Skip to main content
Log in

Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This study aimed to assess the ability of 25 gait indices to characterize gait instability and recurrent fallers among persons with primary degenerative cerebellar ataxia (pwCA), regardless of gait speed, and investigate their correlation with clinical and kinematic variables. Trunk acceleration patterns were acquired during the gait of 34 pwCA, and 34 age- and speed-matched healthy subjects (HSmatched) using an inertial measurement unit. We calculated harmonic ratios (HR), percent recurrence, percent determinism, step length coefficient of variation, short-time largest Lyapunov exponent (sLLE), normalized jerk score, log-dimensionless jerk (LDLJ-A), root mean square (RMS), and root mean square ratio of accelerations (RMSR) in each spatial direction for each participant. Unpaired t-tests or Mann–Whitney tests were performed to identify significant differences between the pwCA and HSmatched groups. Receiver operating characteristics were plotted to assess the ability to characterize gait alterations in pwCA and fallers. Optimal cutoff points were identified, and post-test probabilities were calculated. The HRs showed to characterize gait instability and pwCA fallers with high probabilities. They were correlated with disease severity and stance, swing, and double support duration, regardless of gait speed. sLLEs, RMSs, RMSRs, and LDLJ-A were slightly able to characterize the gait of pwCA but failed to characterize fallers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, et al. Gait pattern in inherited cerebellar ataxias. Cerebellum [Internet]. Cerebellum; 2012 [cited 2021 Mar 23];11:194–211. Available from: https://pubmed.ncbi.nlm.nih.gov/21717229/

  2. Serrao M, Ranavolo A, Casali C. Neurophysiology of gait. Handb Clin Neurol [Internet]. Elsevier B.V.; 2018 [cited 2021 Jun 23]. p. 299–303. Available from: https://pubmed.ncbi.nlm.nih.gov/29903447/

  3. Chini G, Ranavolo A, Draicchio F, Casali C, Conte C, Martino G, et al. Local stability of the trunk in patients with degenerative cerebellar ataxia during walking. Cerebellum 2016 161 [Internet]. Springer; 2016 [cited 2021 Jul 21];16:26–33. Available from: https://link.springer.com/article/10.1007/s12311-016-0760-6

  4. Conte C, Pierelli F, Casali C, Ranavolo A, Draicchio F, Martino G, et al. Upper body kinematics in patients with cerebellar ataxia. Cerebellum. 2014;13:689–97.

    Article  Google Scholar 

  5. Serrao M, Chini G, Casali C, Conte C, Rinaldi M, Ranavolo A, et al. Progression of gait ataxia in patients with degenerative cerebellar disorders: a 4-year follow-up study. Cerebellum [Internet]. Springer New York LLC; 2017 [cited 2021 Jun 23];16:629–37. Available from: https://pubmed.ncbi.nlm.nih.gov/27924492/

  6. Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. https://doi.org/10.1152/jn007872002 [Internet]. American Physiological SocietyBethesda, MD; 2003 [cited 2021 Jul 21];89:1844–56. Available from: https://journals.physiology.org/doi/abs/10.1152/jn.00787.2002

  7. Cabaraux P, Gandini J, Kakei S, Manto M, Mitoma H, Tanaka H. Dysmetria and errors in predictions: the role of internal forward model. Int J Mol Sci [Internet]. Multidisciplinary Digital Publishing Institute (MDPI); 2020 [cited 2021 Jul 21];21:1–21. Available from: /pmc/articles/PMC7555030/

  8. Mari S, Serrao M, Casali C, Conte C, Martino G, Ranavolo A, et al. Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum [Internet]. Springer New York LLC; 2014 [cited 2021 Mar 23];13:226–36. Available from: https://pubmed.ncbi.nlm.nih.gov/24170572/

