to be presented, which concerns a modal extension of
Belnap’s work. The topic is also related to my longstanding interest in using Stone
Duality to link semantics and logic for computer science.

Timo Kötzing, Friedrich-Schiller-Universität Jena/Germany
Recent advances in inductive inference
3,5,7,11,13 – what’s next? What general rule (apparently) produces this sequence?
Maybe the sequence lists all the odd primes, but what if the next datum is 15?
Maybe all odd numbers that are not squares? Since the 1960’s there are formal
models defining what it means to learn or predict such sequences; this area of
research is called inductive inference. In this talk I will briefly review the main
classical results and then focus on recent advances in inductive inference, espe-
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cially concerning the development of general techniques. Applications of these
techniques include, for example, questions regarding avoidance of seemingly in-
efficient learning behavior.

Jeffrey Shallit, University of Waterloo/Canada, the LMS-sponsored keynote
speaker in Discrete Mathematics
Open problems in automata theory
In this talk I will survey some of my favorite open problems from automata theory,
including the separating words problem, decidability problems related to number
theory and the Endrullis-Hendriks problem on transducers.

Contributed Talks at BCTCS 2014

Eleni Akrida, University of Liverpool
Ephemeral networks with random availability of links: diameter and connectiv-
ity
In this work we consider temporal networks, the links of which are available
only at random times (randomly available temporal networks). Our networks are
ephemeral in the sense that their links appear sporadically, only at certain times,
within a given maximum time (called lifetime of the network). More specifi-
cally, our temporal networks notion concerns networks, whose edges are assigned
one or more random discrete-time labels drawn from a set of natural numbers.
The labels of an edge indicate the discrete moments in time at which the edge is
available. In such networks, information (e.g., messages) have to follow temporal
paths, i.e., paths, the edges of which are assigned a strictly increasing sequence of
labels. We first examine a very hostile network: a clique, each edge of which is
known to be available only one random time in the time period {1, 2, ..., n} (where
n is the number of vertices). How fast can a vertex send a message to all other
vertices in such a network? To answer this, we define the notion of the Temporal
Diameter for the random temporal clique and prove that it is Θ(log n) with high
probability and in expectation. In fact, we show that information dissemination is
very fast with high probability even in this hostile network with regard to avail-
ability. This result is similar to the results for the random phone-call model. Our
model, though, is weaker. Our availability assumptions are different and random-
ness is provided only by the input. We show here that the temporal diameter of
the clique is crucially affected by the clique’s lifetime, a, e.g., when a is asymp-
totically larger than the number of vertices, n, then the temporal diameter must be
Ω((a/n) ∗ log n). We, then, consider the least number, r, of random instances at
which an edge is available, in order to guarantee at least a temporal path between
any pair of vertices of the network (notice that the clique is the only network for
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which just one instance of availability per edge, even non-random, suffices for
this). We show that r is Ω(log n) even for some networks of diameter 2. Finally,
we compare this cost to an (optimal) deterministic allocation of labels of availabil-
ity that guarantees a temporal path between any pair of vertices. For this reason,
we introduce the notion of the Price of Randomness and we show an upper bound
for general networks.

Theofanis Apostolopoulos, King’s College London
Sparse signal recovery as a non-linear problem
My contributed talk will focus on a novel research field, called Compressed Sens-
ing (CS) method, which has attracted considerable research with several new ap-
plication areas, mainly signal and image compression. It was introduced recently
for simultaneously sampling and compressing signals and enabling new recon-
struction techniques for applications where the standard sampling process is not
feasible or very expensive. In fact, CS adopts a new sampling scheme that does
not follow the principle of conventional approach depicted by the sampling the-
orem of Nyquist-Shannon. The goal is to efficiently recover any type of signal,
such as speech and image data, using what was previously considered as highly
incomplete and inaccurate (under-sampled) measurements. This is an ill-posed
inverse problem, which can be solved as an l0 norm based optimisation problem,
with the aim to find the best fit which minimises the difference between the solu-
tion and the observations while satisfying all the given constraints. In this talk, I
will also introduce a new swarm based heuristic for efficiently recovering signals,
with high probability. It is an iterative process which finds an approximation of
the l0-norm based problem viewed as a combinatorial optimization problem. In
each iteration every agent calculates and carries a slightly different feasible so-
lution based on the current best (optimal) solution, which is necessary so as to
avoid being trapped to one of the numerous local minima. This method is very
efficient and quick compared to other conventional methods, such as the classical
log-barrier and Least squares methods, even under the presence of noise, based on
experimental results. In particular, the heuristic is compared with other alternative
sparse recover methods in terms of complexity, computational time, samples size,
and recovery error. Possible improvement for enhancing the performance of the
heuristic could be to re-weight the approximate l0 norm, by using coefficients at
every iteration; an approach that has been applied successfully to similar l0, l1
and l2 norm based CS problems.

Christopher Bak, University of York
Towards an implementation of rooted graph programs
Rooted Graphs are used to improve the efficiency of graph matching when apply-
ing graph rewriting rules. The basic idea is to automatically match a node in the



The Bulletin of the EATCS

203

rule to a node in the host graph, restricting the search space to a small area of the
host graph. The increase in efficiency comes at the cost of flexibility: graph pro-
grams consisting of rooted rules are significantly more complicated than equiva-
lent programs with standard rules. I present a Topological Sorting graph program
which strikes a balance by using both rooted and non-rooted rules to solve the
problem, and discuss some issues in the ongoing implementation of rooted graph
programs in the graph programming language GP.

Jannis Bulian, University of Cambridge
Graph isomorphism parameterized by elimination distance to bounded degree
A commonly studied means of parameterizing graph problems is the deletion
distance from triviality, which measures the number of vertices that need to be
deleted from a graph to place it in some class for which efficient algorithms
are known. In the context of graph isomorphism, we define triviality to mean a
graph with maximum degree bounded by a constant, as such graph classes admit
polynomial-time isomorphism tests. We generalise deletion distance to a measure
we call elimination distance to triviality, based on elimination trees or tree-depth
decompositions. We establish that graph isomorphism is FPT when parameterized
by elimination distance to bounded degree, generalising results of Bouland et al.
on isomorphism parameterized by tree-depth.

