Skip to main content
Log in

A Survey on 6LoWPAN Security for IoT: Taxonomy, Architecture, and Future Directions

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Provisioning security to the communications, data, and partaking things in resource-constrained IoT is a huge challenge. Due to the scalability and interoperability among low power-consuming networks, 6LoWPAN is used widely in IoT. However, security schemes used by traditional Internet are proven to be very heavy and power-consuming for resource-constrained devices in 6loWPAN. This paper describes various existing security schemes used in different layers of 6LoWPAN based IoT networks in detail and highlights their pros and cons. We pointed out the issues and challenges of lightweight security mechanisms for IoT to enable the researchers to easily and quickly get into the problem domain. Compared to other relevant works, we emphasize open issues and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

We do not analyse or generate any datasets, because our work proceeds within a theoretical approach.

Abbreviations

ABE:

Attribute-based encryption

ACL:

Access control List

AES:

Advanced encryption standard

AKE:

Authenticated key establishment

APKES:

Adaptable pairwise key establishment scheme

BLE:

Bluetooth low energy

CAP:

Contention access period

CBC:

Cipher block chaining

CCM:

Counter with CBC-MAC mode of operation

CFP:

Contention free Period

CNN:

Convolutional neural network

CoAP:

Constrained application protocol

CoAPs:

Constrained application protocol security

CTR:

Counter

DoS:

Denial-of-service

DODAGs:

Destination oriented directed acyclic graphs

DIS:

DODAG information solicitation

DTLS:

Datagram transport layer security

ECC:

Elliptic curve cryptography

E2E:

End-to-end

ECDHE:

Elliptic-curve Diffie-Hellman ephemeral

ECDSA:

Elliptic-curve digital signature algorithm

EBEAP:

Easy broadcast encryption and authentication protocol

ETX:

Expected transmission count

FFD:

Full function device

FPGA:

Field programmable gate array

GCM:

Galois/counter mode

HMAC-SHA1:

Hash-based message authentication code with secure hash algorithm

IoT:

Internet of things

ICV:

Integrity check value

IPv4/v6:

Internet protocol version 4/version 6

IPSec:

Internet protocol security

IDS:

Intrusion detection system

IPSec-AH:

IPSec authentication header

IPSec-ESP:

IPSec encapsulating security payload

IKE:

Internet key exchange

LTK:

Long term key

MAC:

Message authentication code

MAG:

Mobile access gateways

MITM:

Man-in-the-middle

MIC:

Message integrity code

MTU:

Maximum transmission unit

M2M:

Machine-to-machine

MIC-CCM:

Message integrity code with cipher block chaining

NETLMM:

Network-based localized mobility management

PKI:

Public key infrastructure

PKC:

Public key cryptography

PMIPv6:

Proxy mobile IPv6

PUF:

Physical unclonable function

QoS:

Quality-of-service

RFD:

Reduced function device

RF:

Radio frequency

RPL:

IPv6 routing protocol for link layer networks (LLNs)

ROR:

Real-or-random model-based formal security analysis

RSA:

Rivest–Shamir–Adleman cryptograhy

RSSI:

Received signal strength indicator

STK:

Short term key

SMQTT:

Secure message queuing telemetry transport

TCP/IP:

Transmission control protocol/ internet protocol

TLS-PSK:

Transport layer security pre-shared key ciphersuites

TLS/SSL:

Transport layer security/ secure sockets layer

TTP:

Trusted third party

UDP:

User datagram protocol

WSNs:

Wireless sensor networks

6LoWPAN:

IPv6 over low-power wireless personal area networks

6Hs:

6LoWPAN host

6BR:

6LoWPAN edge/border router

References

  1. Daimler’s car2go: Rent a smart anywhere, anytime. (2012). https://www.autoblog.com/2008/10/21/daimlers-car2go-rent-a-smart-anywhere-anytime, Last Accessed: 27th January, 2022.

  2. Smart Santader FP7 project. (2014). “SmartSantanderRA - Santander augmented reality application,”. http://www.smartsantander.eu/index.php/blog/item/174- smartsantanderra-santander-augmented-reality-applicationion, Last Accessed: 27th January, 2022.

  3. (2016) Microsoft. (2016). HoloLens. https://www.microsoft.com/en-us/hololens, Last Accessed: 27th January, 2022.