  9. Martino G, Ivanenko YP, d’Avella A, Serrao M, Ranavolo A, Draicchio F, et al. Neuromuscular adjustments of gait associated with unstable conditions. J Neurophysiol [Internet]. American Physiological Society; 2015 [cited 2021 Jun 8];114:2867–82. Available from: https://pubmed.ncbi.nlm.nih.gov/26378199/

  10. Conte C, Serrao M, Cuius L, Ranavolo A, Conforto S, Pierelli F, et al. Effect of restraining the base of support on the other biomechanical features in patients with cerebellar ataxia. Cerebellum 2017 173 [Internet]. Springer; 2017 [cited 2021 Jul 21];17:264–75. Available from: https://link.springer.com/article/10.1007/s12311-017-0897-y

  11. Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain [Internet]. Oxford Academic; 2007 [cited 2021 Jul 21];130:786–98. Available from: https://academic.oup.com/brain/article/130/3/786/279691

  12. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. Springer New York LLC; 2016;15:369–91.

  13. Israeli-Korn SD, Barliya A, Paquette C, Franzén E, Inzelberg R, Horak FB, et al. Control of movement: intersegmental coordination patterns are differently affected in Parkinson’s disease and cerebellar ataxia. J Neurophysiol [Internet]. American Physiological Society; 2019 [cited 2021 Jul 21];121:672. Available from: /pmc/articles/PMC6397403/

  14. Fiori L, Ranavolo A, Varrecchia T, Tatarelli A, Conte C, Draicchio F, et al. Impairment of global lower limb muscle coactivation during walking in cerebellar ataxias. Cerebellum Springer. 2020;19:583–96.

    Article  Google Scholar 

  15. Caliandro P, Iacovelli C, Conte C, Simbolotti C, Rossini PM, Padua L, et al. Trunk-lower limb coordination pattern during gait in patients with ataxia. Gait Posture. 2017;57:252–7.

    Article  Google Scholar 

  16. Aiello L, Dean C. Bipedal locomotion and the postcranial skeleton. An Introd to Hum Evol Anat. Academic Press; 2002;244–74.

  17. Lovejoy CO. The natural history of human gait and posture: Part 1 Spine and pelvis. Gait Posture. 2005;21:95–112.

    Google Scholar 

  18. Warrenburg BPC van de, Steijns JAG, Munneke M, Kremer BPH, Bloem BR. Falls in degenerative cerebellar ataxias. Mov Disord [Internet]. John Wiley & Sons, Ltd; 2005 [cited 2021 Jul 21];20:497–500. Available from: https://movementdisorders.onlinelibrary.wiley.com/doi/full/10.1002/mds.20375

  19. Stanley WJ, Kelly CKL, Tung CC, Lok TW, Ringo TMK, Ho YK, et al. Cost of cerebellar ataxia in Hong Kong: a retrospective cost-of-illness analysis. Front Neurol. Frontiers; 2020;0:711.

  20. Ilg W, Timmann D. Gait ataxia—specific cerebellar influences and their rehabilitation. Mov Disord [Internet]. John Wiley & Sons, Ltd; 2013 [cited 2021 Jul 22];28:1566–75. Available from: https://movementdisorders.onlinelibrary.wiley.com/doi/full/10.1002/mds.25558

  21. Marquer A, Barbieri G, Pérennou D. The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review. Ann Phys Rehabil Med. 2014;57:67–78.

    Article  CAS  Google Scholar 

  22. Gordt K, Gerhardy T, Najafi B, Schwenk M. Effects of wearable sensor-based balance and gait training on balance, gait, and functional performance in healthy and patient populations: a systematic review and meta-analysis of randomized controlled trials. Gerontology [Internet]. S. Karger AG; 2017 [cited 2021 Jun 23];64:74–89. Available from: https://pubmed.ncbi.nlm.nih.gov/29130977/

  23. Serrao M, Casali C, Ranavolo A, Mari S, Conte C, Chini G, et al. Use of dynamic movement orthoses to improve gait stability and trunk control in ataxic patients. Eur J Phys Rehabil Med. 2017;53:735–43.