Leroy Chew, University of Leeds
The complexity of theorem proving in circumscription and minimal entailment
Circumscription is one of the main formalisms for non-monotonic reasoning. It
uses reasoning with minimal models, the key idea being that minimal models
have as few exceptions as possible. In this contribution we provide the first com-
prehensive proof-complexity analysis of different proof systems for propositional
circumscription. In particular, we investigate two sequent-style calculi: MLK
defined by Olivetti (J. Autom. Reasoning, 1992) and CIRC introduced by Bon-
atti and Olivetti (ACM ToCL, 2002), and the tableaux calculus NTAB suggested
by Niemelä (TABLEAUX, 1996). In our analysis we obtain exponential lower
bounds for the proof size in NTAB and CIRC and show a polynomial simulation
of CIRC by MLK. This yields a chain NTAB < CIRC < MLK of proof systems for
circumscription of strictly increasing strength with respect to lengths of proofs.

Michalis Christofi, King’s College London
Worst-case behavior of distributed algorithms for the maximum concurrent flow
problem
A Multicommodity Flow Problem is a problem of designing flows of commodi-
ties in a common network. The flows must be feasible, that is they cannot exceed
the edge capacities, and they must satisfy the demand of each commodity. Multi-
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commodity flow problems have a wide variety of important applications in areas
such as VLSI circuit design, network design, production and distribution of goods,
transportation systems and communication systems. We consider the multicom-
modity flow problem which is called the Maximum Concurrent Flow problem.
The objective is to minimise the maximum edge congestion, where the conges-
tion of an edge is defined as the ratio of the flow to the capacity. In this talk we
discuss algorithms which solve this problem in the following distributed manner:
one agent controls one commodity, and the agents communicate at the end of
each computation round via a billboard. Algorithms of this type were proposed
by Awerbuch, Khandekar and Rao [SODA 2007] and Awerbuch and Khandekar
[PODC 2007], who showed that an approximate solution can be reached in the
number of rounds which is linear in the maximum length L of a path followed
by any flow. We show that this running-time bound is asymptotically tight by
constructing a worst-case input network and analyzing the performance of the
algorithms on this network. We also propose a heuristic improvement of these
algorithms, analyze its performance on our worst-case input, and indicate why we
should expect that it improves running times on general networks.

Alejandro Erickson, Durham University
Computer science takes back data centre networks from engineering
Companies like Google, Amazon, and Microsoft house massive warehouses full
of interconnected computers which provide services to the whole world. The de-
mand for such services is pushing the limits of traditional data centre designs,
and this research area, long dominated by engineers, is becoming a hot topic in
theoretical computer science. How can currently available equipment be intercon-
nected in order to increase the size and performance of data centres while reducing
the relative cost?

I give an overview of some recent "computer science-y" developments in the
world of data centres, and I discuss a novel approach for converting an arbitrary
graph into a dual-port server-centric data centre network.

This work is supported by the EPSRC grant "INPUT: Interconnection Net-
works, Practice Unites with Theory".

Carl Feghali, Durham University
On the complexity of partitioning graphs into disjoint cliques and a triangle-
free subgraph
We investigate the computational complexity of deciding whether the vertices of
a graph can be partitioned into a disjoint union of cliques and a triangle-free sub-
graph. This problem is known to be NP-complete on arbitrary graphs. Our hard-
ness results are on planar graphs and perfect graphs. In contrast, we provide a
finite list of forbidden induced subgraphs for cographs with such a partition, thus
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yielding a linear time recognition algorithm.
(Joint work with Faisal N. Abu-khzam and Haiko Müller.)

Michael Gale, University of Cambridge
Solving an existential crisis in Haskell
Haskell’s type system provides mechanisms for type refinement within the scope
of certain value expressions if GADTs or type classes are used. The type system
propagates sufficient information to ensure that nothing can go wrong even if types
are erased from the run-time representation of a program. This is not the case
when we are using existential types, where we deliberately hide concrete types
from the type system. Nevertheless, we may desire to eliminate existential types
in a different part of a program in order to restore the original types. For this
purpose, we propose an extension to Haskell which allows programmers to restrict
existential types within individual data constructors to finite, but open, domains
of types. Each type in such a domain must be associated with a value tag that is
then stored at run time to allow it to serve as witness in a case expression.

Thomas Gorry, University of Liverpool
The evacuation problem: group search on the line
This talk will consider the Group Search Problem, or Evacuation Problem, in
which K mobile entities located on the line perform a search for a specific desti-
nation. The mobile entities are initially placed at the same point (origin) on the
line and the target is located at some unknown distance (d) either to the left or to
the right of the origin. All mobile entities must simultaneously occupy the des-
tination, and the goal is to minimize the time necessary for this to happen. The
problem where K = 1 is called the cow-path problem, and the complexity of this
is know to be 9d in the worst case (when the cow moves at unit speed), it is also
known that this is the case for K ≥ 1 mobile entities travelling at unit speed. This
talk presents a clear argument for this claim as well examining the case when
K = 2 mobile entities with different speeds, showing a surprising result that the
bound of 9d can still be achieved when 1 mobile entity has unit speed and the
other moves with speed at least 1/3.

Ivaylo Hristakiev, University of York
Analysing graph programs for confluence
The graph programming language GP, developed at York, is an experimental
domain-specific language for high-level problem solving on graphs and graph-
like structures. In general, graph programs are highly nondeterministic because of
their rule-based nature. However, a special case on nondeterminism called con-
fluence ensures the functional behaviour of the execution. Confluence detection is
done through construction of critical pairs, which represent conflicts in minimal
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context. This technique has been extended to several variations of graph transfor-
mation, but not to GP. In this talk, I will present what these extensions are together
with their associated issues and also report on ongoing work on static confluence
checking of GP programs.

Augustine Kwanashie, University of Glasgow
Profile-based optimal matchings in the student/project allocation problem
In the Student/Project Allocation problem (SPA) we seek to assign students to
group or individual projects offered by lecturers. Students are required to provide
a list of projects they find acceptable in order of preference. Each student can be
assigned to at most one project and there are constraints on the maximum number
of students that can be assigned to each project and lecturer. A matching in this
context is a set of student-project pairs that satisfies these constraints.