  4. Apple is ramping up work on AR headset to succeed iPhone. (2017). https://www.bloomberg.com/news/articles/2017-11-08/apple-is-said-to-ramp-up-work-on-augmented-reality-headset, Last Accessed: 27th January, 2022.

  5. Holokit. (2017). https://holokit.io/, Last Accessed: 27th January, 2022.

  6. Abhinaya, E., & Sudhakar, B. (2021) A secure routing protocol for low power and lossy networks based 6LoWPAN networks to mitigate DIS flooding attacks. Journal of Ambient Intelligence and Humanized Computing, 1–12

  7. Ahilan, A., Rejula, M. A., Kumar, S., & Kumar, B. M. (2023) Virtual reality sensor based IoT embedded system for stress diagnosis. IEEE Sensors Journal.

  8. Ahn, S., Gorlatova, M., Naghizadeh, P., Chiang, M., & Mittal, P. (2018). Adaptive fog-based output security for augmented reality. In Proceedings of the 2018 morning workshop on virtual reality and augmented reality network, pp. 1–6

  9. Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of things security: A survey. Journal of Network and Computer Applications, 88, 10–28.

    Google Scholar 

  10. Alcaraz, C., & Lopez, J. (2010). A security analysis for wireless sensor mesh networks in highly critical systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(4), 419–428.

    Google Scholar 

  11. Amaral, J. P., Oliveira, L. M., Rodrigues, J. J., Han, G., & Shu, L. (2014). Policy and network-based intrusion detection system for ipv6-enabled wireless sensor networks. In IEEE International Conference on Communications (ICC), IEEE, (pp. 1796–1801).

  12. Arteaga-Falconi, J. S., Al Osman, H., & El Saddik, A. (2018). ECG and fingerprint bimodal authentication. Sustainable Cities and Society, 40, 274–283.

    Google Scholar 

  13. Ashrif, F. F., Sundararajan, E. A., Ahmad, R., Hasan, M. K., & Yadegaridehkordi, E. (2023). Survey on the authentication and key agreement of 6LoWPAN: Open issues and future direction. Journal of Network and Computer Applications, 103759

  14. Bayou, L., Espes, D., Cuppens-Boulahia, N., & Cuppens, F. (2016) Security analysis of wirelesshart communication scheme. In International symposium on foundations and practice of security, (pp 223–238), Springer.

  15. Bhale, P., Biswas, S., & Nandi, S. (2024). A hybrid IDS for detection and mitigation of sinkhole attack in 6LoWPAN networks. International Journal of Information Security, 23(2), 915–934.

    Google Scholar 

  16. Bouaziz, M., & Rachedi, A. (2016). A survey on mobility management protocols in wireless sensor networks based on 6LoWPAN technology. Computer Communications, 74, 3–15.

    Google Scholar 

  17. Brilli, L., Pecorella, T., Pierucci, L., & Fantacci, R. (2016). A novel 6LoWPAN-ND extension to enhance privacy in IEEE 802.15. 4 networks. In Global Communications Conference (GLOBECOM), IEEE, (pp. 1–6).

  18. Chawla, D., & Mehra, P. S. (2023). A survey on quantum computing for internet of things security. Procedia Computer Science, 218, 2191–2200.

    Google Scholar 

  19. Chen, J., Jordan, M. I., & Wainwright, M. J. (2020) Hopskipjumpattack: A query-efficient decision-based attack. In 2020 IEEE symposium on security and privacy (sp), IEEE, (pp. 1277–1294).

  20. Cheng, C., Lu, R., Petzoldt, A., & Takagi, T. (2017). Securing the internet of things in a quantum world. IEEE Communications Magazine, 55(2), 116–120.

    Google Scholar 

  21. Chom Thungon, L., Ahmed, N., Chandra Sahana, S., & Hussain, M. I. (2021). A lightweight authentication and key exchange mechanism for IPv6 over low-power wireless personal area networks-based internet of things. Transactions on Emerging Telecommunications Technologies, 32(5), e4033.

    Google Scholar 

  22. Cirani, S., Picone, M., Gonizzi, P., Veltri, L., & Ferrari, G. (2015). IoT-OAS: An Oauth-based authorization service architecture for secure services in IoT scenarios. IEEE Sensors Journal, 15(2), 1224–1234.