    Article  Google Scholar 

  24. Zampogna A, Mileti I, Palermo E, Celletti C, Paoloni M, Manoni A, et al. Fifteen years of wireless sensors for balance assessment in neurological disorders [Internet]. Sensors (Switzerland). MDPI AG; 2020 [cited 2021 Mar 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/32517315/

  25. Patel M, Pavic A, Goodwin VA. Wearable inertial sensors to measure gait and posture characteristic differences in older adult fallers and non-fallers: a scoping review [Internet]. Gait Posture. Elsevier B.V.; 2020 [cited 2021 Jun 23]. p. 110–21. Available from: https://pubmed.ncbi.nlm.nih.gov/31756666/

  26. Rehman RZU, Zhou Y, Din S Del, Alcock L, Hansen C, Guan Y, et al. Gait analysis with wearables can accurately classify fallers from non-fallers: a step toward better management of neurological disorders. Sensors (Switzerland) [Internet]. MDPI AG; 2020 [cited 2021 Apr 21];20:1–17. Available from: https://pubmed.ncbi.nlm.nih.gov/33297395/

  27. Shirai S, Yabe I, Matsushima M, Ito YM, Yoneyama M, Sasaki H. Quantitative evaluation of gait ataxia by accelerometers. J Neurol Sci [Internet]. Elsevier; 2015 [cited 2021 Jul 22];358:253–8. Available from: http://www.jns-journal.com/article/S0022510X15020699/fulltext

  28. Ilg W, Seemann J, Giese M, Traschütz A, Schöls L, Timmann D, et al. Real-life gait assessment in degenerative cerebellar ataxia. Neurology [Internet]. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology; 2020 [cited 2021 Jul 22];95:e1199–210. Available from: https://n.neurology.org/content/95/9/e1199

  29. Svenningsen FP, Pavailler S, Giandolini M, Horvais N, Madeleine P. A narrative review of potential measures of dynamic stability to be used during outdoor locomotion on different surfaces. https://doi.org/10.1080/1476314120191642953 [Internet]. Routledge; 2019 [cited 2021 Jul 22];19:120–40. Available from: https://www.tandfonline.com/doi/abs/10.1080/14763141.2019.1642953

  30. Hubble RP, Naughton GA, Silburn PA, Cole MH. Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: a systematic review. PLoS One [Internet]. Public Library of Science; 2015 [cited 2021 Jul 22];10:e0123705. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123705

  31. Castiglia SF, Tatarelli A, Trabassi D, De Icco R, Grillo V, Ranavolo A, et al. Ability of a set of trunk inertial indexes of gait to identify gait instability and recurrent fallers in Parkinson’s disease. Sensors [Internet]. MDPI AG; 2021 [cited 2021 Jun 23];21. Available from: https://pubmed.ncbi.nlm.nih.gov/34063468/

  32. Caliandro P, Conte C, Iacovelli C, Tatarelli A, Castiglia SF, Reale G, et al. Exploring risk of falls and dynamic unbalance in cerebellar ataxia by inertial sensor assessment. Sensors (Switzerland). 2019;19.

  33. Sylos Labini F, Meli A, Ivanenko YP, Tufarelli D. Recurrence quantification analysis of gait in normal and hypovestibular subjects. Gait Posture Elsevier. 2012;35:48–55.

    Article  Google Scholar 

  34. Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieën JH. Estimating fall risk with inertial sensors using gait stability measures that do not require step detection. Gait Posture Elsevier. 2013;38:170–4.