We seek to find matchings that satisfy optimality criteria based on the profile
of a matching. This is a vector whose ith component indicates the number of stu-
dents obtaining their ith-choice project. Various profile-based optimality criteria
have been studied. For example, one matching M1 may be preferred to another
matching M2 if M1 has more students with first-choice projects than M2.

In this talk we present an efficient algorithm for finding optimal matchings
to SPA problems based on various well known profile-based optimality criteria.
We model SPA as a network flow problem and describe a modified augmenting
path algorithm for finding a maximum flow which can then be transformed to an
optimal SPA matching. This approach allows for additional constraints, such as
project and lecturer lower quotas, to be handled flexibly without modifying the
original algorithm.

Karoliina Lehtinen, University of Edinburgh
Syntactic and semantic complexity in modal µ
The modal µ calculus is a temporal logic evaluated on labelled transition systems.
It combines next-state modalities with greatest and least fixpoint operators, re-
sulting in a logic capable of expressing both finite and infinite behaviour such as
reachability, safety, eventual safety and much more. In particular, it subsumes
many temporal logics such as LTL and CTL. Despite its high expressiveness, the
core algorithmic problems around modal µ remain decidable: the model-checking
problem is widely conjectured to be in P and satisfiability is EXPTIME-complete.
This makes modal µ a widely studied formalism for program verification.

Modal µ’s expressiveness is based on a simple but productive syntax: by in-
creasing the number of alternations between greatest and least fixpoint operators,
modal µ can express properties of increasing complexity. However, formulas of
large alternation depth can also express much simpler properties and currently we
lack the tools to differentiate between inherent and accidental complexity. Given
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that the current best model checking algorithms are exponential in a function of
the alternation depth of a formula, deciding whether a formula can be expressed
with fewer alternations remains one of the main open problems surrounding modal
µ.

This talk presents work on identifying and simplifying non-strict formulas,
that is to say formulas that are equivalent to a formula with fewer alternations.
The strictness of a formula implies the satisfiability of a set of derived formulas
describing systems that witness the necessity of each alternation. If these wit-
nesses do not exist for some formula, there are syntactic transformations which
yield a formula of lower alternation depth.

Hsiang-Hsuan Liu, University of Liverpool
Scheduling for electricity cost in smart grid
We study an online scheduling problem arising in demand response management
in smart grid. Consumers send in power requests with a flexible set of timeslots
during which their requests can be served. For example, a consumer may request
the dishwasher to operate for one hour during the periods 8am to 11am or 2pm to
4pm. The grid controller, upon receiving power requests, schedules each request
within the specified duration. The electricity cost is measured by a convex func-
tion of the load in each timeslot. The objective of the problem is to schedule all
requests with the minimum total electricity cost. As a first attempt, we consider
a special case in which the power requirement and the duration a request needs
service are both unit-size. For this problem, we present a polynomial time online
algorithm that gives an optimal solution and show that the time complexity can be
further improved if the given set of timeslots is a contiguous interval.

Iain McBride, University of Glasgow
Modelling practical placement of trainee teachers to schools
Several countries successfully use centralized matching schemes to assign stu-
dents to study places or recent graduates to their first positions in a labour market.
In this work we describe a model motivated by specific features of the Slovak
and Czech education systems where each recently graduated trainee teacher spe-
cializes in a small number of subjects, each school has an overall capacity and
further each school has partial capacities with respect to each of the available sub-
jects. We show that the problem is unlikely to be efficiently solvable even under
severe restrictions on the total number of subjects available, the partial capacities
of schools for the available subjects and the number of acceptable schools each
trainee teacher may list. Since these results suggest an efficient method of produc-
ing optimal solutions is unlikely, we present an integer programming model for
finding a maximum cardinality matching in an instance of the teachers assignment
problem and we present the results of the application of this IP model to real data
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from the allocation process for allocating trainee teachers in Slovakia.
This is joint work with Tamás Fleiner (Budapest University of Technology

and Economics), Katarína Cechlárová (P.J. Šafárik University, Košice, Slovakia),
David Manlove (University of Glasgow) and Eva Potpinková (P.J. Šafárik Univer-
sity, Košice, Slovakia).

Markus Pfeiffer, University of St Andrews
The rational hierarchy of semigroups
The word problem for semigroups is known to be undecidable in general. On the
other hand, deciding the word problem of the natural numbers or the integers is
simple. My research focuses on finding classes of semigroups with word problem
decidable by different types of automata. In this talk I will introduce what I call
the rational hierarchy of semigroups, semigroups that have word problem decid-
able by asynchronous, two-tape, finite state automata, and conjunctions, Boolean
combinations of such automata.

Jean Jose Razafindrakoto, Swansea University
Provably total search problems in fragments of bounded arithmetic below poly-
nomial-time
In bounded arithmetic, a host of theories have been developed and which cor-
respond to complexity classes within the polynomial hierarchy and below poly-
nomial-time (see Cook and Nguyen’s monograph “Logical Foundations of Proof
Complexity, Cambridge University Press, New York, NY, USA, first ed., 2010”,
for an overview). Recent research tries to characterize the provably total NP
search problems in such theories, where a total NP search problem is provably
total in a theory T if it can be formalized in the language of T and T can prove
that for each instance, there exists a solution to the search problem.

Given a class S of provably total NP search problems for some theory, the
general aim of our research project is to identify some specific provably total NP
search problem class (usually defined via some specific combinatorial principle)
which is complete within S under AC0-many-one reduction; completeness should
be proven using AC0-reasoning only. For the theory related to polynomial-time,
we identify the search problem class Inflationary Iteration (IITER) which serves
our above described aim. A function F (defined on finite strings) is inflationary if
X is a subset of F(X) (under the natural identification of strings with finite sets).
An IITER principle is defined as a special case of the iteration principle, in which
the iterated function has to be AC0-computable and inflationary.