    Google Scholar 

  23. Council, N. (2008). Six technologies with potential impacts on us interests out to 2025. Disruptive Civil Technologies, 2008, 31.

    Google Scholar 

  24. Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2019). LSB: A lightweight scalable blockchain for IoT security and anonymity. Journal of Parallel and Distributed Computing, 134, 180–197. https://doi.org/10.1016/j.jpdc.2019.08.005

    Article  Google Scholar 

  25. Fedeli, A., Fornari, F., Polini, A., Re, B., Torres, V., & Valderas, P. (2024) FloBP: A model-driven approach for developing and executing IoT-enhanced business processes. Software and Systems Modeling, 1–30.

  26. Fisher, R., & Hancke, G. (2014). DTLS for lightweight secure data streaming in the internet of things. In P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), IEEE, (pp. 585–590).

  27. Fuentes-Samaniego, R. A., Cavalli, A. R., & Nolazco-Fores, J. A. (2016). An Analysis of secure M2M communication in WSNs using DTLS. In 36th international conference on distributed computing systems workshops (ICDCSW), IEEE, (pp. 78–83).

  28. Glissa, G., & Meddeb, A. (2019). 6LoWPSec: An end-to-end security protocol for 6LoWPAN. Ad Hoc Networks, 82, 100–112.

    Google Scholar 

  29. Granjal, J., & Monteiro, E. (2016). End-to-end transparent transport-layer security for internet-integrated mobile sensing devices. In IFIP Networking Conference (IFIP Networking) and Workshops, IEEE, (pp. 306–314).

  30. Hall, R., Rinaldo, A., & Wasserman, L. (2013). Differential privacy for functions and functional data. Journal of Machine Learning Research, 14, 703–727.

    MathSciNet  Google Scholar 

  31. Hammad, M., Luo, G., & Wang, K. (2019). Cancelable biometric authentication system based on ECG. Multimedia Tools and Applications, 78(2), 1857–1887.

    Google Scholar 

  32. Hammi, M. T., Livolant, E., Bellot, P., Serhrouchni, A., & Minet, P. (2016). MAC sub-layer node authentication in OCARI. In International conference on performance evaluation and modeling in wired and wireless networks (PEMWN), IEEE, (pp. 1–6).

  33. Hammi, M. T., Hammi, B., Bellot, P., & Serhrouchni, A. (2018). Bubbles of trust: A decentralized blockchain-based authentication system for IoT. Computers & Security, 78, 126–142.

    Google Scholar 

  34. Hennebert, C., & Dos Santos, J. (2014). Security protocols and privacy issues into 6LoWPAN Stack: A synthesis. IEEE Internet of Things Journal, 1(5), 384–398.

    Google Scholar 

  35. Hossain, M., Karim, Y., & Hasan, R. (2018). SecuPAN: A security scheme to mitigate fragmentation-based network attacks in 6LoWPAN. In Proceedings of the eighth ACM conference on data and application security and privacy, ACM, (pp. 307–318)

  36. Hummen, R., Ziegeldorf, J. H., Shafagh, H., Raza, S., & Wehrle, K. (2013). Towards viable certificate-based authentication for the internet of things. In 2nd ACM workshop on Hot topics on wireless network security and privacy, ACM, (pp. 37–42).

  37. Ingale, M., Cordeiro, R., Thentu, S., Park, Y., & Karimian, N. (2020). Ecg biometric authentication: A comparative analysis. IEEE Access, 8, 117853–117866.

    Google Scholar 

  38. Jaber, M., Imran, M. A., Tafazolli, R., & Tukmanov, A. (2016). 5G backhaul challenges and emerging research directions: A survey. IEEE Access, 4, 1743–1766.

    Google Scholar 

  39. Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., & Kuusk, A. (2023). Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Systems with Applications, 216, 119456.

    Google Scholar 

  40. Jara, A. J., Fernandez, D., Lopez, P., Zamora, M. A., & Skarmeta, A. F. (2014). Lightweight MIPv6 with IPSec support. Mobile Information Systems, 10(1), 37–77.