    Article  CAS  Google Scholar 

  35. Webber CL, Zbilut JP. Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol [Internet]. American Physiological Society; 1994 [cited 2021 Mar 23];76:965–73. Available from: https://pubmed.ncbi.nlm.nih.gov/8175612/

  36. Miller Koop M, Ozinga SJ, Rosenfeldt AB, Alberts JL. Quantifying turning behavior and gait in Parkinson’s disease using mobile technology. IBRO Reports [Internet]. Elsevier Ltd; 2018 [cited 2021 Mar 23];5:10–6. Available from: https://pubmed.ncbi.nlm.nih.gov/30135951/

  37. Palmerini L, Mellone S, Avanzolini G, Valzania F, Chiari L. Quantification of motor impairment in Parkinson’s disease using an instrumented timed up and go test. IEEE Trans Neural Syst Rehabil Eng [Internet]. IEEE Trans Neural Syst Rehabil Eng; 2013 [cited 2021 Mar 23];21:664–73. Available from: https://pubmed.ncbi.nlm.nih.gov/23292821/

  38. Melendez-Calderon A, Shirota C, Balasubramanian S. Estimating movement smoothness from inertial measurement units. Front Bioeng Biotechnol. 2021;10:1507.

    Google Scholar 

  39. Sekine M, Tamura T, Yoshida M, Suda Y, Kimura Y, Miyoshi H, et al. A gait abnormality measure based on root mean square of trunk acceleration. J NeuroEngineering Rehabil 2013 101 [Internet]. BioMed Central; 2013 [cited 2021 Jul 22];10:1–7. Available from: https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-10-118

  40. Dasgupta P, Vanswearingen J, Godfrey A, Redfern M, Montero-Odasso M, Sejdic E. Acceleration gait measures as proxies for motor skill of walking: a narrative review [Internet]. IEEE Trans. Neural Syst. Rehabil. Eng. Institute of Electrical and Electronics Engineers Inc.; 2021 [cited 2021 Jun 23]. p. 249–61. Available from: https://pubmed.ncbi.nlm.nih.gov/33315570/

  41. Wuehr M, Schniepp R, Ilmberger J, Brandt T, Jahn K. Speed-dependent temporospatial gait variability and long-range correlations in cerebellar ataxia. Gait Posture. 2013;37:214–8.

    Article  CAS  Google Scholar 

  42. Schmitz-Hübsch T, Montcel ST du, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia. Neurology [Internet]. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology; 2006 [cited 2021 Jul 22];66:1717–20. Available from: https://n.neurology.org/content/66/11/1717

  43. Fonteyn EMR, Schmitz-Hübsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S, et al. Falls in spinocerebellar ataxias: results of the EuroSCA fall study. Cerebellum 2010 92 [Internet]. Springer; 2010 [cited 2021 Jul 22];9:232–9. Available from: https://link.springer.com/article/10.1007/s12311-010-0155-z

  44. Schniepp R, Huppert A, Decker J, Schenkel F, Schlick C, Rasoul A, et al. Fall prediction in neurological gait disorders: differential contributions from clinical assessment, gait analysis, and daily-life mobility monitoring. J Neurol [Internet]. J Neurol; 2021 [cited 2021 Nov 8];268:3421–34. Available from: https://pubmed.ncbi.nlm.nih.gov/33713194/

  45. Maranesi E, Merlo A, Fioretti S, Zemp DD, Campanini I, Quadri P. A statistical approach to discriminate between non-fallers, rare fallers and frequent fallers in older adults based on posturographic data. Clin Biomech (Bristol, Avon) [Internet]. Clin Biomech (Bristol, Avon); 2016 [cited 2021 Nov 8];32:8–13. Available from: https://pubmed.ncbi.nlm.nih.gov/26775228/

  46. Winser SJ, Smith CM, Hale LA, Claydon LS, Whitney SL, Mehta P. Systematic review of the psychometric properties of balance measures for cerebellar ataxia: https://doi.org/10.1177/0269215514536412 [Internet]. SAGE PublicationsSage UK: London, England; 2014 [cited 2021 Jul 22];29:69–79. Available from: https://journals.sagepub.com/doi/10.1177/0269215514536412?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed

  47. Schniepp R, Wuehr M, Neuhaeusser M, Kamenova M, Dimitriadis K, Klopstock T, et al. Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord [Internet]. John Wiley & Sons, Ltd; 2012 [cited 2021 Jul 22];27:125–31. Available from: https://movementdisorders.onlinelibrary.wiley.com/doi/full/10.1002/mds.23978

  48. Yao XI, Wang X, Speicher PJ, Hwang ES, Cheng P, Harpole DH, et al. Reporting and guidelines in propensity score analysis: a systematic review of cancer and cancer surgical studies [Internet]. J. Natl. Cancer Inst. Oxford University Press; 2017 [cited 2021 Mar 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/28376195/

  49. Fukuchi CA, Fukuchi RK, Duarte M. Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis [Internet]. Syst. Rev. BioMed Central Ltd.; 2019 [cited 2021 Jun 23]. Available from: https://pubmed.ncbi.nlm.nih.gov/31248456/

  50. Craig JJ, Bruetsch AP, Huisinga JM. Coordination of trunk and foot acceleration during gait is affected by walking velocity and fall history in elderly adults. Aging Clin Exp Res 2018 317 [Internet]. Springer; 2018 [cited 2021 Jul 22];31:943–50. Available from: https://link.springer.com/article/10.1007/s40520-018-1036-4

  51. Kroneberg D, Elshehabi M, Meyer AC, Otte K, Doss S, Paul F, et al. Less is more - estimation of the number of strides required to assess gait variability in spatially confined settings. Front Aging Neurosci [Internet]. Frontiers Media S.A.; 2019 [cited 2021 Mar 23];11. Available from: https://pubmed.ncbi.nlm.nih.gov/30719002/

  52. Pasciuto I, Bergamini E, Iosa M, Vannozzi G, Cappozzo A. Overcoming the limitations of the Harmonic Ratio for the reliable assessment of gait symmetry. J Biomech [Internet]. Elsevier Ltd; 2017 [cited 2021 Mar 23];53:84–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28104246/

  53. Riva F, Bisi MC, Stagni R. Gait variability and stability measures: minimum number of strides and within-session reliability. Comput Biol Med [Internet]. Elsevier Ltd; 2014 [cited 2021 May 5];50:9–13. Available from: https://pubmed.ncbi.nlm.nih.gov/24792493/

  54. Iosa M, Picerno P, Paolucci S, Morone G. Wearable inertial sensors for human movement analysis [Internet]. Expert Rev. Med. Devices. Taylor and Francis Ltd; 2016 [cited 2021 Mar 23]. p. 641–59. Available from: https://pubmed.ncbi.nlm.nih.gov/27309490/

  55. Afsar O, Tirnakli U, Marwan N. Recurrence quantification analysis at work: quasi-periodicity based interpretation of gait force profiles for patients with Parkinson disease. Sci Rep [Internet]. Nature Publishing Group; 2018 [cited 2021 Mar 24];8. Available from: https://pubmed.ncbi.nlm.nih.gov/29904070/

  56. Kennel MB, Abarbanel HDI. False neighbors and false strands: a reliable minimum embedding dimension algorithm. Phys Rev E - Stat Physics, Plasmas, Fluids, Relat Interdiscip Top [Internet]. Phys Rev E Stat Nonlin Soft Matter Phys; 2002 [cited 2021 Mar 23];66. Available from: https://pubmed.ncbi.nlm.nih.gov/12241269/

  57. Dingwell JB, Cusumano JP. Nonlinear time series analysis of normal and pathological human walking. Chaos [Internet]. American Institute of Physics Inc.; 2000 [cited 2021 Mar 23];10:848–63. Available from: https://pubmed.ncbi.nlm.nih.gov/12779434/

  58. Toebes MJP, Hoozemans MJM, Furrer R, Dekker J, Van Dieën JH. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture [Internet]. Gait Posture; 2012 [cited 2021 May 5];36:527–31. Available from: https://pubmed.ncbi.nlm.nih.gov/22748312/