Cook and Nguyen have a generic way of defining a bounded arithmetic the-
ory VC for complexity classes C below polynomial-time. For such a theory VC,
we define a search problem class KPT [C] which serves our above described aim.
These problems are based on a version of Herbrand’s theorem, proven by Kra-
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jíček, Pudlak and Takeuti in “Bounded arithmetic and the polynomial hierarchy,
Ann. Pure Appl. Logic, 52(1-2):143-153, 1991, International Symposium on
Mathematical Logic and its Applications (Nagoya, 1988)”.

This is joint work with Arnold Beckmann.

Paolo Serafino, Teesside University
Heterogeneous facility location without money
Mechanism Design is a novel research field mainly concerned with optimization
problems that have to operate under the assumption that their input is distributed
across selfish agents. In this setting, mechanisms (i.e., typically allocation algo-
rithms) have to elicit their input from the agents and have to ensure (usually via
suitable payment functions) that agents report truthfully the part of input they pos-
sess. The challenge faced in this setting is that agents are not reliable, in the sense
that they can misreport their private information. Alas, it is often the case that
monetary transfers between the mechanism and the agents cannot be performed.
Motivated by this kind of considerations, Procaccia and Tennenholz (Approxi-
mate Mechanism Design Without Money, EC09) proposed the research agenda
of approximate mechanism design without money, which aims at leveraging ap-
proximation, instead of payments, as a means to enforce truthfulness. In this line
of work, the simple yet general and elegant problem of facility location has at-
tracted much interest. The model which is typically considered therein features
single-parameter agents (i.e., agents whose type is a single number encoding their
position on a real line). In the wake of this line of research, we formulate and ini-
tiate the study of heterogeneous facility location without money, a problem akin
to the traditional facility location problem but featuring multi-parameter agents.
More specifically, we study truthful mechanisms without money for the problem
in which heterogeneous facilities (facilities serving different purposes) have to be
located and agents are only interested in some of them. We study the approxi-
mation ratio that can be achieved by truthful mechanisms in this setting, deriving
some approximation bounds which make a surprising parallel with our knowledge
of truthfulness for the classical single-dimensional facility location problem.

Yiannis Siantos, King’s College London
Inferring network properties and embedded structure using random walks
We study the use of random walks to estimate global properties of graphs, for
example the number of edges, vertices, triangles, and generally, the number of
small fixed subgraphs. We consider two methods for this based on first returns
of random walks: the cycle formula of regenerative processes and random walks
with weights based on the property under consideration. In addition we use these
methods to infer the embedded structure of graphs, such as whether a pre-defined
subset of vertices is better connected internally than the rest of the graph. We dis-
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cuss theoretical foundations for both methods and present experimental results on
the rate of convergence of all the estimates. Both theory and experiments highlight
the importance of high-weight vertices for the efficiency of either method.

Rob van Stee, University of Leicester
An optimal online bin packing algorithm
In the online bin packing problem, items of size at most 1 arrive one by one
and need to be packed into bins of size 1 without knowledge of future items. We
measure the performance of algorithms for this problem by comparing the number
of bins used to the optimal number of bins. The competitive ratio of an algorithm
is the highest possible ratio between these numbers (i.e., for all possible inputs).

We present an online bin packing algorithm with absolute competitive ratio
5/3, which is best possible. The previous best known algorithms for this problem
were Best Fit and First Fit, which were only recently shown to be exactly 1.7-
competitive.

Anthony Stewart, Durham University
Parallel knock-out schemes for special graph classes
We consider parallel knock-out schemes for graphs. These schemes proceed in
rounds. In the first round each vertex in the graph selects exactly one of its neigh-
bours, and then all the selected vertices are eliminated simultaneously. In subse-
quent rounds this procedure is repeated in the subgraph induced by those vertices
not yet eliminated. The scheme continues until there are no vertices left, or until
an isolated vertex is obtained (since an isolated vertex will never be eliminated).
A graph is reducible if there exists a parallel knock-out scheme that eliminates ev-
ery vertex in the graph (for instance a graph that has a Hamilton cycle is reducible
within one round). The Parallel Knock-Out problem is that of deciding whether a
graph is reducible. This problem is known to be NP-complete. We discuss known
results for this problem together with a number of new results for special graph
classes (such as split graphs).

Nihan Tokac, Durham University
Fixed parameter tractability of hybridization number and rooted subtree prune
and regraft distance
The decision problems computing hybridization number and rooted subtree prune
and regraft distance are important to understand and model reticulation events in
evolutionary biology. In this paper, we show that computing hybridization number
is fixed parameter tractable when the parameter is the minimum level of network
on T and T ′. As well as, computing rooted subtree prune and regraft distance
between two rooted binary phylogenetic trees on the same label set is fixed pa-
rameter tractable when the parameter is the minimum rSPR-level of network on T
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and T ′.

Chalita Toopsuwan, King’s College London
Maximal anti-exponent of gapped palindromes
A palindrome is a string that reads the same backward and forward. We consider
gapped palindromes which are words of the form uvũ for some words u, v with
|v| ≥ 2 where ũ denotes the reversal of u. Mimicking the standard notion of string
exponent, we define the antiexponent of a gapped palindrome uvũ as the quotient
of |uvũ| over |uv|. We apply techniques based on the use of a suffix automaton and
on the reversed Lempel-Ziv factorisation to an input string y containing no ordi-
nary palindrome, and design an algorithm to compute the maximal anti-exponent
of gapped palindromes of the string. Our algorithm runs in linear-time on a fixed-
size alphabet in contrast to a naive cubic time solution.

William Whistler, Durham University
The counting complexity of planar graph homomorphism problems
In this talk I present my current progress on classifying the counting complexity
of graph homomorphism problems with inputs restricted to planar graphs.

Michele Zito, University of Liverpool
Relaxation and rounding for appliance allocation in the smart grid
We introduce a scheduling algorithm for a set of air-conditioners deployed in a
building whose electricity comes from the grid as well as from renewable sources.
The main objective of this study is to introduce a heuristic algorithm that is able
to reduce electricity bills, keeping the temperature within comfort levels in the
building, and maximizing the utilization of domestic renewable power. The al-
gorithm uses relaxation in order to convert a Mixed Integer Linear Program into
an LP problem and then a rounding mechanism to increase the utilization of do-
mestic renewable power by scheduling the load on times where there is enough
renewable power even this period is peak hours in terms of cost.