    Google Scholar 

  41. de Jesus Martins, R., Schaurich, V. G., Knob, L. A. D., Wickboldt, J. A., Schaeffer Filho, A., Granville, L. Z., & Pias, M. (2016). Performance analysis of 6LoWPAN and CoAP for secure communications in smart homes. In International conference on advanced information networking and applications (AINA), IEEE, (pp. 1027–1034).

  42. Jiang, Q., Zeadally, S., Ma, J., & He, D. (2017). Lightweight three-factor authentication and key agreement protocol for internet-integrated wireless sensor networks. IEEE Access, 5, 3376–3392.

    Google Scholar 

  43. Jo, Y. H., Jeon, S. Y., Im, J. H., & Lee, M. K. (2016). Security analysis and improvement of fingerprint authentication for smartphones. Mobile Information Systems, 2016(1), 8973828.

    Google Scholar 

  44. Kambourakis, G., Damopoulos, D., Papamartzivanos, D., & Pavlidakis, E. (2016). Introducing touchstroke: Keystroke-based authentication system for smartphones. Security and Communication Networks, 9(6), 542–554.

    Google Scholar 

  45. Kempf, J., Nikander, P., & Nordmark, E. (2004). IPv6 neighbor discovery (ND) trust models and threats. RFC 3756, https://doi.org/10.17487/rfc3756

  46. Kim, E., Kaspar, D., Gomez, C., & Bormann, C. (2012a). Problem statement and requirements for IPv6 over low-power wireless personal area network (6LoWPAN) routing. RFC 6606, https://doi.org/10.17487/RFC6606

  47. Kim, E., Kaspar, D., & Vasseur, J. (2012b). Design and application spaces for ipv6 over low-power wireless personal area networks (6LoWPANs). RFC 6568, https://doi.org/10.17487/rfc6568

  48. Kim, J., Kim, D., & Choi, S. (2017). 3GPP SA2 architecture and functions for 5G mobile communication system. ICT Express, 3(1), 1–8.

    Google Scholar 

  49. Komninos, N., Philippou, E., & Pitsillides, A. (2014). Survey in smart grid and smart home security: Issues, challenges and countermeasures. IEEE Communications Surveys & Tutorials, 16(4), 1933–1954.

    Google Scholar 

  50. Krentz, K. F., & Meinel, C. (2015). Handling reboots and mobility in 802.15. 4 security. In Proceedings of the annual computer security applications conference, ACM, (pp. 121–130).

  51. Krentz, K. F., Rafiee, H., & Meinel, C. (2013). 6LoWPAN security: Adding compromise resilience to the 802.15. 4 security sublayer. In Proceedings of the international workshop on adaptive security, ACM, (pp. 1–10).

  52. Kumar, J. S., & Patel, D. R. (2014). A survey on internet of things: Security and privacy issues. International Journal of Computer Applications, 90(11).

  53. Kwon, G., Kim, J., Noh, J., & Cho, S. (2016). Bluetooth low energy security vulnerability and improvement method. In Consumer Electronics-Asia (ICCE-Asia), IEEE, (pp. 1–4).

  54. La, V. H., & Cavalli, A. R. (2016). A misbehavior node detection algorithm for 6LoWPAN wireless sensor networks. In 36th international conference on distributed computing systems workshops (ICDCSW), IEEE, (pp. 49–54).

  55. Labati, R. D., Muñoz, E., Piuri, V., Sassi, R., & Scotti, F. (2019). Deep-ECG: Convolutional neural networks for ECG biometric recognition. Pattern Recognition Letters, 126, 78–85.

    Google Scholar 

  56. Lakkundi, V., & Singh, K. (2014) Lightweight DTLS implementation in CoAP-based internet of things. In 20th annual international conference on advanced computing and communications (ADCOM), IEEE, (pp. 7–11).

  57. Langtry, C. (2016). ITU-R activities on 5G. In Proceedings of the IEEE world forum internet things

  58. Lloret, J., Tomas, J., Canovas, A., & Parra, L. (2016). An integrated IoT architecture for smart metering. IEEE Communications Magazine, 54(12), 50–57.

    Google Scholar 

  59. Ma, H., Wang, C., Xu, G., Cao, Q., Xu, G., & Duan, L. (2023). Anonymous authentication protocol based on physical unclonable function and elliptic curve cryptography for smart grid. IEEE Systems Journal.