  59. Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A [Internet]. Phys Rev A Gen Phys; 1986 [cited 2021 May 5];33:1134–40. Available from: https://pubmed.ncbi.nlm.nih.gov/9896728/

  60. Wallot S, Mønster D. Calculation of Average Mutual Information (AMI) and false-nearest neighbors (FNN) for the estimation of embedding parameters of multidimensional time series in matlab. Front Psychol [Internet]. Frontiers Media S.A.; 2018 [cited 2021 May 5];9. Available from: https://pubmed.ncbi.nlm.nih.gov/30250444/

  61. Tamburini P, Mazzoli D, Stagni R. Towards an objective assessment of motor function in sub-acute stroke patients: relationship between clinical rating scales and instrumental gait stability indexes. Gait Posture Elsevier. 2018;59:58–64.

    Article  CAS  Google Scholar 

  62. Van Schooten KS, Rispens SM, Elders PJM, van Dieën JH, Pijnappels M. Toward ambulatory balance assessment: estimating variability and stability from short bouts of gait. Gait Posture [Internet]. Gait Posture; 2014 [cited 2021 Mar 23];39:695–9. Available from: https://pubmed.ncbi.nlm.nih.gov/24611162/

  63. Carter J V., Pan J, Rai SN, Galandiuk S. ROC-ing along: evaluation and interpretation of receiver operating characteristic curves. Surg (United States) [Internet]. Mosby Inc.; 2016 [cited 2021 Mar 24];159:1638–45. Available from: https://pubmed.ncbi.nlm.nih.gov/26962006/

  64. Kallner A. Bayes’ theorem, the roc diagram and reference values: definition and use in clinical diagnosis. Biochem Medica [Internet]. Biochemia Medica, Editorial Office; 2018 [cited 2021 Mar 24];28. Available from: https://pubmed.ncbi.nlm.nih.gov/29209139/

  65. Lowry KA, Smiley-Oyen AL, Carrel AJ, Kerr JP. Walking stability using harmonic ratios in Parkinson’s disease. Mov Disord [Internet]. Mov Disord; 2009 [cited 2021 Mar 23];24:261–7. Available from: https://pubmed.ncbi.nlm.nih.gov/18973258/

  66. Bellanca JL, Lowry KA, VanSwearingen JM, Brach JS, Redfern MS. Harmonic ratios: a quantification of step to step symmetry. J Biomech Elsevier. 2013;46:828–31.

    Article  CAS  Google Scholar 

  67. Brach JS, McGurl D, Wert D, VanSwearingen JM, Perera S, Cham R, et al. Validation of a measure of smoothness of walking. Journals Gerontol Ser A [Internet]. Oxford Academic; 2011 [cited 2021 Jul 22];66A:136–41. Available from: https://academic.oup.com/biomedgerontology/article/66A/1/136/532030

  68. Doi T, Hirata S, Ono R, Tsutsumimoto K, Misu S, Ando H. The harmonic ratio of trunk acceleration predicts falling among older people: results of a 1-year prospective study. J Neuroeng Rehabil [Internet]. BioMed Central; 2013 [cited 2021 Mar 24];10:7. Available from: /pmc/articles/PMC3562223/

  69. Germanotta M, Vasco G, Petrarca M, Rossi S, Carniel S, Bertini E, et al. Robotic and clinical evaluation of upper limb motor performance in patients with Friedreich’s Ataxia: an observational study. J NeuroEngineering Rehabil 2015 121 [Internet]. BioMed Central; 2015 [cited 2021 Jul 22];12:1–13. Available from: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0032-6

  70. Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, et al. Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry [Internet]. BMJ Publishing Group Ltd; 2002 [cited 2021 Jul 22];73:310–2. Available from: https://jnnp.bmj.com/content/73/3/310

  71. Psarakis M, Greene DA, Cole MH, Lord SR, Hoang P, Brodie M. Wearable technology reveals gait compensations, unstable walking patterns and fatigue in people with multiple sclerosis. Physiol Meas [Internet]. IOP Publishing; 2018 [cited 2021 Jul 22];39:075004. Available from: https://iopscience.iop.org/article/10.1088/1361-6579/aac0a3