(This is joint work with M. Arikiez, A. Fernandez Anta, F. Grasso, and D. Ko-
walski.)
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Boolean Function Complexity
Advances and Frontiers

Stasys Jukna∗

Go to the roots of calculations! Group the operations.
Classify them according to their complexities rather
than their appearances! This, I believe, is the mission
of future mathematicians.

– Evariste Galois

What it is all about?
My book [5] is all about proving lower bounds.

Roughly speaking, research in Computational Complexity has two tightly
interconnected strands. One of these strands—structural complexity—deals with
high-level complexity questions: is space a more powerful resource than time?
Does randomness enhance the power of efficient computation? Is it easier to verify
a proof than to construct one? So far we do not know the answers to any of these
questions; thus most results in structural complexity are conditional results that
rely on various unproven assumptions.

My book [5] is about the life on the second strand—circuit complexity. In-
habitants of this strand deal with establishing unconditional lower bounds on the
computational complexity of specific problems, like multiplication of matrices or
detecting large cliques in graphs. This is essentially a low-level study of computa-
tion; it typically centers around particular models of computation such as decision
trees, branching programs, boolean formulas, various classes of boolean circuits,
communication protocols, proof systems and the like.

Why yet another book?
More than twenty years have passed since the well-known books on circuit com-
plexity by Savage (1976), Nigmatullin (1983), Wegener (1987) and Dunne (1988)

∗Goethe University Frankfurt, Germany, and Institute of Mathematics and Informatics, Vilnius
University, Lithuania. jukna@thi.informatik.uni-frankfurt.de. Research supported by
the DFG grant SCHN 503/6-1.
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as well as a famous survey paper of Boppana and Sipser (1990) were written.
Albeit in the meanwhile some excellent books in computational complexity appear-
ed—including those by Savage (1998), Goldreich (2008) and Arora and Barak
(2009)—these were mainly about the life on the first strand—structural complexity.
So, it was the time to collect the new developments in circuit complexity during
these two decades.

Almost everything is complex
It is known for now more than 70 years that most boolean functions require
circuits of exponential size. In particular, Shannon, Lupanov and his students
even established the following tight asymptotic for the maximum {∧,∨,¬}-circuit
complexity C(n) = max f C( f ) of a boolean function of n variables:
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Using these estimates, one can, say, easily prove the “Circuit Hierarchy Theorem”:
for every n ≤ t(n) ≤ 2n−2/n, there are boolean functions computable by circuits of
size 4t, but having no circuits of size t. In a similar vein is the result that, for every
k ≥ 1, there exist boolean functions fn of DNF-size n2k+1 such that C( fn) > nk.

Unfortunately, these (and many other) results only show a mere existence of
hard boolean functions. An ultimate goal of circuit complexity, however, is to
exhibit such hard functions, and to understand why they are hard. Say, why the
threshold function (does a given graph have k edges) is “simple”, whereas the
clique function (does a given graph has a clique with k edges) is “hard”. And here,
as in many other fields of mathematics—where the question comes to construct
particular objects—the situation is much worse: the strongest known lower bounds
on the unrestricted {∧,∨,¬}-circuit complexity of explicit boolean functions remain
of the form cn for some small constants c; the current record remains c = 5.

Strong (even exponential) lower bounds were only obtained for various re-
stricted circuit models. Below I give a rough overview of the book’s contents.

Forget what was done: Formulas
Formulas are {∧,∨,¬}-circuits whose underlying graphs are trees. That is, these
are the circuits without any memory: if we want to use some already computed (by
a sub-formula) function g in another place, we are forced to re-compute g again.
Some results:

• Formulas can be balanced: if f can be computed by a formula of size L( f ),
then f can be computed by a formula of depth D( f ) ≤ 1.73 log2 L( f ). For
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circuits, we only know that if f can be computed by a circuit of size S , then
f can be also computed by a circuit of depth O(S/ log S ).

• The maximum of D( f ) over all boolean functions f of n variables is asymp-
totically equal n − log2 log2 n.

• If a boolean function f can be computed by a depth-d {∧,∨,¬}-formula
using unbounded fanin AND and OR gates and having S leaves, then D( f ) ≤
d− 1 + dlog2 S e. Note that a trivial upper bound, obtained by simulating each
gate by a binary tree, is only D( f ) = O(d log S ).

• The depth of a circuit (or formula) is equal to the communication complexity
of the following “find a separating bit” gate: Alice gets a vector a ∈ f −1(1),
Bob gets a vector b ∈ f −1(0), and their goal is to find a bit i ∈ [n] such that
ai , bi.

• Khrapchenko’s lower bound: Form a bipartite graph G f with parts f −1(1)
and f −1(0) by drawing an edge (a, b) if and only if a and b differ in exactly
one bit. Then L( f ) is at least the product of the average degrees of the left
and right parts of the graph G f . This gives the lower bound L(⊕n) ≥ n2 for
the Parity function ⊕n(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

• There were many attempts to extend Khrapchenko’s measure to obtain lar-
ger lower bounds. His measure is sub-modular and convex. It turned out,
however, that no sub-modular or convex complexity measures can break
down this quadratic barrier.

• A weaker bound L(⊕n) = Ω(n3/2) was earlier proved by Subbotovskaya
by inventing the method of random restrictions. Currently, this method is
widely used, in particular, to prove lower bounds for constant-depth circuits
and communication protocols.

• When properly applied, Subbotovskaya’s approach yields up to Ω(n3−o(1))
lower bounds, and this is a current record for {∧,∨,¬}-formulas.

• Other lower-bounds arguments for formulas are known as well: the method
of “universal” functions for formulas where all binary boolean functions are
allowed as gates, the method based on graph entropy, and the relation of
formula size with the affine dimension of graphs.