  60. Ma, X., & Luo, W. (2008). The analysis of 6LoWPAN technology. In Pacific-Asia workshop on computational intelligence and industrial application (PACIIA), IEEE, (pp. 963–966).

  61. Malani, S., Srinivas, J., Das, A. K., Srinathan, K., & Jo, M. (2019). Certificate-based anonymous device access control scheme for IoT environment. IEEE Internet of Things Journal, 6(6), 9762–9773.

    Google Scholar 

  62. Malasinghe, L. P., Ramzan, N., & Dahal, K. (2019). Remote patient monitoring: A comprehensive study. Journal of Ambient Intelligence and Humanized Computing, 10(1), 57–76.

    Google Scholar 

  63. Mantas, G., Lymberopoulos, D., & Komninos, N. (2009). Integrity mechanism for E-health tele-monitoring system in smart home environment. In Engineering in medicine and biology society (EMBC), IEEE, (pp. 3509–3512).

  64. Marksteiner, S., Jimenez, V. J. E., Valiant, H., & Zeiner, H. (2017). An overview of wireless IoT protocol security in the smart home domain. In Internet of things business models, users, and networks, IEEE, (pp. 1–8).

  65. May, M. (2015). Augmented reality in the car industry. https://www.linkedin.com/pulse/augmented-reality- car-industry-melanie-may/, Last Accessed: 27th January, 2022.

  66. Mbarek, B., Ge, M., & Pitner, T. (2021). Proactive trust classification for detection of replication attacks in 6LoWPAN-based IoT. Internet of Things, 16, 100442.

    Google Scholar 

  67. Mendes, Tiago D P., Godina, Radu, Rodrigues, Eduardo M G., Matias, João. C. O., & Catalão, João. P. S. (2015). Smart home communication technologies and applications: Wireless protocol assessment for home area network resources. Energies, 8(7), 7279–7311.

    Google Scholar 

  68. Migault, D., Palomares, D., Guggemos, T., Wally, A., Laurent, M., & Wary, J. P. (2015). Recommendations for IPsec configuration on homenet and M2M devices. In 11th ACM symposium on QoS and security for wireless and mobile networks, ACM, (pp. 9–17).

  69. Montenegro, G., Hui, J., Culler, D., & Kushalnagar, N. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. RFC 4944, https://doi.org/10.17487/rfc4944

  70. Navas, R. E., Lagos, M., Toutain, L., & Vijayasankar, K. (2016). Nonce-based authenticated key establishment over OAuth 2.0 IoT proof-of-possession architecture. In 3rd world forum on internet of things (WF-IoT), IEEE, (pp. 317–322).

  71. Neuman, B. C., & Ts’o, T. (1994). Kerberos: An authentication service for computer networks. IEEE Communications magazine, 32(9), 33–38.

    Google Scholar 

  72. Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., Shelby, Z., & Gomez, C. (2015). IPv6 over BLUETOOTH(R) low energy. RFC 7668, https://doi.org/10.17487/RFC7668

  73. Nikshepa, V. P., & Shenoy, U. K. K. (2018) 6LowPan-performance analysis on low power networks. In International conference on computer networks and communication technologies: ICCNCT 2018, (vol. 15, p. 145), Springer.

  74. Nimgampalle, M., Chakravarthy, H., Sharma, S., Shree, S., Bhat, A. R., Pradeepkiran, J. A., & Devanathan, V. (2023). Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Research Reviews, 101994.

  75. Nixon, M., & Round Rock, T. (2012). A Comparison of WirelessHART\(^{{\rm TM}}\) and ISA100. 11a. Whitepaper, Emerson Process Management, (pp. 1–36).

  76. Odelu, V., Das, A. K., & Goswami, A. (2015). A secure biometrics-based multi-server authentication protocol using smart cards. IEEE Transactions on Information Forensics and Security, 10(9), 1953–1966.

    Google Scholar 

  77. Ogonji, M. M., Okeyo, G., & Wafula, J. M. (2020). A survey on privacy and security of Internet of Things. Computer Science Review, 38, 100312.