  72. Iosa M, Bini F, Marinozzi F, Fusco A, Morone G, Koch G, et al. Stability and harmony of gait in patients with subacute stroke. J Med Biol Eng [Internet]. Springer; 2016 [cited 2021 Jul 22];36:635. Available from: /pmc/articles/PMC5083768/

  73. Hoogkamer W, Bruijn SM, Sunaert S, Swinnen SP, Van Calenbergh F, Duysens J. Toward new sensitive measures to evaluate gait stability in focal cerebellar lesion patients. Gait Posture. 2015;41:592–6.

    Article  Google Scholar 

  74. Mehdizadeh S. The largest Lyapunov exponent of gait in young and elderly individuals: a systematic review. Gait Posture. 2018;60:241–50.

    Article  Google Scholar 

  75. Bruijn SM, van Dieën JH, Meijer OG, Beek PJ. Is slow walking more stable? J Biomech Elsevier. 2009;42:1506–12.

    Article  Google Scholar 

  76. Caronni A, Gervasoni E, Ferrarin M, Anastasi D, Brichetto G, Confalonieri P, et al. Local dynamic stability of gait in people with early multiple sclerosis and no-to-mild neurological impairment. IEEE Trans Neural Syst Rehabil Eng. 2020;28:1389–96.

    Article  Google Scholar 

  77. Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol [Internet]. J Neurol; 2014 [cited 2021 Apr 21];261:213–23. Available from: https://pubmed.ncbi.nlm.nih.gov/24263407/

  78. Wada O, Asai T, Hiyama Y, Nitta S, Mizuno K. Root mean square of lower trunk acceleration during walking in patients with unilateral total hip replacement. Gait Posture Elsevier. 2017;58:19–22.

    Article  Google Scholar 

  79. Moe-Nilssen R, Helbostad JL. Estimation of gait cycle characteristics by trunk accelerometry. J Biomech Elsevier. 2004;37:121–6.

    Article  Google Scholar 

  80. Prince F, Winter D, Stergiou P, Walt S. Anticipatory control of upper body balance during human locomotion. Gait Posture Elsevier. 1994;2:19–25.

    Article  Google Scholar 

  81. Morrison S, Russell DM, Kelleran K, Walker ML. Bracing of the trunk and neck has a differential effect on head control during gait. J Neurophysiol [Internet]. American Physiological Society; 2015 [cited 2021 Jun 23];114:1773–83. Available from: https://pubmed.ncbi.nlm.nih.gov/26180113/

  82. Fonteyn EMR, Schmitz-Hübsch T, Verstappen CCP, Baliko L, Bloem BR, Boesch S, et al. Prospective analysis of falls in dominant ataxias. Eur Neurol. 2013;69:53–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Mariano Serrao, Pietro Caliandro, Stefano Filippo Castiglia; Methodology: Dante Trabassi, Antonella Tatarelli, Lorenzo Fiori; Formal analysis and investigation: Tiwana Varrecchia, Dante Trabassi, Ettore Cioffi, Davide Di Lenola, Manikandan Raju; Writing — original draft preparation: Stefano Filippo Castiglia, Mariano Serrao, Dante Trabassi; Writing — review and editing: Gianluca Coppola, Pietro Caliandro, Alberto Ranavolo; Supervision: Carlo Casali, Mariano Serrao.

Corresponding author

Correspondence to Stefano Filippo Castiglia.

Ethics declarations

Ethics Approval

The study was approved by the local ethics committee (CE Lazio 2, protocol number 0139696/2021).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castiglia, S., Trabassi, D., Tatarelli, A. et al. Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. Cerebellum 22, 46–58 (2023). https://doi.org/10.1007/s12311-021-01361-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01361-5

Keywords

Navigation