• Lower bounds for monotone formulas were obtained by using rank as well
as communication complexity arguments. In particular, rank arguments give
tight superpolynomial lower bounds nΘ(log n) for functions induced by Paley
graphs, as well as tight lower bounds for monotone quadratic functions.
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Communication complexity arguments yield lower bounds nΘ(log n) even for
such “simple” boolean functions as the s-t connectivity function.

• Superpolynomial lower bounds nΘ(log n) were also obtained for so-called
monotone span programs, a model which may be even exponentially more
powerful than monotone formulas. A span program for a boolean function
f (x1, . . . , xn) is a 0/1 matrix whose rows are labeled by literals (variables and
their negations); one literal can label several rows. A program is monotone
if there are no negated labels. When an input a ∈ {0, 1}n arrives, all rows
whose labels are inconsistent with a are removed, and input a is accepted if
the remaining rows span the all-1 vector over GF(2).

Forbid negations: Monotone circuits

These are circuits with fanin-2 AND and OR gates, but no NOT gates. Despite
of its seeming “simplicity”, this model resisted any attempts to prove larger than
linear lower bounds.

• The situation changed in 1985-86 when Razborov came with his “method of
approximations”, and proved a super-polynomial lower bound for the clique
function. After that some modifications and extensions of his method were
suggested. Razborov approximated gates by monotone DNFs and used the
Sunflower Lemma of Erdős and Rado to convert CNFs to DNFs.

• Later, Sipser’s notion of “finite limits” and a monotone Switching Lemma
have led to a symmetric version of Razborov’s argument, where both DNFs
and CNFs are used to approximate gates (a two-side approximation). This
resulted into the following general lower bounds criterion: if a monotone
boolean function has a monotone circuit of size t, then it is t-approximable.

Being t-approximable mean that there exist integers 2 ≤ r, s ≤ n, a monotone
s-CNF C(x), a monotone r-DNF D(x), and a subset I ⊆ [n] of size |I| ≤ s− 1
such that |C| ≤ t · (r−1)s, |D| ≤ t · (r−1)s, and either C ≤ f or f ≤ D∨

∨
i∈I xi

hold. Important here is that the s-CNF C has only t ·(r−1)s out of all possible(
n
s

)
clauses, and similarly for the r-DNF D.

• This criterion holds even when any monotone real-valued functions g : R2 →

R are allowed as gates, and enables one to obtain in a uniform way strong
lower bounds for a full row of explicit boolean functions. Together with
appropriate interpolation theorems, these bounds have also led to the first
exponential lower bounds for the length of the cutting-plane proofs.
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• Why should one care about monotone circuits? The point is that this model
has a purely “practical” importance. Namely, lower bounds for such circuits
imply the same lower bounds for (min,+)-circuits, and hence, for dynamic
programming. In this respect, our knowledge about the power of monotone
circuits remains unsatisfying. Say, we still cannot prove that the s-t connec-
tivity or even the connectivity function require circuits of size Ω(n3). Known
dynamic programming algorithms give circuits of size O(n3) for both these
functions.

• It is known that there are monotone boolean functions f (like the Perfect
Matching function) that can be computed by non-monotone circuits of poly-
nomial size, but any monotone circuit for them must have a super-polynomial
number of gates. This rises a question about the role of NOT gates.

• A classical result of Markov implies that M(n) = dlog2(n + 1)e NOT gates
are enough to compute any boolean function of n variables.

• Fisher and other authors substantially improved this by showing that restrict-
ing the number of NOT gates to M(n) can only increase the size of a circuit
by only an additive factor of O(n log2 n).

• It is also know that the Markov–Fisher bound can almost be reached: there
are explicit monotone (multi-output) boolean functions f which have poly-
nomial size circuits only if more than M(n) − O(log log n) NOT gates are
used.

Restrict the time: Bounded-depth circuits

Yet another possibility to “bind circuits hands” is to allow NOT gates as well as
AND and OR gates of unbounded fanin, but to restrict the depth (parallel time) of
the circuit. This model is known as AC0-circuits (“alternating circuits of constant
depth”), and is currently quite intensively investigated.

• AC0 circuits were considered by many authors since early 80’s. When dealing
with them, two major techniques emerged: the depth-reduction method via
appropriate versions of the Switching Lemma, as well as approximation by
low-degree polynomials.

• The depth-reduction argument has led to a tight 2Θ(n1/(d−1)) lower bound on
the size of depth-d circuits computing the Parity function. Moreover, this
function cannot even be approximated by such circuits of polynomial size.
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• The approximation by low-degree polynomials argument has led to an ex-
ponential lower bound 2Ω(n1/2d) for the Majority function, even if Parity
functions are also allowed as gates. Similar lower bounds were also proved
when instead of Mod-2 gates, arbitrary prime-modulo functions are allowed
as gates.

• The case of arbitrary, including composite modulo gates remains open. The
class of boolean functions computable by such circuits of polynomial size
is usually denoted by ACC0. Still, Williams (2011) has recently shown that
NEXP * ACC0. This wakes a hope that we will be able to expose a boolean
function f < ACC0 lying in NP or even in P. Actually, the Majority function
still remains as a possible candidate.

• Even AC0-circuits of depth-3 are interesting: by the results of Valiant, any
lower bound 2φ(n) with φ(n) � n/ log log n would give an example of a
boolean function which cannot be computed by a linear size (fanin-2) circuit
of logarithmic depth; proving such a bound is now a more than 30 years old
open problem, and no such bound is known even for {⊕, 1}-circuits.

• Known lower bounds for depth-3 circuits are only of the form 2Ω(
√

n), and can
be obtained using so-called “finite limits” and quite simple combinatorics.
If we require that the circuit must have parity gates (instead of OR gates) at
the bottom (next to the inputs) level, then arguments of graph complexity
allow us to prove even truly exponential lower bounds 2Ω(n). Unfortunately,
Valiant’s construction does not carry over such circuits.

• Motivated by neural networks, people have also considered circuits with
threshold gates. A boolean function f (x1, . . . , xn) is a threshold function
if there exist real numbers w0,w1, . . . ,wn such that for every x ∈ {0, 1}n,
f (x) = 1 if and only if w1x1 + · · ·+ wnxn ≥ w0. For unbounded-depth circuits
with threshold functions as gates, only linear lower bounds are known. Even
depth-3 is here not well understood. Exponential lower bounds are only
known for depth-2 circuits.