    MathSciNet  Google Scholar 

  78. Ooko, S. O., Kadam’manja, J., Uwizeye, M. G., & Lemma, D. (2020). Security issues in IPv6 over low-power wireless personal area networks (6LoWPAN): A review. In 2020 21st international arab conference on information technology (ACIT), IEEE, (pp. 1–5).

  79. Park, J., Kwon, H., & Kang, N. (2016). IoT–cloud collaboration to establish a secure connection for lightweight devices. Wireless Networks, 1–12.

  80. Park, S., Kim, K., Haddad, W., Chakrabarti, S., & Laganier, J. (2011a). IPv6 over low power WPAN security analysis. Technical report, IETF Internet Draft draft-6Iowpan-security-analysis-05, (pp. 1–23).

  81. Park, S. D., Kim, K. H., Haddad, W., Chakrabarti, S., & Laganier, J. (2011b). IPv6 over low power WPAN security analysis. Internet-Draft draft-daniel-6lowpan-security-analysis-05, Internet Engineering Task Force, work in Progress.

  82. Piro, G., Boggia, G., & Grieco, L. A. (2014). A standard compliant security framework for IEEE 802.15. 4 Networks. In IEEE world forum on internet of things (WF-IoT), IEEE, (pp. 27–30).

  83. Pohrmen, F. H., Das, R. K., Khongbuh, W., & Saha, G. (2018). Blockchain-based security aspects in internet of things network. In International conference on advanced informatics for computing research, (pp. 346–357), Springer.

  84. Pokrić, B., Krco, S., & Pokrić, M. (2014). Augmented reality based smart city services using secure iot infrastructure. In 28th international conference on advanced information networking and applications workshops, IEEE, (pp. 803–808).

  85. Pongle, P., & Chavan, G. (2015). A survey: Attacks on RPL and 6LoWPAN in IoT. In International conference on pervasive computing (ICPC), IEEE, (pp. 1–6).

  86. Punithavathi, P., Geetha, S., Karuppiah, M., Islam, S. H., Hassan, M. M., & Choo, K. K. R. (2019). A lightweight machine learning-based authentication framework for smart IoT devices. Information Sciences, 484, 255–268.

    Google Scholar 

  87. Puthal, D., Mohanty, S. P., Bhavake, S. A., Morgan, G., & Ranjan, R. (2019). Fog computing security challenges and future directions [energy and security]. IEEE Consumer Electronics Magazine, 8(3), 92–96.

    Google Scholar 

  88. Qiu, Y., & Ma, M. (2016). A mutual authentication and key establishment scheme for M2M communication in 6LoWPAN networks. IEEE Transactions on Industrial Informatics, 12(6), 2074–2085.

    Google Scholar 

  89. Qiu, Y., & Ma, M. (2016b). A PMIPv6-based secured mobility scheme for 6LoWPAN. In Global communications conference (GLOBECOM), IEEE, (pp. 1–6).

  90. Rahman, RA., & Shah, B. (2016). Security analysis of IoT protocols: A focus in CoAP. In 3rd MEC international conference on big data and smart city (ICBDSC), IEEE, (pp. 1–7).

  91. Rajeswari, S. R., & Seenivasagam, V. (2016). Comparative study on various authentication protocols in wireless sensor networks. The Scientific World Journal, 2016.

  92. Rao, M., Newe, T., Grout, I., Lewis, E., & Mathur, A. (2015). FPGA based Reconfigurable IPSec AH core suitable for IoT applications. IEEE international conference on computer and information technology, ubiquitous computing and communications, dependable (pp. 2212–2216). Autonomic and Secure Computing, Pervasive Intelligence and Computing: IEEE.

  93. Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt, T. (2013). Lithe: Lightweight secure CoAP for the internet of things. IEEE Sensors Journal, 13(10), 3711–3720.

    Google Scholar 

  94. Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time intrusion detection in the internet of things. Ad Hoc Networks, 11(8), 2661–2674.

    Google Scholar 

  95. Raza, S., Duquennoy, S., Höglund, J., Roedig, U., & Voigt, T. (2014). Secure communication for the internet of things-a comparison of link-layer security and IPsec for 6LoWPAN. Security and Communication Networks, 7(12), 2654–2668.

    Google Scholar 

  96. Raza, S., Misra, P., He, Z., & Voigt, T. (2015). Bluetooth smart: An enabling technology for the internet of things. In Wireless and mobile computing (pp. 155–162). Networking and Communications (WiMob), IEEE.

  97. Razouk, W., Crosby, G. V., & Sekkaki, A. (2014). New security approach for Zigbee Weaknesses. Procedia Computer Science, 37, 376–381.

    Google Scholar 

  98. Rghioui, A., Bouhorma, M., & Benslimane, A. (2013). Analytical study of security aspects in 6LoWPAN networks. In 5th international conference on information and communication technology for the muslim world (ICT4M), IEEE, (pp. 1–5).

  99. Riaz, R., Kim, K. H., & Ahmed, H. F. (2009). Security analysis survey and framework design for IP connected lowpans. In International symposium on autonomous decentralized systems, IEEE, (pp. 1–6).

  100. Routray, S. K., Sharmila, K., Javali, A., Ghosh, A. D., & Sarangi, S. (2020). An outlook of narrowband IoT for industry 4.0. In 2020 second international conference on inventive research in computing applications (ICIRCA), IEEE, (pp. 923–926).

  101. Sain, M., Kang, Y. J., & Lee, H. J. (2017). Survey on Security in Internet of things: State of the art and Challenges. In 19th international conference on advanced communication technology (ICACT), IEEE, (pp. 699–704).

  102. Sajjad, S. M., & Yousaf, M. (2014). Security analysis of IEEE 802.15. 4 MAC in the context of internet of things (IoT). In Information assurance and cyber security (CIACS), IEEE, (pp. 9–14).

  103. Saldamli, G., Ertaul, L., & Kodirangaiah, B. (2018). Post-quantum cryptography on IoT: Merkle’s tree authentication. In Proceedings of the international conference on wireless networks (ICWN), the steering committee of the world congress in computer science, computer, (pp. 35–41).

  104. Salman, T., & Jain, R. (2019). A survey of protocols and standards for internet of things. arXiv preprint arXiv:1903.11549

  105. Samuel, S. S. I. (2016). A review of connectivity challenges in IoT-smart home. In 2016 3rd MEC international conference on big data and smart city (ICBDSC), IEEE, (pp. 1–4).

  106. Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., Ramdhany, R., Gluhak, A., Krco, S., Theodoridis, E., et al. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.

    Google Scholar 

  107. Sciancalepore, S., Piro, G., Vogli, E., Boggia, G., & Grieco, L. A. (2014). On securing IEEE 802.15. 4 networks through a standard compliant framework. In Euro Med Telco Conference (EMTC), IEEE, (pp. 1–6).

  108. Sciancalepore, S., Vučinić, M., Piro, G., Boggia, G., & Watteyne, T. (2017). Link-layer security in TSCH networks: Effect on slot duration. Transactions on Emerging Telecommunications Technologies, 28(1), 1–14.

    Google Scholar 

  109. Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. Ieee Access, 8, 23022–23040.

    Google Scholar 

  110. Shreenivas, D., Raza, S., & Voigt, T. (2017). Intrusion detection in the RPL-connected 6LoWPAN networks. In 3rd ACM international workshop on IoT privacy, trust, and security, ACM, (pp. 31–38).

  111. Singh, M., Rajan, M., Shivraj, V., & Balamuralidhar, P. (2015). Secure Mqtt for internet of things (IoT). In Fifth international conference on communication systems and network technologies (CSNT), IEEE, (pp. 746–751).

  112. Slanỳ, V., Lučanskỳ, A., Koudelka, P., Mareček, J., Krčálová, E., & Martínek, R. (2020). An integrated IoT architecture for smart metering using next generation sensor for water management based on LoRaWAN technology: a pilot study. Sensors, 20(17), 4712.

    Google Scholar 

  113. Tabassum, A., Erbad, A., & Guizani, M. (2019). A survey on recent approaches in intrusion detection system in IoTs. In 2019 15th international wireless communications and mobile computing conference (IWCMC), IEEE, (pp. 1190–1197).

  114. Tiloca, M., Gehrmann, C., & Seitz, L. (2016). On improving resistance to denial of service and key provisioning scalability of the DTLS handshake. International journal of information security, (pp. 1–21).