Restrict the time, but allow omnipotent power
In general circuits, arbitrary boolean functions are allowed as gates. The size of
such a circuit is defined as the total number of wires (rather than gates). Of course,
then every single-output boolean function f of n variables can be computed by a
circuit of size n: just take one gate—the function f itself. The problem, however,
becomes nontrivial if instead of one function, we want to simultaneously compute
m boolean functions f1, . . . , fm on the same set of n variables x1, . . . , xn, that is,
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to compute an (n,m)-operator f : {0, 1}n → {0, 1}m. Note that in this case the
phenomenon which causes complexity of circuits is information transfer instead of
information processing as in the case of circuits computing a single function.

• It is clear that every (n,m)-operator can be computed using nm wires, even
in depth 1. However, already circuits of depth 2 constitute a rather non-
trivial model: any operator with ω(n2/ log log n) depth-2 wire complexity
also cannot be computed by linear-size, logarithmic-depth boolean circuits
of fanin 2.

• The strongest known lower bounds for depth-2 are of the form Θ(n3/2), and
were proved for natural operators like the product of two 0/1

√
n ×
√

n
matrices over GF(2). These bounds were proved using particular entropy
arguments.

• A lot of work was done when trying to prove strong lower bounds for general
depth-2 circuits computing linear operators fA(x) = Ax over GF(2). Lower
bounds for such operators are usually derived using appropriate algebraic
arguments (matrix rigidity) as well as graph-theoretic arguments (various
superconcentration properties of graphs).

• The strongest known lower bound for linear operators fA in depth 2 is
about n · φ(n)2 where φ(n) = (ln n)/(ln ln n). The lower bound is proved
using superconcentration properties. Unfortunately, it is known that such
arguments cannot yield larger than n ln2 n/ ln ln n lower bounds. Interestingly,
the upper bounds for these operators are proved in the class of linear circuits,
i.e. depth-2 circuits with only Parity gates. In fact, the question on whether
non-linear gates can help to compute linear operators over GF(2) remains
widely open.

Allow only to branch and join: Branching programs
Decision trees constitute one of the “simplest” models of computation, and a lot of
interesting results were proved for it. Just to mention some of them:

• P = NP∩co-NP holds for decision tree depth; this is proved using elementary
combinatorics.

• P , NP ∩ co-NP holds for decision tree size; this is proved using spectral
arguments.

• The depth of decision trees is related to sensitivity and block-sensitivity of
the computed functions, as well as to the degree of their representation as
polynomials.
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• Non-trivial depth lower bounds are also known when arbitrary real threshold
functions (not just xi ≥ 1) are used as decision predicates. In particular, the
Inner Product function requires depth n/2 even in this generalized model.

The model of branching programs (BP) is a generalization of decision trees:
the underlying graph may now be an arbitrary acyclic graph (not just a tree). The
size here is the number of edges.

• For unrestricted BPs the progress was rather minor: the strongest lower
bounds remain Ω(n2/ log2 n) for deterministic, and Ω(n3/2/ log n) for nonde-
terministic BPs, both proved more than 40 years ago by Nechiporuk.

• For symmetric boolean functions, Nechiporuk’s argument cannot yield any
super-linear lower bounds. Such bounds were proved using more subtle
arguments by many authors around 1990.

• One of the most surprising results for general BPs is the theorem of Barring-
ton stating that branching programs of width-5 are not much weaker than
formulas.

• Exponential lower bounds for BPs were proved only when either each vari-
able can be re-tested constant times along each computation path, or when at
most cn variables for a sufficiently small constant c > 0 are allowed to be
tested more than once along each computation. The arguments here use a
rather non-trivial combinatorics, probabilistic arguments as well as expander
graphs.

• Still, the situation even with restricted BPs remains rather unsatisfying. In
particular, we are still unable to prove any strong lower bounds for the
following one of the simplest non-deterministic models of “almost read-
once” BPs: these are nodeterministic BPs where every consistent paths
must be read-once (no variable can be tested more than once). The problem
here is that we have no restrictions on inconsistent paths (those containing
contradictory tests xi = 0 and xi = 1 on some variable).

Allow only to chat: Communication complexity
Since communication complexity has a comprehensive treatment in an excellent
book by Kushilevitz and Nisan of 1997, we have restricted ourselves to results
essentially used later in our book, as well to some newer results. In particular,
we describe the progress concerning the so-call “rank-conjecture”, prove that
P = NP ∩ co-NP holds for fixed-partition games, whereas P , NP ∩ co-NP holds
for best-partition games, present lower bounds on randomized protocols, and
Forster’s (2002) celebrated lower bound on the sign-rank of ±1 matrices.
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Applications: Proof complexity
The last two chapters of the book are devoted to some applications of the pre-
vious results when lower-bounding the length of resolution and cutting-planes
proofs. The point is that so-called regular resolution proofs are, in fact, read-once
branching programs solving particular search problems (find an unsatisfied clause
in the given CNF). On the other hand, the length of cutting-plane proofs can be
lower-bounded using some communication complexity arguments or using the
interpolation theorem together with lower bounds on the size of monotone circuits
with real-valued gates.

What’s new: Some features
• The book discusses some topics, like graph complexity or method of fi-

nite limits, that are not known well enough even for specialists in circuit
complexity.

• Gives new proofs of classical results, like lower bounds for monotone circuits,
monotone span programs and constant-depth circuits.

• Presents some topics never touched in existing complexity books, like graph
complexity, span programs, bounds on the number of NOT gates, bounds on
Chvátal rank, lower bounds for circuits with arbitrary boolean functions as
gates, etc.

• Relates the circuit complexity with one of the “hottest” nowadays topics –
the proof complexity.

• Contains more than 40 specific open problems, two of which were already
re-solved after the book was published.

• The main feature, however, is the inclusion of many results of Russian
mathematicians which remained unknown in the West. Just to give an
example, the following result proved by Lupanov already in 1956 was later
re-discovered by many authors (with much more involved proofs): every
bipartite n × m graph can be decomposed into edge-disjoint bipartite cliques
so that the sum of their nodes does not exceed (1 + o(1))nm/ log2 n.

Epilogue
At the end of the book, I shortly sketch some stuff not discussed in the main
text: pseudo-random generators, natural proofs, the fusion method for proving
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lower bounds, and indirect (diagonalization) arguments. The Appendix contains
all necessary mathematics.
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IFIP Summer School on Privacy and Identity Management for the 

Future Internet in the Age of Globalisation 
 

Ninth International Summer School 

organised jointly 

by the IFIP Working Groups 9.2, 9.5, 9.6/11.7, 11.4, 11.6, Special Interest Group 9.2.2 

IFIP Summer School on Privacy and Identity Management for the 

Future Internet in the Age of Globalisation 

Patras University/Greece, 7-12 September 2014 

In cooperation with the FP7 EU projects ABC4Trust, A4Cloud, FutureID, PRISMS, AU2EU 

 

Introduction 

Much research in privacy and identity in recent years has focused on the privacy issues associated 

with new technologies such as social media, cloud computing, big data, ubiquitous and ambient 

technologies. Due to the fact that many of these technologies operate on a global scale their use not 

only touches the countries where they originate (in many cases, the US), but individuals and groups 

around the globe. 

We are especially inviting contributions from students who are at the stage of preparing either a 

master’s or a PhD thesis. The school is interactive in character, and is composed of keynote lectures 

and workshops with master/PhD student presentations. The principle is to encourage young 

academic and industry entrants to the privacy and identity management world to share their own 

ideas, build up a collegial relationship with others, gain experience in making presentations, and 

potentially publish a paper through the resulting book proceedings. Students that actively 

participate, in particular those who present a paper, can receive a course certificate which awards 

3 ECTS at the PhD level. The certificate can certify the topic of the contributed paper so as to 

demonstrate its relation (or non-relation) to the student’s master’s or PhD thesis. 
 

The Summer School takes a holistic approach to society and technology and supports 

interdisciplinary exchange through keynote lectures, tutorials, workshops, and research paper 

presentations. In particular, participants’ contributions that combine technical, legal, regulatory, 

socio-economic, social or societal, ethical, anthropological, philosophical, or psychological 

perspectives are welcome. The interdisciplinary character of the work is fundamental to the school. 

The research paper presentations and the workshops have a particular focus on involving students, 

and on encouraging the publication of high-quality, thorough research papers by students/young 

researchers. To this end, the school has a two-phase review process for submitted papers. In the first 

phase submitted papers (short versions) are reviewed and selected for presentation at the school. 

After the school, these papers can be revised (so that they can profit from their discussion at the 

school) and are then reviewed again for selection into the school’s proceedings which will be 

published by Springer. Of course, submissions by senior researchers and European, national, or 

regional/community research projects are also very welcome. 



BEATCS no 113

230

 

IFIP Summer School on Privacy and Identity Management for the 

Future Internet in the Age of Globalisation 
 

Contributions 

The school seeks contributions in the form of research papers, tutorials, and workshop proposals 

from all disciplines (e.g., computer science, economics, ethics, law, psychology, sociology and other 

social sciences). 

Topics of interest include, but are not limited to: 

• data breaches and cybercrime, 

• data retention and law enforcement, 

• impact of legislative or regulatory initiatives on privacy, 

• impact of technology on social exclusion/digital divide/social and cultural aspects, 

• privacy and identity management (services, technologies, infrastructures, usability aspects,  

legal and socio-economic aspects), 

• privacy by design and privacy by default, 

• privacy-enhancing technologies (PETs), 

• privacy issues and PETs relating to eIDs, social networks, crowdsourcing, big data analysis 

biometrics, and cloud computing, social computing, 

• privacy standardisation, 

• profiling and tracking technologies, 

• semantic web security and privacy, 

• social accountability and ethics, 

• surveillance and privacy and identity management, 

• surveillance and sensor networks, 

• transparency-enhancing technologies (TETs), 

• trust management and reputation systems. 

 

Submissions 

All submissions must be made in PDF format using the Easychair system. 
 

Important dates and other information 

Extended abstracts or short papers (> 2,000 words in Springer LNCS 

format, PDF) 

25 May 2014 

Notification of acceptance: 6 June 2014 

Short paper (up to 8 pages) for pre-proceedings: 1 August 2014 

Final paper: 28 November 2014 

Notification of acceptance of the final paper: 30 January 2015 

Summer School Website: http://ifip2014.cti.gr/  
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EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the Nerode Award (joint with IPEC) and best papers
awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”
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(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Copenhagen, Denmark 2014

- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997
- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.
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(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Wien), J. Hromkovic
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are G. Ausiello (Rome) and D. Sannella (Edinburgh).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Dr. Luca Aceto,
School of Computer Science
Reykjavik University
Menntavegur 1 IS-101 Reykjavik, Iceland
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues aree 30 for a period of one year (two years for students). A new membership starts upon
registration of the payment. Memberships can always be prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 25 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 25 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.

HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, a subscription form can be downloaded from www.eatcs.org to
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be filled and sent together with the annual dues (or a multiple thereof, if membership for multiple
years is required) to the Treasurer of EATCS:

Prof. Dr. Dirk Janssens,
University of Antwerp, Dept. of Math. and Computer Science
Middelheimlaan 1, B-2020 Antwerpen, Belgium
Email: treasurer@eatcs.org, Tel: +32 3 2653904, Fax: +32 3 2653777

The dues can be paid (in order of preference) by VISA or EUROCARD/MASTERCARD credit
card, by cheques, or convertible currency cash. Transfers of larger amounts may be made via the
following bank account. Please, adde 5 per transfer to cover bank charges, and send the necessary
information (reason for the payment, name and address) to the treasurer.

Fortis Bank, Jules Moretuslei 229, B-2610 Wilrijk, Belgium
Account number: 220–0596350–30–01130
IBAN code: BE 15 2200 5963 5030, SWIFT code: GEBABE BB 18A