  115. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J. P. & Alexander, R. (2012). RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550, https://doi.org/10.17487/RFC6550

  116. Vatambeti, R., Krishna, E. P., Karthik, M. G., & Damera, V. K. (2024). Securing the medical data using enhanced privacy preserving based blockchain technology in Internet of Things. Cluster Computing, 27(2), 1625–1637.

    Google Scholar 

  117. Vohra, S., & Srivastava, R. (2015). A survey on techniques for securing 6LoWPAN. In Fifth international conference on communication systems and network technologies (CSNT), IEEE, (pp. 643–647).

  118. Wallgren, L., Raza, S., & Voigt, T. (2013). Routing attacks and countermeasures in the RPL-based internet of things. International Journal of Distributed Sensor Networks, 9(8), 1477–1550.

    Google Scholar 

  119. Wang, X., Zha, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., & Zheng, K. (2019). Survey on blockchain for internet of things. Computer Communications, 136, 10–29.

    Google Scholar 

  120. WangJulie, B., Cadmus-BertramLisa, A., WhiteMartha, M., NicholsJeanne, F., AyalaGuadalupe, X., & PierceJohn, P., et al. (2015). Wearable sensor/device (Fitbit One) and SMS text-messaging prompts to increase physical activity in overweight and obese adults: A randomized controlled trial. Telemedicine and e-Health.

  121. Weber, R. H., & Weber, R. (2010). Internet of things (Vol. 10). New York: Springer.

    Google Scholar 

  122. Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–105.

    Google Scholar 

  123. Wu, L., Du, X., Wang, W., & Lin, B. (2018). An out-of-band authentication scheme for internet of things using blockchain technology. In International conference on computing (pp. 769–773). Networking and Communications (ICNC), IEEE.

  124. Xiao, Y., Chen, H. H., Sun, B., Wang, R., & Sethi, S. (2006). MAC security and security overhead analysis in the IEEE 802.15. 4 wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2006(1), 093830.

    Google Scholar 

  125. Xiaomei, Y., & Ke, M. (2016). Evolution of wireless sensor network security. In World automation congress (WAC), IEEE, (pp. 1–5).

  126. Yang, Z., & Chang, C. H. (2019). 6LoWPAN overview and implementations. In Proceedings of the 2019 international conference on embedded wireless systems and networks, (pp. 357–361), Junction Publishing.

  127. Yeole, A., Kalbande, D., & Sharma, A. (2019). Security of 6LoWPAN IoT networks in hospitals for medical data exchange. Procedia Computer Science, 152, 212–221.

    Google Scholar 

  128. Zhang, M., Yu, T., & Zhai, G. F. (2011). Smart transport system based on“the internet of things’’. Applied Mechanics and Materials, 48, 1073–1076. https://doi.org/10.4028/www.scientific.net/AMM.48-49.1073

    Article  Google Scholar 

  129. Zhou, L., Wen, Q., & Zhang, H. (2012). Preserving sensor location privacy in internet of things. In Fourth international conference on computational and information sciences (ICCIS), IEEE, (pp. 856–859).

Download references

Acknowledgements

The authors are thankful to Visvesvaraya Ph.D. Scheme for Electronics & IT(Ref: DIC/MUM/GA/10(43)), Ministry of Electronics & Information Technology (MeitY), Government of India, for their support in this work.

Funding

The authors declare that they have no funding associated with the paper.

Author information

Authors and Affiliations

Authors

Contributions

The author Leki Chom Thungon wrote the manuscript under the guidance of the author Md. Iftekhar Hussain. The structure of the review paper was designed with the help of the author Nurzaman Ahmed. The author Debashis De made the necessary corrections and modifications to the paper.

Corresponding author

Correspondence to Leki Chom Thungon.

Ethics declarations

Conflict of interest

The authors Leki Chom Thungon, Nurzaman Ahmed, Debashis De and Md. Iftekhar Hussain declared that there is no Conflict of interest directly related to the submitted work.

Ethical Approval

This article does not contain any study with human participants or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thungon, L.C., Ahmed, N., De, D. et al. A Survey on 6LoWPAN Security for IoT: Taxonomy, Architecture, and Future Directions. Wireless Pers Commun 137, 153–197 (2024). https://doi.org/10.1007/s11277-024-11382-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11382-y

Keywords

Navigation